5e0a760b44
commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has changed the definition of MAX_ORDER to be inclusive. This has caused issues with code that was not yet upstream and depended on the previous definition. To draw attention to the altered meaning of the define, rename MAX_ORDER to MAX_PAGE_ORDER. Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2974 lines
70 KiB
C
2974 lines
70 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2009-2011 Red Hat, Inc.
|
|
*
|
|
* Author: Mikulas Patocka <mpatocka@redhat.com>
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include <linux/dm-bufio.h>
|
|
|
|
#include <linux/device-mapper.h>
|
|
#include <linux/dm-io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/shrinker.h>
|
|
#include <linux/module.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/stacktrace.h>
|
|
#include <linux/jump_label.h>
|
|
|
|
#include "dm.h"
|
|
|
|
#define DM_MSG_PREFIX "bufio"
|
|
|
|
/*
|
|
* Memory management policy:
|
|
* Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
|
|
* or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
|
|
* Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
|
|
* Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
|
|
* dirty buffers.
|
|
*/
|
|
#define DM_BUFIO_MIN_BUFFERS 8
|
|
|
|
#define DM_BUFIO_MEMORY_PERCENT 2
|
|
#define DM_BUFIO_VMALLOC_PERCENT 25
|
|
#define DM_BUFIO_WRITEBACK_RATIO 3
|
|
#define DM_BUFIO_LOW_WATERMARK_RATIO 16
|
|
|
|
/*
|
|
* Check buffer ages in this interval (seconds)
|
|
*/
|
|
#define DM_BUFIO_WORK_TIMER_SECS 30
|
|
|
|
/*
|
|
* Free buffers when they are older than this (seconds)
|
|
*/
|
|
#define DM_BUFIO_DEFAULT_AGE_SECS 300
|
|
|
|
/*
|
|
* The nr of bytes of cached data to keep around.
|
|
*/
|
|
#define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
|
|
|
|
/*
|
|
* Align buffer writes to this boundary.
|
|
* Tests show that SSDs have the highest IOPS when using 4k writes.
|
|
*/
|
|
#define DM_BUFIO_WRITE_ALIGN 4096
|
|
|
|
/*
|
|
* dm_buffer->list_mode
|
|
*/
|
|
#define LIST_CLEAN 0
|
|
#define LIST_DIRTY 1
|
|
#define LIST_SIZE 2
|
|
|
|
/*--------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Rather than use an LRU list, we use a clock algorithm where entries
|
|
* are held in a circular list. When an entry is 'hit' a reference bit
|
|
* is set. The least recently used entry is approximated by running a
|
|
* cursor around the list selecting unreferenced entries. Referenced
|
|
* entries have their reference bit cleared as the cursor passes them.
|
|
*/
|
|
struct lru_entry {
|
|
struct list_head list;
|
|
atomic_t referenced;
|
|
};
|
|
|
|
struct lru_iter {
|
|
struct lru *lru;
|
|
struct list_head list;
|
|
struct lru_entry *stop;
|
|
struct lru_entry *e;
|
|
};
|
|
|
|
struct lru {
|
|
struct list_head *cursor;
|
|
unsigned long count;
|
|
|
|
struct list_head iterators;
|
|
};
|
|
|
|
/*--------------*/
|
|
|
|
static void lru_init(struct lru *lru)
|
|
{
|
|
lru->cursor = NULL;
|
|
lru->count = 0;
|
|
INIT_LIST_HEAD(&lru->iterators);
|
|
}
|
|
|
|
static void lru_destroy(struct lru *lru)
|
|
{
|
|
WARN_ON_ONCE(lru->cursor);
|
|
WARN_ON_ONCE(!list_empty(&lru->iterators));
|
|
}
|
|
|
|
/*
|
|
* Insert a new entry into the lru.
|
|
*/
|
|
static void lru_insert(struct lru *lru, struct lru_entry *le)
|
|
{
|
|
/*
|
|
* Don't be tempted to set to 1, makes the lru aspect
|
|
* perform poorly.
|
|
*/
|
|
atomic_set(&le->referenced, 0);
|
|
|
|
if (lru->cursor) {
|
|
list_add_tail(&le->list, lru->cursor);
|
|
} else {
|
|
INIT_LIST_HEAD(&le->list);
|
|
lru->cursor = &le->list;
|
|
}
|
|
lru->count++;
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Convert a list_head pointer to an lru_entry pointer.
|
|
*/
|
|
static inline struct lru_entry *to_le(struct list_head *l)
|
|
{
|
|
return container_of(l, struct lru_entry, list);
|
|
}
|
|
|
|
/*
|
|
* Initialize an lru_iter and add it to the list of cursors in the lru.
|
|
*/
|
|
static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
|
|
{
|
|
it->lru = lru;
|
|
it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
|
|
it->e = lru->cursor ? to_le(lru->cursor) : NULL;
|
|
list_add(&it->list, &lru->iterators);
|
|
}
|
|
|
|
/*
|
|
* Remove an lru_iter from the list of cursors in the lru.
|
|
*/
|
|
static inline void lru_iter_end(struct lru_iter *it)
|
|
{
|
|
list_del(&it->list);
|
|
}
|
|
|
|
/* Predicate function type to be used with lru_iter_next */
|
|
typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
|
|
|
|
/*
|
|
* Advance the cursor to the next entry that passes the
|
|
* predicate, and return that entry. Returns NULL if the
|
|
* iteration is complete.
|
|
*/
|
|
static struct lru_entry *lru_iter_next(struct lru_iter *it,
|
|
iter_predicate pred, void *context)
|
|
{
|
|
struct lru_entry *e;
|
|
|
|
while (it->e) {
|
|
e = it->e;
|
|
|
|
/* advance the cursor */
|
|
if (it->e == it->stop)
|
|
it->e = NULL;
|
|
else
|
|
it->e = to_le(it->e->list.next);
|
|
|
|
if (pred(e, context))
|
|
return e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Invalidate a specific lru_entry and update all cursors in
|
|
* the lru accordingly.
|
|
*/
|
|
static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
|
|
{
|
|
struct lru_iter *it;
|
|
|
|
list_for_each_entry(it, &lru->iterators, list) {
|
|
/* Move c->e forwards if necc. */
|
|
if (it->e == e) {
|
|
it->e = to_le(it->e->list.next);
|
|
if (it->e == e)
|
|
it->e = NULL;
|
|
}
|
|
|
|
/* Move it->stop backwards if necc. */
|
|
if (it->stop == e) {
|
|
it->stop = to_le(it->stop->list.prev);
|
|
if (it->stop == e)
|
|
it->stop = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Remove a specific entry from the lru.
|
|
*/
|
|
static void lru_remove(struct lru *lru, struct lru_entry *le)
|
|
{
|
|
lru_iter_invalidate(lru, le);
|
|
if (lru->count == 1) {
|
|
lru->cursor = NULL;
|
|
} else {
|
|
if (lru->cursor == &le->list)
|
|
lru->cursor = lru->cursor->next;
|
|
list_del(&le->list);
|
|
}
|
|
lru->count--;
|
|
}
|
|
|
|
/*
|
|
* Mark as referenced.
|
|
*/
|
|
static inline void lru_reference(struct lru_entry *le)
|
|
{
|
|
atomic_set(&le->referenced, 1);
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Remove the least recently used entry (approx), that passes the predicate.
|
|
* Returns NULL on failure.
|
|
*/
|
|
enum evict_result {
|
|
ER_EVICT,
|
|
ER_DONT_EVICT,
|
|
ER_STOP, /* stop looking for something to evict */
|
|
};
|
|
|
|
typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
|
|
|
|
static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
|
|
{
|
|
unsigned long tested = 0;
|
|
struct list_head *h = lru->cursor;
|
|
struct lru_entry *le;
|
|
|
|
if (!h)
|
|
return NULL;
|
|
/*
|
|
* In the worst case we have to loop around twice. Once to clear
|
|
* the reference flags, and then again to discover the predicate
|
|
* fails for all entries.
|
|
*/
|
|
while (tested < lru->count) {
|
|
le = container_of(h, struct lru_entry, list);
|
|
|
|
if (atomic_read(&le->referenced)) {
|
|
atomic_set(&le->referenced, 0);
|
|
} else {
|
|
tested++;
|
|
switch (pred(le, context)) {
|
|
case ER_EVICT:
|
|
/*
|
|
* Adjust the cursor, so we start the next
|
|
* search from here.
|
|
*/
|
|
lru->cursor = le->list.next;
|
|
lru_remove(lru, le);
|
|
return le;
|
|
|
|
case ER_DONT_EVICT:
|
|
break;
|
|
|
|
case ER_STOP:
|
|
lru->cursor = le->list.next;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
h = h->next;
|
|
|
|
if (!no_sleep)
|
|
cond_resched();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*--------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Buffer state bits.
|
|
*/
|
|
#define B_READING 0
|
|
#define B_WRITING 1
|
|
#define B_DIRTY 2
|
|
|
|
/*
|
|
* Describes how the block was allocated:
|
|
* kmem_cache_alloc(), __get_free_pages() or vmalloc().
|
|
* See the comment at alloc_buffer_data.
|
|
*/
|
|
enum data_mode {
|
|
DATA_MODE_SLAB = 0,
|
|
DATA_MODE_GET_FREE_PAGES = 1,
|
|
DATA_MODE_VMALLOC = 2,
|
|
DATA_MODE_LIMIT = 3
|
|
};
|
|
|
|
struct dm_buffer {
|
|
/* protected by the locks in dm_buffer_cache */
|
|
struct rb_node node;
|
|
|
|
/* immutable, so don't need protecting */
|
|
sector_t block;
|
|
void *data;
|
|
unsigned char data_mode; /* DATA_MODE_* */
|
|
|
|
/*
|
|
* These two fields are used in isolation, so do not need
|
|
* a surrounding lock.
|
|
*/
|
|
atomic_t hold_count;
|
|
unsigned long last_accessed;
|
|
|
|
/*
|
|
* Everything else is protected by the mutex in
|
|
* dm_bufio_client
|
|
*/
|
|
unsigned long state;
|
|
struct lru_entry lru;
|
|
unsigned char list_mode; /* LIST_* */
|
|
blk_status_t read_error;
|
|
blk_status_t write_error;
|
|
unsigned int dirty_start;
|
|
unsigned int dirty_end;
|
|
unsigned int write_start;
|
|
unsigned int write_end;
|
|
struct list_head write_list;
|
|
struct dm_bufio_client *c;
|
|
void (*end_io)(struct dm_buffer *b, blk_status_t bs);
|
|
#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
|
|
#define MAX_STACK 10
|
|
unsigned int stack_len;
|
|
unsigned long stack_entries[MAX_STACK];
|
|
#endif
|
|
};
|
|
|
|
/*--------------------------------------------------------------*/
|
|
|
|
/*
|
|
* The buffer cache manages buffers, particularly:
|
|
* - inc/dec of holder count
|
|
* - setting the last_accessed field
|
|
* - maintains clean/dirty state along with lru
|
|
* - selecting buffers that match predicates
|
|
*
|
|
* It does *not* handle:
|
|
* - allocation/freeing of buffers.
|
|
* - IO
|
|
* - Eviction or cache sizing.
|
|
*
|
|
* cache_get() and cache_put() are threadsafe, you do not need to
|
|
* protect these calls with a surrounding mutex. All the other
|
|
* methods are not threadsafe; they do use locking primitives, but
|
|
* only enough to ensure get/put are threadsafe.
|
|
*/
|
|
|
|
struct buffer_tree {
|
|
union {
|
|
struct rw_semaphore lock;
|
|
rwlock_t spinlock;
|
|
} u;
|
|
struct rb_root root;
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
struct dm_buffer_cache {
|
|
struct lru lru[LIST_SIZE];
|
|
/*
|
|
* We spread entries across multiple trees to reduce contention
|
|
* on the locks.
|
|
*/
|
|
unsigned int num_locks;
|
|
bool no_sleep;
|
|
struct buffer_tree trees[];
|
|
};
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
|
|
|
|
static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
|
|
{
|
|
return dm_hash_locks_index(block, num_locks);
|
|
}
|
|
|
|
static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
|
|
{
|
|
if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
|
|
read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
|
|
else
|
|
down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
|
|
}
|
|
|
|
static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
|
|
{
|
|
if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
|
|
read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
|
|
else
|
|
up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
|
|
}
|
|
|
|
static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
|
|
{
|
|
if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
|
|
write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
|
|
else
|
|
down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
|
|
}
|
|
|
|
static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
|
|
{
|
|
if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
|
|
write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
|
|
else
|
|
up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
|
|
}
|
|
|
|
/*
|
|
* Sometimes we want to repeatedly get and drop locks as part of an iteration.
|
|
* This struct helps avoid redundant drop and gets of the same lock.
|
|
*/
|
|
struct lock_history {
|
|
struct dm_buffer_cache *cache;
|
|
bool write;
|
|
unsigned int previous;
|
|
unsigned int no_previous;
|
|
};
|
|
|
|
static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
|
|
{
|
|
lh->cache = cache;
|
|
lh->write = write;
|
|
lh->no_previous = cache->num_locks;
|
|
lh->previous = lh->no_previous;
|
|
}
|
|
|
|
static void __lh_lock(struct lock_history *lh, unsigned int index)
|
|
{
|
|
if (lh->write) {
|
|
if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
|
|
write_lock_bh(&lh->cache->trees[index].u.spinlock);
|
|
else
|
|
down_write(&lh->cache->trees[index].u.lock);
|
|
} else {
|
|
if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
|
|
read_lock_bh(&lh->cache->trees[index].u.spinlock);
|
|
else
|
|
down_read(&lh->cache->trees[index].u.lock);
|
|
}
|
|
}
|
|
|
|
static void __lh_unlock(struct lock_history *lh, unsigned int index)
|
|
{
|
|
if (lh->write) {
|
|
if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
|
|
write_unlock_bh(&lh->cache->trees[index].u.spinlock);
|
|
else
|
|
up_write(&lh->cache->trees[index].u.lock);
|
|
} else {
|
|
if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
|
|
read_unlock_bh(&lh->cache->trees[index].u.spinlock);
|
|
else
|
|
up_read(&lh->cache->trees[index].u.lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure you call this since it will unlock the final lock.
|
|
*/
|
|
static void lh_exit(struct lock_history *lh)
|
|
{
|
|
if (lh->previous != lh->no_previous) {
|
|
__lh_unlock(lh, lh->previous);
|
|
lh->previous = lh->no_previous;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Named 'next' because there is no corresponding
|
|
* 'up/unlock' call since it's done automatically.
|
|
*/
|
|
static void lh_next(struct lock_history *lh, sector_t b)
|
|
{
|
|
unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
|
|
|
|
if (lh->previous != lh->no_previous) {
|
|
if (lh->previous != index) {
|
|
__lh_unlock(lh, lh->previous);
|
|
__lh_lock(lh, index);
|
|
lh->previous = index;
|
|
}
|
|
} else {
|
|
__lh_lock(lh, index);
|
|
lh->previous = index;
|
|
}
|
|
}
|
|
|
|
static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
|
|
{
|
|
return container_of(le, struct dm_buffer, lru);
|
|
}
|
|
|
|
static struct dm_buffer *list_to_buffer(struct list_head *l)
|
|
{
|
|
struct lru_entry *le = list_entry(l, struct lru_entry, list);
|
|
|
|
if (!le)
|
|
return NULL;
|
|
|
|
return le_to_buffer(le);
|
|
}
|
|
|
|
static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
|
|
{
|
|
unsigned int i;
|
|
|
|
bc->num_locks = num_locks;
|
|
bc->no_sleep = no_sleep;
|
|
|
|
for (i = 0; i < bc->num_locks; i++) {
|
|
if (no_sleep)
|
|
rwlock_init(&bc->trees[i].u.spinlock);
|
|
else
|
|
init_rwsem(&bc->trees[i].u.lock);
|
|
bc->trees[i].root = RB_ROOT;
|
|
}
|
|
|
|
lru_init(&bc->lru[LIST_CLEAN]);
|
|
lru_init(&bc->lru[LIST_DIRTY]);
|
|
}
|
|
|
|
static void cache_destroy(struct dm_buffer_cache *bc)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < bc->num_locks; i++)
|
|
WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
|
|
|
|
lru_destroy(&bc->lru[LIST_CLEAN]);
|
|
lru_destroy(&bc->lru[LIST_DIRTY]);
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* not threadsafe, or racey depending how you look at it
|
|
*/
|
|
static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
|
|
{
|
|
return bc->lru[list_mode].count;
|
|
}
|
|
|
|
static inline unsigned long cache_total(struct dm_buffer_cache *bc)
|
|
{
|
|
return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Gets a specific buffer, indexed by block.
|
|
* If the buffer is found then its holder count will be incremented and
|
|
* lru_reference will be called.
|
|
*
|
|
* threadsafe
|
|
*/
|
|
static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct dm_buffer *b;
|
|
|
|
while (n) {
|
|
b = container_of(n, struct dm_buffer, node);
|
|
|
|
if (b->block == block)
|
|
return b;
|
|
|
|
n = block < b->block ? n->rb_left : n->rb_right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void __cache_inc_buffer(struct dm_buffer *b)
|
|
{
|
|
atomic_inc(&b->hold_count);
|
|
WRITE_ONCE(b->last_accessed, jiffies);
|
|
}
|
|
|
|
static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
|
|
{
|
|
struct dm_buffer *b;
|
|
|
|
cache_read_lock(bc, block);
|
|
b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
|
|
if (b) {
|
|
lru_reference(&b->lru);
|
|
__cache_inc_buffer(b);
|
|
}
|
|
cache_read_unlock(bc, block);
|
|
|
|
return b;
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Returns true if the hold count hits zero.
|
|
* threadsafe
|
|
*/
|
|
static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
|
|
{
|
|
bool r;
|
|
|
|
cache_read_lock(bc, b->block);
|
|
BUG_ON(!atomic_read(&b->hold_count));
|
|
r = atomic_dec_and_test(&b->hold_count);
|
|
cache_read_unlock(bc, b->block);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
|
|
|
|
/*
|
|
* Evicts a buffer based on a predicate. The oldest buffer that
|
|
* matches the predicate will be selected. In addition to the
|
|
* predicate the hold_count of the selected buffer will be zero.
|
|
*/
|
|
struct evict_wrapper {
|
|
struct lock_history *lh;
|
|
b_predicate pred;
|
|
void *context;
|
|
};
|
|
|
|
/*
|
|
* Wraps the buffer predicate turning it into an lru predicate. Adds
|
|
* extra test for hold_count.
|
|
*/
|
|
static enum evict_result __evict_pred(struct lru_entry *le, void *context)
|
|
{
|
|
struct evict_wrapper *w = context;
|
|
struct dm_buffer *b = le_to_buffer(le);
|
|
|
|
lh_next(w->lh, b->block);
|
|
|
|
if (atomic_read(&b->hold_count))
|
|
return ER_DONT_EVICT;
|
|
|
|
return w->pred(b, w->context);
|
|
}
|
|
|
|
static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
|
|
b_predicate pred, void *context,
|
|
struct lock_history *lh)
|
|
{
|
|
struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
|
|
struct lru_entry *le;
|
|
struct dm_buffer *b;
|
|
|
|
le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
|
|
if (!le)
|
|
return NULL;
|
|
|
|
b = le_to_buffer(le);
|
|
/* __evict_pred will have locked the appropriate tree. */
|
|
rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
|
|
|
|
return b;
|
|
}
|
|
|
|
static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
|
|
b_predicate pred, void *context)
|
|
{
|
|
struct dm_buffer *b;
|
|
struct lock_history lh;
|
|
|
|
lh_init(&lh, bc, true);
|
|
b = __cache_evict(bc, list_mode, pred, context, &lh);
|
|
lh_exit(&lh);
|
|
|
|
return b;
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Mark a buffer as clean or dirty. Not threadsafe.
|
|
*/
|
|
static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
|
|
{
|
|
cache_write_lock(bc, b->block);
|
|
if (list_mode != b->list_mode) {
|
|
lru_remove(&bc->lru[b->list_mode], &b->lru);
|
|
b->list_mode = list_mode;
|
|
lru_insert(&bc->lru[b->list_mode], &b->lru);
|
|
}
|
|
cache_write_unlock(bc, b->block);
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Runs through the lru associated with 'old_mode', if the predicate matches then
|
|
* it moves them to 'new_mode'. Not threadsafe.
|
|
*/
|
|
static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
|
|
b_predicate pred, void *context, struct lock_history *lh)
|
|
{
|
|
struct lru_entry *le;
|
|
struct dm_buffer *b;
|
|
struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
|
|
|
|
while (true) {
|
|
le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
|
|
if (!le)
|
|
break;
|
|
|
|
b = le_to_buffer(le);
|
|
b->list_mode = new_mode;
|
|
lru_insert(&bc->lru[b->list_mode], &b->lru);
|
|
}
|
|
}
|
|
|
|
static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
|
|
b_predicate pred, void *context)
|
|
{
|
|
struct lock_history lh;
|
|
|
|
lh_init(&lh, bc, true);
|
|
__cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
|
|
lh_exit(&lh);
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Iterates through all clean or dirty entries calling a function for each
|
|
* entry. The callback may terminate the iteration early. Not threadsafe.
|
|
*/
|
|
|
|
/*
|
|
* Iterator functions should return one of these actions to indicate
|
|
* how the iteration should proceed.
|
|
*/
|
|
enum it_action {
|
|
IT_NEXT,
|
|
IT_COMPLETE,
|
|
};
|
|
|
|
typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
|
|
|
|
static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
|
|
iter_fn fn, void *context, struct lock_history *lh)
|
|
{
|
|
struct lru *lru = &bc->lru[list_mode];
|
|
struct lru_entry *le, *first;
|
|
|
|
if (!lru->cursor)
|
|
return;
|
|
|
|
first = le = to_le(lru->cursor);
|
|
do {
|
|
struct dm_buffer *b = le_to_buffer(le);
|
|
|
|
lh_next(lh, b->block);
|
|
|
|
switch (fn(b, context)) {
|
|
case IT_NEXT:
|
|
break;
|
|
|
|
case IT_COMPLETE:
|
|
return;
|
|
}
|
|
cond_resched();
|
|
|
|
le = to_le(le->list.next);
|
|
} while (le != first);
|
|
}
|
|
|
|
static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
|
|
iter_fn fn, void *context)
|
|
{
|
|
struct lock_history lh;
|
|
|
|
lh_init(&lh, bc, false);
|
|
__cache_iterate(bc, list_mode, fn, context, &lh);
|
|
lh_exit(&lh);
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Passes ownership of the buffer to the cache. Returns false if the
|
|
* buffer was already present (in which case ownership does not pass).
|
|
* eg, a race with another thread.
|
|
*
|
|
* Holder count should be 1 on insertion.
|
|
*
|
|
* Not threadsafe.
|
|
*/
|
|
static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
|
|
{
|
|
struct rb_node **new = &root->rb_node, *parent = NULL;
|
|
struct dm_buffer *found;
|
|
|
|
while (*new) {
|
|
found = container_of(*new, struct dm_buffer, node);
|
|
|
|
if (found->block == b->block)
|
|
return false;
|
|
|
|
parent = *new;
|
|
new = b->block < found->block ?
|
|
&found->node.rb_left : &found->node.rb_right;
|
|
}
|
|
|
|
rb_link_node(&b->node, parent, new);
|
|
rb_insert_color(&b->node, root);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
|
|
{
|
|
bool r;
|
|
|
|
if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
|
|
return false;
|
|
|
|
cache_write_lock(bc, b->block);
|
|
BUG_ON(atomic_read(&b->hold_count) != 1);
|
|
r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
|
|
if (r)
|
|
lru_insert(&bc->lru[b->list_mode], &b->lru);
|
|
cache_write_unlock(bc, b->block);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
/*
|
|
* Removes buffer from cache, ownership of the buffer passes back to the caller.
|
|
* Fails if the hold_count is not one (ie. the caller holds the only reference).
|
|
*
|
|
* Not threadsafe.
|
|
*/
|
|
static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
|
|
{
|
|
bool r;
|
|
|
|
cache_write_lock(bc, b->block);
|
|
|
|
if (atomic_read(&b->hold_count) != 1) {
|
|
r = false;
|
|
} else {
|
|
r = true;
|
|
rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
|
|
lru_remove(&bc->lru[b->list_mode], &b->lru);
|
|
}
|
|
|
|
cache_write_unlock(bc, b->block);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*--------------*/
|
|
|
|
typedef void (*b_release)(struct dm_buffer *);
|
|
|
|
static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct dm_buffer *b;
|
|
struct dm_buffer *best = NULL;
|
|
|
|
while (n) {
|
|
b = container_of(n, struct dm_buffer, node);
|
|
|
|
if (b->block == block)
|
|
return b;
|
|
|
|
if (block <= b->block) {
|
|
n = n->rb_left;
|
|
best = b;
|
|
} else {
|
|
n = n->rb_right;
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
static void __remove_range(struct dm_buffer_cache *bc,
|
|
struct rb_root *root,
|
|
sector_t begin, sector_t end,
|
|
b_predicate pred, b_release release)
|
|
{
|
|
struct dm_buffer *b;
|
|
|
|
while (true) {
|
|
cond_resched();
|
|
|
|
b = __find_next(root, begin);
|
|
if (!b || (b->block >= end))
|
|
break;
|
|
|
|
begin = b->block + 1;
|
|
|
|
if (atomic_read(&b->hold_count))
|
|
continue;
|
|
|
|
if (pred(b, NULL) == ER_EVICT) {
|
|
rb_erase(&b->node, root);
|
|
lru_remove(&bc->lru[b->list_mode], &b->lru);
|
|
release(b);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cache_remove_range(struct dm_buffer_cache *bc,
|
|
sector_t begin, sector_t end,
|
|
b_predicate pred, b_release release)
|
|
{
|
|
unsigned int i;
|
|
|
|
BUG_ON(bc->no_sleep);
|
|
for (i = 0; i < bc->num_locks; i++) {
|
|
down_write(&bc->trees[i].u.lock);
|
|
__remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
|
|
up_write(&bc->trees[i].u.lock);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Linking of buffers:
|
|
* All buffers are linked to buffer_cache with their node field.
|
|
*
|
|
* Clean buffers that are not being written (B_WRITING not set)
|
|
* are linked to lru[LIST_CLEAN] with their lru_list field.
|
|
*
|
|
* Dirty and clean buffers that are being written are linked to
|
|
* lru[LIST_DIRTY] with their lru_list field. When the write
|
|
* finishes, the buffer cannot be relinked immediately (because we
|
|
* are in an interrupt context and relinking requires process
|
|
* context), so some clean-not-writing buffers can be held on
|
|
* dirty_lru too. They are later added to lru in the process
|
|
* context.
|
|
*/
|
|
struct dm_bufio_client {
|
|
struct block_device *bdev;
|
|
unsigned int block_size;
|
|
s8 sectors_per_block_bits;
|
|
|
|
bool no_sleep;
|
|
struct mutex lock;
|
|
spinlock_t spinlock;
|
|
|
|
int async_write_error;
|
|
|
|
void (*alloc_callback)(struct dm_buffer *buf);
|
|
void (*write_callback)(struct dm_buffer *buf);
|
|
struct kmem_cache *slab_buffer;
|
|
struct kmem_cache *slab_cache;
|
|
struct dm_io_client *dm_io;
|
|
|
|
struct list_head reserved_buffers;
|
|
unsigned int need_reserved_buffers;
|
|
|
|
unsigned int minimum_buffers;
|
|
|
|
sector_t start;
|
|
|
|
struct shrinker *shrinker;
|
|
struct work_struct shrink_work;
|
|
atomic_long_t need_shrink;
|
|
|
|
wait_queue_head_t free_buffer_wait;
|
|
|
|
struct list_head client_list;
|
|
|
|
/*
|
|
* Used by global_cleanup to sort the clients list.
|
|
*/
|
|
unsigned long oldest_buffer;
|
|
|
|
struct dm_buffer_cache cache; /* must be last member */
|
|
};
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
#define dm_bufio_in_request() (!!current->bio_list)
|
|
|
|
static void dm_bufio_lock(struct dm_bufio_client *c)
|
|
{
|
|
if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
|
|
spin_lock_bh(&c->spinlock);
|
|
else
|
|
mutex_lock_nested(&c->lock, dm_bufio_in_request());
|
|
}
|
|
|
|
static void dm_bufio_unlock(struct dm_bufio_client *c)
|
|
{
|
|
if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
|
|
spin_unlock_bh(&c->spinlock);
|
|
else
|
|
mutex_unlock(&c->lock);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Default cache size: available memory divided by the ratio.
|
|
*/
|
|
static unsigned long dm_bufio_default_cache_size;
|
|
|
|
/*
|
|
* Total cache size set by the user.
|
|
*/
|
|
static unsigned long dm_bufio_cache_size;
|
|
|
|
/*
|
|
* A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
|
|
* at any time. If it disagrees, the user has changed cache size.
|
|
*/
|
|
static unsigned long dm_bufio_cache_size_latch;
|
|
|
|
static DEFINE_SPINLOCK(global_spinlock);
|
|
|
|
/*
|
|
* Buffers are freed after this timeout
|
|
*/
|
|
static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
|
|
static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
|
|
|
|
static unsigned long dm_bufio_peak_allocated;
|
|
static unsigned long dm_bufio_allocated_kmem_cache;
|
|
static unsigned long dm_bufio_allocated_get_free_pages;
|
|
static unsigned long dm_bufio_allocated_vmalloc;
|
|
static unsigned long dm_bufio_current_allocated;
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* The current number of clients.
|
|
*/
|
|
static int dm_bufio_client_count;
|
|
|
|
/*
|
|
* The list of all clients.
|
|
*/
|
|
static LIST_HEAD(dm_bufio_all_clients);
|
|
|
|
/*
|
|
* This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
|
|
*/
|
|
static DEFINE_MUTEX(dm_bufio_clients_lock);
|
|
|
|
static struct workqueue_struct *dm_bufio_wq;
|
|
static struct delayed_work dm_bufio_cleanup_old_work;
|
|
static struct work_struct dm_bufio_replacement_work;
|
|
|
|
|
|
#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
|
|
static void buffer_record_stack(struct dm_buffer *b)
|
|
{
|
|
b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
|
|
}
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
|
|
{
|
|
unsigned char data_mode;
|
|
long diff;
|
|
|
|
static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
|
|
&dm_bufio_allocated_kmem_cache,
|
|
&dm_bufio_allocated_get_free_pages,
|
|
&dm_bufio_allocated_vmalloc,
|
|
};
|
|
|
|
data_mode = b->data_mode;
|
|
diff = (long)b->c->block_size;
|
|
if (unlink)
|
|
diff = -diff;
|
|
|
|
spin_lock(&global_spinlock);
|
|
|
|
*class_ptr[data_mode] += diff;
|
|
|
|
dm_bufio_current_allocated += diff;
|
|
|
|
if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
|
|
dm_bufio_peak_allocated = dm_bufio_current_allocated;
|
|
|
|
if (!unlink) {
|
|
if (dm_bufio_current_allocated > dm_bufio_cache_size)
|
|
queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
|
|
}
|
|
|
|
spin_unlock(&global_spinlock);
|
|
}
|
|
|
|
/*
|
|
* Change the number of clients and recalculate per-client limit.
|
|
*/
|
|
static void __cache_size_refresh(void)
|
|
{
|
|
if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
|
|
return;
|
|
if (WARN_ON(dm_bufio_client_count < 0))
|
|
return;
|
|
|
|
dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
|
|
|
|
/*
|
|
* Use default if set to 0 and report the actual cache size used.
|
|
*/
|
|
if (!dm_bufio_cache_size_latch) {
|
|
(void)cmpxchg(&dm_bufio_cache_size, 0,
|
|
dm_bufio_default_cache_size);
|
|
dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocating buffer data.
|
|
*
|
|
* Small buffers are allocated with kmem_cache, to use space optimally.
|
|
*
|
|
* For large buffers, we choose between get_free_pages and vmalloc.
|
|
* Each has advantages and disadvantages.
|
|
*
|
|
* __get_free_pages can randomly fail if the memory is fragmented.
|
|
* __vmalloc won't randomly fail, but vmalloc space is limited (it may be
|
|
* as low as 128M) so using it for caching is not appropriate.
|
|
*
|
|
* If the allocation may fail we use __get_free_pages. Memory fragmentation
|
|
* won't have a fatal effect here, but it just causes flushes of some other
|
|
* buffers and more I/O will be performed. Don't use __get_free_pages if it
|
|
* always fails (i.e. order > MAX_PAGE_ORDER).
|
|
*
|
|
* If the allocation shouldn't fail we use __vmalloc. This is only for the
|
|
* initial reserve allocation, so there's no risk of wasting all vmalloc
|
|
* space.
|
|
*/
|
|
static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
|
|
unsigned char *data_mode)
|
|
{
|
|
if (unlikely(c->slab_cache != NULL)) {
|
|
*data_mode = DATA_MODE_SLAB;
|
|
return kmem_cache_alloc(c->slab_cache, gfp_mask);
|
|
}
|
|
|
|
if (c->block_size <= KMALLOC_MAX_SIZE &&
|
|
gfp_mask & __GFP_NORETRY) {
|
|
*data_mode = DATA_MODE_GET_FREE_PAGES;
|
|
return (void *)__get_free_pages(gfp_mask,
|
|
c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
|
|
}
|
|
|
|
*data_mode = DATA_MODE_VMALLOC;
|
|
|
|
return __vmalloc(c->block_size, gfp_mask);
|
|
}
|
|
|
|
/*
|
|
* Free buffer's data.
|
|
*/
|
|
static void free_buffer_data(struct dm_bufio_client *c,
|
|
void *data, unsigned char data_mode)
|
|
{
|
|
switch (data_mode) {
|
|
case DATA_MODE_SLAB:
|
|
kmem_cache_free(c->slab_cache, data);
|
|
break;
|
|
|
|
case DATA_MODE_GET_FREE_PAGES:
|
|
free_pages((unsigned long)data,
|
|
c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
|
|
break;
|
|
|
|
case DATA_MODE_VMALLOC:
|
|
vfree(data);
|
|
break;
|
|
|
|
default:
|
|
DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
|
|
data_mode);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate buffer and its data.
|
|
*/
|
|
static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
|
|
{
|
|
struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
|
|
|
|
if (!b)
|
|
return NULL;
|
|
|
|
b->c = c;
|
|
|
|
b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
|
|
if (!b->data) {
|
|
kmem_cache_free(c->slab_buffer, b);
|
|
return NULL;
|
|
}
|
|
adjust_total_allocated(b, false);
|
|
|
|
#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
|
|
b->stack_len = 0;
|
|
#endif
|
|
return b;
|
|
}
|
|
|
|
/*
|
|
* Free buffer and its data.
|
|
*/
|
|
static void free_buffer(struct dm_buffer *b)
|
|
{
|
|
struct dm_bufio_client *c = b->c;
|
|
|
|
adjust_total_allocated(b, true);
|
|
free_buffer_data(c, b->data, b->data_mode);
|
|
kmem_cache_free(c->slab_buffer, b);
|
|
}
|
|
|
|
/*
|
|
*--------------------------------------------------------------------------
|
|
* Submit I/O on the buffer.
|
|
*
|
|
* Bio interface is faster but it has some problems:
|
|
* the vector list is limited (increasing this limit increases
|
|
* memory-consumption per buffer, so it is not viable);
|
|
*
|
|
* the memory must be direct-mapped, not vmalloced;
|
|
*
|
|
* If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
|
|
* it is not vmalloced, try using the bio interface.
|
|
*
|
|
* If the buffer is big, if it is vmalloced or if the underlying device
|
|
* rejects the bio because it is too large, use dm-io layer to do the I/O.
|
|
* The dm-io layer splits the I/O into multiple requests, avoiding the above
|
|
* shortcomings.
|
|
*--------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* dm-io completion routine. It just calls b->bio.bi_end_io, pretending
|
|
* that the request was handled directly with bio interface.
|
|
*/
|
|
static void dmio_complete(unsigned long error, void *context)
|
|
{
|
|
struct dm_buffer *b = context;
|
|
|
|
b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
|
|
}
|
|
|
|
static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
|
|
unsigned int n_sectors, unsigned int offset)
|
|
{
|
|
int r;
|
|
struct dm_io_request io_req = {
|
|
.bi_opf = op,
|
|
.notify.fn = dmio_complete,
|
|
.notify.context = b,
|
|
.client = b->c->dm_io,
|
|
};
|
|
struct dm_io_region region = {
|
|
.bdev = b->c->bdev,
|
|
.sector = sector,
|
|
.count = n_sectors,
|
|
};
|
|
|
|
if (b->data_mode != DATA_MODE_VMALLOC) {
|
|
io_req.mem.type = DM_IO_KMEM;
|
|
io_req.mem.ptr.addr = (char *)b->data + offset;
|
|
} else {
|
|
io_req.mem.type = DM_IO_VMA;
|
|
io_req.mem.ptr.vma = (char *)b->data + offset;
|
|
}
|
|
|
|
r = dm_io(&io_req, 1, ®ion, NULL);
|
|
if (unlikely(r))
|
|
b->end_io(b, errno_to_blk_status(r));
|
|
}
|
|
|
|
static void bio_complete(struct bio *bio)
|
|
{
|
|
struct dm_buffer *b = bio->bi_private;
|
|
blk_status_t status = bio->bi_status;
|
|
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
b->end_io(b, status);
|
|
}
|
|
|
|
static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
|
|
unsigned int n_sectors, unsigned int offset)
|
|
{
|
|
struct bio *bio;
|
|
char *ptr;
|
|
unsigned int len;
|
|
|
|
bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
|
|
if (!bio) {
|
|
use_dmio(b, op, sector, n_sectors, offset);
|
|
return;
|
|
}
|
|
bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
|
|
bio->bi_iter.bi_sector = sector;
|
|
bio->bi_end_io = bio_complete;
|
|
bio->bi_private = b;
|
|
|
|
ptr = (char *)b->data + offset;
|
|
len = n_sectors << SECTOR_SHIFT;
|
|
|
|
__bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
|
|
|
|
submit_bio(bio);
|
|
}
|
|
|
|
static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
|
|
{
|
|
sector_t sector;
|
|
|
|
if (likely(c->sectors_per_block_bits >= 0))
|
|
sector = block << c->sectors_per_block_bits;
|
|
else
|
|
sector = block * (c->block_size >> SECTOR_SHIFT);
|
|
sector += c->start;
|
|
|
|
return sector;
|
|
}
|
|
|
|
static void submit_io(struct dm_buffer *b, enum req_op op,
|
|
void (*end_io)(struct dm_buffer *, blk_status_t))
|
|
{
|
|
unsigned int n_sectors;
|
|
sector_t sector;
|
|
unsigned int offset, end;
|
|
|
|
b->end_io = end_io;
|
|
|
|
sector = block_to_sector(b->c, b->block);
|
|
|
|
if (op != REQ_OP_WRITE) {
|
|
n_sectors = b->c->block_size >> SECTOR_SHIFT;
|
|
offset = 0;
|
|
} else {
|
|
if (b->c->write_callback)
|
|
b->c->write_callback(b);
|
|
offset = b->write_start;
|
|
end = b->write_end;
|
|
offset &= -DM_BUFIO_WRITE_ALIGN;
|
|
end += DM_BUFIO_WRITE_ALIGN - 1;
|
|
end &= -DM_BUFIO_WRITE_ALIGN;
|
|
if (unlikely(end > b->c->block_size))
|
|
end = b->c->block_size;
|
|
|
|
sector += offset >> SECTOR_SHIFT;
|
|
n_sectors = (end - offset) >> SECTOR_SHIFT;
|
|
}
|
|
|
|
if (b->data_mode != DATA_MODE_VMALLOC)
|
|
use_bio(b, op, sector, n_sectors, offset);
|
|
else
|
|
use_dmio(b, op, sector, n_sectors, offset);
|
|
}
|
|
|
|
/*
|
|
*--------------------------------------------------------------
|
|
* Writing dirty buffers
|
|
*--------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* The endio routine for write.
|
|
*
|
|
* Set the error, clear B_WRITING bit and wake anyone who was waiting on
|
|
* it.
|
|
*/
|
|
static void write_endio(struct dm_buffer *b, blk_status_t status)
|
|
{
|
|
b->write_error = status;
|
|
if (unlikely(status)) {
|
|
struct dm_bufio_client *c = b->c;
|
|
|
|
(void)cmpxchg(&c->async_write_error, 0,
|
|
blk_status_to_errno(status));
|
|
}
|
|
|
|
BUG_ON(!test_bit(B_WRITING, &b->state));
|
|
|
|
smp_mb__before_atomic();
|
|
clear_bit(B_WRITING, &b->state);
|
|
smp_mb__after_atomic();
|
|
|
|
wake_up_bit(&b->state, B_WRITING);
|
|
}
|
|
|
|
/*
|
|
* Initiate a write on a dirty buffer, but don't wait for it.
|
|
*
|
|
* - If the buffer is not dirty, exit.
|
|
* - If there some previous write going on, wait for it to finish (we can't
|
|
* have two writes on the same buffer simultaneously).
|
|
* - Submit our write and don't wait on it. We set B_WRITING indicating
|
|
* that there is a write in progress.
|
|
*/
|
|
static void __write_dirty_buffer(struct dm_buffer *b,
|
|
struct list_head *write_list)
|
|
{
|
|
if (!test_bit(B_DIRTY, &b->state))
|
|
return;
|
|
|
|
clear_bit(B_DIRTY, &b->state);
|
|
wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
|
|
|
|
b->write_start = b->dirty_start;
|
|
b->write_end = b->dirty_end;
|
|
|
|
if (!write_list)
|
|
submit_io(b, REQ_OP_WRITE, write_endio);
|
|
else
|
|
list_add_tail(&b->write_list, write_list);
|
|
}
|
|
|
|
static void __flush_write_list(struct list_head *write_list)
|
|
{
|
|
struct blk_plug plug;
|
|
|
|
blk_start_plug(&plug);
|
|
while (!list_empty(write_list)) {
|
|
struct dm_buffer *b =
|
|
list_entry(write_list->next, struct dm_buffer, write_list);
|
|
list_del(&b->write_list);
|
|
submit_io(b, REQ_OP_WRITE, write_endio);
|
|
cond_resched();
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
/*
|
|
* Wait until any activity on the buffer finishes. Possibly write the
|
|
* buffer if it is dirty. When this function finishes, there is no I/O
|
|
* running on the buffer and the buffer is not dirty.
|
|
*/
|
|
static void __make_buffer_clean(struct dm_buffer *b)
|
|
{
|
|
BUG_ON(atomic_read(&b->hold_count));
|
|
|
|
/* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
|
|
if (!smp_load_acquire(&b->state)) /* fast case */
|
|
return;
|
|
|
|
wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
|
|
__write_dirty_buffer(b, NULL);
|
|
wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
|
|
}
|
|
|
|
static enum evict_result is_clean(struct dm_buffer *b, void *context)
|
|
{
|
|
struct dm_bufio_client *c = context;
|
|
|
|
/* These should never happen */
|
|
if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
|
|
return ER_DONT_EVICT;
|
|
if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
|
|
return ER_DONT_EVICT;
|
|
if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
|
|
return ER_DONT_EVICT;
|
|
|
|
if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
|
|
unlikely(test_bit(B_READING, &b->state)))
|
|
return ER_DONT_EVICT;
|
|
|
|
return ER_EVICT;
|
|
}
|
|
|
|
static enum evict_result is_dirty(struct dm_buffer *b, void *context)
|
|
{
|
|
/* These should never happen */
|
|
if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
|
|
return ER_DONT_EVICT;
|
|
if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
|
|
return ER_DONT_EVICT;
|
|
|
|
return ER_EVICT;
|
|
}
|
|
|
|
/*
|
|
* Find some buffer that is not held by anybody, clean it, unlink it and
|
|
* return it.
|
|
*/
|
|
static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
|
|
{
|
|
struct dm_buffer *b;
|
|
|
|
b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
|
|
if (b) {
|
|
/* this also waits for pending reads */
|
|
__make_buffer_clean(b);
|
|
return b;
|
|
}
|
|
|
|
if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
|
|
return NULL;
|
|
|
|
b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
|
|
if (b) {
|
|
__make_buffer_clean(b);
|
|
return b;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Wait until some other threads free some buffer or release hold count on
|
|
* some buffer.
|
|
*
|
|
* This function is entered with c->lock held, drops it and regains it
|
|
* before exiting.
|
|
*/
|
|
static void __wait_for_free_buffer(struct dm_bufio_client *c)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
add_wait_queue(&c->free_buffer_wait, &wait);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
dm_bufio_unlock(c);
|
|
|
|
/*
|
|
* It's possible to miss a wake up event since we don't always
|
|
* hold c->lock when wake_up is called. So we have a timeout here,
|
|
* just in case.
|
|
*/
|
|
io_schedule_timeout(5 * HZ);
|
|
|
|
remove_wait_queue(&c->free_buffer_wait, &wait);
|
|
|
|
dm_bufio_lock(c);
|
|
}
|
|
|
|
enum new_flag {
|
|
NF_FRESH = 0,
|
|
NF_READ = 1,
|
|
NF_GET = 2,
|
|
NF_PREFETCH = 3
|
|
};
|
|
|
|
/*
|
|
* Allocate a new buffer. If the allocation is not possible, wait until
|
|
* some other thread frees a buffer.
|
|
*
|
|
* May drop the lock and regain it.
|
|
*/
|
|
static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
|
|
{
|
|
struct dm_buffer *b;
|
|
bool tried_noio_alloc = false;
|
|
|
|
/*
|
|
* dm-bufio is resistant to allocation failures (it just keeps
|
|
* one buffer reserved in cases all the allocations fail).
|
|
* So set flags to not try too hard:
|
|
* GFP_NOWAIT: don't wait; if we need to sleep we'll release our
|
|
* mutex and wait ourselves.
|
|
* __GFP_NORETRY: don't retry and rather return failure
|
|
* __GFP_NOMEMALLOC: don't use emergency reserves
|
|
* __GFP_NOWARN: don't print a warning in case of failure
|
|
*
|
|
* For debugging, if we set the cache size to 1, no new buffers will
|
|
* be allocated.
|
|
*/
|
|
while (1) {
|
|
if (dm_bufio_cache_size_latch != 1) {
|
|
b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
|
|
if (b)
|
|
return b;
|
|
}
|
|
|
|
if (nf == NF_PREFETCH)
|
|
return NULL;
|
|
|
|
if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
|
|
dm_bufio_unlock(c);
|
|
b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
|
|
dm_bufio_lock(c);
|
|
if (b)
|
|
return b;
|
|
tried_noio_alloc = true;
|
|
}
|
|
|
|
if (!list_empty(&c->reserved_buffers)) {
|
|
b = list_to_buffer(c->reserved_buffers.next);
|
|
list_del(&b->lru.list);
|
|
c->need_reserved_buffers++;
|
|
|
|
return b;
|
|
}
|
|
|
|
b = __get_unclaimed_buffer(c);
|
|
if (b)
|
|
return b;
|
|
|
|
__wait_for_free_buffer(c);
|
|
}
|
|
}
|
|
|
|
static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
|
|
{
|
|
struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
|
|
|
|
if (!b)
|
|
return NULL;
|
|
|
|
if (c->alloc_callback)
|
|
c->alloc_callback(b);
|
|
|
|
return b;
|
|
}
|
|
|
|
/*
|
|
* Free a buffer and wake other threads waiting for free buffers.
|
|
*/
|
|
static void __free_buffer_wake(struct dm_buffer *b)
|
|
{
|
|
struct dm_bufio_client *c = b->c;
|
|
|
|
b->block = -1;
|
|
if (!c->need_reserved_buffers)
|
|
free_buffer(b);
|
|
else {
|
|
list_add(&b->lru.list, &c->reserved_buffers);
|
|
c->need_reserved_buffers--;
|
|
}
|
|
|
|
/*
|
|
* We hold the bufio lock here, so no one can add entries to the
|
|
* wait queue anyway.
|
|
*/
|
|
if (unlikely(waitqueue_active(&c->free_buffer_wait)))
|
|
wake_up(&c->free_buffer_wait);
|
|
}
|
|
|
|
static enum evict_result cleaned(struct dm_buffer *b, void *context)
|
|
{
|
|
if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
|
|
return ER_DONT_EVICT; /* should never happen */
|
|
|
|
if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
|
|
return ER_DONT_EVICT;
|
|
else
|
|
return ER_EVICT;
|
|
}
|
|
|
|
static void __move_clean_buffers(struct dm_bufio_client *c)
|
|
{
|
|
cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
|
|
}
|
|
|
|
struct write_context {
|
|
int no_wait;
|
|
struct list_head *write_list;
|
|
};
|
|
|
|
static enum it_action write_one(struct dm_buffer *b, void *context)
|
|
{
|
|
struct write_context *wc = context;
|
|
|
|
if (wc->no_wait && test_bit(B_WRITING, &b->state))
|
|
return IT_COMPLETE;
|
|
|
|
__write_dirty_buffer(b, wc->write_list);
|
|
return IT_NEXT;
|
|
}
|
|
|
|
static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
|
|
struct list_head *write_list)
|
|
{
|
|
struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
|
|
|
|
__move_clean_buffers(c);
|
|
cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
|
|
}
|
|
|
|
/*
|
|
* Check if we're over watermark.
|
|
* If we are over threshold_buffers, start freeing buffers.
|
|
* If we're over "limit_buffers", block until we get under the limit.
|
|
*/
|
|
static void __check_watermark(struct dm_bufio_client *c,
|
|
struct list_head *write_list)
|
|
{
|
|
if (cache_count(&c->cache, LIST_DIRTY) >
|
|
cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
|
|
__write_dirty_buffers_async(c, 1, write_list);
|
|
}
|
|
|
|
/*
|
|
*--------------------------------------------------------------
|
|
* Getting a buffer
|
|
*--------------------------------------------------------------
|
|
*/
|
|
|
|
static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
|
|
{
|
|
/*
|
|
* Relying on waitqueue_active() is racey, but we sleep
|
|
* with schedule_timeout anyway.
|
|
*/
|
|
if (cache_put(&c->cache, b) &&
|
|
unlikely(waitqueue_active(&c->free_buffer_wait)))
|
|
wake_up(&c->free_buffer_wait);
|
|
}
|
|
|
|
/*
|
|
* This assumes you have already checked the cache to see if the buffer
|
|
* is already present (it will recheck after dropping the lock for allocation).
|
|
*/
|
|
static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
|
|
enum new_flag nf, int *need_submit,
|
|
struct list_head *write_list)
|
|
{
|
|
struct dm_buffer *b, *new_b = NULL;
|
|
|
|
*need_submit = 0;
|
|
|
|
/* This can't be called with NF_GET */
|
|
if (WARN_ON_ONCE(nf == NF_GET))
|
|
return NULL;
|
|
|
|
new_b = __alloc_buffer_wait(c, nf);
|
|
if (!new_b)
|
|
return NULL;
|
|
|
|
/*
|
|
* We've had a period where the mutex was unlocked, so need to
|
|
* recheck the buffer tree.
|
|
*/
|
|
b = cache_get(&c->cache, block);
|
|
if (b) {
|
|
__free_buffer_wake(new_b);
|
|
goto found_buffer;
|
|
}
|
|
|
|
__check_watermark(c, write_list);
|
|
|
|
b = new_b;
|
|
atomic_set(&b->hold_count, 1);
|
|
WRITE_ONCE(b->last_accessed, jiffies);
|
|
b->block = block;
|
|
b->read_error = 0;
|
|
b->write_error = 0;
|
|
b->list_mode = LIST_CLEAN;
|
|
|
|
if (nf == NF_FRESH)
|
|
b->state = 0;
|
|
else {
|
|
b->state = 1 << B_READING;
|
|
*need_submit = 1;
|
|
}
|
|
|
|
/*
|
|
* We mustn't insert into the cache until the B_READING state
|
|
* is set. Otherwise another thread could get it and use
|
|
* it before it had been read.
|
|
*/
|
|
cache_insert(&c->cache, b);
|
|
|
|
return b;
|
|
|
|
found_buffer:
|
|
if (nf == NF_PREFETCH) {
|
|
cache_put_and_wake(c, b);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Note: it is essential that we don't wait for the buffer to be
|
|
* read if dm_bufio_get function is used. Both dm_bufio_get and
|
|
* dm_bufio_prefetch can be used in the driver request routine.
|
|
* If the user called both dm_bufio_prefetch and dm_bufio_get on
|
|
* the same buffer, it would deadlock if we waited.
|
|
*/
|
|
if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
|
|
cache_put_and_wake(c, b);
|
|
return NULL;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
/*
|
|
* The endio routine for reading: set the error, clear the bit and wake up
|
|
* anyone waiting on the buffer.
|
|
*/
|
|
static void read_endio(struct dm_buffer *b, blk_status_t status)
|
|
{
|
|
b->read_error = status;
|
|
|
|
BUG_ON(!test_bit(B_READING, &b->state));
|
|
|
|
smp_mb__before_atomic();
|
|
clear_bit(B_READING, &b->state);
|
|
smp_mb__after_atomic();
|
|
|
|
wake_up_bit(&b->state, B_READING);
|
|
}
|
|
|
|
/*
|
|
* A common routine for dm_bufio_new and dm_bufio_read. Operation of these
|
|
* functions is similar except that dm_bufio_new doesn't read the
|
|
* buffer from the disk (assuming that the caller overwrites all the data
|
|
* and uses dm_bufio_mark_buffer_dirty to write new data back).
|
|
*/
|
|
static void *new_read(struct dm_bufio_client *c, sector_t block,
|
|
enum new_flag nf, struct dm_buffer **bp)
|
|
{
|
|
int need_submit = 0;
|
|
struct dm_buffer *b;
|
|
|
|
LIST_HEAD(write_list);
|
|
|
|
*bp = NULL;
|
|
|
|
/*
|
|
* Fast path, hopefully the block is already in the cache. No need
|
|
* to get the client lock for this.
|
|
*/
|
|
b = cache_get(&c->cache, block);
|
|
if (b) {
|
|
if (nf == NF_PREFETCH) {
|
|
cache_put_and_wake(c, b);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Note: it is essential that we don't wait for the buffer to be
|
|
* read if dm_bufio_get function is used. Both dm_bufio_get and
|
|
* dm_bufio_prefetch can be used in the driver request routine.
|
|
* If the user called both dm_bufio_prefetch and dm_bufio_get on
|
|
* the same buffer, it would deadlock if we waited.
|
|
*/
|
|
if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
|
|
cache_put_and_wake(c, b);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (!b) {
|
|
if (nf == NF_GET)
|
|
return NULL;
|
|
|
|
dm_bufio_lock(c);
|
|
b = __bufio_new(c, block, nf, &need_submit, &write_list);
|
|
dm_bufio_unlock(c);
|
|
}
|
|
|
|
#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
|
|
if (b && (atomic_read(&b->hold_count) == 1))
|
|
buffer_record_stack(b);
|
|
#endif
|
|
|
|
__flush_write_list(&write_list);
|
|
|
|
if (!b)
|
|
return NULL;
|
|
|
|
if (need_submit)
|
|
submit_io(b, REQ_OP_READ, read_endio);
|
|
|
|
if (nf != NF_GET) /* we already tested this condition above */
|
|
wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
|
|
|
|
if (b->read_error) {
|
|
int error = blk_status_to_errno(b->read_error);
|
|
|
|
dm_bufio_release(b);
|
|
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
*bp = b;
|
|
|
|
return b->data;
|
|
}
|
|
|
|
void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
|
|
struct dm_buffer **bp)
|
|
{
|
|
return new_read(c, block, NF_GET, bp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_get);
|
|
|
|
void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
|
|
struct dm_buffer **bp)
|
|
{
|
|
if (WARN_ON_ONCE(dm_bufio_in_request()))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return new_read(c, block, NF_READ, bp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_read);
|
|
|
|
void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
|
|
struct dm_buffer **bp)
|
|
{
|
|
if (WARN_ON_ONCE(dm_bufio_in_request()))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return new_read(c, block, NF_FRESH, bp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_new);
|
|
|
|
void dm_bufio_prefetch(struct dm_bufio_client *c,
|
|
sector_t block, unsigned int n_blocks)
|
|
{
|
|
struct blk_plug plug;
|
|
|
|
LIST_HEAD(write_list);
|
|
|
|
if (WARN_ON_ONCE(dm_bufio_in_request()))
|
|
return; /* should never happen */
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
for (; n_blocks--; block++) {
|
|
int need_submit;
|
|
struct dm_buffer *b;
|
|
|
|
b = cache_get(&c->cache, block);
|
|
if (b) {
|
|
/* already in cache */
|
|
cache_put_and_wake(c, b);
|
|
continue;
|
|
}
|
|
|
|
dm_bufio_lock(c);
|
|
b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
|
|
&write_list);
|
|
if (unlikely(!list_empty(&write_list))) {
|
|
dm_bufio_unlock(c);
|
|
blk_finish_plug(&plug);
|
|
__flush_write_list(&write_list);
|
|
blk_start_plug(&plug);
|
|
dm_bufio_lock(c);
|
|
}
|
|
if (unlikely(b != NULL)) {
|
|
dm_bufio_unlock(c);
|
|
|
|
if (need_submit)
|
|
submit_io(b, REQ_OP_READ, read_endio);
|
|
dm_bufio_release(b);
|
|
|
|
cond_resched();
|
|
|
|
if (!n_blocks)
|
|
goto flush_plug;
|
|
dm_bufio_lock(c);
|
|
}
|
|
dm_bufio_unlock(c);
|
|
}
|
|
|
|
flush_plug:
|
|
blk_finish_plug(&plug);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
|
|
|
|
void dm_bufio_release(struct dm_buffer *b)
|
|
{
|
|
struct dm_bufio_client *c = b->c;
|
|
|
|
/*
|
|
* If there were errors on the buffer, and the buffer is not
|
|
* to be written, free the buffer. There is no point in caching
|
|
* invalid buffer.
|
|
*/
|
|
if ((b->read_error || b->write_error) &&
|
|
!test_bit_acquire(B_READING, &b->state) &&
|
|
!test_bit(B_WRITING, &b->state) &&
|
|
!test_bit(B_DIRTY, &b->state)) {
|
|
dm_bufio_lock(c);
|
|
|
|
/* cache remove can fail if there are other holders */
|
|
if (cache_remove(&c->cache, b)) {
|
|
__free_buffer_wake(b);
|
|
dm_bufio_unlock(c);
|
|
return;
|
|
}
|
|
|
|
dm_bufio_unlock(c);
|
|
}
|
|
|
|
cache_put_and_wake(c, b);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_release);
|
|
|
|
void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
|
|
unsigned int start, unsigned int end)
|
|
{
|
|
struct dm_bufio_client *c = b->c;
|
|
|
|
BUG_ON(start >= end);
|
|
BUG_ON(end > b->c->block_size);
|
|
|
|
dm_bufio_lock(c);
|
|
|
|
BUG_ON(test_bit(B_READING, &b->state));
|
|
|
|
if (!test_and_set_bit(B_DIRTY, &b->state)) {
|
|
b->dirty_start = start;
|
|
b->dirty_end = end;
|
|
cache_mark(&c->cache, b, LIST_DIRTY);
|
|
} else {
|
|
if (start < b->dirty_start)
|
|
b->dirty_start = start;
|
|
if (end > b->dirty_end)
|
|
b->dirty_end = end;
|
|
}
|
|
|
|
dm_bufio_unlock(c);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
|
|
|
|
void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
|
|
{
|
|
dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
|
|
|
|
void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
|
|
{
|
|
LIST_HEAD(write_list);
|
|
|
|
if (WARN_ON_ONCE(dm_bufio_in_request()))
|
|
return; /* should never happen */
|
|
|
|
dm_bufio_lock(c);
|
|
__write_dirty_buffers_async(c, 0, &write_list);
|
|
dm_bufio_unlock(c);
|
|
__flush_write_list(&write_list);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
|
|
|
|
/*
|
|
* For performance, it is essential that the buffers are written asynchronously
|
|
* and simultaneously (so that the block layer can merge the writes) and then
|
|
* waited upon.
|
|
*
|
|
* Finally, we flush hardware disk cache.
|
|
*/
|
|
static bool is_writing(struct lru_entry *e, void *context)
|
|
{
|
|
struct dm_buffer *b = le_to_buffer(e);
|
|
|
|
return test_bit(B_WRITING, &b->state);
|
|
}
|
|
|
|
int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
|
|
{
|
|
int a, f;
|
|
unsigned long nr_buffers;
|
|
struct lru_entry *e;
|
|
struct lru_iter it;
|
|
|
|
LIST_HEAD(write_list);
|
|
|
|
dm_bufio_lock(c);
|
|
__write_dirty_buffers_async(c, 0, &write_list);
|
|
dm_bufio_unlock(c);
|
|
__flush_write_list(&write_list);
|
|
dm_bufio_lock(c);
|
|
|
|
nr_buffers = cache_count(&c->cache, LIST_DIRTY);
|
|
lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
|
|
while ((e = lru_iter_next(&it, is_writing, c))) {
|
|
struct dm_buffer *b = le_to_buffer(e);
|
|
__cache_inc_buffer(b);
|
|
|
|
BUG_ON(test_bit(B_READING, &b->state));
|
|
|
|
if (nr_buffers) {
|
|
nr_buffers--;
|
|
dm_bufio_unlock(c);
|
|
wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
|
|
dm_bufio_lock(c);
|
|
} else {
|
|
wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
|
|
}
|
|
|
|
if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
|
|
cache_mark(&c->cache, b, LIST_CLEAN);
|
|
|
|
cache_put_and_wake(c, b);
|
|
|
|
cond_resched();
|
|
}
|
|
lru_iter_end(&it);
|
|
|
|
wake_up(&c->free_buffer_wait);
|
|
dm_bufio_unlock(c);
|
|
|
|
a = xchg(&c->async_write_error, 0);
|
|
f = dm_bufio_issue_flush(c);
|
|
if (a)
|
|
return a;
|
|
|
|
return f;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
|
|
|
|
/*
|
|
* Use dm-io to send an empty barrier to flush the device.
|
|
*/
|
|
int dm_bufio_issue_flush(struct dm_bufio_client *c)
|
|
{
|
|
struct dm_io_request io_req = {
|
|
.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
|
|
.mem.type = DM_IO_KMEM,
|
|
.mem.ptr.addr = NULL,
|
|
.client = c->dm_io,
|
|
};
|
|
struct dm_io_region io_reg = {
|
|
.bdev = c->bdev,
|
|
.sector = 0,
|
|
.count = 0,
|
|
};
|
|
|
|
if (WARN_ON_ONCE(dm_bufio_in_request()))
|
|
return -EINVAL;
|
|
|
|
return dm_io(&io_req, 1, &io_reg, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
|
|
|
|
/*
|
|
* Use dm-io to send a discard request to flush the device.
|
|
*/
|
|
int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
|
|
{
|
|
struct dm_io_request io_req = {
|
|
.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
|
|
.mem.type = DM_IO_KMEM,
|
|
.mem.ptr.addr = NULL,
|
|
.client = c->dm_io,
|
|
};
|
|
struct dm_io_region io_reg = {
|
|
.bdev = c->bdev,
|
|
.sector = block_to_sector(c, block),
|
|
.count = block_to_sector(c, count),
|
|
};
|
|
|
|
if (WARN_ON_ONCE(dm_bufio_in_request()))
|
|
return -EINVAL; /* discards are optional */
|
|
|
|
return dm_io(&io_req, 1, &io_reg, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
|
|
|
|
static bool forget_buffer(struct dm_bufio_client *c, sector_t block)
|
|
{
|
|
struct dm_buffer *b;
|
|
|
|
b = cache_get(&c->cache, block);
|
|
if (b) {
|
|
if (likely(!smp_load_acquire(&b->state))) {
|
|
if (cache_remove(&c->cache, b))
|
|
__free_buffer_wake(b);
|
|
else
|
|
cache_put_and_wake(c, b);
|
|
} else {
|
|
cache_put_and_wake(c, b);
|
|
}
|
|
}
|
|
|
|
return b ? true : false;
|
|
}
|
|
|
|
/*
|
|
* Free the given buffer.
|
|
*
|
|
* This is just a hint, if the buffer is in use or dirty, this function
|
|
* does nothing.
|
|
*/
|
|
void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
|
|
{
|
|
dm_bufio_lock(c);
|
|
forget_buffer(c, block);
|
|
dm_bufio_unlock(c);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_forget);
|
|
|
|
static enum evict_result idle(struct dm_buffer *b, void *context)
|
|
{
|
|
return b->state ? ER_DONT_EVICT : ER_EVICT;
|
|
}
|
|
|
|
void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
|
|
{
|
|
dm_bufio_lock(c);
|
|
cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
|
|
dm_bufio_unlock(c);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
|
|
|
|
void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
|
|
{
|
|
c->minimum_buffers = n;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
|
|
|
|
unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
|
|
{
|
|
return c->block_size;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
|
|
|
|
sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
|
|
{
|
|
sector_t s = bdev_nr_sectors(c->bdev);
|
|
|
|
if (s >= c->start)
|
|
s -= c->start;
|
|
else
|
|
s = 0;
|
|
if (likely(c->sectors_per_block_bits >= 0))
|
|
s >>= c->sectors_per_block_bits;
|
|
else
|
|
sector_div(s, c->block_size >> SECTOR_SHIFT);
|
|
return s;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
|
|
|
|
struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
|
|
{
|
|
return c->dm_io;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
|
|
|
|
sector_t dm_bufio_get_block_number(struct dm_buffer *b)
|
|
{
|
|
return b->block;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
|
|
|
|
void *dm_bufio_get_block_data(struct dm_buffer *b)
|
|
{
|
|
return b->data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
|
|
|
|
void *dm_bufio_get_aux_data(struct dm_buffer *b)
|
|
{
|
|
return b + 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
|
|
|
|
struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
|
|
{
|
|
return b->c;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_get_client);
|
|
|
|
static enum it_action warn_leak(struct dm_buffer *b, void *context)
|
|
{
|
|
bool *warned = context;
|
|
|
|
WARN_ON(!(*warned));
|
|
*warned = true;
|
|
DMERR("leaked buffer %llx, hold count %u, list %d",
|
|
(unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
|
|
#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
|
|
stack_trace_print(b->stack_entries, b->stack_len, 1);
|
|
/* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
|
|
atomic_set(&b->hold_count, 0);
|
|
#endif
|
|
return IT_NEXT;
|
|
}
|
|
|
|
static void drop_buffers(struct dm_bufio_client *c)
|
|
{
|
|
int i;
|
|
struct dm_buffer *b;
|
|
|
|
if (WARN_ON(dm_bufio_in_request()))
|
|
return; /* should never happen */
|
|
|
|
/*
|
|
* An optimization so that the buffers are not written one-by-one.
|
|
*/
|
|
dm_bufio_write_dirty_buffers_async(c);
|
|
|
|
dm_bufio_lock(c);
|
|
|
|
while ((b = __get_unclaimed_buffer(c)))
|
|
__free_buffer_wake(b);
|
|
|
|
for (i = 0; i < LIST_SIZE; i++) {
|
|
bool warned = false;
|
|
|
|
cache_iterate(&c->cache, i, warn_leak, &warned);
|
|
}
|
|
|
|
#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
|
|
while ((b = __get_unclaimed_buffer(c)))
|
|
__free_buffer_wake(b);
|
|
#endif
|
|
|
|
for (i = 0; i < LIST_SIZE; i++)
|
|
WARN_ON(cache_count(&c->cache, i));
|
|
|
|
dm_bufio_unlock(c);
|
|
}
|
|
|
|
static unsigned long get_retain_buffers(struct dm_bufio_client *c)
|
|
{
|
|
unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
|
|
|
|
if (likely(c->sectors_per_block_bits >= 0))
|
|
retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
|
|
else
|
|
retain_bytes /= c->block_size;
|
|
|
|
return retain_bytes;
|
|
}
|
|
|
|
static void __scan(struct dm_bufio_client *c)
|
|
{
|
|
int l;
|
|
struct dm_buffer *b;
|
|
unsigned long freed = 0;
|
|
unsigned long retain_target = get_retain_buffers(c);
|
|
unsigned long count = cache_total(&c->cache);
|
|
|
|
for (l = 0; l < LIST_SIZE; l++) {
|
|
while (true) {
|
|
if (count - freed <= retain_target)
|
|
atomic_long_set(&c->need_shrink, 0);
|
|
if (!atomic_long_read(&c->need_shrink))
|
|
break;
|
|
|
|
b = cache_evict(&c->cache, l,
|
|
l == LIST_CLEAN ? is_clean : is_dirty, c);
|
|
if (!b)
|
|
break;
|
|
|
|
__make_buffer_clean(b);
|
|
__free_buffer_wake(b);
|
|
|
|
atomic_long_dec(&c->need_shrink);
|
|
freed++;
|
|
cond_resched();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void shrink_work(struct work_struct *w)
|
|
{
|
|
struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
|
|
|
|
dm_bufio_lock(c);
|
|
__scan(c);
|
|
dm_bufio_unlock(c);
|
|
}
|
|
|
|
static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
struct dm_bufio_client *c;
|
|
|
|
c = shrink->private_data;
|
|
atomic_long_add(sc->nr_to_scan, &c->need_shrink);
|
|
queue_work(dm_bufio_wq, &c->shrink_work);
|
|
|
|
return sc->nr_to_scan;
|
|
}
|
|
|
|
static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
struct dm_bufio_client *c = shrink->private_data;
|
|
unsigned long count = cache_total(&c->cache);
|
|
unsigned long retain_target = get_retain_buffers(c);
|
|
unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
|
|
|
|
if (unlikely(count < retain_target))
|
|
count = 0;
|
|
else
|
|
count -= retain_target;
|
|
|
|
if (unlikely(count < queued_for_cleanup))
|
|
count = 0;
|
|
else
|
|
count -= queued_for_cleanup;
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Create the buffering interface
|
|
*/
|
|
struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
|
|
unsigned int reserved_buffers, unsigned int aux_size,
|
|
void (*alloc_callback)(struct dm_buffer *),
|
|
void (*write_callback)(struct dm_buffer *),
|
|
unsigned int flags)
|
|
{
|
|
int r;
|
|
unsigned int num_locks;
|
|
struct dm_bufio_client *c;
|
|
char slab_name[27];
|
|
|
|
if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
|
|
DMERR("%s: block size not specified or is not multiple of 512b", __func__);
|
|
r = -EINVAL;
|
|
goto bad_client;
|
|
}
|
|
|
|
num_locks = dm_num_hash_locks();
|
|
c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
|
|
if (!c) {
|
|
r = -ENOMEM;
|
|
goto bad_client;
|
|
}
|
|
cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
|
|
|
|
c->bdev = bdev;
|
|
c->block_size = block_size;
|
|
if (is_power_of_2(block_size))
|
|
c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
|
|
else
|
|
c->sectors_per_block_bits = -1;
|
|
|
|
c->alloc_callback = alloc_callback;
|
|
c->write_callback = write_callback;
|
|
|
|
if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
|
|
c->no_sleep = true;
|
|
static_branch_inc(&no_sleep_enabled);
|
|
}
|
|
|
|
mutex_init(&c->lock);
|
|
spin_lock_init(&c->spinlock);
|
|
INIT_LIST_HEAD(&c->reserved_buffers);
|
|
c->need_reserved_buffers = reserved_buffers;
|
|
|
|
dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
|
|
|
|
init_waitqueue_head(&c->free_buffer_wait);
|
|
c->async_write_error = 0;
|
|
|
|
c->dm_io = dm_io_client_create();
|
|
if (IS_ERR(c->dm_io)) {
|
|
r = PTR_ERR(c->dm_io);
|
|
goto bad_dm_io;
|
|
}
|
|
|
|
if (block_size <= KMALLOC_MAX_SIZE &&
|
|
(block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
|
|
unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
|
|
|
|
snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u", block_size);
|
|
c->slab_cache = kmem_cache_create(slab_name, block_size, align,
|
|
SLAB_RECLAIM_ACCOUNT, NULL);
|
|
if (!c->slab_cache) {
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
}
|
|
if (aux_size)
|
|
snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", aux_size);
|
|
else
|
|
snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer");
|
|
c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
|
|
0, SLAB_RECLAIM_ACCOUNT, NULL);
|
|
if (!c->slab_buffer) {
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
while (c->need_reserved_buffers) {
|
|
struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
|
|
|
|
if (!b) {
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
__free_buffer_wake(b);
|
|
}
|
|
|
|
INIT_WORK(&c->shrink_work, shrink_work);
|
|
atomic_long_set(&c->need_shrink, 0);
|
|
|
|
c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
|
|
MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
|
|
if (!c->shrinker) {
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
c->shrinker->count_objects = dm_bufio_shrink_count;
|
|
c->shrinker->scan_objects = dm_bufio_shrink_scan;
|
|
c->shrinker->seeks = 1;
|
|
c->shrinker->batch = 0;
|
|
c->shrinker->private_data = c;
|
|
|
|
shrinker_register(c->shrinker);
|
|
|
|
mutex_lock(&dm_bufio_clients_lock);
|
|
dm_bufio_client_count++;
|
|
list_add(&c->client_list, &dm_bufio_all_clients);
|
|
__cache_size_refresh();
|
|
mutex_unlock(&dm_bufio_clients_lock);
|
|
|
|
return c;
|
|
|
|
bad:
|
|
while (!list_empty(&c->reserved_buffers)) {
|
|
struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
|
|
|
|
list_del(&b->lru.list);
|
|
free_buffer(b);
|
|
}
|
|
kmem_cache_destroy(c->slab_cache);
|
|
kmem_cache_destroy(c->slab_buffer);
|
|
dm_io_client_destroy(c->dm_io);
|
|
bad_dm_io:
|
|
mutex_destroy(&c->lock);
|
|
if (c->no_sleep)
|
|
static_branch_dec(&no_sleep_enabled);
|
|
kfree(c);
|
|
bad_client:
|
|
return ERR_PTR(r);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_client_create);
|
|
|
|
/*
|
|
* Free the buffering interface.
|
|
* It is required that there are no references on any buffers.
|
|
*/
|
|
void dm_bufio_client_destroy(struct dm_bufio_client *c)
|
|
{
|
|
unsigned int i;
|
|
|
|
drop_buffers(c);
|
|
|
|
shrinker_free(c->shrinker);
|
|
flush_work(&c->shrink_work);
|
|
|
|
mutex_lock(&dm_bufio_clients_lock);
|
|
|
|
list_del(&c->client_list);
|
|
dm_bufio_client_count--;
|
|
__cache_size_refresh();
|
|
|
|
mutex_unlock(&dm_bufio_clients_lock);
|
|
|
|
WARN_ON(c->need_reserved_buffers);
|
|
|
|
while (!list_empty(&c->reserved_buffers)) {
|
|
struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
|
|
|
|
list_del(&b->lru.list);
|
|
free_buffer(b);
|
|
}
|
|
|
|
for (i = 0; i < LIST_SIZE; i++)
|
|
if (cache_count(&c->cache, i))
|
|
DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
|
|
|
|
for (i = 0; i < LIST_SIZE; i++)
|
|
WARN_ON(cache_count(&c->cache, i));
|
|
|
|
cache_destroy(&c->cache);
|
|
kmem_cache_destroy(c->slab_cache);
|
|
kmem_cache_destroy(c->slab_buffer);
|
|
dm_io_client_destroy(c->dm_io);
|
|
mutex_destroy(&c->lock);
|
|
if (c->no_sleep)
|
|
static_branch_dec(&no_sleep_enabled);
|
|
kfree(c);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
|
|
|
|
void dm_bufio_client_reset(struct dm_bufio_client *c)
|
|
{
|
|
drop_buffers(c);
|
|
flush_work(&c->shrink_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
|
|
|
|
void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
|
|
{
|
|
c->start = start;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
|
|
|
|
/*--------------------------------------------------------------*/
|
|
|
|
static unsigned int get_max_age_hz(void)
|
|
{
|
|
unsigned int max_age = READ_ONCE(dm_bufio_max_age);
|
|
|
|
if (max_age > UINT_MAX / HZ)
|
|
max_age = UINT_MAX / HZ;
|
|
|
|
return max_age * HZ;
|
|
}
|
|
|
|
static bool older_than(struct dm_buffer *b, unsigned long age_hz)
|
|
{
|
|
return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
|
|
}
|
|
|
|
struct evict_params {
|
|
gfp_t gfp;
|
|
unsigned long age_hz;
|
|
|
|
/*
|
|
* This gets updated with the largest last_accessed (ie. most
|
|
* recently used) of the evicted buffers. It will not be reinitialised
|
|
* by __evict_many(), so you can use it across multiple invocations.
|
|
*/
|
|
unsigned long last_accessed;
|
|
};
|
|
|
|
/*
|
|
* We may not be able to evict this buffer if IO pending or the client
|
|
* is still using it.
|
|
*
|
|
* And if GFP_NOFS is used, we must not do any I/O because we hold
|
|
* dm_bufio_clients_lock and we would risk deadlock if the I/O gets
|
|
* rerouted to different bufio client.
|
|
*/
|
|
static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
|
|
{
|
|
struct evict_params *params = context;
|
|
|
|
if (!(params->gfp & __GFP_FS) ||
|
|
(static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
|
|
if (test_bit_acquire(B_READING, &b->state) ||
|
|
test_bit(B_WRITING, &b->state) ||
|
|
test_bit(B_DIRTY, &b->state))
|
|
return ER_DONT_EVICT;
|
|
}
|
|
|
|
return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
|
|
}
|
|
|
|
static unsigned long __evict_many(struct dm_bufio_client *c,
|
|
struct evict_params *params,
|
|
int list_mode, unsigned long max_count)
|
|
{
|
|
unsigned long count;
|
|
unsigned long last_accessed;
|
|
struct dm_buffer *b;
|
|
|
|
for (count = 0; count < max_count; count++) {
|
|
b = cache_evict(&c->cache, list_mode, select_for_evict, params);
|
|
if (!b)
|
|
break;
|
|
|
|
last_accessed = READ_ONCE(b->last_accessed);
|
|
if (time_after_eq(params->last_accessed, last_accessed))
|
|
params->last_accessed = last_accessed;
|
|
|
|
__make_buffer_clean(b);
|
|
__free_buffer_wake(b);
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
|
|
{
|
|
struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
|
|
unsigned long retain = get_retain_buffers(c);
|
|
unsigned long count;
|
|
LIST_HEAD(write_list);
|
|
|
|
dm_bufio_lock(c);
|
|
|
|
__check_watermark(c, &write_list);
|
|
if (unlikely(!list_empty(&write_list))) {
|
|
dm_bufio_unlock(c);
|
|
__flush_write_list(&write_list);
|
|
dm_bufio_lock(c);
|
|
}
|
|
|
|
count = cache_total(&c->cache);
|
|
if (count > retain)
|
|
__evict_many(c, ¶ms, LIST_CLEAN, count - retain);
|
|
|
|
dm_bufio_unlock(c);
|
|
}
|
|
|
|
static void cleanup_old_buffers(void)
|
|
{
|
|
unsigned long max_age_hz = get_max_age_hz();
|
|
struct dm_bufio_client *c;
|
|
|
|
mutex_lock(&dm_bufio_clients_lock);
|
|
|
|
__cache_size_refresh();
|
|
|
|
list_for_each_entry(c, &dm_bufio_all_clients, client_list)
|
|
evict_old_buffers(c, max_age_hz);
|
|
|
|
mutex_unlock(&dm_bufio_clients_lock);
|
|
}
|
|
|
|
static void work_fn(struct work_struct *w)
|
|
{
|
|
cleanup_old_buffers();
|
|
|
|
queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
|
|
DM_BUFIO_WORK_TIMER_SECS * HZ);
|
|
}
|
|
|
|
/*--------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Global cleanup tries to evict the oldest buffers from across _all_
|
|
* the clients. It does this by repeatedly evicting a few buffers from
|
|
* the client that holds the oldest buffer. It's approximate, but hopefully
|
|
* good enough.
|
|
*/
|
|
static struct dm_bufio_client *__pop_client(void)
|
|
{
|
|
struct list_head *h;
|
|
|
|
if (list_empty(&dm_bufio_all_clients))
|
|
return NULL;
|
|
|
|
h = dm_bufio_all_clients.next;
|
|
list_del(h);
|
|
return container_of(h, struct dm_bufio_client, client_list);
|
|
}
|
|
|
|
/*
|
|
* Inserts the client in the global client list based on its
|
|
* 'oldest_buffer' field.
|
|
*/
|
|
static void __insert_client(struct dm_bufio_client *new_client)
|
|
{
|
|
struct dm_bufio_client *c;
|
|
struct list_head *h = dm_bufio_all_clients.next;
|
|
|
|
while (h != &dm_bufio_all_clients) {
|
|
c = container_of(h, struct dm_bufio_client, client_list);
|
|
if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
|
|
break;
|
|
h = h->next;
|
|
}
|
|
|
|
list_add_tail(&new_client->client_list, h);
|
|
}
|
|
|
|
static unsigned long __evict_a_few(unsigned long nr_buffers)
|
|
{
|
|
unsigned long count;
|
|
struct dm_bufio_client *c;
|
|
struct evict_params params = {
|
|
.gfp = GFP_KERNEL,
|
|
.age_hz = 0,
|
|
/* set to jiffies in case there are no buffers in this client */
|
|
.last_accessed = jiffies
|
|
};
|
|
|
|
c = __pop_client();
|
|
if (!c)
|
|
return 0;
|
|
|
|
dm_bufio_lock(c);
|
|
count = __evict_many(c, ¶ms, LIST_CLEAN, nr_buffers);
|
|
dm_bufio_unlock(c);
|
|
|
|
if (count)
|
|
c->oldest_buffer = params.last_accessed;
|
|
__insert_client(c);
|
|
|
|
return count;
|
|
}
|
|
|
|
static void check_watermarks(void)
|
|
{
|
|
LIST_HEAD(write_list);
|
|
struct dm_bufio_client *c;
|
|
|
|
mutex_lock(&dm_bufio_clients_lock);
|
|
list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
|
|
dm_bufio_lock(c);
|
|
__check_watermark(c, &write_list);
|
|
dm_bufio_unlock(c);
|
|
}
|
|
mutex_unlock(&dm_bufio_clients_lock);
|
|
|
|
__flush_write_list(&write_list);
|
|
}
|
|
|
|
static void evict_old(void)
|
|
{
|
|
unsigned long threshold = dm_bufio_cache_size -
|
|
dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
|
|
|
|
mutex_lock(&dm_bufio_clients_lock);
|
|
while (dm_bufio_current_allocated > threshold) {
|
|
if (!__evict_a_few(64))
|
|
break;
|
|
cond_resched();
|
|
}
|
|
mutex_unlock(&dm_bufio_clients_lock);
|
|
}
|
|
|
|
static void do_global_cleanup(struct work_struct *w)
|
|
{
|
|
check_watermarks();
|
|
evict_old();
|
|
}
|
|
|
|
/*
|
|
*--------------------------------------------------------------
|
|
* Module setup
|
|
*--------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* This is called only once for the whole dm_bufio module.
|
|
* It initializes memory limit.
|
|
*/
|
|
static int __init dm_bufio_init(void)
|
|
{
|
|
__u64 mem;
|
|
|
|
dm_bufio_allocated_kmem_cache = 0;
|
|
dm_bufio_allocated_get_free_pages = 0;
|
|
dm_bufio_allocated_vmalloc = 0;
|
|
dm_bufio_current_allocated = 0;
|
|
|
|
mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
|
|
DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
|
|
|
|
if (mem > ULONG_MAX)
|
|
mem = ULONG_MAX;
|
|
|
|
#ifdef CONFIG_MMU
|
|
if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
|
|
mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
|
|
#endif
|
|
|
|
dm_bufio_default_cache_size = mem;
|
|
|
|
mutex_lock(&dm_bufio_clients_lock);
|
|
__cache_size_refresh();
|
|
mutex_unlock(&dm_bufio_clients_lock);
|
|
|
|
dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
|
|
if (!dm_bufio_wq)
|
|
return -ENOMEM;
|
|
|
|
INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
|
|
INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
|
|
queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
|
|
DM_BUFIO_WORK_TIMER_SECS * HZ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is called once when unloading the dm_bufio module.
|
|
*/
|
|
static void __exit dm_bufio_exit(void)
|
|
{
|
|
int bug = 0;
|
|
|
|
cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
|
|
destroy_workqueue(dm_bufio_wq);
|
|
|
|
if (dm_bufio_client_count) {
|
|
DMCRIT("%s: dm_bufio_client_count leaked: %d",
|
|
__func__, dm_bufio_client_count);
|
|
bug = 1;
|
|
}
|
|
|
|
if (dm_bufio_current_allocated) {
|
|
DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
|
|
__func__, dm_bufio_current_allocated);
|
|
bug = 1;
|
|
}
|
|
|
|
if (dm_bufio_allocated_get_free_pages) {
|
|
DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
|
|
__func__, dm_bufio_allocated_get_free_pages);
|
|
bug = 1;
|
|
}
|
|
|
|
if (dm_bufio_allocated_vmalloc) {
|
|
DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
|
|
__func__, dm_bufio_allocated_vmalloc);
|
|
bug = 1;
|
|
}
|
|
|
|
WARN_ON(bug); /* leaks are not worth crashing the system */
|
|
}
|
|
|
|
module_init(dm_bufio_init)
|
|
module_exit(dm_bufio_exit)
|
|
|
|
module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
|
|
MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
|
|
|
|
module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
|
|
MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
|
|
|
|
module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
|
|
MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
|
|
|
|
module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
|
|
MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
|
|
|
|
module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
|
|
MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
|
|
|
|
module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
|
|
MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
|
|
|
|
module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
|
|
MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
|
|
|
|
module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
|
|
MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
|
|
|
|
MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
|
|
MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
|
|
MODULE_LICENSE("GPL");
|