Laurent Pinchart a25b988ff8 drm/bridge: Extend bridge API to disable connector creation
Most bridge drivers create a DRM connector to model the connector at the
output of the bridge. This model is historical and has worked pretty
well so far, but causes several issues:

- It prevents supporting more complex display pipelines where DRM
connector operations are split over multiple components. For instance a
pipeline with a bridge connected to the DDC signals to read EDID data,
and another one connected to the HPD signal to detect connection and
disconnection, will not be possible to support through this model.

- It requires every bridge driver to implement similar connector
handling code, resulting in code duplication.

- It assumes that a bridge will either be wired to a connector or to
another bridge, but doesn't support bridges that can be used in both
positions very well (although there is some ad-hoc support for this in
the analogix_dp bridge driver).

In order to solve these issues, ownership of the connector should be
moved to the display controller driver (where it can be implemented
using helpers provided by the core).

Extend the bridge API to allow disabling connector creation in bridge
drivers as a first step towards the new model. The new flags argument to
the bridge .attach() operation allows instructing the bridge driver to
skip creating a connector. Unconditionally set the new flags argument to
0 for now to keep the existing behaviour, and modify all existing bridge
drivers to return an error when connector creation is not requested as
they don't support this feature yet.

The change is based on the following semantic patch, with manual review
and edits.

@ rule1 @
identifier funcs;
identifier fn;
@@
 struct drm_bridge_funcs funcs = {
 	...,
 	.attach = fn
 };

@ depends on rule1 @
identifier rule1.fn;
identifier bridge;
statement S, S1;
@@
 int fn(
 	struct drm_bridge *bridge
+	, enum drm_bridge_attach_flags flags
 )
 {
 	... when != S
+	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
+		DRM_ERROR("Fix bridge driver to make connector optional!");
+		return -EINVAL;
+	}
+
 	S1
 	...
 }

@ depends on rule1 @
identifier rule1.fn;
identifier bridge, flags;
expression E1, E2, E3;
@@
 int fn(
 	struct drm_bridge *bridge,
 	enum drm_bridge_attach_flags flags
 ) {
 <...
 drm_bridge_attach(E1, E2, E3
+	, flags
 )
 ...>
 }

@@
expression E1, E2, E3;
@@
 drm_bridge_attach(E1, E2, E3
+	, 0
 )

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Tested-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200226112514.12455-10-laurent.pinchart@ideasonboard.com
2020-02-26 13:31:23 +02:00

906 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* DesignWare MIPI DSI Host Controller v1.02 driver
*
* Copyright (c) 2016 Linaro Limited.
* Copyright (c) 2014-2016 Hisilicon Limited.
*
* Author:
* Xinliang Liu <z.liuxinliang@hisilicon.com>
* Xinliang Liu <xinliang.liu@linaro.org>
* Xinwei Kong <kong.kongxinwei@hisilicon.com>
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_device.h>
#include <drm/drm_encoder_slave.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "dw_dsi_reg.h"
#define MAX_TX_ESC_CLK 10
#define ROUND(x, y) ((x) / (y) + \
((x) % (y) * 10 / (y) >= 5 ? 1 : 0))
#define PHY_REF_CLK_RATE 19200000
#define PHY_REF_CLK_PERIOD_PS (1000000000 / (PHY_REF_CLK_RATE / 1000))
#define encoder_to_dsi(encoder) \
container_of(encoder, struct dw_dsi, encoder)
#define host_to_dsi(host) \
container_of(host, struct dw_dsi, host)
struct mipi_phy_params {
u32 clk_t_lpx;
u32 clk_t_hs_prepare;
u32 clk_t_hs_zero;
u32 clk_t_hs_trial;
u32 clk_t_wakeup;
u32 data_t_lpx;
u32 data_t_hs_prepare;
u32 data_t_hs_zero;
u32 data_t_hs_trial;
u32 data_t_ta_go;
u32 data_t_ta_get;
u32 data_t_wakeup;
u32 hstx_ckg_sel;
u32 pll_fbd_div5f;
u32 pll_fbd_div1f;
u32 pll_fbd_2p;
u32 pll_enbwt;
u32 pll_fbd_p;
u32 pll_fbd_s;
u32 pll_pre_div1p;
u32 pll_pre_p;
u32 pll_vco_750M;
u32 pll_lpf_rs;
u32 pll_lpf_cs;
u32 clklp2hs_time;
u32 clkhs2lp_time;
u32 lp2hs_time;
u32 hs2lp_time;
u32 clk_to_data_delay;
u32 data_to_clk_delay;
u32 lane_byte_clk_kHz;
u32 clk_division;
};
struct dsi_hw_ctx {
void __iomem *base;
struct clk *pclk;
};
struct dw_dsi {
struct drm_encoder encoder;
struct drm_bridge *bridge;
struct mipi_dsi_host host;
struct drm_display_mode cur_mode;
struct dsi_hw_ctx *ctx;
struct mipi_phy_params phy;
u32 lanes;
enum mipi_dsi_pixel_format format;
unsigned long mode_flags;
bool enable;
};
struct dsi_data {
struct dw_dsi dsi;
struct dsi_hw_ctx ctx;
};
struct dsi_phy_range {
u32 min_range_kHz;
u32 max_range_kHz;
u32 pll_vco_750M;
u32 hstx_ckg_sel;
};
static const struct dsi_phy_range dphy_range_info[] = {
{ 46875, 62500, 1, 7 },
{ 62500, 93750, 0, 7 },
{ 93750, 125000, 1, 6 },
{ 125000, 187500, 0, 6 },
{ 187500, 250000, 1, 5 },
{ 250000, 375000, 0, 5 },
{ 375000, 500000, 1, 4 },
{ 500000, 750000, 0, 4 },
{ 750000, 1000000, 1, 0 },
{ 1000000, 1500000, 0, 0 }
};
static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy)
{
u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
u32 tmp_kHz = req_kHz;
u32 i = 0;
u32 q_pll = 1;
u32 m_pll = 0;
u32 n_pll = 0;
u32 r_pll = 1;
u32 m_n = 0;
u32 m_n_int = 0;
u32 f_kHz = 0;
u64 temp;
/*
* Find a rate >= req_kHz.
*/
do {
f_kHz = tmp_kHz;
for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++)
if (f_kHz >= dphy_range_info[i].min_range_kHz &&
f_kHz <= dphy_range_info[i].max_range_kHz)
break;
if (i == ARRAY_SIZE(dphy_range_info)) {
DRM_ERROR("%dkHz out of range\n", f_kHz);
return 0;
}
phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M;
phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel;
if (phy->hstx_ckg_sel <= 7 &&
phy->hstx_ckg_sel >= 4)
q_pll = 0x10 >> (7 - phy->hstx_ckg_sel);
temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps;
m_n_int = temp / (u64)1000000000;
m_n = (temp % (u64)1000000000) / (u64)100000000;
if (m_n_int % 2 == 0) {
if (m_n * 6 >= 50) {
n_pll = 2;
m_pll = (m_n_int + 1) * n_pll;
} else if (m_n * 6 >= 30) {
n_pll = 3;
m_pll = m_n_int * n_pll + 2;
} else {
n_pll = 1;
m_pll = m_n_int * n_pll;
}
} else {
if (m_n * 6 >= 50) {
n_pll = 1;
m_pll = (m_n_int + 1) * n_pll;
} else if (m_n * 6 >= 30) {
n_pll = 1;
m_pll = (m_n_int + 1) * n_pll;
} else if (m_n * 6 >= 10) {
n_pll = 3;
m_pll = m_n_int * n_pll + 1;
} else {
n_pll = 2;
m_pll = m_n_int * n_pll;
}
}
if (n_pll == 1) {
phy->pll_fbd_p = 0;
phy->pll_pre_div1p = 1;
} else {
phy->pll_fbd_p = n_pll;
phy->pll_pre_div1p = 0;
}
if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4)
r_pll = 0x10 >> (7 - phy->pll_fbd_2p);
if (m_pll == 2) {
phy->pll_pre_p = 0;
phy->pll_fbd_s = 0;
phy->pll_fbd_div1f = 0;
phy->pll_fbd_div5f = 1;
} else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) {
phy->pll_pre_p = m_pll / (2 * r_pll);
phy->pll_fbd_s = 0;
phy->pll_fbd_div1f = 1;
phy->pll_fbd_div5f = 0;
} else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) {
if (((m_pll / (2 * r_pll)) % 2) == 0) {
phy->pll_pre_p =
(m_pll / (2 * r_pll)) / 2 - 1;
phy->pll_fbd_s =
(m_pll / (2 * r_pll)) % 2 + 2;
} else {
phy->pll_pre_p =
(m_pll / (2 * r_pll)) / 2;
phy->pll_fbd_s =
(m_pll / (2 * r_pll)) % 2;
}
phy->pll_fbd_div1f = 0;
phy->pll_fbd_div5f = 0;
} else {
phy->pll_pre_p = 0;
phy->pll_fbd_s = 0;
phy->pll_fbd_div1f = 0;
phy->pll_fbd_div5f = 1;
}
f_kHz = (u64)1000000000 * (u64)m_pll /
((u64)ref_clk_ps * (u64)n_pll * (u64)q_pll);
if (f_kHz >= req_kHz)
break;
tmp_kHz += 10;
} while (true);
return f_kHz;
}
static void dsi_get_phy_params(u32 phy_req_kHz,
struct mipi_phy_params *phy)
{
u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
u32 phy_rate_kHz;
u32 ui;
memset(phy, 0, sizeof(*phy));
phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy);
if (!phy_rate_kHz)
return;
ui = 1000000 / phy_rate_kHz;
phy->clk_t_lpx = ROUND(50, 8 * ui);
phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1;
phy->clk_t_hs_zero = ROUND(262, 8 * ui);
phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1);
phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1);
if (phy->clk_t_wakeup > 0xff)
phy->clk_t_wakeup = 0xff;
phy->data_t_wakeup = phy->clk_t_wakeup;
phy->data_t_lpx = phy->clk_t_lpx;
phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1;
phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui);
phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1);
phy->data_t_ta_go = 3;
phy->data_t_ta_get = 4;
phy->pll_enbwt = 1;
phy->clklp2hs_time = ROUND(407, 8 * ui) + 12;
phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui);
phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1;
phy->hs2lp_time = phy->clkhs2lp_time;
phy->clk_to_data_delay = 1 + phy->clklp2hs_time;
phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) +
phy->clkhs2lp_time;
phy->lane_byte_clk_kHz = phy_rate_kHz / 8;
phy->clk_division =
DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK);
}
static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format)
{
u32 val;
/*
* TODO: only support RGB888 now, to support more
*/
switch (format) {
case MIPI_DSI_FMT_RGB888:
val = DSI_24BITS_1;
break;
default:
val = DSI_24BITS_1;
break;
}
return val;
}
/*
* dsi phy reg write function
*/
static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val)
{
u32 reg_write = 0x10000 + reg;
/*
* latch reg first
*/
writel(reg_write, base + PHY_TST_CTRL1);
writel(0x02, base + PHY_TST_CTRL0);
writel(0x00, base + PHY_TST_CTRL0);
/*
* then latch value
*/
writel(val, base + PHY_TST_CTRL1);
writel(0x02, base + PHY_TST_CTRL0);
writel(0x00, base + PHY_TST_CTRL0);
}
static void dsi_set_phy_timer(void __iomem *base,
struct mipi_phy_params *phy,
u32 lanes)
{
u32 val;
/*
* Set lane value and phy stop wait time.
*/
val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8);
writel(val, base + PHY_IF_CFG);
/*
* Set phy clk division.
*/
val = readl(base + CLKMGR_CFG) | phy->clk_division;
writel(val, base + CLKMGR_CFG);
/*
* Set lp and hs switching params.
*/
dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time);
dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time);
dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10),
phy->clkhs2lp_time);
dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10),
phy->clklp2hs_time);
dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8),
phy->data_to_clk_delay);
dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8),
phy->clk_to_data_delay);
}
static void dsi_set_mipi_phy(void __iomem *base,
struct mipi_phy_params *phy,
u32 lanes)
{
u32 delay_count;
u32 val;
u32 i;
/* phy timer setting */
dsi_set_phy_timer(base, phy, lanes);
/*
* Reset to clean up phy tst params.
*/
writel(0, base + PHY_RSTZ);
writel(0, base + PHY_TST_CTRL0);
writel(1, base + PHY_TST_CTRL0);
writel(0, base + PHY_TST_CTRL0);
/*
* Clock lane timing control setting: TLPX, THS-PREPARE,
* THS-ZERO, THS-TRAIL, TWAKEUP.
*/
dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx);
dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare);
dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero);
dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial);
dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup);
/*
* Data lane timing control setting: TLPX, THS-PREPARE,
* THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP.
*/
for (i = 0; i < lanes; i++) {
dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx);
dsi_phy_tst_set(base, DATA_THS_PREPARE(i),
phy->data_t_hs_prepare);
dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero);
dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial);
dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go);
dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get);
dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup);
}
/*
* physical configuration: I, pll I, pll II, pll III,
* pll IV, pll V.
*/
dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel);
val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) +
(phy->pll_fbd_2p << 1) + phy->pll_enbwt;
dsi_phy_tst_set(base, PHY_CFG_PLL_I, val);
dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p);
dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s);
val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p;
dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val);
val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) +
phy->pll_lpf_cs;
dsi_phy_tst_set(base, PHY_CFG_PLL_V, val);
writel(PHY_ENABLECLK, base + PHY_RSTZ);
udelay(1);
writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
udelay(1);
writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
usleep_range(1000, 1500);
/*
* wait for phy's clock ready
*/
delay_count = 100;
while (delay_count) {
val = readl(base + PHY_STATUS);
if ((BIT(0) | BIT(2)) & val)
break;
udelay(1);
delay_count--;
}
if (!delay_count)
DRM_INFO("phylock and phystopstateclklane is not ready.\n");
}
static void dsi_set_mode_timing(void __iomem *base,
u32 lane_byte_clk_kHz,
struct drm_display_mode *mode,
enum mipi_dsi_pixel_format format)
{
u32 hfp, hbp, hsw, vfp, vbp, vsw;
u32 hline_time;
u32 hsa_time;
u32 hbp_time;
u32 pixel_clk_kHz;
int htot, vtot;
u32 val;
u64 tmp;
val = dsi_get_dpi_color_coding(format);
writel(val, base + DPI_COLOR_CODING);
val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2;
val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1;
writel(val, base + DPI_CFG_POL);
/*
* The DSI IP accepts vertical timing using lines as normal,
* but horizontal timing is a mixture of pixel-clocks for the
* active region and byte-lane clocks for the blanking-related
* timings. hfp is specified as the total hline_time in byte-
* lane clocks minus hsa, hbp and active.
*/
pixel_clk_kHz = mode->clock;
htot = mode->htotal;
vtot = mode->vtotal;
hfp = mode->hsync_start - mode->hdisplay;
hbp = mode->htotal - mode->hsync_end;
hsw = mode->hsync_end - mode->hsync_start;
vfp = mode->vsync_start - mode->vdisplay;
vbp = mode->vtotal - mode->vsync_end;
vsw = mode->vsync_end - mode->vsync_start;
if (vsw > 15) {
DRM_DEBUG_DRIVER("vsw exceeded 15\n");
vsw = 15;
}
hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz;
hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz;
tmp = (u64)htot * (u64)lane_byte_clk_kHz;
hline_time = DIV_ROUND_UP(tmp, pixel_clk_kHz);
/* all specified in byte-lane clocks */
writel(hsa_time, base + VID_HSA_TIME);
writel(hbp_time, base + VID_HBP_TIME);
writel(hline_time, base + VID_HLINE_TIME);
writel(vsw, base + VID_VSA_LINES);
writel(vbp, base + VID_VBP_LINES);
writel(vfp, base + VID_VFP_LINES);
writel(mode->vdisplay, base + VID_VACTIVE_LINES);
writel(mode->hdisplay, base + VID_PKT_SIZE);
DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n",
htot, hfp, hbp, hsw);
DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n",
vtot, vfp, vbp, vsw);
DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n",
hsa_time, hbp_time, hline_time);
}
static void dsi_set_video_mode(void __iomem *base, unsigned long flags)
{
u32 val;
u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO |
MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO;
/*
* choose video mode type
*/
if ((flags & mode_mask) == non_burst_sync_pulse)
val = DSI_NON_BURST_SYNC_PULSES;
else if ((flags & mode_mask) == non_burst_sync_event)
val = DSI_NON_BURST_SYNC_EVENTS;
else
val = DSI_BURST_SYNC_PULSES_1;
writel(val, base + VID_MODE_CFG);
writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL);
writel(DSI_VIDEO_MODE, base + MODE_CFG);
}
static void dsi_mipi_init(struct dw_dsi *dsi)
{
struct dsi_hw_ctx *ctx = dsi->ctx;
struct mipi_phy_params *phy = &dsi->phy;
struct drm_display_mode *mode = &dsi->cur_mode;
u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
void __iomem *base = ctx->base;
u32 dphy_req_kHz;
/*
* count phy params
*/
dphy_req_kHz = mode->clock * bpp / dsi->lanes;
dsi_get_phy_params(dphy_req_kHz, phy);
/* reset Core */
writel(RESET, base + PWR_UP);
/* set dsi phy params */
dsi_set_mipi_phy(base, phy, dsi->lanes);
/* set dsi mode timing */
dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format);
/* set dsi video mode */
dsi_set_video_mode(base, dsi->mode_flags);
/* dsi wake up */
writel(POWERUP, base + PWR_UP);
DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n",
dsi->lanes, mode->clock, phy->lane_byte_clk_kHz);
}
static void dsi_encoder_disable(struct drm_encoder *encoder)
{
struct dw_dsi *dsi = encoder_to_dsi(encoder);
struct dsi_hw_ctx *ctx = dsi->ctx;
void __iomem *base = ctx->base;
if (!dsi->enable)
return;
writel(0, base + PWR_UP);
writel(0, base + LPCLK_CTRL);
writel(0, base + PHY_RSTZ);
clk_disable_unprepare(ctx->pclk);
dsi->enable = false;
}
static void dsi_encoder_enable(struct drm_encoder *encoder)
{
struct dw_dsi *dsi = encoder_to_dsi(encoder);
struct dsi_hw_ctx *ctx = dsi->ctx;
int ret;
if (dsi->enable)
return;
ret = clk_prepare_enable(ctx->pclk);
if (ret) {
DRM_ERROR("fail to enable pclk: %d\n", ret);
return;
}
dsi_mipi_init(dsi);
dsi->enable = true;
}
static enum drm_mode_status dsi_encoder_phy_mode_valid(
struct drm_encoder *encoder,
const struct drm_display_mode *mode)
{
struct dw_dsi *dsi = encoder_to_dsi(encoder);
struct mipi_phy_params phy;
u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
u32 req_kHz, act_kHz, lane_byte_clk_kHz;
/* Calculate the lane byte clk using the adjusted mode clk */
memset(&phy, 0, sizeof(phy));
req_kHz = mode->clock * bpp / dsi->lanes;
act_kHz = dsi_calc_phy_rate(req_kHz, &phy);
lane_byte_clk_kHz = act_kHz / 8;
DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...",
mode->hdisplay, mode->vdisplay, bpp,
drm_mode_vrefresh(mode), mode->clock);
/*
* Make sure the adjusted mode clock and the lane byte clk
* have a common denominator base frequency
*/
if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) {
DRM_DEBUG_DRIVER("OK!\n");
return MODE_OK;
}
DRM_DEBUG_DRIVER("BAD!\n");
return MODE_BAD;
}
static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder,
const struct drm_display_mode *mode)
{
const struct drm_crtc_helper_funcs *crtc_funcs = NULL;
struct drm_crtc *crtc = NULL;
struct drm_display_mode adj_mode;
enum drm_mode_status ret;
/*
* The crtc might adjust the mode, so go through the
* possible crtcs (technically just one) and call
* mode_fixup to figure out the adjusted mode before we
* validate it.
*/
drm_for_each_crtc(crtc, encoder->dev) {
/*
* reset adj_mode to the mode value each time,
* so we don't adjust the mode twice
*/
drm_mode_copy(&adj_mode, mode);
crtc_funcs = crtc->helper_private;
if (crtc_funcs && crtc_funcs->mode_fixup)
if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode))
return MODE_BAD;
ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode);
if (ret != MODE_OK)
return ret;
}
return MODE_OK;
}
static void dsi_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
struct dw_dsi *dsi = encoder_to_dsi(encoder);
drm_mode_copy(&dsi->cur_mode, adj_mode);
}
static int dsi_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
/* do nothing */
return 0;
}
static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = {
.atomic_check = dsi_encoder_atomic_check,
.mode_valid = dsi_encoder_mode_valid,
.mode_set = dsi_encoder_mode_set,
.enable = dsi_encoder_enable,
.disable = dsi_encoder_disable
};
static const struct drm_encoder_funcs dw_encoder_funcs = {
.destroy = drm_encoder_cleanup,
};
static int dw_drm_encoder_init(struct device *dev,
struct drm_device *drm_dev,
struct drm_encoder *encoder)
{
int ret;
u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node);
if (!crtc_mask) {
DRM_ERROR("failed to find crtc mask\n");
return -EINVAL;
}
encoder->possible_crtcs = crtc_mask;
ret = drm_encoder_init(drm_dev, encoder, &dw_encoder_funcs,
DRM_MODE_ENCODER_DSI, NULL);
if (ret) {
DRM_ERROR("failed to init dsi encoder\n");
return ret;
}
drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs);
return 0;
}
static int dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *mdsi)
{
struct dw_dsi *dsi = host_to_dsi(host);
if (mdsi->lanes < 1 || mdsi->lanes > 4) {
DRM_ERROR("dsi device params invalid\n");
return -EINVAL;
}
dsi->lanes = mdsi->lanes;
dsi->format = mdsi->format;
dsi->mode_flags = mdsi->mode_flags;
return 0;
}
static int dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *mdsi)
{
/* do nothing */
return 0;
}
static const struct mipi_dsi_host_ops dsi_host_ops = {
.attach = dsi_host_attach,
.detach = dsi_host_detach,
};
static int dsi_host_init(struct device *dev, struct dw_dsi *dsi)
{
struct mipi_dsi_host *host = &dsi->host;
int ret;
host->dev = dev;
host->ops = &dsi_host_ops;
ret = mipi_dsi_host_register(host);
if (ret) {
DRM_ERROR("failed to register dsi host\n");
return ret;
}
return 0;
}
static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi)
{
struct drm_encoder *encoder = &dsi->encoder;
struct drm_bridge *bridge = dsi->bridge;
int ret;
/* associate the bridge to dsi encoder */
ret = drm_bridge_attach(encoder, bridge, NULL, 0);
if (ret) {
DRM_ERROR("failed to attach external bridge\n");
return ret;
}
return 0;
}
static int dsi_bind(struct device *dev, struct device *master, void *data)
{
struct dsi_data *ddata = dev_get_drvdata(dev);
struct dw_dsi *dsi = &ddata->dsi;
struct drm_device *drm_dev = data;
int ret;
ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder);
if (ret)
return ret;
ret = dsi_host_init(dev, dsi);
if (ret)
return ret;
ret = dsi_bridge_init(drm_dev, dsi);
if (ret)
return ret;
return 0;
}
static void dsi_unbind(struct device *dev, struct device *master, void *data)
{
/* do nothing */
}
static const struct component_ops dsi_ops = {
.bind = dsi_bind,
.unbind = dsi_unbind,
};
static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi)
{
struct dsi_hw_ctx *ctx = dsi->ctx;
struct device_node *np = pdev->dev.of_node;
struct resource *res;
int ret;
/*
* Get the endpoint node. In our case, dsi has one output port1
* to which the external HDMI bridge is connected.
*/
ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &dsi->bridge);
if (ret)
return ret;
ctx->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(ctx->pclk)) {
DRM_ERROR("failed to get pclk clock\n");
return PTR_ERR(ctx->pclk);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ctx->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ctx->base)) {
DRM_ERROR("failed to remap dsi io region\n");
return PTR_ERR(ctx->base);
}
return 0;
}
static int dsi_probe(struct platform_device *pdev)
{
struct dsi_data *data;
struct dw_dsi *dsi;
struct dsi_hw_ctx *ctx;
int ret;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data) {
DRM_ERROR("failed to allocate dsi data.\n");
return -ENOMEM;
}
dsi = &data->dsi;
ctx = &data->ctx;
dsi->ctx = ctx;
ret = dsi_parse_dt(pdev, dsi);
if (ret)
return ret;
platform_set_drvdata(pdev, data);
return component_add(&pdev->dev, &dsi_ops);
}
static int dsi_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &dsi_ops);
return 0;
}
static const struct of_device_id dsi_of_match[] = {
{.compatible = "hisilicon,hi6220-dsi"},
{ }
};
MODULE_DEVICE_TABLE(of, dsi_of_match);
static struct platform_driver dsi_driver = {
.probe = dsi_probe,
.remove = dsi_remove,
.driver = {
.name = "dw-dsi",
.of_match_table = dsi_of_match,
},
};
module_platform_driver(dsi_driver);
MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>");
MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>");
MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>");
MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver");
MODULE_LICENSE("GPL v2");