linux/kernel/bpf/verifier.c
Kumar Kartikeya Dwivedi d0d78c1df9 bpf: Allow locking bpf_spin_lock global variables
Global variables reside in maps accessible using direct_value_addr
callbacks, so giving each load instruction's rewrite a unique reg->id
disallows us from holding locks which are global.

The reason for preserving reg->id as a unique value for registers that
may point to spin lock is that two separate lookups are treated as two
separate memory regions, and any possible aliasing is ignored for the
purposes of spin lock correctness.

This is not great especially for the global variable case, which are
served from maps that have max_entries == 1, i.e. they always lead to
map values pointing into the same map value.

So refactor the active_spin_lock into a 'active_lock' structure which
represents the lock identity, and instead of the reg->id, remember two
fields, a pointer and the reg->id. The pointer will store reg->map_ptr
or reg->btf. It's only necessary to distinguish for the id == 0 case of
global variables, but always setting the pointer to a non-NULL value and
using the pointer to check whether the lock is held simplifies code in
the verifier.

This is generic enough to allow it for global variables, map lookups,
and allocated objects at the same time.

Note that while whether a lock is held can be answered by just comparing
active_lock.ptr to NULL, to determine whether the register is pointing
to the same held lock requires comparing _both_ ptr and id.

Finally, as a result of this refactoring, pseudo load instructions are
not given a unique reg->id, as they are doing lookup for the same map
value (max_entries is never greater than 1).

Essentially, we consider that the tuple of (ptr, id) will always be
unique for any kind of argument to bpf_spin_{lock,unlock}.

Note that this can be extended in the future to also remember offset
used for locking, so that we can introduce multiple bpf_spin_lock fields
in the same allocation.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-10-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:11:32 -08:00

15667 lines
450 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
* Copyright (c) 2016 Facebook
* Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
*/
#include <uapi/linux/btf.h>
#include <linux/bpf-cgroup.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/bpf_verifier.h>
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
#include <linux/stringify.h>
#include <linux/bsearch.h>
#include <linux/sort.h>
#include <linux/perf_event.h>
#include <linux/ctype.h>
#include <linux/error-injection.h>
#include <linux/bpf_lsm.h>
#include <linux/btf_ids.h>
#include <linux/poison.h>
#include "disasm.h"
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#define BPF_LINK_TYPE(_id, _name)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
#undef BPF_LINK_TYPE
};
/* bpf_check() is a static code analyzer that walks eBPF program
* instruction by instruction and updates register/stack state.
* All paths of conditional branches are analyzed until 'bpf_exit' insn.
*
* The first pass is depth-first-search to check that the program is a DAG.
* It rejects the following programs:
* - larger than BPF_MAXINSNS insns
* - if loop is present (detected via back-edge)
* - unreachable insns exist (shouldn't be a forest. program = one function)
* - out of bounds or malformed jumps
* The second pass is all possible path descent from the 1st insn.
* Since it's analyzing all paths through the program, the length of the
* analysis is limited to 64k insn, which may be hit even if total number of
* insn is less then 4K, but there are too many branches that change stack/regs.
* Number of 'branches to be analyzed' is limited to 1k
*
* On entry to each instruction, each register has a type, and the instruction
* changes the types of the registers depending on instruction semantics.
* If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
* copied to R1.
*
* All registers are 64-bit.
* R0 - return register
* R1-R5 argument passing registers
* R6-R9 callee saved registers
* R10 - frame pointer read-only
*
* At the start of BPF program the register R1 contains a pointer to bpf_context
* and has type PTR_TO_CTX.
*
* Verifier tracks arithmetic operations on pointers in case:
* BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
* 1st insn copies R10 (which has FRAME_PTR) type into R1
* and 2nd arithmetic instruction is pattern matched to recognize
* that it wants to construct a pointer to some element within stack.
* So after 2nd insn, the register R1 has type PTR_TO_STACK
* (and -20 constant is saved for further stack bounds checking).
* Meaning that this reg is a pointer to stack plus known immediate constant.
*
* Most of the time the registers have SCALAR_VALUE type, which
* means the register has some value, but it's not a valid pointer.
* (like pointer plus pointer becomes SCALAR_VALUE type)
*
* When verifier sees load or store instructions the type of base register
* can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
* four pointer types recognized by check_mem_access() function.
*
* PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
* and the range of [ptr, ptr + map's value_size) is accessible.
*
* registers used to pass values to function calls are checked against
* function argument constraints.
*
* ARG_PTR_TO_MAP_KEY is one of such argument constraints.
* It means that the register type passed to this function must be
* PTR_TO_STACK and it will be used inside the function as
* 'pointer to map element key'
*
* For example the argument constraints for bpf_map_lookup_elem():
* .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
* .arg1_type = ARG_CONST_MAP_PTR,
* .arg2_type = ARG_PTR_TO_MAP_KEY,
*
* ret_type says that this function returns 'pointer to map elem value or null'
* function expects 1st argument to be a const pointer to 'struct bpf_map' and
* 2nd argument should be a pointer to stack, which will be used inside
* the helper function as a pointer to map element key.
*
* On the kernel side the helper function looks like:
* u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
* {
* struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
* void *key = (void *) (unsigned long) r2;
* void *value;
*
* here kernel can access 'key' and 'map' pointers safely, knowing that
* [key, key + map->key_size) bytes are valid and were initialized on
* the stack of eBPF program.
* }
*
* Corresponding eBPF program may look like:
* BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
* BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
* BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
* here verifier looks at prototype of map_lookup_elem() and sees:
* .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
* Now verifier knows that this map has key of R1->map_ptr->key_size bytes
*
* Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
* Now verifier checks that [R2, R2 + map's key_size) are within stack limits
* and were initialized prior to this call.
* If it's ok, then verifier allows this BPF_CALL insn and looks at
* .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
* R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
* returns either pointer to map value or NULL.
*
* When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
* insn, the register holding that pointer in the true branch changes state to
* PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
* branch. See check_cond_jmp_op().
*
* After the call R0 is set to return type of the function and registers R1-R5
* are set to NOT_INIT to indicate that they are no longer readable.
*
* The following reference types represent a potential reference to a kernel
* resource which, after first being allocated, must be checked and freed by
* the BPF program:
* - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
*
* When the verifier sees a helper call return a reference type, it allocates a
* pointer id for the reference and stores it in the current function state.
* Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
* PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
* passes through a NULL-check conditional. For the branch wherein the state is
* changed to CONST_IMM, the verifier releases the reference.
*
* For each helper function that allocates a reference, such as
* bpf_sk_lookup_tcp(), there is a corresponding release function, such as
* bpf_sk_release(). When a reference type passes into the release function,
* the verifier also releases the reference. If any unchecked or unreleased
* reference remains at the end of the program, the verifier rejects it.
*/
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
struct bpf_verifier_stack_elem {
/* verifer state is 'st'
* before processing instruction 'insn_idx'
* and after processing instruction 'prev_insn_idx'
*/
struct bpf_verifier_state st;
int insn_idx;
int prev_insn_idx;
struct bpf_verifier_stack_elem *next;
/* length of verifier log at the time this state was pushed on stack */
u32 log_pos;
};
#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
#define BPF_COMPLEXITY_LIMIT_STATES 64
#define BPF_MAP_KEY_POISON (1ULL << 63)
#define BPF_MAP_KEY_SEEN (1ULL << 62)
#define BPF_MAP_PTR_UNPRIV 1UL
#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
POISON_POINTER_DELTA))
#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
{
return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
}
static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
{
return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
}
static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
const struct bpf_map *map, bool unpriv)
{
BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
unpriv |= bpf_map_ptr_unpriv(aux);
aux->map_ptr_state = (unsigned long)map |
(unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
}
static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
{
return aux->map_key_state & BPF_MAP_KEY_POISON;
}
static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
{
return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
}
static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
{
return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
}
static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
{
bool poisoned = bpf_map_key_poisoned(aux);
aux->map_key_state = state | BPF_MAP_KEY_SEEN |
(poisoned ? BPF_MAP_KEY_POISON : 0ULL);
}
static bool bpf_pseudo_call(const struct bpf_insn *insn)
{
return insn->code == (BPF_JMP | BPF_CALL) &&
insn->src_reg == BPF_PSEUDO_CALL;
}
static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
{
return insn->code == (BPF_JMP | BPF_CALL) &&
insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
}
struct bpf_call_arg_meta {
struct bpf_map *map_ptr;
bool raw_mode;
bool pkt_access;
u8 release_regno;
int regno;
int access_size;
int mem_size;
u64 msize_max_value;
int ref_obj_id;
int map_uid;
int func_id;
struct btf *btf;
u32 btf_id;
struct btf *ret_btf;
u32 ret_btf_id;
u32 subprogno;
struct btf_field *kptr_field;
u8 uninit_dynptr_regno;
};
struct btf *btf_vmlinux;
static DEFINE_MUTEX(bpf_verifier_lock);
static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
{
const struct bpf_line_info *linfo;
const struct bpf_prog *prog;
u32 i, nr_linfo;
prog = env->prog;
nr_linfo = prog->aux->nr_linfo;
if (!nr_linfo || insn_off >= prog->len)
return NULL;
linfo = prog->aux->linfo;
for (i = 1; i < nr_linfo; i++)
if (insn_off < linfo[i].insn_off)
break;
return &linfo[i - 1];
}
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
va_list args)
{
unsigned int n;
n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
"verifier log line truncated - local buffer too short\n");
if (log->level == BPF_LOG_KERNEL) {
bool newline = n > 0 && log->kbuf[n - 1] == '\n';
pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
return;
}
n = min(log->len_total - log->len_used - 1, n);
log->kbuf[n] = '\0';
if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
log->len_used += n;
else
log->ubuf = NULL;
}
static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
{
char zero = 0;
if (!bpf_verifier_log_needed(log))
return;
log->len_used = new_pos;
if (put_user(zero, log->ubuf + new_pos))
log->ubuf = NULL;
}
/* log_level controls verbosity level of eBPF verifier.
* bpf_verifier_log_write() is used to dump the verification trace to the log,
* so the user can figure out what's wrong with the program
*/
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
const char *fmt, ...)
{
va_list args;
if (!bpf_verifier_log_needed(&env->log))
return;
va_start(args, fmt);
bpf_verifier_vlog(&env->log, fmt, args);
va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
struct bpf_verifier_env *env = private_data;
va_list args;
if (!bpf_verifier_log_needed(&env->log))
return;
va_start(args, fmt);
bpf_verifier_vlog(&env->log, fmt, args);
va_end(args);
}
__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
const char *fmt, ...)
{
va_list args;
if (!bpf_verifier_log_needed(log))
return;
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_log);
static const char *ltrim(const char *s)
{
while (isspace(*s))
s++;
return s;
}
__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
u32 insn_off,
const char *prefix_fmt, ...)
{
const struct bpf_line_info *linfo;
if (!bpf_verifier_log_needed(&env->log))
return;
linfo = find_linfo(env, insn_off);
if (!linfo || linfo == env->prev_linfo)
return;
if (prefix_fmt) {
va_list args;
va_start(args, prefix_fmt);
bpf_verifier_vlog(&env->log, prefix_fmt, args);
va_end(args);
}
verbose(env, "%s\n",
ltrim(btf_name_by_offset(env->prog->aux->btf,
linfo->line_off)));
env->prev_linfo = linfo;
}
static void verbose_invalid_scalar(struct bpf_verifier_env *env,
struct bpf_reg_state *reg,
struct tnum *range, const char *ctx,
const char *reg_name)
{
char tn_buf[48];
verbose(env, "At %s the register %s ", ctx, reg_name);
if (!tnum_is_unknown(reg->var_off)) {
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "has value %s", tn_buf);
} else {
verbose(env, "has unknown scalar value");
}
tnum_strn(tn_buf, sizeof(tn_buf), *range);
verbose(env, " should have been in %s\n", tn_buf);
}
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
type = base_type(type);
return type == PTR_TO_PACKET ||
type == PTR_TO_PACKET_META;
}
static bool type_is_sk_pointer(enum bpf_reg_type type)
{
return type == PTR_TO_SOCKET ||
type == PTR_TO_SOCK_COMMON ||
type == PTR_TO_TCP_SOCK ||
type == PTR_TO_XDP_SOCK;
}
static bool reg_type_not_null(enum bpf_reg_type type)
{
return type == PTR_TO_SOCKET ||
type == PTR_TO_TCP_SOCK ||
type == PTR_TO_MAP_VALUE ||
type == PTR_TO_MAP_KEY ||
type == PTR_TO_SOCK_COMMON;
}
static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
{
struct btf_record *rec = NULL;
struct btf_struct_meta *meta;
if (reg->type == PTR_TO_MAP_VALUE) {
rec = reg->map_ptr->record;
} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
meta = btf_find_struct_meta(reg->btf, reg->btf_id);
if (meta)
rec = meta->record;
}
return rec;
}
static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
{
return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
}
static bool type_is_rdonly_mem(u32 type)
{
return type & MEM_RDONLY;
}
static bool type_may_be_null(u32 type)
{
return type & PTR_MAYBE_NULL;
}
static bool is_acquire_function(enum bpf_func_id func_id,
const struct bpf_map *map)
{
enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
if (func_id == BPF_FUNC_sk_lookup_tcp ||
func_id == BPF_FUNC_sk_lookup_udp ||
func_id == BPF_FUNC_skc_lookup_tcp ||
func_id == BPF_FUNC_ringbuf_reserve ||
func_id == BPF_FUNC_kptr_xchg)
return true;
if (func_id == BPF_FUNC_map_lookup_elem &&
(map_type == BPF_MAP_TYPE_SOCKMAP ||
map_type == BPF_MAP_TYPE_SOCKHASH))
return true;
return false;
}
static bool is_ptr_cast_function(enum bpf_func_id func_id)
{
return func_id == BPF_FUNC_tcp_sock ||
func_id == BPF_FUNC_sk_fullsock ||
func_id == BPF_FUNC_skc_to_tcp_sock ||
func_id == BPF_FUNC_skc_to_tcp6_sock ||
func_id == BPF_FUNC_skc_to_udp6_sock ||
func_id == BPF_FUNC_skc_to_mptcp_sock ||
func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
func_id == BPF_FUNC_skc_to_tcp_request_sock;
}
static bool is_dynptr_ref_function(enum bpf_func_id func_id)
{
return func_id == BPF_FUNC_dynptr_data;
}
static bool is_callback_calling_function(enum bpf_func_id func_id)
{
return func_id == BPF_FUNC_for_each_map_elem ||
func_id == BPF_FUNC_timer_set_callback ||
func_id == BPF_FUNC_find_vma ||
func_id == BPF_FUNC_loop ||
func_id == BPF_FUNC_user_ringbuf_drain;
}
static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
const struct bpf_map *map)
{
int ref_obj_uses = 0;
if (is_ptr_cast_function(func_id))
ref_obj_uses++;
if (is_acquire_function(func_id, map))
ref_obj_uses++;
if (is_dynptr_ref_function(func_id))
ref_obj_uses++;
return ref_obj_uses > 1;
}
static bool is_cmpxchg_insn(const struct bpf_insn *insn)
{
return BPF_CLASS(insn->code) == BPF_STX &&
BPF_MODE(insn->code) == BPF_ATOMIC &&
insn->imm == BPF_CMPXCHG;
}
/* string representation of 'enum bpf_reg_type'
*
* Note that reg_type_str() can not appear more than once in a single verbose()
* statement.
*/
static const char *reg_type_str(struct bpf_verifier_env *env,
enum bpf_reg_type type)
{
char postfix[16] = {0}, prefix[32] = {0};
static const char * const str[] = {
[NOT_INIT] = "?",
[SCALAR_VALUE] = "scalar",
[PTR_TO_CTX] = "ctx",
[CONST_PTR_TO_MAP] = "map_ptr",
[PTR_TO_MAP_VALUE] = "map_value",
[PTR_TO_STACK] = "fp",
[PTR_TO_PACKET] = "pkt",
[PTR_TO_PACKET_META] = "pkt_meta",
[PTR_TO_PACKET_END] = "pkt_end",
[PTR_TO_FLOW_KEYS] = "flow_keys",
[PTR_TO_SOCKET] = "sock",
[PTR_TO_SOCK_COMMON] = "sock_common",
[PTR_TO_TCP_SOCK] = "tcp_sock",
[PTR_TO_TP_BUFFER] = "tp_buffer",
[PTR_TO_XDP_SOCK] = "xdp_sock",
[PTR_TO_BTF_ID] = "ptr_",
[PTR_TO_MEM] = "mem",
[PTR_TO_BUF] = "buf",
[PTR_TO_FUNC] = "func",
[PTR_TO_MAP_KEY] = "map_key",
[PTR_TO_DYNPTR] = "dynptr_ptr",
};
if (type & PTR_MAYBE_NULL) {
if (base_type(type) == PTR_TO_BTF_ID)
strncpy(postfix, "or_null_", 16);
else
strncpy(postfix, "_or_null", 16);
}
if (type & MEM_RDONLY)
strncpy(prefix, "rdonly_", 32);
if (type & MEM_RINGBUF)
strncpy(prefix, "ringbuf_", 32);
if (type & MEM_USER)
strncpy(prefix, "user_", 32);
if (type & MEM_PERCPU)
strncpy(prefix, "percpu_", 32);
if (type & PTR_UNTRUSTED)
strncpy(prefix, "untrusted_", 32);
snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
prefix, str[base_type(type)], postfix);
return env->type_str_buf;
}
static char slot_type_char[] = {
[STACK_INVALID] = '?',
[STACK_SPILL] = 'r',
[STACK_MISC] = 'm',
[STACK_ZERO] = '0',
[STACK_DYNPTR] = 'd',
};
static void print_liveness(struct bpf_verifier_env *env,
enum bpf_reg_liveness live)
{
if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
verbose(env, "_");
if (live & REG_LIVE_READ)
verbose(env, "r");
if (live & REG_LIVE_WRITTEN)
verbose(env, "w");
if (live & REG_LIVE_DONE)
verbose(env, "D");
}
static int get_spi(s32 off)
{
return (-off - 1) / BPF_REG_SIZE;
}
static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
{
int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
/* We need to check that slots between [spi - nr_slots + 1, spi] are
* within [0, allocated_stack).
*
* Please note that the spi grows downwards. For example, a dynptr
* takes the size of two stack slots; the first slot will be at
* spi and the second slot will be at spi - 1.
*/
return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
}
static struct bpf_func_state *func(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg)
{
struct bpf_verifier_state *cur = env->cur_state;
return cur->frame[reg->frameno];
}
static const char *kernel_type_name(const struct btf* btf, u32 id)
{
return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
}
static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
{
env->scratched_regs |= 1U << regno;
}
static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
{
env->scratched_stack_slots |= 1ULL << spi;
}
static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
{
return (env->scratched_regs >> regno) & 1;
}
static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
{
return (env->scratched_stack_slots >> regno) & 1;
}
static bool verifier_state_scratched(const struct bpf_verifier_env *env)
{
return env->scratched_regs || env->scratched_stack_slots;
}
static void mark_verifier_state_clean(struct bpf_verifier_env *env)
{
env->scratched_regs = 0U;
env->scratched_stack_slots = 0ULL;
}
/* Used for printing the entire verifier state. */
static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
{
env->scratched_regs = ~0U;
env->scratched_stack_slots = ~0ULL;
}
static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
{
switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
case DYNPTR_TYPE_LOCAL:
return BPF_DYNPTR_TYPE_LOCAL;
case DYNPTR_TYPE_RINGBUF:
return BPF_DYNPTR_TYPE_RINGBUF;
default:
return BPF_DYNPTR_TYPE_INVALID;
}
}
static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
{
return type == BPF_DYNPTR_TYPE_RINGBUF;
}
static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
enum bpf_arg_type arg_type, int insn_idx)
{
struct bpf_func_state *state = func(env, reg);
enum bpf_dynptr_type type;
int spi, i, id;
spi = get_spi(reg->off);
if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
return -EINVAL;
for (i = 0; i < BPF_REG_SIZE; i++) {
state->stack[spi].slot_type[i] = STACK_DYNPTR;
state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
}
type = arg_to_dynptr_type(arg_type);
if (type == BPF_DYNPTR_TYPE_INVALID)
return -EINVAL;
state->stack[spi].spilled_ptr.dynptr.first_slot = true;
state->stack[spi].spilled_ptr.dynptr.type = type;
state->stack[spi - 1].spilled_ptr.dynptr.type = type;
if (dynptr_type_refcounted(type)) {
/* The id is used to track proper releasing */
id = acquire_reference_state(env, insn_idx);
if (id < 0)
return id;
state->stack[spi].spilled_ptr.id = id;
state->stack[spi - 1].spilled_ptr.id = id;
}
return 0;
}
static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
struct bpf_func_state *state = func(env, reg);
int spi, i;
spi = get_spi(reg->off);
if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
return -EINVAL;
for (i = 0; i < BPF_REG_SIZE; i++) {
state->stack[spi].slot_type[i] = STACK_INVALID;
state->stack[spi - 1].slot_type[i] = STACK_INVALID;
}
/* Invalidate any slices associated with this dynptr */
if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
release_reference(env, state->stack[spi].spilled_ptr.id);
state->stack[spi].spilled_ptr.id = 0;
state->stack[spi - 1].spilled_ptr.id = 0;
}
state->stack[spi].spilled_ptr.dynptr.first_slot = false;
state->stack[spi].spilled_ptr.dynptr.type = 0;
state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
return 0;
}
static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
struct bpf_func_state *state = func(env, reg);
int spi = get_spi(reg->off);
int i;
if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
return true;
for (i = 0; i < BPF_REG_SIZE; i++) {
if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
return false;
}
return true;
}
bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
struct bpf_reg_state *reg)
{
struct bpf_func_state *state = func(env, reg);
int spi = get_spi(reg->off);
int i;
if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
!state->stack[spi].spilled_ptr.dynptr.first_slot)
return false;
for (i = 0; i < BPF_REG_SIZE; i++) {
if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
return false;
}
return true;
}
bool is_dynptr_type_expected(struct bpf_verifier_env *env,
struct bpf_reg_state *reg,
enum bpf_arg_type arg_type)
{
struct bpf_func_state *state = func(env, reg);
enum bpf_dynptr_type dynptr_type;
int spi = get_spi(reg->off);
/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
if (arg_type == ARG_PTR_TO_DYNPTR)
return true;
dynptr_type = arg_to_dynptr_type(arg_type);
return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
}
/* The reg state of a pointer or a bounded scalar was saved when
* it was spilled to the stack.
*/
static bool is_spilled_reg(const struct bpf_stack_state *stack)
{
return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
}
static void scrub_spilled_slot(u8 *stype)
{
if (*stype != STACK_INVALID)
*stype = STACK_MISC;
}
static void print_verifier_state(struct bpf_verifier_env *env,
const struct bpf_func_state *state,
bool print_all)
{
const struct bpf_reg_state *reg;
enum bpf_reg_type t;
int i;
if (state->frameno)
verbose(env, " frame%d:", state->frameno);
for (i = 0; i < MAX_BPF_REG; i++) {
reg = &state->regs[i];
t = reg->type;
if (t == NOT_INIT)
continue;
if (!print_all && !reg_scratched(env, i))
continue;
verbose(env, " R%d", i);
print_liveness(env, reg->live);
verbose(env, "=");
if (t == SCALAR_VALUE && reg->precise)
verbose(env, "P");
if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
tnum_is_const(reg->var_off)) {
/* reg->off should be 0 for SCALAR_VALUE */
verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
verbose(env, "%lld", reg->var_off.value + reg->off);
} else {
const char *sep = "";
verbose(env, "%s", reg_type_str(env, t));
if (base_type(t) == PTR_TO_BTF_ID)
verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
verbose(env, "(");
/*
* _a stands for append, was shortened to avoid multiline statements below.
* This macro is used to output a comma separated list of attributes.
*/
#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
if (reg->id)
verbose_a("id=%d", reg->id);
if (reg->ref_obj_id)
verbose_a("ref_obj_id=%d", reg->ref_obj_id);
if (t != SCALAR_VALUE)
verbose_a("off=%d", reg->off);
if (type_is_pkt_pointer(t))
verbose_a("r=%d", reg->range);
else if (base_type(t) == CONST_PTR_TO_MAP ||
base_type(t) == PTR_TO_MAP_KEY ||
base_type(t) == PTR_TO_MAP_VALUE)
verbose_a("ks=%d,vs=%d",
reg->map_ptr->key_size,
reg->map_ptr->value_size);
if (tnum_is_const(reg->var_off)) {
/* Typically an immediate SCALAR_VALUE, but
* could be a pointer whose offset is too big
* for reg->off
*/
verbose_a("imm=%llx", reg->var_off.value);
} else {
if (reg->smin_value != reg->umin_value &&
reg->smin_value != S64_MIN)
verbose_a("smin=%lld", (long long)reg->smin_value);
if (reg->smax_value != reg->umax_value &&
reg->smax_value != S64_MAX)
verbose_a("smax=%lld", (long long)reg->smax_value);
if (reg->umin_value != 0)
verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
if (reg->umax_value != U64_MAX)
verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
if (!tnum_is_unknown(reg->var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose_a("var_off=%s", tn_buf);
}
if (reg->s32_min_value != reg->smin_value &&
reg->s32_min_value != S32_MIN)
verbose_a("s32_min=%d", (int)(reg->s32_min_value));
if (reg->s32_max_value != reg->smax_value &&
reg->s32_max_value != S32_MAX)
verbose_a("s32_max=%d", (int)(reg->s32_max_value));
if (reg->u32_min_value != reg->umin_value &&
reg->u32_min_value != U32_MIN)
verbose_a("u32_min=%d", (int)(reg->u32_min_value));
if (reg->u32_max_value != reg->umax_value &&
reg->u32_max_value != U32_MAX)
verbose_a("u32_max=%d", (int)(reg->u32_max_value));
}
#undef verbose_a
verbose(env, ")");
}
}
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
char types_buf[BPF_REG_SIZE + 1];
bool valid = false;
int j;
for (j = 0; j < BPF_REG_SIZE; j++) {
if (state->stack[i].slot_type[j] != STACK_INVALID)
valid = true;
types_buf[j] = slot_type_char[
state->stack[i].slot_type[j]];
}
types_buf[BPF_REG_SIZE] = 0;
if (!valid)
continue;
if (!print_all && !stack_slot_scratched(env, i))
continue;
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, state->stack[i].spilled_ptr.live);
if (is_spilled_reg(&state->stack[i])) {
reg = &state->stack[i].spilled_ptr;
t = reg->type;
verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
if (t == SCALAR_VALUE && reg->precise)
verbose(env, "P");
if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
verbose(env, "%lld", reg->var_off.value + reg->off);
} else {
verbose(env, "=%s", types_buf);
}
}
if (state->acquired_refs && state->refs[0].id) {
verbose(env, " refs=%d", state->refs[0].id);
for (i = 1; i < state->acquired_refs; i++)
if (state->refs[i].id)
verbose(env, ",%d", state->refs[i].id);
}
if (state->in_callback_fn)
verbose(env, " cb");
if (state->in_async_callback_fn)
verbose(env, " async_cb");
verbose(env, "\n");
mark_verifier_state_clean(env);
}
static inline u32 vlog_alignment(u32 pos)
{
return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
BPF_LOG_MIN_ALIGNMENT) - pos - 1;
}
static void print_insn_state(struct bpf_verifier_env *env,
const struct bpf_func_state *state)
{
if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
/* remove new line character */
bpf_vlog_reset(&env->log, env->prev_log_len - 1);
verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
} else {
verbose(env, "%d:", env->insn_idx);
}
print_verifier_state(env, state, false);
}
/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
* small to hold src. This is different from krealloc since we don't want to preserve
* the contents of dst.
*
* Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
* not be allocated.
*/
static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
{
size_t bytes;
if (ZERO_OR_NULL_PTR(src))
goto out;
if (unlikely(check_mul_overflow(n, size, &bytes)))
return NULL;
if (ksize(dst) < bytes) {
kfree(dst);
dst = kmalloc_track_caller(bytes, flags);
if (!dst)
return NULL;
}
memcpy(dst, src, bytes);
out:
return dst ? dst : ZERO_SIZE_PTR;
}
/* resize an array from old_n items to new_n items. the array is reallocated if it's too
* small to hold new_n items. new items are zeroed out if the array grows.
*
* Contrary to krealloc_array, does not free arr if new_n is zero.
*/
static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
{
void *new_arr;
if (!new_n || old_n == new_n)
goto out;
new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
if (!new_arr) {
kfree(arr);
return NULL;
}
arr = new_arr;
if (new_n > old_n)
memset(arr + old_n * size, 0, (new_n - old_n) * size);
out:
return arr ? arr : ZERO_SIZE_PTR;
}
static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
{
dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
sizeof(struct bpf_reference_state), GFP_KERNEL);
if (!dst->refs)
return -ENOMEM;
dst->acquired_refs = src->acquired_refs;
return 0;
}
static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
{
size_t n = src->allocated_stack / BPF_REG_SIZE;
dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
GFP_KERNEL);
if (!dst->stack)
return -ENOMEM;
dst->allocated_stack = src->allocated_stack;
return 0;
}
static int resize_reference_state(struct bpf_func_state *state, size_t n)
{
state->refs = realloc_array(state->refs, state->acquired_refs, n,
sizeof(struct bpf_reference_state));
if (!state->refs)
return -ENOMEM;
state->acquired_refs = n;
return 0;
}
static int grow_stack_state(struct bpf_func_state *state, int size)
{
size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
if (old_n >= n)
return 0;
state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
if (!state->stack)
return -ENOMEM;
state->allocated_stack = size;
return 0;
}
/* Acquire a pointer id from the env and update the state->refs to include
* this new pointer reference.
* On success, returns a valid pointer id to associate with the register
* On failure, returns a negative errno.
*/
static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
{
struct bpf_func_state *state = cur_func(env);
int new_ofs = state->acquired_refs;
int id, err;
err = resize_reference_state(state, state->acquired_refs + 1);
if (err)
return err;
id = ++env->id_gen;
state->refs[new_ofs].id = id;
state->refs[new_ofs].insn_idx = insn_idx;
state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
return id;
}
/* release function corresponding to acquire_reference_state(). Idempotent. */
static int release_reference_state(struct bpf_func_state *state, int ptr_id)
{
int i, last_idx;
last_idx = state->acquired_refs - 1;
for (i = 0; i < state->acquired_refs; i++) {
if (state->refs[i].id == ptr_id) {
/* Cannot release caller references in callbacks */
if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
return -EINVAL;
if (last_idx && i != last_idx)
memcpy(&state->refs[i], &state->refs[last_idx],
sizeof(*state->refs));
memset(&state->refs[last_idx], 0, sizeof(*state->refs));
state->acquired_refs--;
return 0;
}
}
return -EINVAL;
}
static void free_func_state(struct bpf_func_state *state)
{
if (!state)
return;
kfree(state->refs);
kfree(state->stack);
kfree(state);
}
static void clear_jmp_history(struct bpf_verifier_state *state)
{
kfree(state->jmp_history);
state->jmp_history = NULL;
state->jmp_history_cnt = 0;
}
static void free_verifier_state(struct bpf_verifier_state *state,
bool free_self)
{
int i;
for (i = 0; i <= state->curframe; i++) {
free_func_state(state->frame[i]);
state->frame[i] = NULL;
}
clear_jmp_history(state);
if (free_self)
kfree(state);
}
/* copy verifier state from src to dst growing dst stack space
* when necessary to accommodate larger src stack
*/
static int copy_func_state(struct bpf_func_state *dst,
const struct bpf_func_state *src)
{
int err;
memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
err = copy_reference_state(dst, src);
if (err)
return err;
return copy_stack_state(dst, src);
}
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
const struct bpf_verifier_state *src)
{
struct bpf_func_state *dst;
int i, err;
dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
GFP_USER);
if (!dst_state->jmp_history)
return -ENOMEM;
dst_state->jmp_history_cnt = src->jmp_history_cnt;
/* if dst has more stack frames then src frame, free them */
for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
free_func_state(dst_state->frame[i]);
dst_state->frame[i] = NULL;
}
dst_state->speculative = src->speculative;
dst_state->curframe = src->curframe;
dst_state->active_lock.ptr = src->active_lock.ptr;
dst_state->active_lock.id = src->active_lock.id;
dst_state->branches = src->branches;
dst_state->parent = src->parent;
dst_state->first_insn_idx = src->first_insn_idx;
dst_state->last_insn_idx = src->last_insn_idx;
for (i = 0; i <= src->curframe; i++) {
dst = dst_state->frame[i];
if (!dst) {
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
if (!dst)
return -ENOMEM;
dst_state->frame[i] = dst;
}
err = copy_func_state(dst, src->frame[i]);
if (err)
return err;
}
return 0;
}
static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
{
while (st) {
u32 br = --st->branches;
/* WARN_ON(br > 1) technically makes sense here,
* but see comment in push_stack(), hence:
*/
WARN_ONCE((int)br < 0,
"BUG update_branch_counts:branches_to_explore=%d\n",
br);
if (br)
break;
st = st->parent;
}
}
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
int *insn_idx, bool pop_log)
{
struct bpf_verifier_state *cur = env->cur_state;
struct bpf_verifier_stack_elem *elem, *head = env->head;
int err;
if (env->head == NULL)
return -ENOENT;
if (cur) {
err = copy_verifier_state(cur, &head->st);
if (err)
return err;
}
if (pop_log)
bpf_vlog_reset(&env->log, head->log_pos);
if (insn_idx)
*insn_idx = head->insn_idx;
if (prev_insn_idx)
*prev_insn_idx = head->prev_insn_idx;
elem = head->next;
free_verifier_state(&head->st, false);
kfree(head);
env->head = elem;
env->stack_size--;
return 0;
}
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx,
bool speculative)
{
struct bpf_verifier_state *cur = env->cur_state;
struct bpf_verifier_stack_elem *elem;
int err;
elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
if (!elem)
goto err;
elem->insn_idx = insn_idx;
elem->prev_insn_idx = prev_insn_idx;
elem->next = env->head;
elem->log_pos = env->log.len_used;
env->head = elem;
env->stack_size++;
err = copy_verifier_state(&elem->st, cur);
if (err)
goto err;
elem->st.speculative |= speculative;
if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
verbose(env, "The sequence of %d jumps is too complex.\n",
env->stack_size);
goto err;
}
if (elem->st.parent) {
++elem->st.parent->branches;
/* WARN_ON(branches > 2) technically makes sense here,
* but
* 1. speculative states will bump 'branches' for non-branch
* instructions
* 2. is_state_visited() heuristics may decide not to create
* a new state for a sequence of branches and all such current
* and cloned states will be pointing to a single parent state
* which might have large 'branches' count.
*/
}
return &elem->st;
err:
free_verifier_state(env->cur_state, true);
env->cur_state = NULL;
/* pop all elements and return */
while (!pop_stack(env, NULL, NULL, false));
return NULL;
}
#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};
static void __mark_reg_not_init(const struct bpf_verifier_env *env,
struct bpf_reg_state *reg);
/* This helper doesn't clear reg->id */
static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
reg->var_off = tnum_const(imm);
reg->smin_value = (s64)imm;
reg->smax_value = (s64)imm;
reg->umin_value = imm;
reg->umax_value = imm;
reg->s32_min_value = (s32)imm;
reg->s32_max_value = (s32)imm;
reg->u32_min_value = (u32)imm;
reg->u32_max_value = (u32)imm;
}
/* Mark the unknown part of a register (variable offset or scalar value) as
* known to have the value @imm.
*/
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
/* Clear id, off, and union(map_ptr, range) */
memset(((u8 *)reg) + sizeof(reg->type), 0,
offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
___mark_reg_known(reg, imm);
}
static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
{
reg->var_off = tnum_const_subreg(reg->var_off, imm);
reg->s32_min_value = (s32)imm;
reg->s32_max_value = (s32)imm;
reg->u32_min_value = (u32)imm;
reg->u32_max_value = (u32)imm;
}
/* Mark the 'variable offset' part of a register as zero. This should be
* used only on registers holding a pointer type.
*/
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
{
__mark_reg_known(reg, 0);
}
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
__mark_reg_known(reg, 0);
reg->type = SCALAR_VALUE;
}
static void mark_reg_known_zero(struct bpf_verifier_env *env,
struct bpf_reg_state *regs, u32 regno)
{
if (WARN_ON(regno >= MAX_BPF_REG)) {
verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
/* Something bad happened, let's kill all regs */
for (regno = 0; regno < MAX_BPF_REG; regno++)
__mark_reg_not_init(env, regs + regno);
return;
}
__mark_reg_known_zero(regs + regno);
}
static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
{
if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
const struct bpf_map *map = reg->map_ptr;
if (map->inner_map_meta) {
reg->type = CONST_PTR_TO_MAP;
reg->map_ptr = map->inner_map_meta;
/* transfer reg's id which is unique for every map_lookup_elem
* as UID of the inner map.
*/
if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
reg->map_uid = reg->id;
} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
reg->type = PTR_TO_XDP_SOCK;
} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
map->map_type == BPF_MAP_TYPE_SOCKHASH) {
reg->type = PTR_TO_SOCKET;
} else {
reg->type = PTR_TO_MAP_VALUE;
}
return;
}
reg->type &= ~PTR_MAYBE_NULL;
}
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
return type_is_pkt_pointer(reg->type);
}
static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
return reg_is_pkt_pointer(reg) ||
reg->type == PTR_TO_PACKET_END;
}
/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
enum bpf_reg_type which)
{
/* The register can already have a range from prior markings.
* This is fine as long as it hasn't been advanced from its
* origin.
*/
return reg->type == which &&
reg->id == 0 &&
reg->off == 0 &&
tnum_equals_const(reg->var_off, 0);
}
/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
reg->smin_value = S64_MIN;
reg->smax_value = S64_MAX;
reg->umin_value = 0;
reg->umax_value = U64_MAX;
reg->s32_min_value = S32_MIN;
reg->s32_max_value = S32_MAX;
reg->u32_min_value = 0;
reg->u32_max_value = U32_MAX;
}
static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
{
reg->smin_value = S64_MIN;
reg->smax_value = S64_MAX;
reg->umin_value = 0;
reg->umax_value = U64_MAX;
}
static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
{
reg->s32_min_value = S32_MIN;
reg->s32_max_value = S32_MAX;
reg->u32_min_value = 0;
reg->u32_max_value = U32_MAX;
}
static void __update_reg32_bounds(struct bpf_reg_state *reg)
{
struct tnum var32_off = tnum_subreg(reg->var_off);
/* min signed is max(sign bit) | min(other bits) */
reg->s32_min_value = max_t(s32, reg->s32_min_value,
var32_off.value | (var32_off.mask & S32_MIN));
/* max signed is min(sign bit) | max(other bits) */
reg->s32_max_value = min_t(s32, reg->s32_max_value,
var32_off.value | (var32_off.mask & S32_MAX));
reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
reg->u32_max_value = min(reg->u32_max_value,
(u32)(var32_off.value | var32_off.mask));
}
static void __update_reg64_bounds(struct bpf_reg_state *reg)
{
/* min signed is max(sign bit) | min(other bits) */
reg->smin_value = max_t(s64, reg->smin_value,
reg->var_off.value | (reg->var_off.mask & S64_MIN));
/* max signed is min(sign bit) | max(other bits) */
reg->smax_value = min_t(s64, reg->smax_value,
reg->var_off.value | (reg->var_off.mask & S64_MAX));
reg->umin_value = max(reg->umin_value, reg->var_off.value);
reg->umax_value = min(reg->umax_value,
reg->var_off.value | reg->var_off.mask);
}
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
__update_reg32_bounds(reg);
__update_reg64_bounds(reg);
}
/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
{
/* Learn sign from signed bounds.
* If we cannot cross the sign boundary, then signed and unsigned bounds
* are the same, so combine. This works even in the negative case, e.g.
* -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
*/
if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
reg->s32_min_value = reg->u32_min_value =
max_t(u32, reg->s32_min_value, reg->u32_min_value);
reg->s32_max_value = reg->u32_max_value =
min_t(u32, reg->s32_max_value, reg->u32_max_value);
return;
}
/* Learn sign from unsigned bounds. Signed bounds cross the sign
* boundary, so we must be careful.
*/
if ((s32)reg->u32_max_value >= 0) {
/* Positive. We can't learn anything from the smin, but smax
* is positive, hence safe.
*/
reg->s32_min_value = reg->u32_min_value;
reg->s32_max_value = reg->u32_max_value =
min_t(u32, reg->s32_max_value, reg->u32_max_value);
} else if ((s32)reg->u32_min_value < 0) {
/* Negative. We can't learn anything from the smax, but smin
* is negative, hence safe.
*/
reg->s32_min_value = reg->u32_min_value =
max_t(u32, reg->s32_min_value, reg->u32_min_value);
reg->s32_max_value = reg->u32_max_value;
}
}
static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
{
/* Learn sign from signed bounds.
* If we cannot cross the sign boundary, then signed and unsigned bounds
* are the same, so combine. This works even in the negative case, e.g.
* -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
*/
if (reg->smin_value >= 0 || reg->smax_value < 0) {
reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
reg->umin_value);
reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
reg->umax_value);
return;
}
/* Learn sign from unsigned bounds. Signed bounds cross the sign
* boundary, so we must be careful.
*/
if ((s64)reg->umax_value >= 0) {
/* Positive. We can't learn anything from the smin, but smax
* is positive, hence safe.
*/
reg->smin_value = reg->umin_value;
reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
reg->umax_value);
} else if ((s64)reg->umin_value < 0) {
/* Negative. We can't learn anything from the smax, but smin
* is negative, hence safe.
*/
reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
reg->umin_value);
reg->smax_value = reg->umax_value;
}
}
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
__reg32_deduce_bounds(reg);
__reg64_deduce_bounds(reg);
}
/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
struct tnum var64_off = tnum_intersect(reg->var_off,
tnum_range(reg->umin_value,
reg->umax_value));
struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
tnum_range(reg->u32_min_value,
reg->u32_max_value));
reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
}
static void reg_bounds_sync(struct bpf_reg_state *reg)
{
/* We might have learned new bounds from the var_off. */
__update_reg_bounds(reg);
/* We might have learned something about the sign bit. */
__reg_deduce_bounds(reg);
/* We might have learned some bits from the bounds. */
__reg_bound_offset(reg);
/* Intersecting with the old var_off might have improved our bounds
* slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
* then new var_off is (0; 0x7f...fc) which improves our umax.
*/
__update_reg_bounds(reg);
}
static bool __reg32_bound_s64(s32 a)
{
return a >= 0 && a <= S32_MAX;
}
static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
{
reg->umin_value = reg->u32_min_value;
reg->umax_value = reg->u32_max_value;
/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
* be positive otherwise set to worse case bounds and refine later
* from tnum.
*/
if (__reg32_bound_s64(reg->s32_min_value) &&
__reg32_bound_s64(reg->s32_max_value)) {
reg->smin_value = reg->s32_min_value;
reg->smax_value = reg->s32_max_value;
} else {
reg->smin_value = 0;
reg->smax_value = U32_MAX;
}
}
static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
{
/* special case when 64-bit register has upper 32-bit register
* zeroed. Typically happens after zext or <<32, >>32 sequence
* allowing us to use 32-bit bounds directly,
*/
if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
__reg_assign_32_into_64(reg);
} else {
/* Otherwise the best we can do is push lower 32bit known and
* unknown bits into register (var_off set from jmp logic)
* then learn as much as possible from the 64-bit tnum
* known and unknown bits. The previous smin/smax bounds are
* invalid here because of jmp32 compare so mark them unknown
* so they do not impact tnum bounds calculation.
*/
__mark_reg64_unbounded(reg);
}
reg_bounds_sync(reg);
}
static bool __reg64_bound_s32(s64 a)
{
return a >= S32_MIN && a <= S32_MAX;
}
static bool __reg64_bound_u32(u64 a)
{
return a >= U32_MIN && a <= U32_MAX;
}
static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
{
__mark_reg32_unbounded(reg);
if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
reg->s32_min_value = (s32)reg->smin_value;
reg->s32_max_value = (s32)reg->smax_value;
}
if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
reg->u32_min_value = (u32)reg->umin_value;
reg->u32_max_value = (u32)reg->umax_value;
}
reg_bounds_sync(reg);
}
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(const struct bpf_verifier_env *env,
struct bpf_reg_state *reg)
{
/*
* Clear type, id, off, and union(map_ptr, range) and
* padding between 'type' and union
*/
memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
reg->type = SCALAR_VALUE;
reg->var_off = tnum_unknown;
reg->frameno = 0;
reg->precise = !env->bpf_capable;
__mark_reg_unbounded(reg);
}
static void mark_reg_unknown(struct bpf_verifier_env *env,
struct bpf_reg_state *regs, u32 regno)
{
if (WARN_ON(regno >= MAX_BPF_REG)) {
verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
/* Something bad happened, let's kill all regs except FP */
for (regno = 0; regno < BPF_REG_FP; regno++)
__mark_reg_not_init(env, regs + regno);
return;
}
__mark_reg_unknown(env, regs + regno);
}
static void __mark_reg_not_init(const struct bpf_verifier_env *env,
struct bpf_reg_state *reg)
{
__mark_reg_unknown(env, reg);
reg->type = NOT_INIT;
}
static void mark_reg_not_init(struct bpf_verifier_env *env,
struct bpf_reg_state *regs, u32 regno)
{
if (WARN_ON(regno >= MAX_BPF_REG)) {
verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
/* Something bad happened, let's kill all regs except FP */
for (regno = 0; regno < BPF_REG_FP; regno++)
__mark_reg_not_init(env, regs + regno);
return;
}
__mark_reg_not_init(env, regs + regno);
}
static void mark_btf_ld_reg(struct bpf_verifier_env *env,
struct bpf_reg_state *regs, u32 regno,
enum bpf_reg_type reg_type,
struct btf *btf, u32 btf_id,
enum bpf_type_flag flag)
{
if (reg_type == SCALAR_VALUE) {
mark_reg_unknown(env, regs, regno);
return;
}
mark_reg_known_zero(env, regs, regno);
regs[regno].type = PTR_TO_BTF_ID | flag;
regs[regno].btf = btf;
regs[regno].btf_id = btf_id;
}
#define DEF_NOT_SUBREG (0)
static void init_reg_state(struct bpf_verifier_env *env,
struct bpf_func_state *state)
{
struct bpf_reg_state *regs = state->regs;
int i;
for (i = 0; i < MAX_BPF_REG; i++) {
mark_reg_not_init(env, regs, i);
regs[i].live = REG_LIVE_NONE;
regs[i].parent = NULL;
regs[i].subreg_def = DEF_NOT_SUBREG;
}
/* frame pointer */
regs[BPF_REG_FP].type = PTR_TO_STACK;
mark_reg_known_zero(env, regs, BPF_REG_FP);
regs[BPF_REG_FP].frameno = state->frameno;
}
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
struct bpf_func_state *state,
int callsite, int frameno, int subprogno)
{
state->callsite = callsite;
state->frameno = frameno;
state->subprogno = subprogno;
state->callback_ret_range = tnum_range(0, 0);
init_reg_state(env, state);
mark_verifier_state_scratched(env);
}
/* Similar to push_stack(), but for async callbacks */
static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx,
int subprog)
{
struct bpf_verifier_stack_elem *elem;
struct bpf_func_state *frame;
elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
if (!elem)
goto err;
elem->insn_idx = insn_idx;
elem->prev_insn_idx = prev_insn_idx;
elem->next = env->head;
elem->log_pos = env->log.len_used;
env->head = elem;
env->stack_size++;
if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
verbose(env,
"The sequence of %d jumps is too complex for async cb.\n",
env->stack_size);
goto err;
}
/* Unlike push_stack() do not copy_verifier_state().
* The caller state doesn't matter.
* This is async callback. It starts in a fresh stack.
* Initialize it similar to do_check_common().
*/
elem->st.branches = 1;
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame)
goto err;
init_func_state(env, frame,
BPF_MAIN_FUNC /* callsite */,
0 /* frameno within this callchain */,
subprog /* subprog number within this prog */);
elem->st.frame[0] = frame;
return &elem->st;
err:
free_verifier_state(env->cur_state, true);
env->cur_state = NULL;
/* pop all elements and return */
while (!pop_stack(env, NULL, NULL, false));
return NULL;
}
enum reg_arg_type {
SRC_OP, /* register is used as source operand */
DST_OP, /* register is used as destination operand */
DST_OP_NO_MARK /* same as above, check only, don't mark */
};
static int cmp_subprogs(const void *a, const void *b)
{
return ((struct bpf_subprog_info *)a)->start -
((struct bpf_subprog_info *)b)->start;
}
static int find_subprog(struct bpf_verifier_env *env, int off)
{
struct bpf_subprog_info *p;
p = bsearch(&off, env->subprog_info, env->subprog_cnt,
sizeof(env->subprog_info[0]), cmp_subprogs);
if (!p)
return -ENOENT;
return p - env->subprog_info;
}
static int add_subprog(struct bpf_verifier_env *env, int off)
{
int insn_cnt = env->prog->len;
int ret;
if (off >= insn_cnt || off < 0) {
verbose(env, "call to invalid destination\n");
return -EINVAL;
}
ret = find_subprog(env, off);
if (ret >= 0)
return ret;
if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
verbose(env, "too many subprograms\n");
return -E2BIG;
}
/* determine subprog starts. The end is one before the next starts */
env->subprog_info[env->subprog_cnt++].start = off;
sort(env->subprog_info, env->subprog_cnt,
sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
return env->subprog_cnt - 1;
}
#define MAX_KFUNC_DESCS 256
#define MAX_KFUNC_BTFS 256
struct bpf_kfunc_desc {
struct btf_func_model func_model;
u32 func_id;
s32 imm;
u16 offset;
};
struct bpf_kfunc_btf {
struct btf *btf;
struct module *module;
u16 offset;
};
struct bpf_kfunc_desc_tab {
struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
u32 nr_descs;
};
struct bpf_kfunc_btf_tab {
struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
u32 nr_descs;
};
static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
{
const struct bpf_kfunc_desc *d0 = a;
const struct bpf_kfunc_desc *d1 = b;
/* func_id is not greater than BTF_MAX_TYPE */
return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
}
static int kfunc_btf_cmp_by_off(const void *a, const void *b)
{
const struct bpf_kfunc_btf *d0 = a;
const struct bpf_kfunc_btf *d1 = b;
return d0->offset - d1->offset;
}
static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
{
struct bpf_kfunc_desc desc = {
.func_id = func_id,
.offset = offset,
};
struct bpf_kfunc_desc_tab *tab;
tab = prog->aux->kfunc_tab;
return bsearch(&desc, tab->descs, tab->nr_descs,
sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
}
static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
s16 offset)
{
struct bpf_kfunc_btf kf_btf = { .offset = offset };
struct bpf_kfunc_btf_tab *tab;
struct bpf_kfunc_btf *b;
struct module *mod;
struct btf *btf;
int btf_fd;
tab = env->prog->aux->kfunc_btf_tab;
b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
if (!b) {
if (tab->nr_descs == MAX_KFUNC_BTFS) {
verbose(env, "too many different module BTFs\n");
return ERR_PTR(-E2BIG);
}
if (bpfptr_is_null(env->fd_array)) {
verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
return ERR_PTR(-EPROTO);
}
if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
offset * sizeof(btf_fd),
sizeof(btf_fd)))
return ERR_PTR(-EFAULT);
btf = btf_get_by_fd(btf_fd);
if (IS_ERR(btf)) {
verbose(env, "invalid module BTF fd specified\n");
return btf;
}
if (!btf_is_module(btf)) {
verbose(env, "BTF fd for kfunc is not a module BTF\n");
btf_put(btf);
return ERR_PTR(-EINVAL);
}
mod = btf_try_get_module(btf);
if (!mod) {
btf_put(btf);
return ERR_PTR(-ENXIO);
}
b = &tab->descs[tab->nr_descs++];
b->btf = btf;
b->module = mod;
b->offset = offset;
sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
kfunc_btf_cmp_by_off, NULL);
}
return b->btf;
}
void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
{
if (!tab)
return;
while (tab->nr_descs--) {
module_put(tab->descs[tab->nr_descs].module);
btf_put(tab->descs[tab->nr_descs].btf);
}
kfree(tab);
}
static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
{
if (offset) {
if (offset < 0) {
/* In the future, this can be allowed to increase limit
* of fd index into fd_array, interpreted as u16.
*/
verbose(env, "negative offset disallowed for kernel module function call\n");
return ERR_PTR(-EINVAL);
}
return __find_kfunc_desc_btf(env, offset);
}
return btf_vmlinux ?: ERR_PTR(-ENOENT);
}
static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
{
const struct btf_type *func, *func_proto;
struct bpf_kfunc_btf_tab *btf_tab;
struct bpf_kfunc_desc_tab *tab;
struct bpf_prog_aux *prog_aux;
struct bpf_kfunc_desc *desc;
const char *func_name;
struct btf *desc_btf;
unsigned long call_imm;
unsigned long addr;
int err;
prog_aux = env->prog->aux;
tab = prog_aux->kfunc_tab;
btf_tab = prog_aux->kfunc_btf_tab;
if (!tab) {
if (!btf_vmlinux) {
verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
return -ENOTSUPP;
}
if (!env->prog->jit_requested) {
verbose(env, "JIT is required for calling kernel function\n");
return -ENOTSUPP;
}
if (!bpf_jit_supports_kfunc_call()) {
verbose(env, "JIT does not support calling kernel function\n");
return -ENOTSUPP;
}
if (!env->prog->gpl_compatible) {
verbose(env, "cannot call kernel function from non-GPL compatible program\n");
return -EINVAL;
}
tab = kzalloc(sizeof(*tab), GFP_KERNEL);
if (!tab)
return -ENOMEM;
prog_aux->kfunc_tab = tab;
}
/* func_id == 0 is always invalid, but instead of returning an error, be
* conservative and wait until the code elimination pass before returning
* error, so that invalid calls that get pruned out can be in BPF programs
* loaded from userspace. It is also required that offset be untouched
* for such calls.
*/
if (!func_id && !offset)
return 0;
if (!btf_tab && offset) {
btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
if (!btf_tab)
return -ENOMEM;
prog_aux->kfunc_btf_tab = btf_tab;
}
desc_btf = find_kfunc_desc_btf(env, offset);
if (IS_ERR(desc_btf)) {
verbose(env, "failed to find BTF for kernel function\n");
return PTR_ERR(desc_btf);
}
if (find_kfunc_desc(env->prog, func_id, offset))
return 0;
if (tab->nr_descs == MAX_KFUNC_DESCS) {
verbose(env, "too many different kernel function calls\n");
return -E2BIG;
}
func = btf_type_by_id(desc_btf, func_id);
if (!func || !btf_type_is_func(func)) {
verbose(env, "kernel btf_id %u is not a function\n",
func_id);
return -EINVAL;
}
func_proto = btf_type_by_id(desc_btf, func->type);
if (!func_proto || !btf_type_is_func_proto(func_proto)) {
verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
func_id);
return -EINVAL;
}
func_name = btf_name_by_offset(desc_btf, func->name_off);
addr = kallsyms_lookup_name(func_name);
if (!addr) {
verbose(env, "cannot find address for kernel function %s\n",
func_name);
return -EINVAL;
}
call_imm = BPF_CALL_IMM(addr);
/* Check whether or not the relative offset overflows desc->imm */
if ((unsigned long)(s32)call_imm != call_imm) {
verbose(env, "address of kernel function %s is out of range\n",
func_name);
return -EINVAL;
}
desc = &tab->descs[tab->nr_descs++];
desc->func_id = func_id;
desc->imm = call_imm;
desc->offset = offset;
err = btf_distill_func_proto(&env->log, desc_btf,
func_proto, func_name,
&desc->func_model);
if (!err)
sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
kfunc_desc_cmp_by_id_off, NULL);
return err;
}
static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
{
const struct bpf_kfunc_desc *d0 = a;
const struct bpf_kfunc_desc *d1 = b;
if (d0->imm > d1->imm)
return 1;
else if (d0->imm < d1->imm)
return -1;
return 0;
}
static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
{
struct bpf_kfunc_desc_tab *tab;
tab = prog->aux->kfunc_tab;
if (!tab)
return;
sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
kfunc_desc_cmp_by_imm, NULL);
}
bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
{
return !!prog->aux->kfunc_tab;
}
const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
const struct bpf_insn *insn)
{
const struct bpf_kfunc_desc desc = {
.imm = insn->imm,
};
const struct bpf_kfunc_desc *res;
struct bpf_kfunc_desc_tab *tab;
tab = prog->aux->kfunc_tab;
res = bsearch(&desc, tab->descs, tab->nr_descs,
sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
return res ? &res->func_model : NULL;
}
static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
{
struct bpf_subprog_info *subprog = env->subprog_info;
struct bpf_insn *insn = env->prog->insnsi;
int i, ret, insn_cnt = env->prog->len;
/* Add entry function. */
ret = add_subprog(env, 0);
if (ret)
return ret;
for (i = 0; i < insn_cnt; i++, insn++) {
if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
!bpf_pseudo_kfunc_call(insn))
continue;
if (!env->bpf_capable) {
verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
return -EPERM;
}
if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
ret = add_subprog(env, i + insn->imm + 1);
else
ret = add_kfunc_call(env, insn->imm, insn->off);
if (ret < 0)
return ret;
}
/* Add a fake 'exit' subprog which could simplify subprog iteration
* logic. 'subprog_cnt' should not be increased.
*/
subprog[env->subprog_cnt].start = insn_cnt;
if (env->log.level & BPF_LOG_LEVEL2)
for (i = 0; i < env->subprog_cnt; i++)
verbose(env, "func#%d @%d\n", i, subprog[i].start);
return 0;
}
static int check_subprogs(struct bpf_verifier_env *env)
{
int i, subprog_start, subprog_end, off, cur_subprog = 0;
struct bpf_subprog_info *subprog = env->subprog_info;
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
/* now check that all jumps are within the same subprog */
subprog_start = subprog[cur_subprog].start;
subprog_end = subprog[cur_subprog + 1].start;
for (i = 0; i < insn_cnt; i++) {
u8 code = insn[i].code;
if (code == (BPF_JMP | BPF_CALL) &&
insn[i].imm == BPF_FUNC_tail_call &&
insn[i].src_reg != BPF_PSEUDO_CALL)
subprog[cur_subprog].has_tail_call = true;
if (BPF_CLASS(code) == BPF_LD &&
(BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
subprog[cur_subprog].has_ld_abs = true;
if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
goto next;
if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
goto next;
off = i + insn[i].off + 1;
if (off < subprog_start || off >= subprog_end) {
verbose(env, "jump out of range from insn %d to %d\n", i, off);
return -EINVAL;
}
next:
if (i == subprog_end - 1) {
/* to avoid fall-through from one subprog into another
* the last insn of the subprog should be either exit
* or unconditional jump back
*/
if (code != (BPF_JMP | BPF_EXIT) &&
code != (BPF_JMP | BPF_JA)) {
verbose(env, "last insn is not an exit or jmp\n");
return -EINVAL;
}
subprog_start = subprog_end;
cur_subprog++;
if (cur_subprog < env->subprog_cnt)
subprog_end = subprog[cur_subprog + 1].start;
}
}
return 0;
}
/* Parentage chain of this register (or stack slot) should take care of all
* issues like callee-saved registers, stack slot allocation time, etc.
*/
static int mark_reg_read(struct bpf_verifier_env *env,
const struct bpf_reg_state *state,
struct bpf_reg_state *parent, u8 flag)
{
bool writes = parent == state->parent; /* Observe write marks */
int cnt = 0;
while (parent) {
/* if read wasn't screened by an earlier write ... */
if (writes && state->live & REG_LIVE_WRITTEN)
break;
if (parent->live & REG_LIVE_DONE) {
verbose(env, "verifier BUG type %s var_off %lld off %d\n",
reg_type_str(env, parent->type),
parent->var_off.value, parent->off);
return -EFAULT;
}
/* The first condition is more likely to be true than the
* second, checked it first.
*/
if ((parent->live & REG_LIVE_READ) == flag ||
parent->live & REG_LIVE_READ64)
/* The parentage chain never changes and
* this parent was already marked as LIVE_READ.
* There is no need to keep walking the chain again and
* keep re-marking all parents as LIVE_READ.
* This case happens when the same register is read
* multiple times without writes into it in-between.
* Also, if parent has the stronger REG_LIVE_READ64 set,
* then no need to set the weak REG_LIVE_READ32.
*/
break;
/* ... then we depend on parent's value */
parent->live |= flag;
/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
if (flag == REG_LIVE_READ64)
parent->live &= ~REG_LIVE_READ32;
state = parent;
parent = state->parent;
writes = true;
cnt++;
}
if (env->longest_mark_read_walk < cnt)
env->longest_mark_read_walk = cnt;
return 0;
}
/* This function is supposed to be used by the following 32-bit optimization
* code only. It returns TRUE if the source or destination register operates
* on 64-bit, otherwise return FALSE.
*/
static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
{
u8 code, class, op;
code = insn->code;
class = BPF_CLASS(code);
op = BPF_OP(code);
if (class == BPF_JMP) {
/* BPF_EXIT for "main" will reach here. Return TRUE
* conservatively.
*/
if (op == BPF_EXIT)
return true;
if (op == BPF_CALL) {
/* BPF to BPF call will reach here because of marking
* caller saved clobber with DST_OP_NO_MARK for which we
* don't care the register def because they are anyway
* marked as NOT_INIT already.
*/
if (insn->src_reg == BPF_PSEUDO_CALL)
return false;
/* Helper call will reach here because of arg type
* check, conservatively return TRUE.
*/
if (t == SRC_OP)
return true;
return false;
}
}
if (class == BPF_ALU64 || class == BPF_JMP ||
/* BPF_END always use BPF_ALU class. */
(class == BPF_ALU && op == BPF_END && insn->imm == 64))
return true;
if (class == BPF_ALU || class == BPF_JMP32)
return false;
if (class == BPF_LDX) {
if (t != SRC_OP)
return BPF_SIZE(code) == BPF_DW;
/* LDX source must be ptr. */
return true;
}
if (class == BPF_STX) {
/* BPF_STX (including atomic variants) has multiple source
* operands, one of which is a ptr. Check whether the caller is
* asking about it.
*/
if (t == SRC_OP && reg->type != SCALAR_VALUE)
return true;
return BPF_SIZE(code) == BPF_DW;
}
if (class == BPF_LD) {
u8 mode = BPF_MODE(code);
/* LD_IMM64 */
if (mode == BPF_IMM)
return true;
/* Both LD_IND and LD_ABS return 32-bit data. */
if (t != SRC_OP)
return false;
/* Implicit ctx ptr. */
if (regno == BPF_REG_6)
return true;
/* Explicit source could be any width. */
return true;
}
if (class == BPF_ST)
/* The only source register for BPF_ST is a ptr. */
return true;
/* Conservatively return true at default. */
return true;
}
/* Return the regno defined by the insn, or -1. */
static int insn_def_regno(const struct bpf_insn *insn)
{
switch (BPF_CLASS(insn->code)) {
case BPF_JMP:
case BPF_JMP32:
case BPF_ST:
return -1;
case BPF_STX:
if (BPF_MODE(insn->code) == BPF_ATOMIC &&
(insn->imm & BPF_FETCH)) {
if (insn->imm == BPF_CMPXCHG)
return BPF_REG_0;
else
return insn->src_reg;
} else {
return -1;
}
default:
return insn->dst_reg;
}
}
/* Return TRUE if INSN has defined any 32-bit value explicitly. */
static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
int dst_reg = insn_def_regno(insn);
if (dst_reg == -1)
return false;
return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
}
static void mark_insn_zext(struct bpf_verifier_env *env,
struct bpf_reg_state *reg)
{
s32 def_idx = reg->subreg_def;
if (def_idx == DEF_NOT_SUBREG)
return;
env->insn_aux_data[def_idx - 1].zext_dst = true;
/* The dst will be zero extended, so won't be sub-register anymore. */
reg->subreg_def = DEF_NOT_SUBREG;
}
static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
enum reg_arg_type t)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
struct bpf_reg_state *reg, *regs = state->regs;
bool rw64;
if (regno >= MAX_BPF_REG) {
verbose(env, "R%d is invalid\n", regno);
return -EINVAL;
}
mark_reg_scratched(env, regno);
reg = &regs[regno];
rw64 = is_reg64(env, insn, regno, reg, t);
if (t == SRC_OP) {
/* check whether register used as source operand can be read */
if (reg->type == NOT_INIT) {
verbose(env, "R%d !read_ok\n", regno);
return -EACCES;
}
/* We don't need to worry about FP liveness because it's read-only */
if (regno == BPF_REG_FP)
return 0;
if (rw64)
mark_insn_zext(env, reg);
return mark_reg_read(env, reg, reg->parent,
rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
} else {
/* check whether register used as dest operand can be written to */
if (regno == BPF_REG_FP) {
verbose(env, "frame pointer is read only\n");
return -EACCES;
}
reg->live |= REG_LIVE_WRITTEN;
reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
if (t == DST_OP)
mark_reg_unknown(env, regs, regno);
}
return 0;
}
/* for any branch, call, exit record the history of jmps in the given state */
static int push_jmp_history(struct bpf_verifier_env *env,
struct bpf_verifier_state *cur)
{
u32 cnt = cur->jmp_history_cnt;
struct bpf_idx_pair *p;
cnt++;
p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
if (!p)
return -ENOMEM;
p[cnt - 1].idx = env->insn_idx;
p[cnt - 1].prev_idx = env->prev_insn_idx;
cur->jmp_history = p;
cur->jmp_history_cnt = cnt;
return 0;
}
/* Backtrack one insn at a time. If idx is not at the top of recorded
* history then previous instruction came from straight line execution.
*/
static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
u32 *history)
{
u32 cnt = *history;
if (cnt && st->jmp_history[cnt - 1].idx == i) {
i = st->jmp_history[cnt - 1].prev_idx;
(*history)--;
} else {
i--;
}
return i;
}
static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
{
const struct btf_type *func;
struct btf *desc_btf;
if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
return NULL;
desc_btf = find_kfunc_desc_btf(data, insn->off);
if (IS_ERR(desc_btf))
return "<error>";
func = btf_type_by_id(desc_btf, insn->imm);
return btf_name_by_offset(desc_btf, func->name_off);
}
/* For given verifier state backtrack_insn() is called from the last insn to
* the first insn. Its purpose is to compute a bitmask of registers and
* stack slots that needs precision in the parent verifier state.
*/
static int backtrack_insn(struct bpf_verifier_env *env, int idx,
u32 *reg_mask, u64 *stack_mask)
{
const struct bpf_insn_cbs cbs = {
.cb_call = disasm_kfunc_name,
.cb_print = verbose,
.private_data = env,
};
struct bpf_insn *insn = env->prog->insnsi + idx;
u8 class = BPF_CLASS(insn->code);
u8 opcode = BPF_OP(insn->code);
u8 mode = BPF_MODE(insn->code);
u32 dreg = 1u << insn->dst_reg;
u32 sreg = 1u << insn->src_reg;
u32 spi;
if (insn->code == 0)
return 0;
if (env->log.level & BPF_LOG_LEVEL2) {
verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
verbose(env, "%d: ", idx);
print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
}
if (class == BPF_ALU || class == BPF_ALU64) {
if (!(*reg_mask & dreg))
return 0;
if (opcode == BPF_MOV) {
if (BPF_SRC(insn->code) == BPF_X) {
/* dreg = sreg
* dreg needs precision after this insn
* sreg needs precision before this insn
*/
*reg_mask &= ~dreg;
*reg_mask |= sreg;
} else {
/* dreg = K
* dreg needs precision after this insn.
* Corresponding register is already marked
* as precise=true in this verifier state.
* No further markings in parent are necessary
*/
*reg_mask &= ~dreg;
}
} else {
if (BPF_SRC(insn->code) == BPF_X) {
/* dreg += sreg
* both dreg and sreg need precision
* before this insn
*/
*reg_mask |= sreg;
} /* else dreg += K
* dreg still needs precision before this insn
*/
}
} else if (class == BPF_LDX) {
if (!(*reg_mask & dreg))
return 0;
*reg_mask &= ~dreg;
/* scalars can only be spilled into stack w/o losing precision.
* Load from any other memory can be zero extended.
* The desire to keep that precision is already indicated
* by 'precise' mark in corresponding register of this state.
* No further tracking necessary.
*/
if (insn->src_reg != BPF_REG_FP)
return 0;
/* dreg = *(u64 *)[fp - off] was a fill from the stack.
* that [fp - off] slot contains scalar that needs to be
* tracked with precision
*/
spi = (-insn->off - 1) / BPF_REG_SIZE;
if (spi >= 64) {
verbose(env, "BUG spi %d\n", spi);
WARN_ONCE(1, "verifier backtracking bug");
return -EFAULT;
}
*stack_mask |= 1ull << spi;
} else if (class == BPF_STX || class == BPF_ST) {
if (*reg_mask & dreg)
/* stx & st shouldn't be using _scalar_ dst_reg
* to access memory. It means backtracking
* encountered a case of pointer subtraction.
*/
return -ENOTSUPP;
/* scalars can only be spilled into stack */
if (insn->dst_reg != BPF_REG_FP)
return 0;
spi = (-insn->off - 1) / BPF_REG_SIZE;
if (spi >= 64) {
verbose(env, "BUG spi %d\n", spi);
WARN_ONCE(1, "verifier backtracking bug");
return -EFAULT;
}
if (!(*stack_mask & (1ull << spi)))
return 0;
*stack_mask &= ~(1ull << spi);
if (class == BPF_STX)
*reg_mask |= sreg;
} else if (class == BPF_JMP || class == BPF_JMP32) {
if (opcode == BPF_CALL) {
if (insn->src_reg == BPF_PSEUDO_CALL)
return -ENOTSUPP;
/* BPF helpers that invoke callback subprogs are
* equivalent to BPF_PSEUDO_CALL above
*/
if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
return -ENOTSUPP;
/* regular helper call sets R0 */
*reg_mask &= ~1;
if (*reg_mask & 0x3f) {
/* if backtracing was looking for registers R1-R5
* they should have been found already.
*/
verbose(env, "BUG regs %x\n", *reg_mask);
WARN_ONCE(1, "verifier backtracking bug");
return -EFAULT;
}
} else if (opcode == BPF_EXIT) {
return -ENOTSUPP;
}
} else if (class == BPF_LD) {
if (!(*reg_mask & dreg))
return 0;
*reg_mask &= ~dreg;
/* It's ld_imm64 or ld_abs or ld_ind.
* For ld_imm64 no further tracking of precision
* into parent is necessary
*/
if (mode == BPF_IND || mode == BPF_ABS)
/* to be analyzed */
return -ENOTSUPP;
}
return 0;
}
/* the scalar precision tracking algorithm:
* . at the start all registers have precise=false.
* . scalar ranges are tracked as normal through alu and jmp insns.
* . once precise value of the scalar register is used in:
* . ptr + scalar alu
* . if (scalar cond K|scalar)
* . helper_call(.., scalar, ...) where ARG_CONST is expected
* backtrack through the verifier states and mark all registers and
* stack slots with spilled constants that these scalar regisers
* should be precise.
* . during state pruning two registers (or spilled stack slots)
* are equivalent if both are not precise.
*
* Note the verifier cannot simply walk register parentage chain,
* since many different registers and stack slots could have been
* used to compute single precise scalar.
*
* The approach of starting with precise=true for all registers and then
* backtrack to mark a register as not precise when the verifier detects
* that program doesn't care about specific value (e.g., when helper
* takes register as ARG_ANYTHING parameter) is not safe.
*
* It's ok to walk single parentage chain of the verifier states.
* It's possible that this backtracking will go all the way till 1st insn.
* All other branches will be explored for needing precision later.
*
* The backtracking needs to deal with cases like:
* R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
* r9 -= r8
* r5 = r9
* if r5 > 0x79f goto pc+7
* R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
* r5 += 1
* ...
* call bpf_perf_event_output#25
* where .arg5_type = ARG_CONST_SIZE_OR_ZERO
*
* and this case:
* r6 = 1
* call foo // uses callee's r6 inside to compute r0
* r0 += r6
* if r0 == 0 goto
*
* to track above reg_mask/stack_mask needs to be independent for each frame.
*
* Also if parent's curframe > frame where backtracking started,
* the verifier need to mark registers in both frames, otherwise callees
* may incorrectly prune callers. This is similar to
* commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
*
* For now backtracking falls back into conservative marking.
*/
static void mark_all_scalars_precise(struct bpf_verifier_env *env,
struct bpf_verifier_state *st)
{
struct bpf_func_state *func;
struct bpf_reg_state *reg;
int i, j;
/* big hammer: mark all scalars precise in this path.
* pop_stack may still get !precise scalars.
* We also skip current state and go straight to first parent state,
* because precision markings in current non-checkpointed state are
* not needed. See why in the comment in __mark_chain_precision below.
*/
for (st = st->parent; st; st = st->parent) {
for (i = 0; i <= st->curframe; i++) {
func = st->frame[i];
for (j = 0; j < BPF_REG_FP; j++) {
reg = &func->regs[j];
if (reg->type != SCALAR_VALUE)
continue;
reg->precise = true;
}
for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
if (!is_spilled_reg(&func->stack[j]))
continue;
reg = &func->stack[j].spilled_ptr;
if (reg->type != SCALAR_VALUE)
continue;
reg->precise = true;
}
}
}
}
static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
{
struct bpf_func_state *func;
struct bpf_reg_state *reg;
int i, j;
for (i = 0; i <= st->curframe; i++) {
func = st->frame[i];
for (j = 0; j < BPF_REG_FP; j++) {
reg = &func->regs[j];
if (reg->type != SCALAR_VALUE)
continue;
reg->precise = false;
}
for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
if (!is_spilled_reg(&func->stack[j]))
continue;
reg = &func->stack[j].spilled_ptr;
if (reg->type != SCALAR_VALUE)
continue;
reg->precise = false;
}
}
}
/*
* __mark_chain_precision() backtracks BPF program instruction sequence and
* chain of verifier states making sure that register *regno* (if regno >= 0)
* and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
* SCALARS, as well as any other registers and slots that contribute to
* a tracked state of given registers/stack slots, depending on specific BPF
* assembly instructions (see backtrack_insns() for exact instruction handling
* logic). This backtracking relies on recorded jmp_history and is able to
* traverse entire chain of parent states. This process ends only when all the
* necessary registers/slots and their transitive dependencies are marked as
* precise.
*
* One important and subtle aspect is that precise marks *do not matter* in
* the currently verified state (current state). It is important to understand
* why this is the case.
*
* First, note that current state is the state that is not yet "checkpointed",
* i.e., it is not yet put into env->explored_states, and it has no children
* states as well. It's ephemeral, and can end up either a) being discarded if
* compatible explored state is found at some point or BPF_EXIT instruction is
* reached or b) checkpointed and put into env->explored_states, branching out
* into one or more children states.
*
* In the former case, precise markings in current state are completely
* ignored by state comparison code (see regsafe() for details). Only
* checkpointed ("old") state precise markings are important, and if old
* state's register/slot is precise, regsafe() assumes current state's
* register/slot as precise and checks value ranges exactly and precisely. If
* states turn out to be compatible, current state's necessary precise
* markings and any required parent states' precise markings are enforced
* after the fact with propagate_precision() logic, after the fact. But it's
* important to realize that in this case, even after marking current state
* registers/slots as precise, we immediately discard current state. So what
* actually matters is any of the precise markings propagated into current
* state's parent states, which are always checkpointed (due to b) case above).
* As such, for scenario a) it doesn't matter if current state has precise
* markings set or not.
*
* Now, for the scenario b), checkpointing and forking into child(ren)
* state(s). Note that before current state gets to checkpointing step, any
* processed instruction always assumes precise SCALAR register/slot
* knowledge: if precise value or range is useful to prune jump branch, BPF
* verifier takes this opportunity enthusiastically. Similarly, when
* register's value is used to calculate offset or memory address, exact
* knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
* what we mentioned above about state comparison ignoring precise markings
* during state comparison, BPF verifier ignores and also assumes precise
* markings *at will* during instruction verification process. But as verifier
* assumes precision, it also propagates any precision dependencies across
* parent states, which are not yet finalized, so can be further restricted
* based on new knowledge gained from restrictions enforced by their children
* states. This is so that once those parent states are finalized, i.e., when
* they have no more active children state, state comparison logic in
* is_state_visited() would enforce strict and precise SCALAR ranges, if
* required for correctness.
*
* To build a bit more intuition, note also that once a state is checkpointed,
* the path we took to get to that state is not important. This is crucial
* property for state pruning. When state is checkpointed and finalized at
* some instruction index, it can be correctly and safely used to "short
* circuit" any *compatible* state that reaches exactly the same instruction
* index. I.e., if we jumped to that instruction from a completely different
* code path than original finalized state was derived from, it doesn't
* matter, current state can be discarded because from that instruction
* forward having a compatible state will ensure we will safely reach the
* exit. States describe preconditions for further exploration, but completely
* forget the history of how we got here.
*
* This also means that even if we needed precise SCALAR range to get to
* finalized state, but from that point forward *that same* SCALAR register is
* never used in a precise context (i.e., it's precise value is not needed for
* correctness), it's correct and safe to mark such register as "imprecise"
* (i.e., precise marking set to false). This is what we rely on when we do
* not set precise marking in current state. If no child state requires
* precision for any given SCALAR register, it's safe to dictate that it can
* be imprecise. If any child state does require this register to be precise,
* we'll mark it precise later retroactively during precise markings
* propagation from child state to parent states.
*
* Skipping precise marking setting in current state is a mild version of
* relying on the above observation. But we can utilize this property even
* more aggressively by proactively forgetting any precise marking in the
* current state (which we inherited from the parent state), right before we
* checkpoint it and branch off into new child state. This is done by
* mark_all_scalars_imprecise() to hopefully get more permissive and generic
* finalized states which help in short circuiting more future states.
*/
static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
int spi)
{
struct bpf_verifier_state *st = env->cur_state;
int first_idx = st->first_insn_idx;
int last_idx = env->insn_idx;
struct bpf_func_state *func;
struct bpf_reg_state *reg;
u32 reg_mask = regno >= 0 ? 1u << regno : 0;
u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
bool skip_first = true;
bool new_marks = false;
int i, err;
if (!env->bpf_capable)
return 0;
/* Do sanity checks against current state of register and/or stack
* slot, but don't set precise flag in current state, as precision
* tracking in the current state is unnecessary.
*/
func = st->frame[frame];
if (regno >= 0) {
reg = &func->regs[regno];
if (reg->type != SCALAR_VALUE) {
WARN_ONCE(1, "backtracing misuse");
return -EFAULT;
}
new_marks = true;
}
while (spi >= 0) {
if (!is_spilled_reg(&func->stack[spi])) {
stack_mask = 0;
break;
}
reg = &func->stack[spi].spilled_ptr;
if (reg->type != SCALAR_VALUE) {
stack_mask = 0;
break;
}
new_marks = true;
break;
}
if (!new_marks)
return 0;
if (!reg_mask && !stack_mask)
return 0;
for (;;) {
DECLARE_BITMAP(mask, 64);
u32 history = st->jmp_history_cnt;
if (env->log.level & BPF_LOG_LEVEL2)
verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
if (last_idx < 0) {
/* we are at the entry into subprog, which
* is expected for global funcs, but only if
* requested precise registers are R1-R5
* (which are global func's input arguments)
*/
if (st->curframe == 0 &&
st->frame[0]->subprogno > 0 &&
st->frame[0]->callsite == BPF_MAIN_FUNC &&
stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
bitmap_from_u64(mask, reg_mask);
for_each_set_bit(i, mask, 32) {
reg = &st->frame[0]->regs[i];
if (reg->type != SCALAR_VALUE) {
reg_mask &= ~(1u << i);
continue;
}
reg->precise = true;
}
return 0;
}
verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
st->frame[0]->subprogno, reg_mask, stack_mask);
WARN_ONCE(1, "verifier backtracking bug");
return -EFAULT;
}
for (i = last_idx;;) {
if (skip_first) {
err = 0;
skip_first = false;
} else {
err = backtrack_insn(env, i, &reg_mask, &stack_mask);
}
if (err == -ENOTSUPP) {
mark_all_scalars_precise(env, st);
return 0;
} else if (err) {
return err;
}
if (!reg_mask && !stack_mask)
/* Found assignment(s) into tracked register in this state.
* Since this state is already marked, just return.
* Nothing to be tracked further in the parent state.
*/
return 0;
if (i == first_idx)
break;
i = get_prev_insn_idx(st, i, &history);
if (i >= env->prog->len) {
/* This can happen if backtracking reached insn 0
* and there are still reg_mask or stack_mask
* to backtrack.
* It means the backtracking missed the spot where
* particular register was initialized with a constant.
*/
verbose(env, "BUG backtracking idx %d\n", i);
WARN_ONCE(1, "verifier backtracking bug");
return -EFAULT;
}
}
st = st->parent;
if (!st)
break;
new_marks = false;
func = st->frame[frame];
bitmap_from_u64(mask, reg_mask);
for_each_set_bit(i, mask, 32) {
reg = &func->regs[i];
if (reg->type != SCALAR_VALUE) {
reg_mask &= ~(1u << i);
continue;
}
if (!reg->precise)
new_marks = true;
reg->precise = true;
}
bitmap_from_u64(mask, stack_mask);
for_each_set_bit(i, mask, 64) {
if (i >= func->allocated_stack / BPF_REG_SIZE) {
/* the sequence of instructions:
* 2: (bf) r3 = r10
* 3: (7b) *(u64 *)(r3 -8) = r0
* 4: (79) r4 = *(u64 *)(r10 -8)
* doesn't contain jmps. It's backtracked
* as a single block.
* During backtracking insn 3 is not recognized as
* stack access, so at the end of backtracking
* stack slot fp-8 is still marked in stack_mask.
* However the parent state may not have accessed
* fp-8 and it's "unallocated" stack space.
* In such case fallback to conservative.
*/
mark_all_scalars_precise(env, st);
return 0;
}
if (!is_spilled_reg(&func->stack[i])) {
stack_mask &= ~(1ull << i);
continue;
}
reg = &func->stack[i].spilled_ptr;
if (reg->type != SCALAR_VALUE) {
stack_mask &= ~(1ull << i);
continue;
}
if (!reg->precise)
new_marks = true;
reg->precise = true;
}
if (env->log.level & BPF_LOG_LEVEL2) {
verbose(env, "parent %s regs=%x stack=%llx marks:",
new_marks ? "didn't have" : "already had",
reg_mask, stack_mask);
print_verifier_state(env, func, true);
}
if (!reg_mask && !stack_mask)
break;
if (!new_marks)
break;
last_idx = st->last_insn_idx;
first_idx = st->first_insn_idx;
}
return 0;
}
int mark_chain_precision(struct bpf_verifier_env *env, int regno)
{
return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
}
static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
{
return __mark_chain_precision(env, frame, regno, -1);
}
static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
{
return __mark_chain_precision(env, frame, -1, spi);
}
static bool is_spillable_regtype(enum bpf_reg_type type)
{
switch (base_type(type)) {
case PTR_TO_MAP_VALUE:
case PTR_TO_STACK:
case PTR_TO_CTX:
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
case PTR_TO_PACKET_END:
case PTR_TO_FLOW_KEYS:
case CONST_PTR_TO_MAP:
case PTR_TO_SOCKET:
case PTR_TO_SOCK_COMMON:
case PTR_TO_TCP_SOCK:
case PTR_TO_XDP_SOCK:
case PTR_TO_BTF_ID:
case PTR_TO_BUF:
case PTR_TO_MEM:
case PTR_TO_FUNC:
case PTR_TO_MAP_KEY:
return true;
default:
return false;
}
}
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}
static bool register_is_const(struct bpf_reg_state *reg)
{
return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
}
static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
{
return tnum_is_unknown(reg->var_off) &&
reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
reg->umin_value == 0 && reg->umax_value == U64_MAX &&
reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
}
static bool register_is_bounded(struct bpf_reg_state *reg)
{
return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
}
static bool __is_pointer_value(bool allow_ptr_leaks,
const struct bpf_reg_state *reg)
{
if (allow_ptr_leaks)
return false;
return reg->type != SCALAR_VALUE;
}
static void save_register_state(struct bpf_func_state *state,
int spi, struct bpf_reg_state *reg,
int size)
{
int i;
state->stack[spi].spilled_ptr = *reg;
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
state->stack[spi].slot_type[i - 1] = STACK_SPILL;
/* size < 8 bytes spill */
for (; i; i--)
scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
}
/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
* stack boundary and alignment are checked in check_mem_access()
*/
static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
/* stack frame we're writing to */
struct bpf_func_state *state,
int off, int size, int value_regno,
int insn_idx)
{
struct bpf_func_state *cur; /* state of the current function */
int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
struct bpf_reg_state *reg = NULL;
err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
if (err)
return err;
/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
* so it's aligned access and [off, off + size) are within stack limits
*/
if (!env->allow_ptr_leaks &&
state->stack[spi].slot_type[0] == STACK_SPILL &&
size != BPF_REG_SIZE) {
verbose(env, "attempt to corrupt spilled pointer on stack\n");
return -EACCES;
}
cur = env->cur_state->frame[env->cur_state->curframe];
if (value_regno >= 0)
reg = &cur->regs[value_regno];
if (!env->bypass_spec_v4) {
bool sanitize = reg && is_spillable_regtype(reg->type);
for (i = 0; i < size; i++) {
if (state->stack[spi].slot_type[i] == STACK_INVALID) {
sanitize = true;
break;
}
}
if (sanitize)
env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
}
mark_stack_slot_scratched(env, spi);
if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
!register_is_null(reg) && env->bpf_capable) {
if (dst_reg != BPF_REG_FP) {
/* The backtracking logic can only recognize explicit
* stack slot address like [fp - 8]. Other spill of
* scalar via different register has to be conservative.
* Backtrack from here and mark all registers as precise
* that contributed into 'reg' being a constant.
*/
err = mark_chain_precision(env, value_regno);
if (err)
return err;
}
save_register_state(state, spi, reg, size);
} else if (reg && is_spillable_regtype(reg->type)) {
/* register containing pointer is being spilled into stack */
if (size != BPF_REG_SIZE) {
verbose_linfo(env, insn_idx, "; ");
verbose(env, "invalid size of register spill\n");
return -EACCES;
}
if (state != cur && reg->type == PTR_TO_STACK) {
verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
return -EINVAL;
}
save_register_state(state, spi, reg, size);
} else {
u8 type = STACK_MISC;
/* regular write of data into stack destroys any spilled ptr */
state->stack[spi].spilled_ptr.type = NOT_INIT;
/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
if (is_spilled_reg(&state->stack[spi]))
for (i = 0; i < BPF_REG_SIZE; i++)
scrub_spilled_slot(&state->stack[spi].slot_type[i]);
/* only mark the slot as written if all 8 bytes were written
* otherwise read propagation may incorrectly stop too soon
* when stack slots are partially written.
* This heuristic means that read propagation will be
* conservative, since it will add reg_live_read marks
* to stack slots all the way to first state when programs
* writes+reads less than 8 bytes
*/
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
/* when we zero initialize stack slots mark them as such */
if (reg && register_is_null(reg)) {
/* backtracking doesn't work for STACK_ZERO yet. */
err = mark_chain_precision(env, value_regno);
if (err)
return err;
type = STACK_ZERO;
}
/* Mark slots affected by this stack write. */
for (i = 0; i < size; i++)
state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
type;
}
return 0;
}
/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
* known to contain a variable offset.
* This function checks whether the write is permitted and conservatively
* tracks the effects of the write, considering that each stack slot in the
* dynamic range is potentially written to.
*
* 'off' includes 'regno->off'.
* 'value_regno' can be -1, meaning that an unknown value is being written to
* the stack.
*
* Spilled pointers in range are not marked as written because we don't know
* what's going to be actually written. This means that read propagation for
* future reads cannot be terminated by this write.
*
* For privileged programs, uninitialized stack slots are considered
* initialized by this write (even though we don't know exactly what offsets
* are going to be written to). The idea is that we don't want the verifier to
* reject future reads that access slots written to through variable offsets.
*/
static int check_stack_write_var_off(struct bpf_verifier_env *env,
/* func where register points to */
struct bpf_func_state *state,
int ptr_regno, int off, int size,
int value_regno, int insn_idx)
{
struct bpf_func_state *cur; /* state of the current function */
int min_off, max_off;
int i, err;
struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
bool writing_zero = false;
/* set if the fact that we're writing a zero is used to let any
* stack slots remain STACK_ZERO
*/
bool zero_used = false;
cur = env->cur_state->frame[env->cur_state->curframe];
ptr_reg = &cur->regs[ptr_regno];
min_off = ptr_reg->smin_value + off;
max_off = ptr_reg->smax_value + off + size;
if (value_regno >= 0)
value_reg = &cur->regs[value_regno];
if (value_reg && register_is_null(value_reg))
writing_zero = true;
err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
if (err)
return err;
/* Variable offset writes destroy any spilled pointers in range. */
for (i = min_off; i < max_off; i++) {
u8 new_type, *stype;
int slot, spi;
slot = -i - 1;
spi = slot / BPF_REG_SIZE;
stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
mark_stack_slot_scratched(env, spi);
if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
/* Reject the write if range we may write to has not
* been initialized beforehand. If we didn't reject
* here, the ptr status would be erased below (even
* though not all slots are actually overwritten),
* possibly opening the door to leaks.
*
* We do however catch STACK_INVALID case below, and
* only allow reading possibly uninitialized memory
* later for CAP_PERFMON, as the write may not happen to
* that slot.
*/
verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
insn_idx, i);
return -EINVAL;
}
/* Erase all spilled pointers. */
state->stack[spi].spilled_ptr.type = NOT_INIT;
/* Update the slot type. */
new_type = STACK_MISC;
if (writing_zero && *stype == STACK_ZERO) {
new_type = STACK_ZERO;
zero_used = true;
}
/* If the slot is STACK_INVALID, we check whether it's OK to
* pretend that it will be initialized by this write. The slot
* might not actually be written to, and so if we mark it as
* initialized future reads might leak uninitialized memory.
* For privileged programs, we will accept such reads to slots
* that may or may not be written because, if we're reject
* them, the error would be too confusing.
*/
if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
insn_idx, i);
return -EINVAL;
}
*stype = new_type;
}
if (zero_used) {
/* backtracking doesn't work for STACK_ZERO yet. */
err = mark_chain_precision(env, value_regno);
if (err)
return err;
}
return 0;
}
/* When register 'dst_regno' is assigned some values from stack[min_off,
* max_off), we set the register's type according to the types of the
* respective stack slots. If all the stack values are known to be zeros, then
* so is the destination reg. Otherwise, the register is considered to be
* SCALAR. This function does not deal with register filling; the caller must
* ensure that all spilled registers in the stack range have been marked as
* read.
*/
static void mark_reg_stack_read(struct bpf_verifier_env *env,
/* func where src register points to */
struct bpf_func_state *ptr_state,
int min_off, int max_off, int dst_regno)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
int i, slot, spi;
u8 *stype;
int zeros = 0;
for (i = min_off; i < max_off; i++) {
slot = -i - 1;
spi = slot / BPF_REG_SIZE;
stype = ptr_state->stack[spi].slot_type;
if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
break;
zeros++;
}
if (zeros == max_off - min_off) {
/* any access_size read into register is zero extended,
* so the whole register == const_zero
*/
__mark_reg_const_zero(&state->regs[dst_regno]);
/* backtracking doesn't support STACK_ZERO yet,
* so mark it precise here, so that later
* backtracking can stop here.
* Backtracking may not need this if this register
* doesn't participate in pointer adjustment.
* Forward propagation of precise flag is not
* necessary either. This mark is only to stop
* backtracking. Any register that contributed
* to const 0 was marked precise before spill.
*/
state->regs[dst_regno].precise = true;
} else {
/* have read misc data from the stack */
mark_reg_unknown(env, state->regs, dst_regno);
}
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
}
/* Read the stack at 'off' and put the results into the register indicated by
* 'dst_regno'. It handles reg filling if the addressed stack slot is a
* spilled reg.
*
* 'dst_regno' can be -1, meaning that the read value is not going to a
* register.
*
* The access is assumed to be within the current stack bounds.
*/
static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
/* func where src register points to */
struct bpf_func_state *reg_state,
int off, int size, int dst_regno)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
struct bpf_reg_state *reg;
u8 *stype, type;
stype = reg_state->stack[spi].slot_type;
reg = &reg_state->stack[spi].spilled_ptr;
if (is_spilled_reg(&reg_state->stack[spi])) {
u8 spill_size = 1;
for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
spill_size++;
if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
if (reg->type != SCALAR_VALUE) {
verbose_linfo(env, env->insn_idx, "; ");
verbose(env, "invalid size of register fill\n");
return -EACCES;
}
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
if (dst_regno < 0)
return 0;
if (!(off % BPF_REG_SIZE) && size == spill_size) {
/* The earlier check_reg_arg() has decided the
* subreg_def for this insn. Save it first.
*/
s32 subreg_def = state->regs[dst_regno].subreg_def;
state->regs[dst_regno] = *reg;
state->regs[dst_regno].subreg_def = subreg_def;
} else {
for (i = 0; i < size; i++) {
type = stype[(slot - i) % BPF_REG_SIZE];
if (type == STACK_SPILL)
continue;
if (type == STACK_MISC)
continue;
verbose(env, "invalid read from stack off %d+%d size %d\n",
off, i, size);
return -EACCES;
}
mark_reg_unknown(env, state->regs, dst_regno);
}
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
return 0;
}
if (dst_regno >= 0) {
/* restore register state from stack */
state->regs[dst_regno] = *reg;
/* mark reg as written since spilled pointer state likely
* has its liveness marks cleared by is_state_visited()
* which resets stack/reg liveness for state transitions
*/
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
/* If dst_regno==-1, the caller is asking us whether
* it is acceptable to use this value as a SCALAR_VALUE
* (e.g. for XADD).
* We must not allow unprivileged callers to do that
* with spilled pointers.
*/
verbose(env, "leaking pointer from stack off %d\n",
off);
return -EACCES;
}
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
} else {
for (i = 0; i < size; i++) {
type = stype[(slot - i) % BPF_REG_SIZE];
if (type == STACK_MISC)
continue;
if (type == STACK_ZERO)
continue;
verbose(env, "invalid read from stack off %d+%d size %d\n",
off, i, size);
return -EACCES;
}
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
if (dst_regno >= 0)
mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
}
return 0;
}
enum bpf_access_src {
ACCESS_DIRECT = 1, /* the access is performed by an instruction */
ACCESS_HELPER = 2, /* the access is performed by a helper */
};
static int check_stack_range_initialized(struct bpf_verifier_env *env,
int regno, int off, int access_size,
bool zero_size_allowed,
enum bpf_access_src type,
struct bpf_call_arg_meta *meta);
static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
{
return cur_regs(env) + regno;
}
/* Read the stack at 'ptr_regno + off' and put the result into the register
* 'dst_regno'.
* 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
* but not its variable offset.
* 'size' is assumed to be <= reg size and the access is assumed to be aligned.
*
* As opposed to check_stack_read_fixed_off, this function doesn't deal with
* filling registers (i.e. reads of spilled register cannot be detected when
* the offset is not fixed). We conservatively mark 'dst_regno' as containing
* SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
* offset; for a fixed offset check_stack_read_fixed_off should be used
* instead.
*/
static int check_stack_read_var_off(struct bpf_verifier_env *env,
int ptr_regno, int off, int size, int dst_regno)
{
/* The state of the source register. */
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
struct bpf_func_state *ptr_state = func(env, reg);
int err;
int min_off, max_off;
/* Note that we pass a NULL meta, so raw access will not be permitted.
*/
err = check_stack_range_initialized(env, ptr_regno, off, size,
false, ACCESS_DIRECT, NULL);
if (err)
return err;
min_off = reg->smin_value + off;
max_off = reg->smax_value + off;
mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
return 0;
}
/* check_stack_read dispatches to check_stack_read_fixed_off or
* check_stack_read_var_off.
*
* The caller must ensure that the offset falls within the allocated stack
* bounds.
*
* 'dst_regno' is a register which will receive the value from the stack. It
* can be -1, meaning that the read value is not going to a register.
*/
static int check_stack_read(struct bpf_verifier_env *env,
int ptr_regno, int off, int size,
int dst_regno)
{
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
struct bpf_func_state *state = func(env, reg);
int err;
/* Some accesses are only permitted with a static offset. */
bool var_off = !tnum_is_const(reg->var_off);
/* The offset is required to be static when reads don't go to a
* register, in order to not leak pointers (see
* check_stack_read_fixed_off).
*/
if (dst_regno < 0 && var_off) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
tn_buf, off, size);
return -EACCES;
}
/* Variable offset is prohibited for unprivileged mode for simplicity
* since it requires corresponding support in Spectre masking for stack
* ALU. See also retrieve_ptr_limit().
*/
if (!env->bypass_spec_v1 && var_off) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
ptr_regno, tn_buf);
return -EACCES;
}
if (!var_off) {
off += reg->var_off.value;
err = check_stack_read_fixed_off(env, state, off, size,
dst_regno);
} else {
/* Variable offset stack reads need more conservative handling
* than fixed offset ones. Note that dst_regno >= 0 on this
* branch.
*/
err = check_stack_read_var_off(env, ptr_regno, off, size,
dst_regno);
}
return err;
}
/* check_stack_write dispatches to check_stack_write_fixed_off or
* check_stack_write_var_off.
*
* 'ptr_regno' is the register used as a pointer into the stack.
* 'off' includes 'ptr_regno->off', but not its variable offset (if any).
* 'value_regno' is the register whose value we're writing to the stack. It can
* be -1, meaning that we're not writing from a register.
*
* The caller must ensure that the offset falls within the maximum stack size.
*/
static int check_stack_write(struct bpf_verifier_env *env,
int ptr_regno, int off, int size,
int value_regno, int insn_idx)
{
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
struct bpf_func_state *state = func(env, reg);
int err;
if (tnum_is_const(reg->var_off)) {
off += reg->var_off.value;
err = check_stack_write_fixed_off(env, state, off, size,
value_regno, insn_idx);
} else {
/* Variable offset stack reads need more conservative handling
* than fixed offset ones.
*/
err = check_stack_write_var_off(env, state,
ptr_regno, off, size,
value_regno, insn_idx);
}
return err;
}
static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
int off, int size, enum bpf_access_type type)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_map *map = regs[regno].map_ptr;
u32 cap = bpf_map_flags_to_cap(map);
if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
map->value_size, off, size);
return -EACCES;
}
if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
map->value_size, off, size);
return -EACCES;
}
return 0;
}
/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
static int __check_mem_access(struct bpf_verifier_env *env, int regno,
int off, int size, u32 mem_size,
bool zero_size_allowed)
{
bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
struct bpf_reg_state *reg;
if (off >= 0 && size_ok && (u64)off + size <= mem_size)
return 0;
reg = &cur_regs(env)[regno];
switch (reg->type) {
case PTR_TO_MAP_KEY:
verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
mem_size, off, size);
break;
case PTR_TO_MAP_VALUE:
verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
mem_size, off, size);
break;
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
case PTR_TO_PACKET_END:
verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
off, size, regno, reg->id, off, mem_size);
break;
case PTR_TO_MEM:
default:
verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
mem_size, off, size);
}
return -EACCES;
}
/* check read/write into a memory region with possible variable offset */
static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
int off, int size, u32 mem_size,
bool zero_size_allowed)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *reg = &state->regs[regno];
int err;
/* We may have adjusted the register pointing to memory region, so we
* need to try adding each of min_value and max_value to off
* to make sure our theoretical access will be safe.
*
* The minimum value is only important with signed
* comparisons where we can't assume the floor of a
* value is 0. If we are using signed variables for our
* index'es we need to make sure that whatever we use
* will have a set floor within our range.
*/
if (reg->smin_value < 0 &&
(reg->smin_value == S64_MIN ||
(off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
reg->smin_value + off < 0)) {
verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
}
err = __check_mem_access(env, regno, reg->smin_value + off, size,
mem_size, zero_size_allowed);
if (err) {
verbose(env, "R%d min value is outside of the allowed memory range\n",
regno);
return err;
}
/* If we haven't set a max value then we need to bail since we can't be
* sure we won't do bad things.
* If reg->umax_value + off could overflow, treat that as unbounded too.
*/
if (reg->umax_value >= BPF_MAX_VAR_OFF) {
verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
regno);
return -EACCES;
}
err = __check_mem_access(env, regno, reg->umax_value + off, size,
mem_size, zero_size_allowed);
if (err) {
verbose(env, "R%d max value is outside of the allowed memory range\n",
regno);
return err;
}
return 0;
}
static int __check_ptr_off_reg(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg, int regno,
bool fixed_off_ok)
{
/* Access to this pointer-typed register or passing it to a helper
* is only allowed in its original, unmodified form.
*/
if (reg->off < 0) {
verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
reg_type_str(env, reg->type), regno, reg->off);
return -EACCES;
}
if (!fixed_off_ok && reg->off) {
verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
reg_type_str(env, reg->type), regno, reg->off);
return -EACCES;
}
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "variable %s access var_off=%s disallowed\n",
reg_type_str(env, reg->type), tn_buf);
return -EACCES;
}
return 0;
}
int check_ptr_off_reg(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg, int regno)
{
return __check_ptr_off_reg(env, reg, regno, false);
}
static int map_kptr_match_type(struct bpf_verifier_env *env,
struct btf_field *kptr_field,
struct bpf_reg_state *reg, u32 regno)
{
const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
int perm_flags = PTR_MAYBE_NULL;
const char *reg_name = "";
/* Only unreferenced case accepts untrusted pointers */
if (kptr_field->type == BPF_KPTR_UNREF)
perm_flags |= PTR_UNTRUSTED;
if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
goto bad_type;
if (!btf_is_kernel(reg->btf)) {
verbose(env, "R%d must point to kernel BTF\n", regno);
return -EINVAL;
}
/* We need to verify reg->type and reg->btf, before accessing reg->btf */
reg_name = kernel_type_name(reg->btf, reg->btf_id);
/* For ref_ptr case, release function check should ensure we get one
* referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
* normal store of unreferenced kptr, we must ensure var_off is zero.
* Since ref_ptr cannot be accessed directly by BPF insns, checks for
* reg->off and reg->ref_obj_id are not needed here.
*/
if (__check_ptr_off_reg(env, reg, regno, true))
return -EACCES;
/* A full type match is needed, as BTF can be vmlinux or module BTF, and
* we also need to take into account the reg->off.
*
* We want to support cases like:
*
* struct foo {
* struct bar br;
* struct baz bz;
* };
*
* struct foo *v;
* v = func(); // PTR_TO_BTF_ID
* val->foo = v; // reg->off is zero, btf and btf_id match type
* val->bar = &v->br; // reg->off is still zero, but we need to retry with
* // first member type of struct after comparison fails
* val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
* // to match type
*
* In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
* is zero. We must also ensure that btf_struct_ids_match does not walk
* the struct to match type against first member of struct, i.e. reject
* second case from above. Hence, when type is BPF_KPTR_REF, we set
* strict mode to true for type match.
*/
if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
kptr_field->kptr.btf, kptr_field->kptr.btf_id,
kptr_field->type == BPF_KPTR_REF))
goto bad_type;
return 0;
bad_type:
verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
reg_type_str(env, reg->type), reg_name);
verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
if (kptr_field->type == BPF_KPTR_UNREF)
verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
targ_name);
else
verbose(env, "\n");
return -EINVAL;
}
static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
int value_regno, int insn_idx,
struct btf_field *kptr_field)
{
struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
int class = BPF_CLASS(insn->code);
struct bpf_reg_state *val_reg;
/* Things we already checked for in check_map_access and caller:
* - Reject cases where variable offset may touch kptr
* - size of access (must be BPF_DW)
* - tnum_is_const(reg->var_off)
* - kptr_field->offset == off + reg->var_off.value
*/
/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
if (BPF_MODE(insn->code) != BPF_MEM) {
verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
return -EACCES;
}
/* We only allow loading referenced kptr, since it will be marked as
* untrusted, similar to unreferenced kptr.
*/
if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
verbose(env, "store to referenced kptr disallowed\n");
return -EACCES;
}
if (class == BPF_LDX) {
val_reg = reg_state(env, value_regno);
/* We can simply mark the value_regno receiving the pointer
* value from map as PTR_TO_BTF_ID, with the correct type.
*/
mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
/* For mark_ptr_or_null_reg */
val_reg->id = ++env->id_gen;
} else if (class == BPF_STX) {
val_reg = reg_state(env, value_regno);
if (!register_is_null(val_reg) &&
map_kptr_match_type(env, kptr_field, val_reg, value_regno))
return -EACCES;
} else if (class == BPF_ST) {
if (insn->imm) {
verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
kptr_field->offset);
return -EACCES;
}
} else {
verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
return -EACCES;
}
return 0;
}
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
int off, int size, bool zero_size_allowed,
enum bpf_access_src src)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *reg = &state->regs[regno];
struct bpf_map *map = reg->map_ptr;
struct btf_record *rec;
int err, i;
err = check_mem_region_access(env, regno, off, size, map->value_size,
zero_size_allowed);
if (err)
return err;
if (IS_ERR_OR_NULL(map->record))
return 0;
rec = map->record;
for (i = 0; i < rec->cnt; i++) {
struct btf_field *field = &rec->fields[i];
u32 p = field->offset;
/* If any part of a field can be touched by load/store, reject
* this program. To check that [x1, x2) overlaps with [y1, y2),
* it is sufficient to check x1 < y2 && y1 < x2.
*/
if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
p < reg->umax_value + off + size) {
switch (field->type) {
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
if (src != ACCESS_DIRECT) {
verbose(env, "kptr cannot be accessed indirectly by helper\n");
return -EACCES;
}
if (!tnum_is_const(reg->var_off)) {
verbose(env, "kptr access cannot have variable offset\n");
return -EACCES;
}
if (p != off + reg->var_off.value) {
verbose(env, "kptr access misaligned expected=%u off=%llu\n",
p, off + reg->var_off.value);
return -EACCES;
}
if (size != bpf_size_to_bytes(BPF_DW)) {
verbose(env, "kptr access size must be BPF_DW\n");
return -EACCES;
}
break;
default:
verbose(env, "%s cannot be accessed directly by load/store\n",
btf_field_type_name(field->type));
return -EACCES;
}
}
}
return 0;
}
#define MAX_PACKET_OFF 0xffff
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
const struct bpf_call_arg_meta *meta,
enum bpf_access_type t)
{
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
switch (prog_type) {
/* Program types only with direct read access go here! */
case BPF_PROG_TYPE_LWT_IN:
case BPF_PROG_TYPE_LWT_OUT:
case BPF_PROG_TYPE_LWT_SEG6LOCAL:
case BPF_PROG_TYPE_SK_REUSEPORT:
case BPF_PROG_TYPE_FLOW_DISSECTOR:
case BPF_PROG_TYPE_CGROUP_SKB:
if (t == BPF_WRITE)
return false;
fallthrough;
/* Program types with direct read + write access go here! */
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
case BPF_PROG_TYPE_XDP:
case BPF_PROG_TYPE_LWT_XMIT:
case BPF_PROG_TYPE_SK_SKB:
case BPF_PROG_TYPE_SK_MSG:
if (meta)
return meta->pkt_access;
env->seen_direct_write = true;
return true;
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
if (t == BPF_WRITE)
env->seen_direct_write = true;
return true;
default:
return false;
}
}
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
int size, bool zero_size_allowed)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = &regs[regno];
int err;
/* We may have added a variable offset to the packet pointer; but any
* reg->range we have comes after that. We are only checking the fixed
* offset.
*/
/* We don't allow negative numbers, because we aren't tracking enough
* detail to prove they're safe.
*/
if (reg->smin_value < 0) {
verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
}
err = reg->range < 0 ? -EINVAL :
__check_mem_access(env, regno, off, size, reg->range,
zero_size_allowed);
if (err) {
verbose(env, "R%d offset is outside of the packet\n", regno);
return err;
}
/* __check_mem_access has made sure "off + size - 1" is within u16.
* reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
* otherwise find_good_pkt_pointers would have refused to set range info
* that __check_mem_access would have rejected this pkt access.
* Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
*/
env->prog->aux->max_pkt_offset =
max_t(u32, env->prog->aux->max_pkt_offset,
off + reg->umax_value + size - 1);
return err;
}
/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
enum bpf_access_type t, enum bpf_reg_type *reg_type,
struct btf **btf, u32 *btf_id)
{
struct bpf_insn_access_aux info = {
.reg_type = *reg_type,
.log = &env->log,
};
if (env->ops->is_valid_access &&
env->ops->is_valid_access(off, size, t, env->prog, &info)) {
/* A non zero info.ctx_field_size indicates that this field is a
* candidate for later verifier transformation to load the whole
* field and then apply a mask when accessed with a narrower
* access than actual ctx access size. A zero info.ctx_field_size
* will only allow for whole field access and rejects any other
* type of narrower access.
*/
*reg_type = info.reg_type;
if (base_type(*reg_type) == PTR_TO_BTF_ID) {
*btf = info.btf;
*btf_id = info.btf_id;
} else {
env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
}
/* remember the offset of last byte accessed in ctx */
if (env->prog->aux->max_ctx_offset < off + size)
env->prog->aux->max_ctx_offset = off + size;
return 0;
}
verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
return -EACCES;
}
static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
int size)
{
if (size < 0 || off < 0 ||
(u64)off + size > sizeof(struct bpf_flow_keys)) {
verbose(env, "invalid access to flow keys off=%d size=%d\n",
off, size);
return -EACCES;
}
return 0;
}
static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
u32 regno, int off, int size,
enum bpf_access_type t)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = &regs[regno];
struct bpf_insn_access_aux info = {};
bool valid;
if (reg->smin_value < 0) {
verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
}
switch (reg->type) {
case PTR_TO_SOCK_COMMON:
valid = bpf_sock_common_is_valid_access(off, size, t, &info);
break;
case PTR_TO_SOCKET:
valid = bpf_sock_is_valid_access(off, size, t, &info);
break;
case PTR_TO_TCP_SOCK:
valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
break;
case PTR_TO_XDP_SOCK:
valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
break;
default:
valid = false;
}
if (valid) {
env->insn_aux_data[insn_idx].ctx_field_size =
info.ctx_field_size;
return 0;
}
verbose(env, "R%d invalid %s access off=%d size=%d\n",
regno, reg_type_str(env, reg->type), off, size);
return -EACCES;
}
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
}
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
const struct bpf_reg_state *reg = reg_state(env, regno);
return reg->type == PTR_TO_CTX;
}
static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
{
const struct bpf_reg_state *reg = reg_state(env, regno);
return type_is_sk_pointer(reg->type);
}
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
const struct bpf_reg_state *reg = reg_state(env, regno);
return type_is_pkt_pointer(reg->type);
}
static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
{
const struct bpf_reg_state *reg = reg_state(env, regno);
/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
return reg->type == PTR_TO_FLOW_KEYS;
}
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
int off, int size, bool strict)
{
struct tnum reg_off;
int ip_align;
/* Byte size accesses are always allowed. */
if (!strict || size == 1)
return 0;
/* For platforms that do not have a Kconfig enabling
* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
* NET_IP_ALIGN is universally set to '2'. And on platforms
* that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
* to this code only in strict mode where we want to emulate
* the NET_IP_ALIGN==2 checking. Therefore use an
* unconditional IP align value of '2'.
*/
ip_align = 2;
reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
if (!tnum_is_aligned(reg_off, size)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env,
"misaligned packet access off %d+%s+%d+%d size %d\n",
ip_align, tn_buf, reg->off, off, size);
return -EACCES;
}
return 0;
}
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
const char *pointer_desc,
int off, int size, bool strict)
{
struct tnum reg_off;
/* Byte size accesses are always allowed. */
if (!strict || size == 1)
return 0;
reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
if (!tnum_is_aligned(reg_off, size)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
pointer_desc, tn_buf, reg->off, off, size);
return -EACCES;
}
return 0;
}
static int check_ptr_alignment(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg, int off,
int size, bool strict_alignment_once)
{
bool strict = env->strict_alignment || strict_alignment_once;
const char *pointer_desc = "";
switch (reg->type) {
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
/* Special case, because of NET_IP_ALIGN. Given metadata sits
* right in front, treat it the very same way.
*/
return check_pkt_ptr_alignment(env, reg, off, size, strict);
case PTR_TO_FLOW_KEYS:
pointer_desc = "flow keys ";
break;
case PTR_TO_MAP_KEY:
pointer_desc = "key ";
break;
case PTR_TO_MAP_VALUE:
pointer_desc = "value ";
break;
case PTR_TO_CTX:
pointer_desc = "context ";
break;
case PTR_TO_STACK:
pointer_desc = "stack ";
/* The stack spill tracking logic in check_stack_write_fixed_off()
* and check_stack_read_fixed_off() relies on stack accesses being
* aligned.
*/
strict = true;
break;
case PTR_TO_SOCKET:
pointer_desc = "sock ";
break;
case PTR_TO_SOCK_COMMON:
pointer_desc = "sock_common ";
break;
case PTR_TO_TCP_SOCK:
pointer_desc = "tcp_sock ";
break;
case PTR_TO_XDP_SOCK:
pointer_desc = "xdp_sock ";
break;
default:
break;
}
return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
strict);
}
static int update_stack_depth(struct bpf_verifier_env *env,
const struct bpf_func_state *func,
int off)
{
u16 stack = env->subprog_info[func->subprogno].stack_depth;
if (stack >= -off)
return 0;
/* update known max for given subprogram */
env->subprog_info[func->subprogno].stack_depth = -off;
return 0;
}
/* starting from main bpf function walk all instructions of the function
* and recursively walk all callees that given function can call.
* Ignore jump and exit insns.
* Since recursion is prevented by check_cfg() this algorithm
* only needs a local stack of MAX_CALL_FRAMES to remember callsites
*/
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
struct bpf_subprog_info *subprog = env->subprog_info;
struct bpf_insn *insn = env->prog->insnsi;
bool tail_call_reachable = false;
int ret_insn[MAX_CALL_FRAMES];
int ret_prog[MAX_CALL_FRAMES];
int j;
process_func:
/* protect against potential stack overflow that might happen when
* bpf2bpf calls get combined with tailcalls. Limit the caller's stack
* depth for such case down to 256 so that the worst case scenario
* would result in 8k stack size (32 which is tailcall limit * 256 =
* 8k).
*
* To get the idea what might happen, see an example:
* func1 -> sub rsp, 128
* subfunc1 -> sub rsp, 256
* tailcall1 -> add rsp, 256
* func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
* subfunc2 -> sub rsp, 64
* subfunc22 -> sub rsp, 128
* tailcall2 -> add rsp, 128
* func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
*
* tailcall will unwind the current stack frame but it will not get rid
* of caller's stack as shown on the example above.
*/
if (idx && subprog[idx].has_tail_call && depth >= 256) {
verbose(env,
"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
depth);
return -EACCES;
}
/* round up to 32-bytes, since this is granularity
* of interpreter stack size
*/
depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
if (depth > MAX_BPF_STACK) {
verbose(env, "combined stack size of %d calls is %d. Too large\n",
frame + 1, depth);
return -EACCES;
}
continue_func:
subprog_end = subprog[idx + 1].start;
for (; i < subprog_end; i++) {
int next_insn;
if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
continue;
/* remember insn and function to return to */
ret_insn[frame] = i + 1;
ret_prog[frame] = idx;
/* find the callee */
next_insn = i + insn[i].imm + 1;
idx = find_subprog(env, next_insn);
if (idx < 0) {
WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
next_insn);
return -EFAULT;
}
if (subprog[idx].is_async_cb) {
if (subprog[idx].has_tail_call) {
verbose(env, "verifier bug. subprog has tail_call and async cb\n");
return -EFAULT;
}
/* async callbacks don't increase bpf prog stack size */
continue;
}
i = next_insn;
if (subprog[idx].has_tail_call)
tail_call_reachable = true;
frame++;
if (frame >= MAX_CALL_FRAMES) {
verbose(env, "the call stack of %d frames is too deep !\n",
frame);
return -E2BIG;
}
goto process_func;
}
/* if tail call got detected across bpf2bpf calls then mark each of the
* currently present subprog frames as tail call reachable subprogs;
* this info will be utilized by JIT so that we will be preserving the
* tail call counter throughout bpf2bpf calls combined with tailcalls
*/
if (tail_call_reachable)
for (j = 0; j < frame; j++)
subprog[ret_prog[j]].tail_call_reachable = true;
if (subprog[0].tail_call_reachable)
env->prog->aux->tail_call_reachable = true;
/* end of for() loop means the last insn of the 'subprog'
* was reached. Doesn't matter whether it was JA or EXIT
*/
if (frame == 0)
return 0;
depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
frame--;
i = ret_insn[frame];
idx = ret_prog[frame];
goto continue_func;
}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
static int get_callee_stack_depth(struct bpf_verifier_env *env,
const struct bpf_insn *insn, int idx)
{
int start = idx + insn->imm + 1, subprog;
subprog = find_subprog(env, start);
if (subprog < 0) {
WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
start);
return -EFAULT;
}
return env->subprog_info[subprog].stack_depth;
}
#endif
static int __check_buffer_access(struct bpf_verifier_env *env,
const char *buf_info,
const struct bpf_reg_state *reg,
int regno, int off, int size)
{
if (off < 0) {
verbose(env,
"R%d invalid %s buffer access: off=%d, size=%d\n",
regno, buf_info, off, size);
return -EACCES;
}
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env,
"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
regno, off, tn_buf);
return -EACCES;
}
return 0;
}
static int check_tp_buffer_access(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
int regno, int off, int size)
{
int err;
err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
if (err)
return err;
if (off + size > env->prog->aux->max_tp_access)
env->prog->aux->max_tp_access = off + size;
return 0;
}
static int check_buffer_access(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
int regno, int off, int size,
bool zero_size_allowed,
u32 *max_access)
{
const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
int err;
err = __check_buffer_access(env, buf_info, reg, regno, off, size);
if (err)
return err;
if (off + size > *max_access)
*max_access = off + size;
return 0;
}
/* BPF architecture zero extends alu32 ops into 64-bit registesr */
static void zext_32_to_64(struct bpf_reg_state *reg)
{
reg->var_off = tnum_subreg(reg->var_off);
__reg_assign_32_into_64(reg);
}
/* truncate register to smaller size (in bytes)
* must be called with size < BPF_REG_SIZE
*/
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
u64 mask;
/* clear high bits in bit representation */
reg->var_off = tnum_cast(reg->var_off, size);
/* fix arithmetic bounds */
mask = ((u64)1 << (size * 8)) - 1;
if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
reg->umin_value &= mask;
reg->umax_value &= mask;
} else {
reg->umin_value = 0;
reg->umax_value = mask;
}
reg->smin_value = reg->umin_value;
reg->smax_value = reg->umax_value;
/* If size is smaller than 32bit register the 32bit register
* values are also truncated so we push 64-bit bounds into
* 32-bit bounds. Above were truncated < 32-bits already.
*/
if (size >= 4)
return;
__reg_combine_64_into_32(reg);
}
static bool bpf_map_is_rdonly(const struct bpf_map *map)
{
/* A map is considered read-only if the following condition are true:
*
* 1) BPF program side cannot change any of the map content. The
* BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
* and was set at map creation time.
* 2) The map value(s) have been initialized from user space by a
* loader and then "frozen", such that no new map update/delete
* operations from syscall side are possible for the rest of
* the map's lifetime from that point onwards.
* 3) Any parallel/pending map update/delete operations from syscall
* side have been completed. Only after that point, it's safe to
* assume that map value(s) are immutable.
*/
return (map->map_flags & BPF_F_RDONLY_PROG) &&
READ_ONCE(map->frozen) &&
!bpf_map_write_active(map);
}
static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
{
void *ptr;
u64 addr;
int err;
err = map->ops->map_direct_value_addr(map, &addr, off);
if (err)
return err;
ptr = (void *)(long)addr + off;
switch (size) {
case sizeof(u8):
*val = (u64)*(u8 *)ptr;
break;
case sizeof(u16):
*val = (u64)*(u16 *)ptr;
break;
case sizeof(u32):
*val = (u64)*(u32 *)ptr;
break;
case sizeof(u64):
*val = *(u64 *)ptr;
break;
default:
return -EINVAL;
}
return 0;
}
static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
struct bpf_reg_state *regs,
int regno, int off, int size,
enum bpf_access_type atype,
int value_regno)
{
struct bpf_reg_state *reg = regs + regno;
const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
const char *tname = btf_name_by_offset(reg->btf, t->name_off);
enum bpf_type_flag flag = 0;
u32 btf_id;
int ret;
if (off < 0) {
verbose(env,
"R%d is ptr_%s invalid negative access: off=%d\n",
regno, tname, off);
return -EACCES;
}
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env,
"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
regno, tname, off, tn_buf);
return -EACCES;
}
if (reg->type & MEM_USER) {
verbose(env,
"R%d is ptr_%s access user memory: off=%d\n",
regno, tname, off);
return -EACCES;
}
if (reg->type & MEM_PERCPU) {
verbose(env,
"R%d is ptr_%s access percpu memory: off=%d\n",
regno, tname, off);
return -EACCES;
}
if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
if (!btf_is_kernel(reg->btf)) {
verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
return -EFAULT;
}
ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
} else {
/* Writes are permitted with default btf_struct_access for
* program allocated objects (which always have ref_obj_id > 0),
* but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
*/
if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
verbose(env, "only read is supported\n");
return -EACCES;
}
if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
return -EFAULT;
}
ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
}
if (ret < 0)
return ret;
/* If this is an untrusted pointer, all pointers formed by walking it
* also inherit the untrusted flag.
*/
if (type_flag(reg->type) & PTR_UNTRUSTED)
flag |= PTR_UNTRUSTED;
if (atype == BPF_READ && value_regno >= 0)
mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
return 0;
}
static int check_ptr_to_map_access(struct bpf_verifier_env *env,
struct bpf_reg_state *regs,
int regno, int off, int size,
enum bpf_access_type atype,
int value_regno)
{
struct bpf_reg_state *reg = regs + regno;
struct bpf_map *map = reg->map_ptr;
struct bpf_reg_state map_reg;
enum bpf_type_flag flag = 0;
const struct btf_type *t;
const char *tname;
u32 btf_id;
int ret;
if (!btf_vmlinux) {
verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
return -ENOTSUPP;
}
if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
verbose(env, "map_ptr access not supported for map type %d\n",
map->map_type);
return -ENOTSUPP;
}
t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
tname = btf_name_by_offset(btf_vmlinux, t->name_off);
if (!env->allow_ptr_to_map_access) {
verbose(env,
"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
tname);
return -EPERM;
}
if (off < 0) {
verbose(env, "R%d is %s invalid negative access: off=%d\n",
regno, tname, off);
return -EACCES;
}
if (atype != BPF_READ) {
verbose(env, "only read from %s is supported\n", tname);
return -EACCES;
}
/* Simulate access to a PTR_TO_BTF_ID */
memset(&map_reg, 0, sizeof(map_reg));
mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
if (ret < 0)
return ret;
if (value_regno >= 0)
mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
return 0;
}
/* Check that the stack access at the given offset is within bounds. The
* maximum valid offset is -1.
*
* The minimum valid offset is -MAX_BPF_STACK for writes, and
* -state->allocated_stack for reads.
*/
static int check_stack_slot_within_bounds(int off,
struct bpf_func_state *state,
enum bpf_access_type t)
{
int min_valid_off;
if (t == BPF_WRITE)
min_valid_off = -MAX_BPF_STACK;
else
min_valid_off = -state->allocated_stack;
if (off < min_valid_off || off > -1)
return -EACCES;
return 0;
}
/* Check that the stack access at 'regno + off' falls within the maximum stack
* bounds.
*
* 'off' includes `regno->offset`, but not its dynamic part (if any).
*/
static int check_stack_access_within_bounds(
struct bpf_verifier_env *env,
int regno, int off, int access_size,
enum bpf_access_src src, enum bpf_access_type type)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = regs + regno;
struct bpf_func_state *state = func(env, reg);
int min_off, max_off;
int err;
char *err_extra;
if (src == ACCESS_HELPER)
/* We don't know if helpers are reading or writing (or both). */
err_extra = " indirect access to";
else if (type == BPF_READ)
err_extra = " read from";
else
err_extra = " write to";
if (tnum_is_const(reg->var_off)) {
min_off = reg->var_off.value + off;
if (access_size > 0)
max_off = min_off + access_size - 1;
else
max_off = min_off;
} else {
if (reg->smax_value >= BPF_MAX_VAR_OFF ||
reg->smin_value <= -BPF_MAX_VAR_OFF) {
verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
err_extra, regno);
return -EACCES;
}
min_off = reg->smin_value + off;
if (access_size > 0)
max_off = reg->smax_value + off + access_size - 1;
else
max_off = min_off;
}
err = check_stack_slot_within_bounds(min_off, state, type);
if (!err)
err = check_stack_slot_within_bounds(max_off, state, type);
if (err) {
if (tnum_is_const(reg->var_off)) {
verbose(env, "invalid%s stack R%d off=%d size=%d\n",
err_extra, regno, off, access_size);
} else {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
err_extra, regno, tn_buf, access_size);
}
}
return err;
}
/* check whether memory at (regno + off) is accessible for t = (read | write)
* if t==write, value_regno is a register which value is stored into memory
* if t==read, value_regno is a register which will receive the value from memory
* if t==write && value_regno==-1, some unknown value is stored into memory
* if t==read && value_regno==-1, don't care what we read from memory
*/
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
int off, int bpf_size, enum bpf_access_type t,
int value_regno, bool strict_alignment_once)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = regs + regno;
struct bpf_func_state *state;
int size, err = 0;
size = bpf_size_to_bytes(bpf_size);
if (size < 0)
return size;
/* alignment checks will add in reg->off themselves */
err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
if (err)
return err;
/* for access checks, reg->off is just part of off */
off += reg->off;
if (reg->type == PTR_TO_MAP_KEY) {
if (t == BPF_WRITE) {
verbose(env, "write to change key R%d not allowed\n", regno);
return -EACCES;
}
err = check_mem_region_access(env, regno, off, size,
reg->map_ptr->key_size, false);
if (err)
return err;
if (value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_MAP_VALUE) {
struct btf_field *kptr_field = NULL;
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into map\n", value_regno);
return -EACCES;
}
err = check_map_access_type(env, regno, off, size, t);
if (err)
return err;
err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
if (err)
return err;
if (tnum_is_const(reg->var_off))
kptr_field = btf_record_find(reg->map_ptr->record,
off + reg->var_off.value, BPF_KPTR);
if (kptr_field) {
err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
} else if (t == BPF_READ && value_regno >= 0) {
struct bpf_map *map = reg->map_ptr;
/* if map is read-only, track its contents as scalars */
if (tnum_is_const(reg->var_off) &&
bpf_map_is_rdonly(map) &&
map->ops->map_direct_value_addr) {
int map_off = off + reg->var_off.value;
u64 val = 0;
err = bpf_map_direct_read(map, map_off, size,
&val);
if (err)
return err;
regs[value_regno].type = SCALAR_VALUE;
__mark_reg_known(&regs[value_regno], val);
} else {
mark_reg_unknown(env, regs, value_regno);
}
}
} else if (base_type(reg->type) == PTR_TO_MEM) {
bool rdonly_mem = type_is_rdonly_mem(reg->type);
if (type_may_be_null(reg->type)) {
verbose(env, "R%d invalid mem access '%s'\n", regno,
reg_type_str(env, reg->type));
return -EACCES;
}
if (t == BPF_WRITE && rdonly_mem) {
verbose(env, "R%d cannot write into %s\n",
regno, reg_type_str(env, reg->type));
return -EACCES;
}
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into mem\n", value_regno);
return -EACCES;
}
err = check_mem_region_access(env, regno, off, size,
reg->mem_size, false);
if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_CTX) {
enum bpf_reg_type reg_type = SCALAR_VALUE;
struct btf *btf = NULL;
u32 btf_id = 0;
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into ctx\n", value_regno);
return -EACCES;
}
err = check_ptr_off_reg(env, reg, regno);
if (err < 0)
return err;
err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
&btf_id);
if (err)
verbose_linfo(env, insn_idx, "; ");
if (!err && t == BPF_READ && value_regno >= 0) {
/* ctx access returns either a scalar, or a
* PTR_TO_PACKET[_META,_END]. In the latter
* case, we know the offset is zero.
*/
if (reg_type == SCALAR_VALUE) {
mark_reg_unknown(env, regs, value_regno);
} else {
mark_reg_known_zero(env, regs,
value_regno);
if (type_may_be_null(reg_type))
regs[value_regno].id = ++env->id_gen;
/* A load of ctx field could have different
* actual load size with the one encoded in the
* insn. When the dst is PTR, it is for sure not
* a sub-register.
*/
regs[value_regno].subreg_def = DEF_NOT_SUBREG;
if (base_type(reg_type) == PTR_TO_BTF_ID) {
regs[value_regno].btf = btf;
regs[value_regno].btf_id = btf_id;
}
}
regs[value_regno].type = reg_type;
}
} else if (reg->type == PTR_TO_STACK) {
/* Basic bounds checks. */
err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
if (err)
return err;
state = func(env, reg);
err = update_stack_depth(env, state, off);
if (err)
return err;
if (t == BPF_READ)
err = check_stack_read(env, regno, off, size,
value_regno);
else
err = check_stack_write(env, regno, off, size,
value_regno, insn_idx);
} else if (reg_is_pkt_pointer(reg)) {
if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
verbose(env, "cannot write into packet\n");
return -EACCES;
}
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into packet\n",
value_regno);
return -EACCES;
}
err = check_packet_access(env, regno, off, size, false);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_FLOW_KEYS) {
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into flow keys\n",
value_regno);
return -EACCES;
}
err = check_flow_keys_access(env, off, size);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (type_is_sk_pointer(reg->type)) {
if (t == BPF_WRITE) {
verbose(env, "R%d cannot write into %s\n",
regno, reg_type_str(env, reg->type));
return -EACCES;
}
err = check_sock_access(env, insn_idx, regno, off, size, t);
if (!err && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_TP_BUFFER) {
err = check_tp_buffer_access(env, reg, regno, off, size);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
!type_may_be_null(reg->type)) {
err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
value_regno);
} else if (reg->type == CONST_PTR_TO_MAP) {
err = check_ptr_to_map_access(env, regs, regno, off, size, t,
value_regno);
} else if (base_type(reg->type) == PTR_TO_BUF) {
bool rdonly_mem = type_is_rdonly_mem(reg->type);
u32 *max_access;
if (rdonly_mem) {
if (t == BPF_WRITE) {
verbose(env, "R%d cannot write into %s\n",
regno, reg_type_str(env, reg->type));
return -EACCES;
}
max_access = &env->prog->aux->max_rdonly_access;
} else {
max_access = &env->prog->aux->max_rdwr_access;
}
err = check_buffer_access(env, reg, regno, off, size, false,
max_access);
if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
mark_reg_unknown(env, regs, value_regno);
} else {
verbose(env, "R%d invalid mem access '%s'\n", regno,
reg_type_str(env, reg->type));
return -EACCES;
}
if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
regs[value_regno].type == SCALAR_VALUE) {
/* b/h/w load zero-extends, mark upper bits as known 0 */
coerce_reg_to_size(&regs[value_regno], size);
}
return err;
}
static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
{
int load_reg;
int err;
switch (insn->imm) {
case BPF_ADD:
case BPF_ADD | BPF_FETCH:
case BPF_AND:
case BPF_AND | BPF_FETCH:
case BPF_OR:
case BPF_OR | BPF_FETCH:
case BPF_XOR:
case BPF_XOR | BPF_FETCH:
case BPF_XCHG:
case BPF_CMPXCHG:
break;
default:
verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
return -EINVAL;
}
if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
verbose(env, "invalid atomic operand size\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
/* check src2 operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
if (insn->imm == BPF_CMPXCHG) {
/* Check comparison of R0 with memory location */
const u32 aux_reg = BPF_REG_0;
err = check_reg_arg(env, aux_reg, SRC_OP);
if (err)
return err;
if (is_pointer_value(env, aux_reg)) {
verbose(env, "R%d leaks addr into mem\n", aux_reg);
return -EACCES;
}
}
if (is_pointer_value(env, insn->src_reg)) {
verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
return -EACCES;
}
if (is_ctx_reg(env, insn->dst_reg) ||
is_pkt_reg(env, insn->dst_reg) ||
is_flow_key_reg(env, insn->dst_reg) ||
is_sk_reg(env, insn->dst_reg)) {
verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
insn->dst_reg,
reg_type_str(env, reg_state(env, insn->dst_reg)->type));
return -EACCES;
}
if (insn->imm & BPF_FETCH) {
if (insn->imm == BPF_CMPXCHG)
load_reg = BPF_REG_0;
else
load_reg = insn->src_reg;
/* check and record load of old value */
err = check_reg_arg(env, load_reg, DST_OP);
if (err)
return err;
} else {
/* This instruction accesses a memory location but doesn't
* actually load it into a register.
*/
load_reg = -1;
}
/* Check whether we can read the memory, with second call for fetch
* case to simulate the register fill.
*/
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_READ, -1, true);
if (!err && load_reg >= 0)
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_READ, load_reg,
true);
if (err)
return err;
/* Check whether we can write into the same memory. */
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_WRITE, -1, true);
if (err)
return err;
return 0;
}
/* When register 'regno' is used to read the stack (either directly or through
* a helper function) make sure that it's within stack boundary and, depending
* on the access type, that all elements of the stack are initialized.
*
* 'off' includes 'regno->off', but not its dynamic part (if any).
*
* All registers that have been spilled on the stack in the slots within the
* read offsets are marked as read.
*/
static int check_stack_range_initialized(
struct bpf_verifier_env *env, int regno, int off,
int access_size, bool zero_size_allowed,
enum bpf_access_src type, struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *reg = reg_state(env, regno);
struct bpf_func_state *state = func(env, reg);
int err, min_off, max_off, i, j, slot, spi;
char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
enum bpf_access_type bounds_check_type;
/* Some accesses can write anything into the stack, others are
* read-only.
*/
bool clobber = false;
if (access_size == 0 && !zero_size_allowed) {
verbose(env, "invalid zero-sized read\n");
return -EACCES;
}
if (type == ACCESS_HELPER) {
/* The bounds checks for writes are more permissive than for
* reads. However, if raw_mode is not set, we'll do extra
* checks below.
*/
bounds_check_type = BPF_WRITE;
clobber = true;
} else {
bounds_check_type = BPF_READ;
}
err = check_stack_access_within_bounds(env, regno, off, access_size,
type, bounds_check_type);
if (err)
return err;
if (tnum_is_const(reg->var_off)) {
min_off = max_off = reg->var_off.value + off;
} else {
/* Variable offset is prohibited for unprivileged mode for
* simplicity since it requires corresponding support in
* Spectre masking for stack ALU.
* See also retrieve_ptr_limit().
*/
if (!env->bypass_spec_v1) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
regno, err_extra, tn_buf);
return -EACCES;
}
/* Only initialized buffer on stack is allowed to be accessed
* with variable offset. With uninitialized buffer it's hard to
* guarantee that whole memory is marked as initialized on
* helper return since specific bounds are unknown what may
* cause uninitialized stack leaking.
*/
if (meta && meta->raw_mode)
meta = NULL;
min_off = reg->smin_value + off;
max_off = reg->smax_value + off;
}
if (meta && meta->raw_mode) {
meta->access_size = access_size;
meta->regno = regno;
return 0;
}
for (i = min_off; i < max_off + access_size; i++) {
u8 *stype;
slot = -i - 1;
spi = slot / BPF_REG_SIZE;
if (state->allocated_stack <= slot)
goto err;
stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
if (*stype == STACK_MISC)
goto mark;
if (*stype == STACK_ZERO) {
if (clobber) {
/* helper can write anything into the stack */
*stype = STACK_MISC;
}
goto mark;
}
if (is_spilled_reg(&state->stack[spi]) &&
(state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
env->allow_ptr_leaks)) {
if (clobber) {
__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
for (j = 0; j < BPF_REG_SIZE; j++)
scrub_spilled_slot(&state->stack[spi].slot_type[j]);
}
goto mark;
}
err:
if (tnum_is_const(reg->var_off)) {
verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
err_extra, regno, min_off, i - min_off, access_size);
} else {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
err_extra, regno, tn_buf, i - min_off, access_size);
}
return -EACCES;
mark:
/* reading any byte out of 8-byte 'spill_slot' will cause
* the whole slot to be marked as 'read'
*/
mark_reg_read(env, &state->stack[spi].spilled_ptr,
state->stack[spi].spilled_ptr.parent,
REG_LIVE_READ64);
/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
* be sure that whether stack slot is written to or not. Hence,
* we must still conservatively propagate reads upwards even if
* helper may write to the entire memory range.
*/
}
return update_stack_depth(env, state, min_off);
}
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
int access_size, bool zero_size_allowed,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
u32 *max_access;
switch (base_type(reg->type)) {
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
return check_packet_access(env, regno, reg->off, access_size,
zero_size_allowed);
case PTR_TO_MAP_KEY:
if (meta && meta->raw_mode) {
verbose(env, "R%d cannot write into %s\n", regno,
reg_type_str(env, reg->type));
return -EACCES;
}
return check_mem_region_access(env, regno, reg->off, access_size,
reg->map_ptr->key_size, false);
case PTR_TO_MAP_VALUE:
if (check_map_access_type(env, regno, reg->off, access_size,
meta && meta->raw_mode ? BPF_WRITE :
BPF_READ))
return -EACCES;
return check_map_access(env, regno, reg->off, access_size,
zero_size_allowed, ACCESS_HELPER);
case PTR_TO_MEM:
if (type_is_rdonly_mem(reg->type)) {
if (meta && meta->raw_mode) {
verbose(env, "R%d cannot write into %s\n", regno,
reg_type_str(env, reg->type));
return -EACCES;
}
}
return check_mem_region_access(env, regno, reg->off,
access_size, reg->mem_size,
zero_size_allowed);
case PTR_TO_BUF:
if (type_is_rdonly_mem(reg->type)) {
if (meta && meta->raw_mode) {
verbose(env, "R%d cannot write into %s\n", regno,
reg_type_str(env, reg->type));
return -EACCES;
}
max_access = &env->prog->aux->max_rdonly_access;
} else {
max_access = &env->prog->aux->max_rdwr_access;
}
return check_buffer_access(env, reg, regno, reg->off,
access_size, zero_size_allowed,
max_access);
case PTR_TO_STACK:
return check_stack_range_initialized(
env,
regno, reg->off, access_size,
zero_size_allowed, ACCESS_HELPER, meta);
case PTR_TO_CTX:
/* in case the function doesn't know how to access the context,
* (because we are in a program of type SYSCALL for example), we
* can not statically check its size.
* Dynamically check it now.
*/
if (!env->ops->convert_ctx_access) {
enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
int offset = access_size - 1;
/* Allow zero-byte read from PTR_TO_CTX */
if (access_size == 0)
return zero_size_allowed ? 0 : -EACCES;
return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
atype, -1, false);
}
fallthrough;
default: /* scalar_value or invalid ptr */
/* Allow zero-byte read from NULL, regardless of pointer type */
if (zero_size_allowed && access_size == 0 &&
register_is_null(reg))
return 0;
verbose(env, "R%d type=%s ", regno,
reg_type_str(env, reg->type));
verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
return -EACCES;
}
}
static int check_mem_size_reg(struct bpf_verifier_env *env,
struct bpf_reg_state *reg, u32 regno,
bool zero_size_allowed,
struct bpf_call_arg_meta *meta)
{
int err;
/* This is used to refine r0 return value bounds for helpers
* that enforce this value as an upper bound on return values.
* See do_refine_retval_range() for helpers that can refine
* the return value. C type of helper is u32 so we pull register
* bound from umax_value however, if negative verifier errors
* out. Only upper bounds can be learned because retval is an
* int type and negative retvals are allowed.
*/
meta->msize_max_value = reg->umax_value;
/* The register is SCALAR_VALUE; the access check
* happens using its boundaries.
*/
if (!tnum_is_const(reg->var_off))
/* For unprivileged variable accesses, disable raw
* mode so that the program is required to
* initialize all the memory that the helper could
* just partially fill up.
*/
meta = NULL;
if (reg->smin_value < 0) {
verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
regno);
return -EACCES;
}
if (reg->umin_value == 0) {
err = check_helper_mem_access(env, regno - 1, 0,
zero_size_allowed,
meta);
if (err)
return err;
}
if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
regno);
return -EACCES;
}
err = check_helper_mem_access(env, regno - 1,
reg->umax_value,
zero_size_allowed, meta);
if (!err)
err = mark_chain_precision(env, regno);
return err;
}
int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
u32 regno, u32 mem_size)
{
bool may_be_null = type_may_be_null(reg->type);
struct bpf_reg_state saved_reg;
struct bpf_call_arg_meta meta;
int err;
if (register_is_null(reg))
return 0;
memset(&meta, 0, sizeof(meta));
/* Assuming that the register contains a value check if the memory
* access is safe. Temporarily save and restore the register's state as
* the conversion shouldn't be visible to a caller.
*/
if (may_be_null) {
saved_reg = *reg;
mark_ptr_not_null_reg(reg);
}
err = check_helper_mem_access(env, regno, mem_size, true, &meta);
/* Check access for BPF_WRITE */
meta.raw_mode = true;
err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
if (may_be_null)
*reg = saved_reg;
return err;
}
int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
u32 regno)
{
struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
bool may_be_null = type_may_be_null(mem_reg->type);
struct bpf_reg_state saved_reg;
struct bpf_call_arg_meta meta;
int err;
WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
memset(&meta, 0, sizeof(meta));
if (may_be_null) {
saved_reg = *mem_reg;
mark_ptr_not_null_reg(mem_reg);
}
err = check_mem_size_reg(env, reg, regno, true, &meta);
/* Check access for BPF_WRITE */
meta.raw_mode = true;
err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
if (may_be_null)
*mem_reg = saved_reg;
return err;
}
/* Implementation details:
* bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
* bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
* Two bpf_map_lookups (even with the same key) will have different reg->id.
* Two separate bpf_obj_new will also have different reg->id.
* For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
* clears reg->id after value_or_null->value transition, since the verifier only
* cares about the range of access to valid map value pointer and doesn't care
* about actual address of the map element.
* For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
* reg->id > 0 after value_or_null->value transition. By doing so
* two bpf_map_lookups will be considered two different pointers that
* point to different bpf_spin_locks. Likewise for pointers to allocated objects
* returned from bpf_obj_new.
* The verifier allows taking only one bpf_spin_lock at a time to avoid
* dead-locks.
* Since only one bpf_spin_lock is allowed the checks are simpler than
* reg_is_refcounted() logic. The verifier needs to remember only
* one spin_lock instead of array of acquired_refs.
* cur_state->active_lock remembers which map value element or allocated
* object got locked and clears it after bpf_spin_unlock.
*/
static int process_spin_lock(struct bpf_verifier_env *env, int regno,
bool is_lock)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
struct bpf_verifier_state *cur = env->cur_state;
bool is_const = tnum_is_const(reg->var_off);
u64 val = reg->var_off.value;
struct bpf_map *map = NULL;
struct btf *btf = NULL;
struct btf_record *rec;
if (!is_const) {
verbose(env,
"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
regno);
return -EINVAL;
}
if (reg->type == PTR_TO_MAP_VALUE) {
map = reg->map_ptr;
if (!map->btf) {
verbose(env,
"map '%s' has to have BTF in order to use bpf_spin_lock\n",
map->name);
return -EINVAL;
}
} else {
btf = reg->btf;
}
rec = reg_btf_record(reg);
if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
map ? map->name : "kptr");
return -EINVAL;
}
if (rec->spin_lock_off != val + reg->off) {
verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
val + reg->off, rec->spin_lock_off);
return -EINVAL;
}
if (is_lock) {
if (cur->active_lock.ptr) {
verbose(env,
"Locking two bpf_spin_locks are not allowed\n");
return -EINVAL;
}
if (map)
cur->active_lock.ptr = map;
else
cur->active_lock.ptr = btf;
cur->active_lock.id = reg->id;
} else {
void *ptr;
if (map)
ptr = map;
else
ptr = btf;
if (!cur->active_lock.ptr) {
verbose(env, "bpf_spin_unlock without taking a lock\n");
return -EINVAL;
}
if (cur->active_lock.ptr != ptr ||
cur->active_lock.id != reg->id) {
verbose(env, "bpf_spin_unlock of different lock\n");
return -EINVAL;
}
cur->active_lock.ptr = NULL;
cur->active_lock.id = 0;
}
return 0;
}
static int process_timer_func(struct bpf_verifier_env *env, int regno,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
bool is_const = tnum_is_const(reg->var_off);
struct bpf_map *map = reg->map_ptr;
u64 val = reg->var_off.value;
if (!is_const) {
verbose(env,
"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
regno);
return -EINVAL;
}
if (!map->btf) {
verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
map->name);
return -EINVAL;
}
if (!btf_record_has_field(map->record, BPF_TIMER)) {
verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
return -EINVAL;
}
if (map->record->timer_off != val + reg->off) {
verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
val + reg->off, map->record->timer_off);
return -EINVAL;
}
if (meta->map_ptr) {
verbose(env, "verifier bug. Two map pointers in a timer helper\n");
return -EFAULT;
}
meta->map_uid = reg->map_uid;
meta->map_ptr = map;
return 0;
}
static int process_kptr_func(struct bpf_verifier_env *env, int regno,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
struct bpf_map *map_ptr = reg->map_ptr;
struct btf_field *kptr_field;
u32 kptr_off;
if (!tnum_is_const(reg->var_off)) {
verbose(env,
"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
regno);
return -EINVAL;
}
if (!map_ptr->btf) {
verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
map_ptr->name);
return -EINVAL;
}
if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
return -EINVAL;
}
meta->map_ptr = map_ptr;
kptr_off = reg->off + reg->var_off.value;
kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
if (!kptr_field) {
verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
return -EACCES;
}
if (kptr_field->type != BPF_KPTR_REF) {
verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
return -EACCES;
}
meta->kptr_field = kptr_field;
return 0;
}
static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
return type == ARG_CONST_SIZE ||
type == ARG_CONST_SIZE_OR_ZERO;
}
static bool arg_type_is_release(enum bpf_arg_type type)
{
return type & OBJ_RELEASE;
}
static bool arg_type_is_dynptr(enum bpf_arg_type type)
{
return base_type(type) == ARG_PTR_TO_DYNPTR;
}
static int int_ptr_type_to_size(enum bpf_arg_type type)
{
if (type == ARG_PTR_TO_INT)
return sizeof(u32);
else if (type == ARG_PTR_TO_LONG)
return sizeof(u64);
return -EINVAL;
}
static int resolve_map_arg_type(struct bpf_verifier_env *env,
const struct bpf_call_arg_meta *meta,
enum bpf_arg_type *arg_type)
{
if (!meta->map_ptr) {
/* kernel subsystem misconfigured verifier */
verbose(env, "invalid map_ptr to access map->type\n");
return -EACCES;
}
switch (meta->map_ptr->map_type) {
case BPF_MAP_TYPE_SOCKMAP:
case BPF_MAP_TYPE_SOCKHASH:
if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
} else {
verbose(env, "invalid arg_type for sockmap/sockhash\n");
return -EINVAL;
}
break;
case BPF_MAP_TYPE_BLOOM_FILTER:
if (meta->func_id == BPF_FUNC_map_peek_elem)
*arg_type = ARG_PTR_TO_MAP_VALUE;
break;
default:
break;
}
return 0;
}
struct bpf_reg_types {
const enum bpf_reg_type types[10];
u32 *btf_id;
};
static const struct bpf_reg_types sock_types = {
.types = {
PTR_TO_SOCK_COMMON,
PTR_TO_SOCKET,
PTR_TO_TCP_SOCK,
PTR_TO_XDP_SOCK,
},
};
#ifdef CONFIG_NET
static const struct bpf_reg_types btf_id_sock_common_types = {
.types = {
PTR_TO_SOCK_COMMON,
PTR_TO_SOCKET,
PTR_TO_TCP_SOCK,
PTR_TO_XDP_SOCK,
PTR_TO_BTF_ID,
},
.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
};
#endif
static const struct bpf_reg_types mem_types = {
.types = {
PTR_TO_STACK,
PTR_TO_PACKET,
PTR_TO_PACKET_META,
PTR_TO_MAP_KEY,
PTR_TO_MAP_VALUE,
PTR_TO_MEM,
PTR_TO_MEM | MEM_RINGBUF,
PTR_TO_BUF,
},
};
static const struct bpf_reg_types int_ptr_types = {
.types = {
PTR_TO_STACK,
PTR_TO_PACKET,
PTR_TO_PACKET_META,
PTR_TO_MAP_KEY,
PTR_TO_MAP_VALUE,
},
};
static const struct bpf_reg_types spin_lock_types = {
.types = {
PTR_TO_MAP_VALUE,
PTR_TO_BTF_ID | MEM_ALLOC,
}
};
static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
static const struct bpf_reg_types dynptr_types = {
.types = {
PTR_TO_STACK,
PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
}
};
static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
[ARG_PTR_TO_MAP_KEY] = &mem_types,
[ARG_PTR_TO_MAP_VALUE] = &mem_types,
[ARG_CONST_SIZE] = &scalar_types,
[ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
[ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
[ARG_CONST_MAP_PTR] = &const_map_ptr_types,
[ARG_PTR_TO_CTX] = &context_types,
[ARG_PTR_TO_SOCK_COMMON] = &sock_types,
#ifdef CONFIG_NET
[ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
#endif
[ARG_PTR_TO_SOCKET] = &fullsock_types,
[ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
[ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
[ARG_PTR_TO_MEM] = &mem_types,
[ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
[ARG_PTR_TO_INT] = &int_ptr_types,
[ARG_PTR_TO_LONG] = &int_ptr_types,
[ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
[ARG_PTR_TO_FUNC] = &func_ptr_types,
[ARG_PTR_TO_STACK] = &stack_ptr_types,
[ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
[ARG_PTR_TO_TIMER] = &timer_types,
[ARG_PTR_TO_KPTR] = &kptr_types,
[ARG_PTR_TO_DYNPTR] = &dynptr_types,
};
static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
enum bpf_arg_type arg_type,
const u32 *arg_btf_id,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
enum bpf_reg_type expected, type = reg->type;
const struct bpf_reg_types *compatible;
int i, j;
compatible = compatible_reg_types[base_type(arg_type)];
if (!compatible) {
verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
return -EFAULT;
}
/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
* but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
*
* Same for MAYBE_NULL:
*
* ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
* but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
*
* Therefore we fold these flags depending on the arg_type before comparison.
*/
if (arg_type & MEM_RDONLY)
type &= ~MEM_RDONLY;
if (arg_type & PTR_MAYBE_NULL)
type &= ~PTR_MAYBE_NULL;
for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
expected = compatible->types[i];
if (expected == NOT_INIT)
break;
if (type == expected)
goto found;
}
verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
for (j = 0; j + 1 < i; j++)
verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
return -EACCES;
found:
if (reg->type == PTR_TO_BTF_ID) {
/* For bpf_sk_release, it needs to match against first member
* 'struct sock_common', hence make an exception for it. This
* allows bpf_sk_release to work for multiple socket types.
*/
bool strict_type_match = arg_type_is_release(arg_type) &&
meta->func_id != BPF_FUNC_sk_release;
if (!arg_btf_id) {
if (!compatible->btf_id) {
verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
return -EFAULT;
}
arg_btf_id = compatible->btf_id;
}
if (meta->func_id == BPF_FUNC_kptr_xchg) {
if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
return -EACCES;
} else {
if (arg_btf_id == BPF_PTR_POISON) {
verbose(env, "verifier internal error:");
verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
regno);
return -EACCES;
}
if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
btf_vmlinux, *arg_btf_id,
strict_type_match)) {
verbose(env, "R%d is of type %s but %s is expected\n",
regno, kernel_type_name(reg->btf, reg->btf_id),
kernel_type_name(btf_vmlinux, *arg_btf_id));
return -EACCES;
}
}
} else if (type_is_alloc(reg->type)) {
if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
return -EFAULT;
}
}
return 0;
}
int check_func_arg_reg_off(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg, int regno,
enum bpf_arg_type arg_type)
{
enum bpf_reg_type type = reg->type;
bool fixed_off_ok = false;
switch ((u32)type) {
/* Pointer types where reg offset is explicitly allowed: */
case PTR_TO_STACK:
if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
verbose(env, "cannot pass in dynptr at an offset\n");
return -EINVAL;
}
fallthrough;
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
case PTR_TO_MAP_KEY:
case PTR_TO_MAP_VALUE:
case PTR_TO_MEM:
case PTR_TO_MEM | MEM_RDONLY:
case PTR_TO_MEM | MEM_RINGBUF:
case PTR_TO_BUF:
case PTR_TO_BUF | MEM_RDONLY:
case SCALAR_VALUE:
/* Some of the argument types nevertheless require a
* zero register offset.
*/
if (base_type(arg_type) != ARG_PTR_TO_RINGBUF_MEM)
return 0;
break;
/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
* fixed offset.
*/
case PTR_TO_BTF_ID:
case PTR_TO_BTF_ID | MEM_ALLOC:
/* When referenced PTR_TO_BTF_ID is passed to release function,
* it's fixed offset must be 0. In the other cases, fixed offset
* can be non-zero.
*/
if (arg_type_is_release(arg_type) && reg->off) {
verbose(env, "R%d must have zero offset when passed to release func\n",
regno);
return -EINVAL;
}
/* For arg is release pointer, fixed_off_ok must be false, but
* we already checked and rejected reg->off != 0 above, so set
* to true to allow fixed offset for all other cases.
*/
fixed_off_ok = true;
break;
default:
break;
}
return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
}
static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
struct bpf_func_state *state = func(env, reg);
int spi = get_spi(reg->off);
return state->stack[spi].spilled_ptr.id;
}
static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
struct bpf_call_arg_meta *meta,
const struct bpf_func_proto *fn)
{
u32 regno = BPF_REG_1 + arg;
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
enum bpf_arg_type arg_type = fn->arg_type[arg];
enum bpf_reg_type type = reg->type;
u32 *arg_btf_id = NULL;
int err = 0;
if (arg_type == ARG_DONTCARE)
return 0;
err = check_reg_arg(env, regno, SRC_OP);
if (err)
return err;
if (arg_type == ARG_ANYTHING) {
if (is_pointer_value(env, regno)) {
verbose(env, "R%d leaks addr into helper function\n",
regno);
return -EACCES;
}
return 0;
}
if (type_is_pkt_pointer(type) &&
!may_access_direct_pkt_data(env, meta, BPF_READ)) {
verbose(env, "helper access to the packet is not allowed\n");
return -EACCES;
}
if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
err = resolve_map_arg_type(env, meta, &arg_type);
if (err)
return err;
}
if (register_is_null(reg) && type_may_be_null(arg_type))
/* A NULL register has a SCALAR_VALUE type, so skip
* type checking.
*/
goto skip_type_check;
/* arg_btf_id and arg_size are in a union. */
if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
arg_btf_id = fn->arg_btf_id[arg];
err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
if (err)
return err;
err = check_func_arg_reg_off(env, reg, regno, arg_type);
if (err)
return err;
skip_type_check:
if (arg_type_is_release(arg_type)) {
if (arg_type_is_dynptr(arg_type)) {
struct bpf_func_state *state = func(env, reg);
int spi = get_spi(reg->off);
if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
!state->stack[spi].spilled_ptr.id) {
verbose(env, "arg %d is an unacquired reference\n", regno);
return -EINVAL;
}
} else if (!reg->ref_obj_id && !register_is_null(reg)) {
verbose(env, "R%d must be referenced when passed to release function\n",
regno);
return -EINVAL;
}
if (meta->release_regno) {
verbose(env, "verifier internal error: more than one release argument\n");
return -EFAULT;
}
meta->release_regno = regno;
}
if (reg->ref_obj_id) {
if (meta->ref_obj_id) {
verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
regno, reg->ref_obj_id,
meta->ref_obj_id);
return -EFAULT;
}
meta->ref_obj_id = reg->ref_obj_id;
}
switch (base_type(arg_type)) {
case ARG_CONST_MAP_PTR:
/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
if (meta->map_ptr) {
/* Use map_uid (which is unique id of inner map) to reject:
* inner_map1 = bpf_map_lookup_elem(outer_map, key1)
* inner_map2 = bpf_map_lookup_elem(outer_map, key2)
* if (inner_map1 && inner_map2) {
* timer = bpf_map_lookup_elem(inner_map1);
* if (timer)
* // mismatch would have been allowed
* bpf_timer_init(timer, inner_map2);
* }
*
* Comparing map_ptr is enough to distinguish normal and outer maps.
*/
if (meta->map_ptr != reg->map_ptr ||
meta->map_uid != reg->map_uid) {
verbose(env,
"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
meta->map_uid, reg->map_uid);
return -EINVAL;
}
}
meta->map_ptr = reg->map_ptr;
meta->map_uid = reg->map_uid;
break;
case ARG_PTR_TO_MAP_KEY:
/* bpf_map_xxx(..., map_ptr, ..., key) call:
* check that [key, key + map->key_size) are within
* stack limits and initialized
*/
if (!meta->map_ptr) {
/* in function declaration map_ptr must come before
* map_key, so that it's verified and known before
* we have to check map_key here. Otherwise it means
* that kernel subsystem misconfigured verifier
*/
verbose(env, "invalid map_ptr to access map->key\n");
return -EACCES;
}
err = check_helper_mem_access(env, regno,
meta->map_ptr->key_size, false,
NULL);
break;
case ARG_PTR_TO_MAP_VALUE:
if (type_may_be_null(arg_type) && register_is_null(reg))
return 0;
/* bpf_map_xxx(..., map_ptr, ..., value) call:
* check [value, value + map->value_size) validity
*/
if (!meta->map_ptr) {
/* kernel subsystem misconfigured verifier */
verbose(env, "invalid map_ptr to access map->value\n");
return -EACCES;
}
meta->raw_mode = arg_type & MEM_UNINIT;
err = check_helper_mem_access(env, regno,
meta->map_ptr->value_size, false,
meta);
break;
case ARG_PTR_TO_PERCPU_BTF_ID:
if (!reg->btf_id) {
verbose(env, "Helper has invalid btf_id in R%d\n", regno);
return -EACCES;
}
meta->ret_btf = reg->btf;
meta->ret_btf_id = reg->btf_id;
break;
case ARG_PTR_TO_SPIN_LOCK:
if (meta->func_id == BPF_FUNC_spin_lock) {
if (process_spin_lock(env, regno, true))
return -EACCES;
} else if (meta->func_id == BPF_FUNC_spin_unlock) {
if (process_spin_lock(env, regno, false))
return -EACCES;
} else {
verbose(env, "verifier internal error\n");
return -EFAULT;
}
break;
case ARG_PTR_TO_TIMER:
if (process_timer_func(env, regno, meta))
return -EACCES;
break;
case ARG_PTR_TO_FUNC:
meta->subprogno = reg->subprogno;
break;
case ARG_PTR_TO_MEM:
/* The access to this pointer is only checked when we hit the
* next is_mem_size argument below.
*/
meta->raw_mode = arg_type & MEM_UNINIT;
if (arg_type & MEM_FIXED_SIZE) {
err = check_helper_mem_access(env, regno,
fn->arg_size[arg], false,
meta);
}
break;
case ARG_CONST_SIZE:
err = check_mem_size_reg(env, reg, regno, false, meta);
break;
case ARG_CONST_SIZE_OR_ZERO:
err = check_mem_size_reg(env, reg, regno, true, meta);
break;
case ARG_PTR_TO_DYNPTR:
/* We only need to check for initialized / uninitialized helper
* dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
* assumption is that if it is, that a helper function
* initialized the dynptr on behalf of the BPF program.
*/
if (base_type(reg->type) == PTR_TO_DYNPTR)
break;
if (arg_type & MEM_UNINIT) {
if (!is_dynptr_reg_valid_uninit(env, reg)) {
verbose(env, "Dynptr has to be an uninitialized dynptr\n");
return -EINVAL;
}
/* We only support one dynptr being uninitialized at the moment,
* which is sufficient for the helper functions we have right now.
*/
if (meta->uninit_dynptr_regno) {
verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
return -EFAULT;
}
meta->uninit_dynptr_regno = regno;
} else if (!is_dynptr_reg_valid_init(env, reg)) {
verbose(env,
"Expected an initialized dynptr as arg #%d\n",
arg + 1);
return -EINVAL;
} else if (!is_dynptr_type_expected(env, reg, arg_type)) {
const char *err_extra = "";
switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
case DYNPTR_TYPE_LOCAL:
err_extra = "local";
break;
case DYNPTR_TYPE_RINGBUF:
err_extra = "ringbuf";
break;
default:
err_extra = "<unknown>";
break;
}
verbose(env,
"Expected a dynptr of type %s as arg #%d\n",
err_extra, arg + 1);
return -EINVAL;
}
break;
case ARG_CONST_ALLOC_SIZE_OR_ZERO:
if (!tnum_is_const(reg->var_off)) {
verbose(env, "R%d is not a known constant'\n",
regno);
return -EACCES;
}
meta->mem_size = reg->var_off.value;
err = mark_chain_precision(env, regno);
if (err)
return err;
break;
case ARG_PTR_TO_INT:
case ARG_PTR_TO_LONG:
{
int size = int_ptr_type_to_size(arg_type);
err = check_helper_mem_access(env, regno, size, false, meta);
if (err)
return err;
err = check_ptr_alignment(env, reg, 0, size, true);
break;
}
case ARG_PTR_TO_CONST_STR:
{
struct bpf_map *map = reg->map_ptr;
int map_off;
u64 map_addr;
char *str_ptr;
if (!bpf_map_is_rdonly(map)) {
verbose(env, "R%d does not point to a readonly map'\n", regno);
return -EACCES;
}
if (!tnum_is_const(reg->var_off)) {
verbose(env, "R%d is not a constant address'\n", regno);
return -EACCES;
}
if (!map->ops->map_direct_value_addr) {
verbose(env, "no direct value access support for this map type\n");
return -EACCES;
}
err = check_map_access(env, regno, reg->off,
map->value_size - reg->off, false,
ACCESS_HELPER);
if (err)
return err;
map_off = reg->off + reg->var_off.value;
err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
if (err) {
verbose(env, "direct value access on string failed\n");
return err;
}
str_ptr = (char *)(long)(map_addr);
if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
verbose(env, "string is not zero-terminated\n");
return -EINVAL;
}
break;
}
case ARG_PTR_TO_KPTR:
if (process_kptr_func(env, regno, meta))
return -EACCES;
break;
}
return err;
}
static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
{
enum bpf_attach_type eatype = env->prog->expected_attach_type;
enum bpf_prog_type type = resolve_prog_type(env->prog);
if (func_id != BPF_FUNC_map_update_elem)
return false;
/* It's not possible to get access to a locked struct sock in these
* contexts, so updating is safe.
*/
switch (type) {
case BPF_PROG_TYPE_TRACING:
if (eatype == BPF_TRACE_ITER)
return true;
break;
case BPF_PROG_TYPE_SOCKET_FILTER:
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
case BPF_PROG_TYPE_XDP:
case BPF_PROG_TYPE_SK_REUSEPORT:
case BPF_PROG_TYPE_FLOW_DISSECTOR:
case BPF_PROG_TYPE_SK_LOOKUP:
return true;
default:
break;
}
verbose(env, "cannot update sockmap in this context\n");
return false;
}
static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
{
return env->prog->jit_requested &&
bpf_jit_supports_subprog_tailcalls();
}
static int check_map_func_compatibility(struct bpf_verifier_env *env,
struct bpf_map *map, int func_id)
{
if (!map)
return 0;
/* We need a two way check, first is from map perspective ... */
switch (map->map_type) {
case BPF_MAP_TYPE_PROG_ARRAY:
if (func_id != BPF_FUNC_tail_call)
goto error;
break;
case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
if (func_id != BPF_FUNC_perf_event_read &&
func_id != BPF_FUNC_perf_event_output &&
func_id != BPF_FUNC_skb_output &&
func_id != BPF_FUNC_perf_event_read_value &&
func_id != BPF_FUNC_xdp_output)
goto error;
break;
case BPF_MAP_TYPE_RINGBUF:
if (func_id != BPF_FUNC_ringbuf_output &&
func_id != BPF_FUNC_ringbuf_reserve &&
func_id != BPF_FUNC_ringbuf_query &&
func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
func_id != BPF_FUNC_ringbuf_submit_dynptr &&
func_id != BPF_FUNC_ringbuf_discard_dynptr)
goto error;
break;
case BPF_MAP_TYPE_USER_RINGBUF:
if (func_id != BPF_FUNC_user_ringbuf_drain)
goto error;
break;
case BPF_MAP_TYPE_STACK_TRACE:
if (func_id != BPF_FUNC_get_stackid)
goto error;
break;
case BPF_MAP_TYPE_CGROUP_ARRAY:
if (func_id != BPF_FUNC_skb_under_cgroup &&
func_id != BPF_FUNC_current_task_under_cgroup)
goto error;
break;
case BPF_MAP_TYPE_CGROUP_STORAGE:
case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
if (func_id != BPF_FUNC_get_local_storage)
goto error;
break;
case BPF_MAP_TYPE_DEVMAP:
case BPF_MAP_TYPE_DEVMAP_HASH:
if (func_id != BPF_FUNC_redirect_map &&
func_id != BPF_FUNC_map_lookup_elem)
goto error;
break;
/* Restrict bpf side of cpumap and xskmap, open when use-cases
* appear.
*/
case BPF_MAP_TYPE_CPUMAP:
if (func_id != BPF_FUNC_redirect_map)
goto error;
break;
case BPF_MAP_TYPE_XSKMAP:
if (func_id != BPF_FUNC_redirect_map &&
func_id != BPF_FUNC_map_lookup_elem)
goto error;
break;
case BPF_MAP_TYPE_ARRAY_OF_MAPS:
case BPF_MAP_TYPE_HASH_OF_MAPS:
if (func_id != BPF_FUNC_map_lookup_elem)
goto error;
break;
case BPF_MAP_TYPE_SOCKMAP:
if (func_id != BPF_FUNC_sk_redirect_map &&
func_id != BPF_FUNC_sock_map_update &&
func_id != BPF_FUNC_map_delete_elem &&
func_id != BPF_FUNC_msg_redirect_map &&
func_id != BPF_FUNC_sk_select_reuseport &&
func_id != BPF_FUNC_map_lookup_elem &&
!may_update_sockmap(env, func_id))
goto error;
break;
case BPF_MAP_TYPE_SOCKHASH:
if (func_id != BPF_FUNC_sk_redirect_hash &&
func_id != BPF_FUNC_sock_hash_update &&
func_id != BPF_FUNC_map_delete_elem &&
func_id != BPF_FUNC_msg_redirect_hash &&
func_id != BPF_FUNC_sk_select_reuseport &&
func_id != BPF_FUNC_map_lookup_elem &&
!may_update_sockmap(env, func_id))
goto error;
break;
case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
if (func_id != BPF_FUNC_sk_select_reuseport)
goto error;
break;
case BPF_MAP_TYPE_QUEUE:
case BPF_MAP_TYPE_STACK:
if (func_id != BPF_FUNC_map_peek_elem &&
func_id != BPF_FUNC_map_pop_elem &&
func_id != BPF_FUNC_map_push_elem)
goto error;
break;
case BPF_MAP_TYPE_SK_STORAGE:
if (func_id != BPF_FUNC_sk_storage_get &&
func_id != BPF_FUNC_sk_storage_delete)
goto error;
break;
case BPF_MAP_TYPE_INODE_STORAGE:
if (func_id != BPF_FUNC_inode_storage_get &&
func_id != BPF_FUNC_inode_storage_delete)
goto error;
break;
case BPF_MAP_TYPE_TASK_STORAGE:
if (func_id != BPF_FUNC_task_storage_get &&
func_id != BPF_FUNC_task_storage_delete)
goto error;
break;
case BPF_MAP_TYPE_CGRP_STORAGE:
if (func_id != BPF_FUNC_cgrp_storage_get &&
func_id != BPF_FUNC_cgrp_storage_delete)
goto error;
break;
case BPF_MAP_TYPE_BLOOM_FILTER:
if (func_id != BPF_FUNC_map_peek_elem &&
func_id != BPF_FUNC_map_push_elem)
goto error;
break;
default:
break;
}
/* ... and second from the function itself. */
switch (func_id) {
case BPF_FUNC_tail_call:
if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
goto error;
if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
return -EINVAL;
}
break;
case BPF_FUNC_perf_event_read:
case BPF_FUNC_perf_event_output:
case BPF_FUNC_perf_event_read_value:
case BPF_FUNC_skb_output:
case BPF_FUNC_xdp_output:
if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
goto error;
break;
case BPF_FUNC_ringbuf_output:
case BPF_FUNC_ringbuf_reserve:
case BPF_FUNC_ringbuf_query:
case BPF_FUNC_ringbuf_reserve_dynptr:
case BPF_FUNC_ringbuf_submit_dynptr:
case BPF_FUNC_ringbuf_discard_dynptr:
if (map->map_type != BPF_MAP_TYPE_RINGBUF)
goto error;
break;
case BPF_FUNC_user_ringbuf_drain:
if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
goto error;
break;
case BPF_FUNC_get_stackid:
if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
goto error;
break;
case BPF_FUNC_current_task_under_cgroup:
case BPF_FUNC_skb_under_cgroup:
if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
goto error;
break;
case BPF_FUNC_redirect_map:
if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
map->map_type != BPF_MAP_TYPE_CPUMAP &&
map->map_type != BPF_MAP_TYPE_XSKMAP)
goto error;
break;
case BPF_FUNC_sk_redirect_map:
case BPF_FUNC_msg_redirect_map:
case BPF_FUNC_sock_map_update:
if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
goto error;
break;
case BPF_FUNC_sk_redirect_hash:
case BPF_FUNC_msg_redirect_hash:
case BPF_FUNC_sock_hash_update:
if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
goto error;
break;
case BPF_FUNC_get_local_storage:
if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
goto error;
break;
case BPF_FUNC_sk_select_reuseport:
if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
map->map_type != BPF_MAP_TYPE_SOCKMAP &&
map->map_type != BPF_MAP_TYPE_SOCKHASH)
goto error;
break;
case BPF_FUNC_map_pop_elem:
if (map->map_type != BPF_MAP_TYPE_QUEUE &&
map->map_type != BPF_MAP_TYPE_STACK)
goto error;
break;
case BPF_FUNC_map_peek_elem:
case BPF_FUNC_map_push_elem:
if (map->map_type != BPF_MAP_TYPE_QUEUE &&
map->map_type != BPF_MAP_TYPE_STACK &&
map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
goto error;
break;
case BPF_FUNC_map_lookup_percpu_elem:
if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
goto error;
break;
case BPF_FUNC_sk_storage_get:
case BPF_FUNC_sk_storage_delete:
if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
goto error;
break;
case BPF_FUNC_inode_storage_get:
case BPF_FUNC_inode_storage_delete:
if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
goto error;
break;
case BPF_FUNC_task_storage_get:
case BPF_FUNC_task_storage_delete:
if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
goto error;
break;
case BPF_FUNC_cgrp_storage_get:
case BPF_FUNC_cgrp_storage_delete:
if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
goto error;
break;
default:
break;
}
return 0;
error:
verbose(env, "cannot pass map_type %d into func %s#%d\n",
map->map_type, func_id_name(func_id), func_id);
return -EINVAL;
}
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
{
int count = 0;
if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
count++;
if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
count++;
if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
count++;
if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
count++;
if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
count++;
/* We only support one arg being in raw mode at the moment,
* which is sufficient for the helper functions we have
* right now.
*/
return count <= 1;
}
static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
{
bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
bool has_size = fn->arg_size[arg] != 0;
bool is_next_size = false;
if (arg + 1 < ARRAY_SIZE(fn->arg_type))
is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
return is_next_size;
return has_size == is_next_size || is_next_size == is_fixed;
}
static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
/* bpf_xxx(..., buf, len) call will access 'len'
* bytes from memory 'buf'. Both arg types need
* to be paired, so make sure there's no buggy
* helper function specification.
*/
if (arg_type_is_mem_size(fn->arg1_type) ||
check_args_pair_invalid(fn, 0) ||
check_args_pair_invalid(fn, 1) ||
check_args_pair_invalid(fn, 2) ||
check_args_pair_invalid(fn, 3) ||
check_args_pair_invalid(fn, 4))
return false;
return true;
}
static bool check_btf_id_ok(const struct bpf_func_proto *fn)
{
int i;
for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
return !!fn->arg_btf_id[i];
if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
return fn->arg_btf_id[i] == BPF_PTR_POISON;
if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
/* arg_btf_id and arg_size are in a union. */
(base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
!(fn->arg_type[i] & MEM_FIXED_SIZE)))
return false;
}
return true;
}
static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
{
return check_raw_mode_ok(fn) &&
check_arg_pair_ok(fn) &&
check_btf_id_ok(fn) ? 0 : -EINVAL;
}
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
* are now invalid, so turn them into unknown SCALAR_VALUE.
*/
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
struct bpf_func_state *state;
struct bpf_reg_state *reg;
bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
if (reg_is_pkt_pointer_any(reg))
__mark_reg_unknown(env, reg);
}));
}
enum {
AT_PKT_END = -1,
BEYOND_PKT_END = -2,
};
static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
{
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *reg = &state->regs[regn];
if (reg->type != PTR_TO_PACKET)
/* PTR_TO_PACKET_META is not supported yet */
return;
/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
* How far beyond pkt_end it goes is unknown.
* if (!range_open) it's the case of pkt >= pkt_end
* if (range_open) it's the case of pkt > pkt_end
* hence this pointer is at least 1 byte bigger than pkt_end
*/
if (range_open)
reg->range = BEYOND_PKT_END;
else
reg->range = AT_PKT_END;
}
/* The pointer with the specified id has released its reference to kernel
* resources. Identify all copies of the same pointer and clear the reference.
*/
static int release_reference(struct bpf_verifier_env *env,
int ref_obj_id)
{
struct bpf_func_state *state;
struct bpf_reg_state *reg;
int err;
err = release_reference_state(cur_func(env), ref_obj_id);
if (err)
return err;
bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
if (reg->ref_obj_id == ref_obj_id) {
if (!env->allow_ptr_leaks)
__mark_reg_not_init(env, reg);
else
__mark_reg_unknown(env, reg);
}
}));
return 0;
}
static void clear_caller_saved_regs(struct bpf_verifier_env *env,
struct bpf_reg_state *regs)
{
int i;
/* after the call registers r0 - r5 were scratched */
for (i = 0; i < CALLER_SAVED_REGS; i++) {
mark_reg_not_init(env, regs, caller_saved[i]);
check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
}
}
typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee,
int insn_idx);
static int set_callee_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee, int insn_idx);
static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
int *insn_idx, int subprog,
set_callee_state_fn set_callee_state_cb)
{
struct bpf_verifier_state *state = env->cur_state;
struct bpf_func_info_aux *func_info_aux;
struct bpf_func_state *caller, *callee;
int err;
bool is_global = false;
if (state->curframe + 1 >= MAX_CALL_FRAMES) {
verbose(env, "the call stack of %d frames is too deep\n",
state->curframe + 2);
return -E2BIG;
}
caller = state->frame[state->curframe];
if (state->frame[state->curframe + 1]) {
verbose(env, "verifier bug. Frame %d already allocated\n",
state->curframe + 1);
return -EFAULT;
}
func_info_aux = env->prog->aux->func_info_aux;
if (func_info_aux)
is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
err = btf_check_subprog_call(env, subprog, caller->regs);
if (err == -EFAULT)
return err;
if (is_global) {
if (err) {
verbose(env, "Caller passes invalid args into func#%d\n",
subprog);
return err;
} else {
if (env->log.level & BPF_LOG_LEVEL)
verbose(env,
"Func#%d is global and valid. Skipping.\n",
subprog);
clear_caller_saved_regs(env, caller->regs);
/* All global functions return a 64-bit SCALAR_VALUE */
mark_reg_unknown(env, caller->regs, BPF_REG_0);
caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
/* continue with next insn after call */
return 0;
}
}
/* set_callee_state is used for direct subprog calls, but we are
* interested in validating only BPF helpers that can call subprogs as
* callbacks
*/
if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
func_id_name(insn->imm), insn->imm);
return -EFAULT;
}
if (insn->code == (BPF_JMP | BPF_CALL) &&
insn->src_reg == 0 &&
insn->imm == BPF_FUNC_timer_set_callback) {
struct bpf_verifier_state *async_cb;
/* there is no real recursion here. timer callbacks are async */
env->subprog_info[subprog].is_async_cb = true;
async_cb = push_async_cb(env, env->subprog_info[subprog].start,
*insn_idx, subprog);
if (!async_cb)
return -EFAULT;
callee = async_cb->frame[0];
callee->async_entry_cnt = caller->async_entry_cnt + 1;
/* Convert bpf_timer_set_callback() args into timer callback args */
err = set_callee_state_cb(env, caller, callee, *insn_idx);
if (err)
return err;
clear_caller_saved_regs(env, caller->regs);
mark_reg_unknown(env, caller->regs, BPF_REG_0);
caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
/* continue with next insn after call */
return 0;
}
callee = kzalloc(sizeof(*callee), GFP_KERNEL);
if (!callee)
return -ENOMEM;
state->frame[state->curframe + 1] = callee;
/* callee cannot access r0, r6 - r9 for reading and has to write
* into its own stack before reading from it.
* callee can read/write into caller's stack
*/
init_func_state(env, callee,
/* remember the callsite, it will be used by bpf_exit */
*insn_idx /* callsite */,
state->curframe + 1 /* frameno within this callchain */,
subprog /* subprog number within this prog */);
/* Transfer references to the callee */
err = copy_reference_state(callee, caller);
if (err)
return err;
err = set_callee_state_cb(env, caller, callee, *insn_idx);
if (err)
return err;
clear_caller_saved_regs(env, caller->regs);
/* only increment it after check_reg_arg() finished */
state->curframe++;
/* and go analyze first insn of the callee */
*insn_idx = env->subprog_info[subprog].start - 1;
if (env->log.level & BPF_LOG_LEVEL) {
verbose(env, "caller:\n");
print_verifier_state(env, caller, true);
verbose(env, "callee:\n");
print_verifier_state(env, callee, true);
}
return 0;
}
int map_set_for_each_callback_args(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee)
{
/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
* void *callback_ctx, u64 flags);
* callback_fn(struct bpf_map *map, void *key, void *value,
* void *callback_ctx);
*/
callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
/* pointer to stack or null */
callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
/* unused */
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
return 0;
}
static int set_callee_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee, int insn_idx)
{
int i;
/* copy r1 - r5 args that callee can access. The copy includes parent
* pointers, which connects us up to the liveness chain
*/
for (i = BPF_REG_1; i <= BPF_REG_5; i++)
callee->regs[i] = caller->regs[i];
return 0;
}
static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
int *insn_idx)
{
int subprog, target_insn;
target_insn = *insn_idx + insn->imm + 1;
subprog = find_subprog(env, target_insn);
if (subprog < 0) {
verbose(env, "verifier bug. No program starts at insn %d\n",
target_insn);
return -EFAULT;
}
return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
}
static int set_map_elem_callback_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee,
int insn_idx)
{
struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
struct bpf_map *map;
int err;
if (bpf_map_ptr_poisoned(insn_aux)) {
verbose(env, "tail_call abusing map_ptr\n");
return -EINVAL;
}
map = BPF_MAP_PTR(insn_aux->map_ptr_state);
if (!map->ops->map_set_for_each_callback_args ||
!map->ops->map_for_each_callback) {
verbose(env, "callback function not allowed for map\n");
return -ENOTSUPP;
}
err = map->ops->map_set_for_each_callback_args(env, caller, callee);
if (err)
return err;
callee->in_callback_fn = true;
callee->callback_ret_range = tnum_range(0, 1);
return 0;
}
static int set_loop_callback_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee,
int insn_idx)
{
/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
* u64 flags);
* callback_fn(u32 index, void *callback_ctx);
*/
callee->regs[BPF_REG_1].type = SCALAR_VALUE;
callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
/* unused */
__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
callee->in_callback_fn = true;
callee->callback_ret_range = tnum_range(0, 1);
return 0;
}
static int set_timer_callback_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee,
int insn_idx)
{
struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
* callback_fn(struct bpf_map *map, void *key, void *value);
*/
callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
callee->regs[BPF_REG_1].map_ptr = map_ptr;
callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
callee->regs[BPF_REG_2].map_ptr = map_ptr;
callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
callee->regs[BPF_REG_3].map_ptr = map_ptr;
/* unused */
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
callee->in_async_callback_fn = true;
callee->callback_ret_range = tnum_range(0, 1);
return 0;
}
static int set_find_vma_callback_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee,
int insn_idx)
{
/* bpf_find_vma(struct task_struct *task, u64 addr,
* void *callback_fn, void *callback_ctx, u64 flags)
* (callback_fn)(struct task_struct *task,
* struct vm_area_struct *vma, void *callback_ctx);
*/
callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
callee->regs[BPF_REG_2].btf = btf_vmlinux;
callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
/* pointer to stack or null */
callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
/* unused */
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
callee->in_callback_fn = true;
callee->callback_ret_range = tnum_range(0, 1);
return 0;
}
static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee,
int insn_idx)
{
/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
* callback_ctx, u64 flags);
* callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
*/
__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
/* unused */
__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
callee->in_callback_fn = true;
callee->callback_ret_range = tnum_range(0, 1);
return 0;
}
static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
struct bpf_verifier_state *state = env->cur_state;
struct bpf_func_state *caller, *callee;
struct bpf_reg_state *r0;
int err;
callee = state->frame[state->curframe];
r0 = &callee->regs[BPF_REG_0];
if (r0->type == PTR_TO_STACK) {
/* technically it's ok to return caller's stack pointer
* (or caller's caller's pointer) back to the caller,
* since these pointers are valid. Only current stack
* pointer will be invalid as soon as function exits,
* but let's be conservative
*/
verbose(env, "cannot return stack pointer to the caller\n");
return -EINVAL;
}
state->curframe--;
caller = state->frame[state->curframe];
if (callee->in_callback_fn) {
/* enforce R0 return value range [0, 1]. */
struct tnum range = callee->callback_ret_range;
if (r0->type != SCALAR_VALUE) {
verbose(env, "R0 not a scalar value\n");
return -EACCES;
}
if (!tnum_in(range, r0->var_off)) {
verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
return -EINVAL;
}
} else {
/* return to the caller whatever r0 had in the callee */
caller->regs[BPF_REG_0] = *r0;
}
/* callback_fn frame should have released its own additions to parent's
* reference state at this point, or check_reference_leak would
* complain, hence it must be the same as the caller. There is no need
* to copy it back.
*/
if (!callee->in_callback_fn) {
/* Transfer references to the caller */
err = copy_reference_state(caller, callee);
if (err)
return err;
}
*insn_idx = callee->callsite + 1;
if (env->log.level & BPF_LOG_LEVEL) {
verbose(env, "returning from callee:\n");
print_verifier_state(env, callee, true);
verbose(env, "to caller at %d:\n", *insn_idx);
print_verifier_state(env, caller, true);
}
/* clear everything in the callee */
free_func_state(callee);
state->frame[state->curframe + 1] = NULL;
return 0;
}
static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
int func_id,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
if (ret_type != RET_INTEGER ||
(func_id != BPF_FUNC_get_stack &&
func_id != BPF_FUNC_get_task_stack &&
func_id != BPF_FUNC_probe_read_str &&
func_id != BPF_FUNC_probe_read_kernel_str &&
func_id != BPF_FUNC_probe_read_user_str))
return;
ret_reg->smax_value = meta->msize_max_value;
ret_reg->s32_max_value = meta->msize_max_value;
ret_reg->smin_value = -MAX_ERRNO;
ret_reg->s32_min_value = -MAX_ERRNO;
reg_bounds_sync(ret_reg);
}
static int
record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
int func_id, int insn_idx)
{
struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
struct bpf_map *map = meta->map_ptr;
if (func_id != BPF_FUNC_tail_call &&
func_id != BPF_FUNC_map_lookup_elem &&
func_id != BPF_FUNC_map_update_elem &&
func_id != BPF_FUNC_map_delete_elem &&
func_id != BPF_FUNC_map_push_elem &&
func_id != BPF_FUNC_map_pop_elem &&
func_id != BPF_FUNC_map_peek_elem &&
func_id != BPF_FUNC_for_each_map_elem &&
func_id != BPF_FUNC_redirect_map &&
func_id != BPF_FUNC_map_lookup_percpu_elem)
return 0;
if (map == NULL) {
verbose(env, "kernel subsystem misconfigured verifier\n");
return -EINVAL;
}
/* In case of read-only, some additional restrictions
* need to be applied in order to prevent altering the
* state of the map from program side.
*/
if ((map->map_flags & BPF_F_RDONLY_PROG) &&
(func_id == BPF_FUNC_map_delete_elem ||
func_id == BPF_FUNC_map_update_elem ||
func_id == BPF_FUNC_map_push_elem ||
func_id == BPF_FUNC_map_pop_elem)) {
verbose(env, "write into map forbidden\n");
return -EACCES;
}
if (!BPF_MAP_PTR(aux->map_ptr_state))
bpf_map_ptr_store(aux, meta->map_ptr,
!meta->map_ptr->bypass_spec_v1);
else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
!meta->map_ptr->bypass_spec_v1);
return 0;
}
static int
record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
int func_id, int insn_idx)
{
struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
struct bpf_reg_state *regs = cur_regs(env), *reg;
struct bpf_map *map = meta->map_ptr;
u64 val, max;
int err;
if (func_id != BPF_FUNC_tail_call)
return 0;
if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
verbose(env, "kernel subsystem misconfigured verifier\n");
return -EINVAL;
}
reg = &regs[BPF_REG_3];
val = reg->var_off.value;
max = map->max_entries;
if (!(register_is_const(reg) && val < max)) {
bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
return 0;
}
err = mark_chain_precision(env, BPF_REG_3);
if (err)
return err;
if (bpf_map_key_unseen(aux))
bpf_map_key_store(aux, val);
else if (!bpf_map_key_poisoned(aux) &&
bpf_map_key_immediate(aux) != val)
bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
return 0;
}
static int check_reference_leak(struct bpf_verifier_env *env)
{
struct bpf_func_state *state = cur_func(env);
bool refs_lingering = false;
int i;
if (state->frameno && !state->in_callback_fn)
return 0;
for (i = 0; i < state->acquired_refs; i++) {
if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
continue;
verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
state->refs[i].id, state->refs[i].insn_idx);
refs_lingering = true;
}
return refs_lingering ? -EINVAL : 0;
}
static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
struct bpf_reg_state *regs)
{
struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
struct bpf_map *fmt_map = fmt_reg->map_ptr;
int err, fmt_map_off, num_args;
u64 fmt_addr;
char *fmt;
/* data must be an array of u64 */
if (data_len_reg->var_off.value % 8)
return -EINVAL;
num_args = data_len_reg->var_off.value / 8;
/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
* and map_direct_value_addr is set.
*/
fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
fmt_map_off);
if (err) {
verbose(env, "verifier bug\n");
return -EFAULT;
}
fmt = (char *)(long)fmt_addr + fmt_map_off;
/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
* can focus on validating the format specifiers.
*/
err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
if (err < 0)
verbose(env, "Invalid format string\n");
return err;
}
static int check_get_func_ip(struct bpf_verifier_env *env)
{
enum bpf_prog_type type = resolve_prog_type(env->prog);
int func_id = BPF_FUNC_get_func_ip;
if (type == BPF_PROG_TYPE_TRACING) {
if (!bpf_prog_has_trampoline(env->prog)) {
verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
func_id_name(func_id), func_id);
return -ENOTSUPP;
}
return 0;
} else if (type == BPF_PROG_TYPE_KPROBE) {
return 0;
}
verbose(env, "func %s#%d not supported for program type %d\n",
func_id_name(func_id), func_id, type);
return -ENOTSUPP;
}
static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
{
return &env->insn_aux_data[env->insn_idx];
}
static bool loop_flag_is_zero(struct bpf_verifier_env *env)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = &regs[BPF_REG_4];
bool reg_is_null = register_is_null(reg);
if (reg_is_null)
mark_chain_precision(env, BPF_REG_4);
return reg_is_null;
}
static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
{
struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
if (!state->initialized) {
state->initialized = 1;
state->fit_for_inline = loop_flag_is_zero(env);
state->callback_subprogno = subprogno;
return;
}
if (!state->fit_for_inline)
return;
state->fit_for_inline = (loop_flag_is_zero(env) &&
state->callback_subprogno == subprogno);
}
static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
int *insn_idx_p)
{
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
const struct bpf_func_proto *fn = NULL;
enum bpf_return_type ret_type;
enum bpf_type_flag ret_flag;
struct bpf_reg_state *regs;
struct bpf_call_arg_meta meta;
int insn_idx = *insn_idx_p;
bool changes_data;
int i, err, func_id;
/* find function prototype */
func_id = insn->imm;
if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
func_id);
return -EINVAL;
}
if (env->ops->get_func_proto)
fn = env->ops->get_func_proto(func_id, env->prog);
if (!fn) {
verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
func_id);
return -EINVAL;
}
/* eBPF programs must be GPL compatible to use GPL-ed functions */
if (!env->prog->gpl_compatible && fn->gpl_only) {
verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
return -EINVAL;
}
if (fn->allowed && !fn->allowed(env->prog)) {
verbose(env, "helper call is not allowed in probe\n");
return -EINVAL;
}
/* With LD_ABS/IND some JITs save/restore skb from r1. */
changes_data = bpf_helper_changes_pkt_data(fn->func);
if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
func_id_name(func_id), func_id);
return -EINVAL;
}
memset(&meta, 0, sizeof(meta));
meta.pkt_access = fn->pkt_access;
err = check_func_proto(fn, func_id);
if (err) {
verbose(env, "kernel subsystem misconfigured func %s#%d\n",
func_id_name(func_id), func_id);
return err;
}
meta.func_id = func_id;
/* check args */
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
err = check_func_arg(env, i, &meta, fn);
if (err)
return err;
}
err = record_func_map(env, &meta, func_id, insn_idx);
if (err)
return err;
err = record_func_key(env, &meta, func_id, insn_idx);
if (err)
return err;
/* Mark slots with STACK_MISC in case of raw mode, stack offset
* is inferred from register state.
*/
for (i = 0; i < meta.access_size; i++) {
err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
BPF_WRITE, -1, false);
if (err)
return err;
}
regs = cur_regs(env);
if (meta.uninit_dynptr_regno) {
/* we write BPF_DW bits (8 bytes) at a time */
for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
i, BPF_DW, BPF_WRITE, -1, false);
if (err)
return err;
}
err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
insn_idx);
if (err)
return err;
}
if (meta.release_regno) {
err = -EINVAL;
if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
else if (meta.ref_obj_id)
err = release_reference(env, meta.ref_obj_id);
/* meta.ref_obj_id can only be 0 if register that is meant to be
* released is NULL, which must be > R0.
*/
else if (register_is_null(&regs[meta.release_regno]))
err = 0;
if (err) {
verbose(env, "func %s#%d reference has not been acquired before\n",
func_id_name(func_id), func_id);
return err;
}
}
switch (func_id) {
case BPF_FUNC_tail_call:
err = check_reference_leak(env);
if (err) {
verbose(env, "tail_call would lead to reference leak\n");
return err;
}
break;
case BPF_FUNC_get_local_storage:
/* check that flags argument in get_local_storage(map, flags) is 0,
* this is required because get_local_storage() can't return an error.
*/
if (!register_is_null(&regs[BPF_REG_2])) {
verbose(env, "get_local_storage() doesn't support non-zero flags\n");
return -EINVAL;
}
break;
case BPF_FUNC_for_each_map_elem:
err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
set_map_elem_callback_state);
break;
case BPF_FUNC_timer_set_callback:
err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
set_timer_callback_state);
break;
case BPF_FUNC_find_vma:
err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
set_find_vma_callback_state);
break;
case BPF_FUNC_snprintf:
err = check_bpf_snprintf_call(env, regs);
break;
case BPF_FUNC_loop:
update_loop_inline_state(env, meta.subprogno);
err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
set_loop_callback_state);
break;
case BPF_FUNC_dynptr_from_mem:
if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
reg_type_str(env, regs[BPF_REG_1].type));
return -EACCES;
}
break;
case BPF_FUNC_set_retval:
if (prog_type == BPF_PROG_TYPE_LSM &&
env->prog->expected_attach_type == BPF_LSM_CGROUP) {
if (!env->prog->aux->attach_func_proto->type) {
/* Make sure programs that attach to void
* hooks don't try to modify return value.
*/
verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
return -EINVAL;
}
}
break;
case BPF_FUNC_dynptr_data:
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
if (arg_type_is_dynptr(fn->arg_type[i])) {
struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
if (meta.ref_obj_id) {
verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
return -EFAULT;
}
if (base_type(reg->type) != PTR_TO_DYNPTR)
/* Find the id of the dynptr we're
* tracking the reference of
*/
meta.ref_obj_id = stack_slot_get_id(env, reg);
break;
}
}
if (i == MAX_BPF_FUNC_REG_ARGS) {
verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
return -EFAULT;
}
break;
case BPF_FUNC_user_ringbuf_drain:
err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
set_user_ringbuf_callback_state);
break;
}
if (err)
return err;
/* reset caller saved regs */
for (i = 0; i < CALLER_SAVED_REGS; i++) {
mark_reg_not_init(env, regs, caller_saved[i]);
check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
}
/* helper call returns 64-bit value. */
regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
/* update return register (already marked as written above) */
ret_type = fn->ret_type;
ret_flag = type_flag(ret_type);
switch (base_type(ret_type)) {
case RET_INTEGER:
/* sets type to SCALAR_VALUE */
mark_reg_unknown(env, regs, BPF_REG_0);
break;
case RET_VOID:
regs[BPF_REG_0].type = NOT_INIT;
break;
case RET_PTR_TO_MAP_VALUE:
/* There is no offset yet applied, variable or fixed */
mark_reg_known_zero(env, regs, BPF_REG_0);
/* remember map_ptr, so that check_map_access()
* can check 'value_size' boundary of memory access
* to map element returned from bpf_map_lookup_elem()
*/
if (meta.map_ptr == NULL) {
verbose(env,
"kernel subsystem misconfigured verifier\n");
return -EINVAL;
}
regs[BPF_REG_0].map_ptr = meta.map_ptr;
regs[BPF_REG_0].map_uid = meta.map_uid;
regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
if (!type_may_be_null(ret_type) &&
btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
regs[BPF_REG_0].id = ++env->id_gen;
}
break;
case RET_PTR_TO_SOCKET:
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
break;
case RET_PTR_TO_SOCK_COMMON:
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
break;
case RET_PTR_TO_TCP_SOCK:
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
break;
case RET_PTR_TO_MEM:
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
regs[BPF_REG_0].mem_size = meta.mem_size;
break;
case RET_PTR_TO_MEM_OR_BTF_ID:
{
const struct btf_type *t;
mark_reg_known_zero(env, regs, BPF_REG_0);
t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
if (!btf_type_is_struct(t)) {
u32 tsize;
const struct btf_type *ret;
const char *tname;
/* resolve the type size of ksym. */
ret = btf_resolve_size(meta.ret_btf, t, &tsize);
if (IS_ERR(ret)) {
tname = btf_name_by_offset(meta.ret_btf, t->name_off);
verbose(env, "unable to resolve the size of type '%s': %ld\n",
tname, PTR_ERR(ret));
return -EINVAL;
}
regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
regs[BPF_REG_0].mem_size = tsize;
} else {
/* MEM_RDONLY may be carried from ret_flag, but it
* doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
* it will confuse the check of PTR_TO_BTF_ID in
* check_mem_access().
*/
ret_flag &= ~MEM_RDONLY;
regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
regs[BPF_REG_0].btf = meta.ret_btf;
regs[BPF_REG_0].btf_id = meta.ret_btf_id;
}
break;
}
case RET_PTR_TO_BTF_ID:
{
struct btf *ret_btf;
int ret_btf_id;
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
if (func_id == BPF_FUNC_kptr_xchg) {
ret_btf = meta.kptr_field->kptr.btf;
ret_btf_id = meta.kptr_field->kptr.btf_id;
} else {
if (fn->ret_btf_id == BPF_PTR_POISON) {
verbose(env, "verifier internal error:");
verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
func_id_name(func_id));
return -EINVAL;
}
ret_btf = btf_vmlinux;
ret_btf_id = *fn->ret_btf_id;
}
if (ret_btf_id == 0) {
verbose(env, "invalid return type %u of func %s#%d\n",
base_type(ret_type), func_id_name(func_id),
func_id);
return -EINVAL;
}
regs[BPF_REG_0].btf = ret_btf;
regs[BPF_REG_0].btf_id = ret_btf_id;
break;
}
default:
verbose(env, "unknown return type %u of func %s#%d\n",
base_type(ret_type), func_id_name(func_id), func_id);
return -EINVAL;
}
if (type_may_be_null(regs[BPF_REG_0].type))
regs[BPF_REG_0].id = ++env->id_gen;
if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
func_id_name(func_id), func_id);
return -EFAULT;
}
if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
/* For release_reference() */
regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
} else if (is_acquire_function(func_id, meta.map_ptr)) {
int id = acquire_reference_state(env, insn_idx);
if (id < 0)
return id;
/* For mark_ptr_or_null_reg() */
regs[BPF_REG_0].id = id;
/* For release_reference() */
regs[BPF_REG_0].ref_obj_id = id;
}
do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
err = check_map_func_compatibility(env, meta.map_ptr, func_id);
if (err)
return err;
if ((func_id == BPF_FUNC_get_stack ||
func_id == BPF_FUNC_get_task_stack) &&
!env->prog->has_callchain_buf) {
const char *err_str;
#ifdef CONFIG_PERF_EVENTS
err = get_callchain_buffers(sysctl_perf_event_max_stack);
err_str = "cannot get callchain buffer for func %s#%d\n";
#else
err = -ENOTSUPP;
err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
#endif
if (err) {
verbose(env, err_str, func_id_name(func_id), func_id);
return err;
}
env->prog->has_callchain_buf = true;
}
if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
env->prog->call_get_stack = true;
if (func_id == BPF_FUNC_get_func_ip) {
if (check_get_func_ip(env))
return -ENOTSUPP;
env->prog->call_get_func_ip = true;
}
if (changes_data)
clear_all_pkt_pointers(env);
return 0;
}
/* mark_btf_func_reg_size() is used when the reg size is determined by
* the BTF func_proto's return value size and argument.
*/
static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
size_t reg_size)
{
struct bpf_reg_state *reg = &cur_regs(env)[regno];
if (regno == BPF_REG_0) {
/* Function return value */
reg->live |= REG_LIVE_WRITTEN;
reg->subreg_def = reg_size == sizeof(u64) ?
DEF_NOT_SUBREG : env->insn_idx + 1;
} else {
/* Function argument */
if (reg_size == sizeof(u64)) {
mark_insn_zext(env, reg);
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
} else {
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
}
}
}
static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
int *insn_idx_p)
{
const struct btf_type *t, *func, *func_proto, *ptr_type;
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_kfunc_arg_meta meta = { 0 };
const char *func_name, *ptr_type_name;
u32 i, nargs, func_id, ptr_type_id;
int err, insn_idx = *insn_idx_p;
const struct btf_param *args;
struct btf *desc_btf;
u32 *kfunc_flags;
bool acq;
/* skip for now, but return error when we find this in fixup_kfunc_call */
if (!insn->imm)
return 0;
desc_btf = find_kfunc_desc_btf(env, insn->off);
if (IS_ERR(desc_btf))
return PTR_ERR(desc_btf);
func_id = insn->imm;
func = btf_type_by_id(desc_btf, func_id);
func_name = btf_name_by_offset(desc_btf, func->name_off);
func_proto = btf_type_by_id(desc_btf, func->type);
kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
if (!kfunc_flags) {
verbose(env, "calling kernel function %s is not allowed\n",
func_name);
return -EACCES;
}
if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) {
verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n");
return -EACCES;
}
acq = *kfunc_flags & KF_ACQUIRE;
meta.flags = *kfunc_flags;
/* Check the arguments */
err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta);
if (err < 0)
return err;
/* In case of release function, we get register number of refcounted
* PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
*/
if (err) {
err = release_reference(env, regs[err].ref_obj_id);
if (err) {
verbose(env, "kfunc %s#%d reference has not been acquired before\n",
func_name, func_id);
return err;
}
}
for (i = 0; i < CALLER_SAVED_REGS; i++)
mark_reg_not_init(env, regs, caller_saved[i]);
/* Check return type */
t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
if (acq && !btf_type_is_struct_ptr(desc_btf, t)) {
verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
return -EINVAL;
}
if (btf_type_is_scalar(t)) {
mark_reg_unknown(env, regs, BPF_REG_0);
mark_btf_func_reg_size(env, BPF_REG_0, t->size);
} else if (btf_type_is_ptr(t)) {
ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
&ptr_type_id);
if (!btf_type_is_struct(ptr_type)) {
if (!meta.r0_size) {
ptr_type_name = btf_name_by_offset(desc_btf,
ptr_type->name_off);
verbose(env,
"kernel function %s returns pointer type %s %s is not supported\n",
func_name,
btf_type_str(ptr_type),
ptr_type_name);
return -EINVAL;
}
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_MEM;
regs[BPF_REG_0].mem_size = meta.r0_size;
if (meta.r0_rdonly)
regs[BPF_REG_0].type |= MEM_RDONLY;
/* Ensures we don't access the memory after a release_reference() */
if (meta.ref_obj_id)
regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
} else {
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].btf = desc_btf;
regs[BPF_REG_0].type = PTR_TO_BTF_ID;
regs[BPF_REG_0].btf_id = ptr_type_id;
}
if (*kfunc_flags & KF_RET_NULL) {
regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
regs[BPF_REG_0].id = ++env->id_gen;
}
mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
if (acq) {
int id = acquire_reference_state(env, insn_idx);
if (id < 0)
return id;
regs[BPF_REG_0].id = id;
regs[BPF_REG_0].ref_obj_id = id;
}
} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
nargs = btf_type_vlen(func_proto);
args = (const struct btf_param *)(func_proto + 1);
for (i = 0; i < nargs; i++) {
u32 regno = i + 1;
t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
if (btf_type_is_ptr(t))
mark_btf_func_reg_size(env, regno, sizeof(void *));
else
/* scalar. ensured by btf_check_kfunc_arg_match() */
mark_btf_func_reg_size(env, regno, t->size);
}
return 0;
}
static bool signed_add_overflows(s64 a, s64 b)
{
/* Do the add in u64, where overflow is well-defined */
s64 res = (s64)((u64)a + (u64)b);
if (b < 0)
return res > a;
return res < a;
}
static bool signed_add32_overflows(s32 a, s32 b)
{
/* Do the add in u32, where overflow is well-defined */
s32 res = (s32)((u32)a + (u32)b);
if (b < 0)
return res > a;
return res < a;
}
static bool signed_sub_overflows(s64 a, s64 b)
{
/* Do the sub in u64, where overflow is well-defined */
s64 res = (s64)((u64)a - (u64)b);
if (b < 0)
return res < a;
return res > a;
}
static bool signed_sub32_overflows(s32 a, s32 b)
{
/* Do the sub in u32, where overflow is well-defined */
s32 res = (s32)((u32)a - (u32)b);
if (b < 0)
return res < a;
return res > a;
}
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
enum bpf_reg_type type)
{
bool known = tnum_is_const(reg->var_off);
s64 val = reg->var_off.value;
s64 smin = reg->smin_value;
if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
verbose(env, "math between %s pointer and %lld is not allowed\n",
reg_type_str(env, type), val);
return false;
}
if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
verbose(env, "%s pointer offset %d is not allowed\n",
reg_type_str(env, type), reg->off);
return false;
}
if (smin == S64_MIN) {
verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
reg_type_str(env, type));
return false;
}
if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
verbose(env, "value %lld makes %s pointer be out of bounds\n",
smin, reg_type_str(env, type));
return false;
}
return true;
}
enum {
REASON_BOUNDS = -1,
REASON_TYPE = -2,
REASON_PATHS = -3,
REASON_LIMIT = -4,
REASON_STACK = -5,
};
static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
u32 *alu_limit, bool mask_to_left)
{
u32 max = 0, ptr_limit = 0;
switch (ptr_reg->type) {
case PTR_TO_STACK:
/* Offset 0 is out-of-bounds, but acceptable start for the
* left direction, see BPF_REG_FP. Also, unknown scalar
* offset where we would need to deal with min/max bounds is
* currently prohibited for unprivileged.
*/
max = MAX_BPF_STACK + mask_to_left;
ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
break;
case PTR_TO_MAP_VALUE:
max = ptr_reg->map_ptr->value_size;
ptr_limit = (mask_to_left ?
ptr_reg->smin_value :
ptr_reg->umax_value) + ptr_reg->off;
break;
default:
return REASON_TYPE;
}
if (ptr_limit >= max)
return REASON_LIMIT;
*alu_limit = ptr_limit;
return 0;
}
static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
const struct bpf_insn *insn)
{
return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
}
static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
u32 alu_state, u32 alu_limit)
{
/* If we arrived here from different branches with different
* state or limits to sanitize, then this won't work.
*/
if (aux->alu_state &&
(aux->alu_state != alu_state ||
aux->alu_limit != alu_limit))
return REASON_PATHS;
/* Corresponding fixup done in do_misc_fixups(). */
aux->alu_state = alu_state;
aux->alu_limit = alu_limit;
return 0;
}
static int sanitize_val_alu(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_insn_aux_data *aux = cur_aux(env);
if (can_skip_alu_sanitation(env, insn))
return 0;
return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
}
static bool sanitize_needed(u8 opcode)
{
return opcode == BPF_ADD || opcode == BPF_SUB;
}
struct bpf_sanitize_info {
struct bpf_insn_aux_data aux;
bool mask_to_left;
};
static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env *env,
const struct bpf_insn *insn,
u32 next_idx, u32 curr_idx)
{
struct bpf_verifier_state *branch;
struct bpf_reg_state *regs;
branch = push_stack(env, next_idx, curr_idx, true);
if (branch && insn) {
regs = branch->frame[branch->curframe]->regs;
if (BPF_SRC(insn->code) == BPF_K) {
mark_reg_unknown(env, regs, insn->dst_reg);
} else if (BPF_SRC(insn->code) == BPF_X) {
mark_reg_unknown(env, regs, insn->dst_reg);
mark_reg_unknown(env, regs, insn->src_reg);
}
}
return branch;
}
static int sanitize_ptr_alu(struct bpf_verifier_env *env,
struct bpf_insn *insn,
const struct bpf_reg_state *ptr_reg,
const struct bpf_reg_state *off_reg,
struct bpf_reg_state *dst_reg,
struct bpf_sanitize_info *info,
const bool commit_window)
{
struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
struct bpf_verifier_state *vstate = env->cur_state;
bool off_is_imm = tnum_is_const(off_reg->var_off);
bool off_is_neg = off_reg->smin_value < 0;
bool ptr_is_dst_reg = ptr_reg == dst_reg;
u8 opcode = BPF_OP(insn->code);
u32 alu_state, alu_limit;
struct bpf_reg_state tmp;
bool ret;
int err;
if (can_skip_alu_sanitation(env, insn))
return 0;
/* We already marked aux for masking from non-speculative
* paths, thus we got here in the first place. We only care
* to explore bad access from here.
*/
if (vstate->speculative)
goto do_sim;
if (!commit_window) {
if (!tnum_is_const(off_reg->var_off) &&
(off_reg->smin_value < 0) != (off_reg->smax_value < 0))
return REASON_BOUNDS;
info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
(opcode == BPF_SUB && !off_is_neg);
}
err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
if (err < 0)
return err;
if (commit_window) {
/* In commit phase we narrow the masking window based on
* the observed pointer move after the simulated operation.
*/
alu_state = info->aux.alu_state;
alu_limit = abs(info->aux.alu_limit - alu_limit);
} else {
alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
alu_state |= ptr_is_dst_reg ?
BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
/* Limit pruning on unknown scalars to enable deep search for
* potential masking differences from other program paths.
*/
if (!off_is_imm)
env->explore_alu_limits = true;
}
err = update_alu_sanitation_state(aux, alu_state, alu_limit);
if (err < 0)
return err;
do_sim:
/* If we're in commit phase, we're done here given we already
* pushed the truncated dst_reg into the speculative verification
* stack.
*
* Also, when register is a known constant, we rewrite register-based
* operation to immediate-based, and thus do not need masking (and as
* a consequence, do not need to simulate the zero-truncation either).
*/
if (commit_window || off_is_imm)
return 0;
/* Simulate and find potential out-of-bounds access under
* speculative execution from truncation as a result of
* masking when off was not within expected range. If off
* sits in dst, then we temporarily need to move ptr there
* to simulate dst (== 0) +/-= ptr. Needed, for example,
* for cases where we use K-based arithmetic in one direction
* and truncated reg-based in the other in order to explore
* bad access.
*/
if (!ptr_is_dst_reg) {
tmp = *dst_reg;
*dst_reg = *ptr_reg;
}
ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
env->insn_idx);
if (!ptr_is_dst_reg && ret)
*dst_reg = tmp;
return !ret ? REASON_STACK : 0;
}
static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
{
struct bpf_verifier_state *vstate = env->cur_state;
/* If we simulate paths under speculation, we don't update the
* insn as 'seen' such that when we verify unreachable paths in
* the non-speculative domain, sanitize_dead_code() can still
* rewrite/sanitize them.
*/
if (!vstate->speculative)
env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
}
static int sanitize_err(struct bpf_verifier_env *env,
const struct bpf_insn *insn, int reason,
const struct bpf_reg_state *off_reg,
const struct bpf_reg_state *dst_reg)
{
static const char *err = "pointer arithmetic with it prohibited for !root";
const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
u32 dst = insn->dst_reg, src = insn->src_reg;
switch (reason) {
case REASON_BOUNDS:
verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
off_reg == dst_reg ? dst : src, err);
break;
case REASON_TYPE:
verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
off_reg == dst_reg ? src : dst, err);
break;
case REASON_PATHS:
verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
dst, op, err);
break;
case REASON_LIMIT:
verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
dst, op, err);
break;
case REASON_STACK:
verbose(env, "R%d could not be pushed for speculative verification, %s\n",
dst, err);
break;
default:
verbose(env, "verifier internal error: unknown reason (%d)\n",
reason);
break;
}
return -EACCES;
}
/* check that stack access falls within stack limits and that 'reg' doesn't
* have a variable offset.
*
* Variable offset is prohibited for unprivileged mode for simplicity since it
* requires corresponding support in Spectre masking for stack ALU. See also
* retrieve_ptr_limit().
*
*
* 'off' includes 'reg->off'.
*/
static int check_stack_access_for_ptr_arithmetic(
struct bpf_verifier_env *env,
int regno,
const struct bpf_reg_state *reg,
int off)
{
if (!tnum_is_const(reg->var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
regno, tn_buf, off);
return -EACCES;
}
if (off >= 0 || off < -MAX_BPF_STACK) {
verbose(env, "R%d stack pointer arithmetic goes out of range, "
"prohibited for !root; off=%d\n", regno, off);
return -EACCES;
}
return 0;
}
static int sanitize_check_bounds(struct bpf_verifier_env *env,
const struct bpf_insn *insn,
const struct bpf_reg_state *dst_reg)
{
u32 dst = insn->dst_reg;
/* For unprivileged we require that resulting offset must be in bounds
* in order to be able to sanitize access later on.
*/
if (env->bypass_spec_v1)
return 0;
switch (dst_reg->type) {
case PTR_TO_STACK:
if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
dst_reg->off + dst_reg->var_off.value))
return -EACCES;
break;
case PTR_TO_MAP_VALUE:
if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
verbose(env, "R%d pointer arithmetic of map value goes out of range, "
"prohibited for !root\n", dst);
return -EACCES;
}
break;
default:
break;
}
return 0;
}
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
* Caller should also handle BPF_MOV case separately.
* If we return -EACCES, caller may want to try again treating pointer as a
* scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
*/
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn,
const struct bpf_reg_state *ptr_reg,
const struct bpf_reg_state *off_reg)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *regs = state->regs, *dst_reg;
bool known = tnum_is_const(off_reg->var_off);
s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
struct bpf_sanitize_info info = {};
u8 opcode = BPF_OP(insn->code);
u32 dst = insn->dst_reg;
int ret;
dst_reg = &regs[dst];
if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
smin_val > smax_val || umin_val > umax_val) {
/* Taint dst register if offset had invalid bounds derived from
* e.g. dead branches.
*/
__mark_reg_unknown(env, dst_reg);
return 0;
}
if (BPF_CLASS(insn->code) != BPF_ALU64) {
/* 32-bit ALU ops on pointers produce (meaningless) scalars */
if (opcode == BPF_SUB && env->allow_ptr_leaks) {
__mark_reg_unknown(env, dst_reg);
return 0;
}
verbose(env,
"R%d 32-bit pointer arithmetic prohibited\n",
dst);
return -EACCES;
}
if (ptr_reg->type & PTR_MAYBE_NULL) {
verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
dst, reg_type_str(env, ptr_reg->type));
return -EACCES;
}
switch (base_type(ptr_reg->type)) {
case CONST_PTR_TO_MAP:
/* smin_val represents the known value */
if (known && smin_val == 0 && opcode == BPF_ADD)
break;
fallthrough;
case PTR_TO_PACKET_END:
case PTR_TO_SOCKET:
case PTR_TO_SOCK_COMMON:
case PTR_TO_TCP_SOCK:
case PTR_TO_XDP_SOCK:
verbose(env, "R%d pointer arithmetic on %s prohibited\n",
dst, reg_type_str(env, ptr_reg->type));
return -EACCES;
default:
break;
}
/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
* The id may be overwritten later if we create a new variable offset.
*/
dst_reg->type = ptr_reg->type;
dst_reg->id = ptr_reg->id;
if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
!check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
return -EINVAL;
/* pointer types do not carry 32-bit bounds at the moment. */
__mark_reg32_unbounded(dst_reg);
if (sanitize_needed(opcode)) {
ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
&info, false);
if (ret < 0)
return sanitize_err(env, insn, ret, off_reg, dst_reg);
}
switch (opcode) {
case BPF_ADD:
/* We can take a fixed offset as long as it doesn't overflow
* the s32 'off' field
*/
if (known && (ptr_reg->off + smin_val ==
(s64)(s32)(ptr_reg->off + smin_val))) {
/* pointer += K. Accumulate it into fixed offset */
dst_reg->smin_value = smin_ptr;
dst_reg->smax_value = smax_ptr;
dst_reg->umin_value = umin_ptr;
dst_reg->umax_value = umax_ptr;
dst_reg->var_off = ptr_reg->var_off;
dst_reg->off = ptr_reg->off + smin_val;
dst_reg->raw = ptr_reg->raw;
break;
}
/* A new variable offset is created. Note that off_reg->off
* == 0, since it's a scalar.
* dst_reg gets the pointer type and since some positive
* integer value was added to the pointer, give it a new 'id'
* if it's a PTR_TO_PACKET.
* this creates a new 'base' pointer, off_reg (variable) gets
* added into the variable offset, and we copy the fixed offset
* from ptr_reg.
*/
if (signed_add_overflows(smin_ptr, smin_val) ||
signed_add_overflows(smax_ptr, smax_val)) {
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value = smin_ptr + smin_val;
dst_reg->smax_value = smax_ptr + smax_val;
}
if (umin_ptr + umin_val < umin_ptr ||
umax_ptr + umax_val < umax_ptr) {
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
dst_reg->umin_value = umin_ptr + umin_val;
dst_reg->umax_value = umax_ptr + umax_val;
}
dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
dst_reg->off = ptr_reg->off;
dst_reg->raw = ptr_reg->raw;
if (reg_is_pkt_pointer(ptr_reg)) {
dst_reg->id = ++env->id_gen;
/* something was added to pkt_ptr, set range to zero */
memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
}
break;
case BPF_SUB:
if (dst_reg == off_reg) {
/* scalar -= pointer. Creates an unknown scalar */
verbose(env, "R%d tried to subtract pointer from scalar\n",
dst);
return -EACCES;
}
/* We don't allow subtraction from FP, because (according to
* test_verifier.c test "invalid fp arithmetic", JITs might not
* be able to deal with it.
*/
if (ptr_reg->type == PTR_TO_STACK) {
verbose(env, "R%d subtraction from stack pointer prohibited\n",
dst);
return -EACCES;
}
if (known && (ptr_reg->off - smin_val ==
(s64)(s32)(ptr_reg->off - smin_val))) {
/* pointer -= K. Subtract it from fixed offset */
dst_reg->smin_value = smin_ptr;
dst_reg->smax_value = smax_ptr;
dst_reg->umin_value = umin_ptr;
dst_reg->umax_value = umax_ptr;
dst_reg->var_off = ptr_reg->var_off;
dst_reg->id = ptr_reg->id;
dst_reg->off = ptr_reg->off - smin_val;
dst_reg->raw = ptr_reg->raw;
break;
}
/* A new variable offset is created. If the subtrahend is known
* nonnegative, then any reg->range we had before is still good.
*/
if (signed_sub_overflows(smin_ptr, smax_val) ||
signed_sub_overflows(smax_ptr, smin_val)) {
/* Overflow possible, we know nothing */
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value = smin_ptr - smax_val;
dst_reg->smax_value = smax_ptr - smin_val;
}
if (umin_ptr < umax_val) {
/* Overflow possible, we know nothing */
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
/* Cannot overflow (as long as bounds are consistent) */
dst_reg->umin_value = umin_ptr - umax_val;
dst_reg->umax_value = umax_ptr - umin_val;
}
dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
dst_reg->off = ptr_reg->off;
dst_reg->raw = ptr_reg->raw;
if (reg_is_pkt_pointer(ptr_reg)) {
dst_reg->id = ++env->id_gen;
/* something was added to pkt_ptr, set range to zero */
if (smin_val < 0)
memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
}
break;
case BPF_AND:
case BPF_OR:
case BPF_XOR:
/* bitwise ops on pointers are troublesome, prohibit. */
verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
dst, bpf_alu_string[opcode >> 4]);
return -EACCES;
default:
/* other operators (e.g. MUL,LSH) produce non-pointer results */
verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
dst, bpf_alu_string[opcode >> 4]);
return -EACCES;
}
if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
return -EINVAL;
reg_bounds_sync(dst_reg);
if (sanitize_check_bounds(env, insn, dst_reg) < 0)
return -EACCES;
if (sanitize_needed(opcode)) {
ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
&info, true);
if (ret < 0)
return sanitize_err(env, insn, ret, off_reg, dst_reg);
}
return 0;
}
static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s32 smin_val = src_reg->s32_min_value;
s32 smax_val = src_reg->s32_max_value;
u32 umin_val = src_reg->u32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
dst_reg->s32_min_value += smin_val;
dst_reg->s32_max_value += smax_val;
}
if (dst_reg->u32_min_value + umin_val < umin_val ||
dst_reg->u32_max_value + umax_val < umax_val) {
dst_reg->u32_min_value = 0;
dst_reg->u32_max_value = U32_MAX;
} else {
dst_reg->u32_min_value += umin_val;
dst_reg->u32_max_value += umax_val;
}
}
static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s64 smin_val = src_reg->smin_value;
s64 smax_val = src_reg->smax_value;
u64 umin_val = src_reg->umin_value;
u64 umax_val = src_reg->umax_value;
if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
signed_add_overflows(dst_reg->smax_value, smax_val)) {
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value += smin_val;
dst_reg->smax_value += smax_val;
}
if (dst_reg->umin_value + umin_val < umin_val ||
dst_reg->umax_value + umax_val < umax_val) {
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
dst_reg->umin_value += umin_val;
dst_reg->umax_value += umax_val;
}
}
static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s32 smin_val = src_reg->s32_min_value;
s32 smax_val = src_reg->s32_max_value;
u32 umin_val = src_reg->u32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
/* Overflow possible, we know nothing */
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
dst_reg->s32_min_value -= smax_val;
dst_reg->s32_max_value -= smin_val;
}
if (dst_reg->u32_min_value < umax_val) {
/* Overflow possible, we know nothing */
dst_reg->u32_min_value = 0;
dst_reg->u32_max_value = U32_MAX;
} else {
/* Cannot overflow (as long as bounds are consistent) */
dst_reg->u32_min_value -= umax_val;
dst_reg->u32_max_value -= umin_val;
}
}
static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s64 smin_val = src_reg->smin_value;
s64 smax_val = src_reg->smax_value;
u64 umin_val = src_reg->umin_value;
u64 umax_val = src_reg->umax_value;
if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
signed_sub_overflows(dst_reg->smax_value, smin_val)) {
/* Overflow possible, we know nothing */
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value -= smax_val;
dst_reg->smax_value -= smin_val;
}
if (dst_reg->umin_value < umax_val) {
/* Overflow possible, we know nothing */
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
/* Cannot overflow (as long as bounds are consistent) */
dst_reg->umin_value -= umax_val;
dst_reg->umax_value -= umin_val;
}
}
static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s32 smin_val = src_reg->s32_min_value;
u32 umin_val = src_reg->u32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (smin_val < 0 || dst_reg->s32_min_value < 0) {
/* Ain't nobody got time to multiply that sign */
__mark_reg32_unbounded(dst_reg);
return;
}
/* Both values are positive, so we can work with unsigned and
* copy the result to signed (unless it exceeds S32_MAX).
*/
if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
/* Potential overflow, we know nothing */
__mark_reg32_unbounded(dst_reg);
return;
}
dst_reg->u32_min_value *= umin_val;
dst_reg->u32_max_value *= umax_val;
if (dst_reg->u32_max_value > S32_MAX) {
/* Overflow possible, we know nothing */
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
}
}
static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s64 smin_val = src_reg->smin_value;
u64 umin_val = src_reg->umin_value;
u64 umax_val = src_reg->umax_value;
if (smin_val < 0 || dst_reg->smin_value < 0) {
/* Ain't nobody got time to multiply that sign */
__mark_reg64_unbounded(dst_reg);
return;
}
/* Both values are positive, so we can work with unsigned and
* copy the result to signed (unless it exceeds S64_MAX).
*/
if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
/* Potential overflow, we know nothing */
__mark_reg64_unbounded(dst_reg);
return;
}
dst_reg->umin_value *= umin_val;
dst_reg->umax_value *= umax_val;
if (dst_reg->umax_value > S64_MAX) {
/* Overflow possible, we know nothing */
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
}
}
static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
s32 smin_val = src_reg->s32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (src_known && dst_known) {
__mark_reg32_known(dst_reg, var32_off.value);
return;
}
/* We get our minimum from the var_off, since that's inherently
* bitwise. Our maximum is the minimum of the operands' maxima.
*/
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
if (dst_reg->s32_min_value < 0 || smin_val < 0) {
/* Lose signed bounds when ANDing negative numbers,
* ain't nobody got time for that.
*/
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
/* ANDing two positives gives a positive, so safe to
* cast result into s64.
*/
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
}
}
static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
s64 smin_val = src_reg->smin_value;
u64 umax_val = src_reg->umax_value;
if (src_known && dst_known) {
__mark_reg_known(dst_reg, dst_reg->var_off.value);
return;
}
/* We get our minimum from the var_off, since that's inherently
* bitwise. Our maximum is the minimum of the operands' maxima.
*/
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
if (dst_reg->smin_value < 0 || smin_val < 0) {
/* Lose signed bounds when ANDing negative numbers,
* ain't nobody got time for that.
*/
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
/* ANDing two positives gives a positive, so safe to
* cast result into s64.
*/
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
}
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
}
static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
s32 smin_val = src_reg->s32_min_value;
u32 umin_val = src_reg->u32_min_value;
if (src_known && dst_known) {
__mark_reg32_known(dst_reg, var32_off.value);
return;
}
/* We get our maximum from the var_off, and our minimum is the
* maximum of the operands' minima
*/
dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
if (dst_reg->s32_min_value < 0 || smin_val < 0) {
/* Lose signed bounds when ORing negative numbers,
* ain't nobody got time for that.
*/
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
/* ORing two positives gives a positive, so safe to
* cast result into s64.
*/
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
}
}
static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
s64 smin_val = src_reg->smin_value;
u64 umin_val = src_reg->umin_value;
if (src_known && dst_known) {
__mark_reg_known(dst_reg, dst_reg->var_off.value);
return;
}
/* We get our maximum from the var_off, and our minimum is the
* maximum of the operands' minima
*/
dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
if (dst_reg->smin_value < 0 || smin_val < 0) {
/* Lose signed bounds when ORing negative numbers,
* ain't nobody got time for that.
*/
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
/* ORing two positives gives a positive, so safe to
* cast result into s64.
*/
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
}
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
}
static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
s32 smin_val = src_reg->s32_min_value;
if (src_known && dst_known) {
__mark_reg32_known(dst_reg, var32_off.value);
return;
}
/* We get both minimum and maximum from the var32_off. */
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
/* XORing two positive sign numbers gives a positive,
* so safe to cast u32 result into s32.
*/
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
} else {
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
}
}
static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
s64 smin_val = src_reg->smin_value;
if (src_known && dst_known) {
/* dst_reg->var_off.value has been updated earlier */
__mark_reg_known(dst_reg, dst_reg->var_off.value);
return;
}
/* We get both minimum and maximum from the var_off. */
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
if (dst_reg->smin_value >= 0 && smin_val >= 0) {
/* XORing two positive sign numbers gives a positive,
* so safe to cast u64 result into s64.
*/
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
} else {
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
}
__update_reg_bounds(dst_reg);
}
static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
u64 umin_val, u64 umax_val)
{
/* We lose all sign bit information (except what we can pick
* up from var_off)
*/
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
/* If we might shift our top bit out, then we know nothing */
if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
dst_reg->u32_min_value = 0;
dst_reg->u32_max_value = U32_MAX;
} else {
dst_reg->u32_min_value <<= umin_val;
dst_reg->u32_max_value <<= umax_val;
}
}
static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u32 umax_val = src_reg->u32_max_value;
u32 umin_val = src_reg->u32_min_value;
/* u32 alu operation will zext upper bits */
struct tnum subreg = tnum_subreg(dst_reg->var_off);
__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
/* Not required but being careful mark reg64 bounds as unknown so
* that we are forced to pick them up from tnum and zext later and
* if some path skips this step we are still safe.
*/
__mark_reg64_unbounded(dst_reg);
__update_reg32_bounds(dst_reg);
}
static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
u64 umin_val, u64 umax_val)
{
/* Special case <<32 because it is a common compiler pattern to sign
* extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
* positive we know this shift will also be positive so we can track
* bounds correctly. Otherwise we lose all sign bit information except
* what we can pick up from var_off. Perhaps we can generalize this
* later to shifts of any length.
*/
if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
else
dst_reg->smax_value = S64_MAX;
if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
else
dst_reg->smin_value = S64_MIN;
/* If we might shift our top bit out, then we know nothing */
if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
dst_reg->umin_value <<= umin_val;
dst_reg->umax_value <<= umax_val;
}
}
static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u64 umax_val = src_reg->umax_value;
u64 umin_val = src_reg->umin_value;
/* scalar64 calc uses 32bit unshifted bounds so must be called first */
__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
}
static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
struct tnum subreg = tnum_subreg(dst_reg->var_off);
u32 umax_val = src_reg->u32_max_value;
u32 umin_val = src_reg->u32_min_value;
/* BPF_RSH is an unsigned shift. If the value in dst_reg might
* be negative, then either:
* 1) src_reg might be zero, so the sign bit of the result is
* unknown, so we lose our signed bounds
* 2) it's known negative, thus the unsigned bounds capture the
* signed bounds
* 3) the signed bounds cross zero, so they tell us nothing
* about the result
* If the value in dst_reg is known nonnegative, then again the
* unsigned bounds capture the signed bounds.
* Thus, in all cases it suffices to blow away our signed bounds
* and rely on inferring new ones from the unsigned bounds and
* var_off of the result.
*/
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
dst_reg->var_off = tnum_rshift(subreg, umin_val);
dst_reg->u32_min_value >>= umax_val;
dst_reg->u32_max_value >>= umin_val;
__mark_reg64_unbounded(dst_reg);
__update_reg32_bounds(dst_reg);
}
static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u64 umax_val = src_reg->umax_value;
u64 umin_val = src_reg->umin_value;
/* BPF_RSH is an unsigned shift. If the value in dst_reg might
* be negative, then either:
* 1) src_reg might be zero, so the sign bit of the result is
* unknown, so we lose our signed bounds
* 2) it's known negative, thus the unsigned bounds capture the
* signed bounds
* 3) the signed bounds cross zero, so they tell us nothing
* about the result
* If the value in dst_reg is known nonnegative, then again the
* unsigned bounds capture the signed bounds.
* Thus, in all cases it suffices to blow away our signed bounds
* and rely on inferring new ones from the unsigned bounds and
* var_off of the result.
*/
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
dst_reg->umin_value >>= umax_val;
dst_reg->umax_value >>= umin_val;
/* Its not easy to operate on alu32 bounds here because it depends
* on bits being shifted in. Take easy way out and mark unbounded
* so we can recalculate later from tnum.
*/
__mark_reg32_unbounded(dst_reg);
__update_reg_bounds(dst_reg);
}
static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u64 umin_val = src_reg->u32_min_value;
/* Upon reaching here, src_known is true and
* umax_val is equal to umin_val.
*/
dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
/* blow away the dst_reg umin_value/umax_value and rely on
* dst_reg var_off to refine the result.
*/
dst_reg->u32_min_value = 0;
dst_reg->u32_max_value = U32_MAX;
__mark_reg64_unbounded(dst_reg);
__update_reg32_bounds(dst_reg);
}
static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u64 umin_val = src_reg->umin_value;
/* Upon reaching here, src_known is true and umax_val is equal
* to umin_val.
*/
dst_reg->smin_value >>= umin_val;
dst_reg->smax_value >>= umin_val;
dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
/* blow away the dst_reg umin_value/umax_value and rely on
* dst_reg var_off to refine the result.
*/
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
/* Its not easy to operate on alu32 bounds here because it depends
* on bits being shifted in from upper 32-bits. Take easy way out
* and mark unbounded so we can recalculate later from tnum.
*/
__mark_reg32_unbounded(dst_reg);
__update_reg_bounds(dst_reg);
}
/* WARNING: This function does calculations on 64-bit values, but the actual
* execution may occur on 32-bit values. Therefore, things like bitshifts
* need extra checks in the 32-bit case.
*/
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn,
struct bpf_reg_state *dst_reg,
struct bpf_reg_state src_reg)
{
struct bpf_reg_state *regs = cur_regs(env);
u8 opcode = BPF_OP(insn->code);
bool src_known;
s64 smin_val, smax_val;
u64 umin_val, umax_val;
s32 s32_min_val, s32_max_val;
u32 u32_min_val, u32_max_val;
u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
int ret;
smin_val = src_reg.smin_value;
smax_val = src_reg.smax_value;
umin_val = src_reg.umin_value;
umax_val = src_reg.umax_value;
s32_min_val = src_reg.s32_min_value;
s32_max_val = src_reg.s32_max_value;
u32_min_val = src_reg.u32_min_value;
u32_max_val = src_reg.u32_max_value;
if (alu32) {
src_known = tnum_subreg_is_const(src_reg.var_off);
if ((src_known &&
(s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
/* Taint dst register if offset had invalid bounds
* derived from e.g. dead branches.
*/
__mark_reg_unknown(env, dst_reg);
return 0;
}
} else {
src_known = tnum_is_const(src_reg.var_off);
if ((src_known &&
(smin_val != smax_val || umin_val != umax_val)) ||
smin_val > smax_val || umin_val > umax_val) {
/* Taint dst register if offset had invalid bounds
* derived from e.g. dead branches.
*/
__mark_reg_unknown(env, dst_reg);
return 0;
}
}
if (!src_known &&
opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
__mark_reg_unknown(env, dst_reg);
return 0;
}
if (sanitize_needed(opcode)) {
ret = sanitize_val_alu(env, insn);
if (ret < 0)
return sanitize_err(env, insn, ret, NULL, NULL);
}
/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
* There are two classes of instructions: The first class we track both
* alu32 and alu64 sign/unsigned bounds independently this provides the
* greatest amount of precision when alu operations are mixed with jmp32
* operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
* and BPF_OR. This is possible because these ops have fairly easy to
* understand and calculate behavior in both 32-bit and 64-bit alu ops.
* See alu32 verifier tests for examples. The second class of
* operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
* with regards to tracking sign/unsigned bounds because the bits may
* cross subreg boundaries in the alu64 case. When this happens we mark
* the reg unbounded in the subreg bound space and use the resulting
* tnum to calculate an approximation of the sign/unsigned bounds.
*/
switch (opcode) {
case BPF_ADD:
scalar32_min_max_add(dst_reg, &src_reg);
scalar_min_max_add(dst_reg, &src_reg);
dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
break;
case BPF_SUB:
scalar32_min_max_sub(dst_reg, &src_reg);
scalar_min_max_sub(dst_reg, &src_reg);
dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
break;
case BPF_MUL:
dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
scalar32_min_max_mul(dst_reg, &src_reg);
scalar_min_max_mul(dst_reg, &src_reg);
break;
case BPF_AND:
dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
scalar32_min_max_and(dst_reg, &src_reg);
scalar_min_max_and(dst_reg, &src_reg);
break;
case BPF_OR:
dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
scalar32_min_max_or(dst_reg, &src_reg);
scalar_min_max_or(dst_reg, &src_reg);
break;
case BPF_XOR:
dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
scalar32_min_max_xor(dst_reg, &src_reg);
scalar_min_max_xor(dst_reg, &src_reg);
break;
case BPF_LSH:
if (umax_val >= insn_bitness) {
/* Shifts greater than 31 or 63 are undefined.
* This includes shifts by a negative number.
*/
mark_reg_unknown(env, regs, insn->dst_reg);
break;
}
if (alu32)
scalar32_min_max_lsh(dst_reg, &src_reg);
else
scalar_min_max_lsh(dst_reg, &src_reg);
break;
case BPF_RSH:
if (umax_val >= insn_bitness) {
/* Shifts greater than 31 or 63 are undefined.
* This includes shifts by a negative number.
*/
mark_reg_unknown(env, regs, insn->dst_reg);
break;
}
if (alu32)
scalar32_min_max_rsh(dst_reg, &src_reg);
else
scalar_min_max_rsh(dst_reg, &src_reg);
break;
case BPF_ARSH:
if (umax_val >= insn_bitness) {
/* Shifts greater than 31 or 63 are undefined.
* This includes shifts by a negative number.
*/
mark_reg_unknown(env, regs, insn->dst_reg);
break;
}
if (alu32)
scalar32_min_max_arsh(dst_reg, &src_reg);
else
scalar_min_max_arsh(dst_reg, &src_reg);
break;
default:
mark_reg_unknown(env, regs, insn->dst_reg);
break;
}
/* ALU32 ops are zero extended into 64bit register */
if (alu32)
zext_32_to_64(dst_reg);
reg_bounds_sync(dst_reg);
return 0;
}
/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
* and var_off.
*/
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
u8 opcode = BPF_OP(insn->code);
int err;
dst_reg = &regs[insn->dst_reg];
src_reg = NULL;
if (dst_reg->type != SCALAR_VALUE)
ptr_reg = dst_reg;
else
/* Make sure ID is cleared otherwise dst_reg min/max could be
* incorrectly propagated into other registers by find_equal_scalars()
*/
dst_reg->id = 0;
if (BPF_SRC(insn->code) == BPF_X) {
src_reg = &regs[insn->src_reg];
if (src_reg->type != SCALAR_VALUE) {
if (dst_reg->type != SCALAR_VALUE) {
/* Combining two pointers by any ALU op yields
* an arbitrary scalar. Disallow all math except
* pointer subtraction
*/
if (opcode == BPF_SUB && env->allow_ptr_leaks) {
mark_reg_unknown(env, regs, insn->dst_reg);
return 0;
}
verbose(env, "R%d pointer %s pointer prohibited\n",
insn->dst_reg,
bpf_alu_string[opcode >> 4]);
return -EACCES;
} else {
/* scalar += pointer
* This is legal, but we have to reverse our
* src/dest handling in computing the range
*/
err = mark_chain_precision(env, insn->dst_reg);
if (err)
return err;
return adjust_ptr_min_max_vals(env, insn,
src_reg, dst_reg);
}
} else if (ptr_reg) {
/* pointer += scalar */
err = mark_chain_precision(env, insn->src_reg);
if (err)
return err;
return adjust_ptr_min_max_vals(env, insn,
dst_reg, src_reg);
} else if (dst_reg->precise) {
/* if dst_reg is precise, src_reg should be precise as well */
err = mark_chain_precision(env, insn->src_reg);
if (err)
return err;
}
} else {
/* Pretend the src is a reg with a known value, since we only
* need to be able to read from this state.
*/
off_reg.type = SCALAR_VALUE;
__mark_reg_known(&off_reg, insn->imm);
src_reg = &off_reg;
if (ptr_reg) /* pointer += K */
return adjust_ptr_min_max_vals(env, insn,
ptr_reg, src_reg);
}
/* Got here implies adding two SCALAR_VALUEs */
if (WARN_ON_ONCE(ptr_reg)) {
print_verifier_state(env, state, true);
verbose(env, "verifier internal error: unexpected ptr_reg\n");
return -EINVAL;
}
if (WARN_ON(!src_reg)) {
print_verifier_state(env, state, true);
verbose(env, "verifier internal error: no src_reg\n");
return -EINVAL;
}
return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
}
/* check validity of 32-bit and 64-bit arithmetic operations */
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
struct bpf_reg_state *regs = cur_regs(env);
u8 opcode = BPF_OP(insn->code);
int err;
if (opcode == BPF_END || opcode == BPF_NEG) {
if (opcode == BPF_NEG) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->src_reg != BPF_REG_0 ||
insn->off != 0 || insn->imm != 0) {
verbose(env, "BPF_NEG uses reserved fields\n");
return -EINVAL;
}
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
(insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
BPF_CLASS(insn->code) == BPF_ALU64) {
verbose(env, "BPF_END uses reserved fields\n");
return -EINVAL;
}
}
/* check src operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
if (is_pointer_value(env, insn->dst_reg)) {
verbose(env, "R%d pointer arithmetic prohibited\n",
insn->dst_reg);
return -EACCES;
}
/* check dest operand */
err = check_reg_arg(env, insn->dst_reg, DST_OP);
if (err)
return err;
} else if (opcode == BPF_MOV) {
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0 || insn->off != 0) {
verbose(env, "BPF_MOV uses reserved fields\n");
return -EINVAL;
}
/* check src operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
verbose(env, "BPF_MOV uses reserved fields\n");
return -EINVAL;
}
}
/* check dest operand, mark as required later */
err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
if (err)
return err;
if (BPF_SRC(insn->code) == BPF_X) {
struct bpf_reg_state *src_reg = regs + insn->src_reg;
struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
if (BPF_CLASS(insn->code) == BPF_ALU64) {
/* case: R1 = R2
* copy register state to dest reg
*/
if (src_reg->type == SCALAR_VALUE && !src_reg->id)
/* Assign src and dst registers the same ID
* that will be used by find_equal_scalars()
* to propagate min/max range.
*/
src_reg->id = ++env->id_gen;
*dst_reg = *src_reg;
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = DEF_NOT_SUBREG;
} else {
/* R1 = (u32) R2 */
if (is_pointer_value(env, insn->src_reg)) {
verbose(env,
"R%d partial copy of pointer\n",
insn->src_reg);
return -EACCES;
} else if (src_reg->type == SCALAR_VALUE) {
*dst_reg = *src_reg;
/* Make sure ID is cleared otherwise
* dst_reg min/max could be incorrectly
* propagated into src_reg by find_equal_scalars()
*/
dst_reg->id = 0;
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = env->insn_idx + 1;
} else {
mark_reg_unknown(env, regs,
insn->dst_reg);
}
zext_32_to_64(dst_reg);
reg_bounds_sync(dst_reg);
}
} else {
/* case: R = imm
* remember the value we stored into this reg
*/
/* clear any state __mark_reg_known doesn't set */
mark_reg_unknown(env, regs, insn->dst_reg);
regs[insn->dst_reg].type = SCALAR_VALUE;
if (BPF_CLASS(insn->code) == BPF_ALU64) {
__mark_reg_known(regs + insn->dst_reg,
insn->imm);
} else {
__mark_reg_known(regs + insn->dst_reg,
(u32)insn->imm);
}
}
} else if (opcode > BPF_END) {
verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
return -EINVAL;
} else { /* all other ALU ops: and, sub, xor, add, ... */
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0 || insn->off != 0) {
verbose(env, "BPF_ALU uses reserved fields\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
verbose(env, "BPF_ALU uses reserved fields\n");
return -EINVAL;
}
}
/* check src2 operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
verbose(env, "div by zero\n");
return -EINVAL;
}
if ((opcode == BPF_LSH || opcode == BPF_RSH ||
opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
if (insn->imm < 0 || insn->imm >= size) {
verbose(env, "invalid shift %d\n", insn->imm);
return -EINVAL;
}
}
/* check dest operand */
err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
if (err)
return err;
return adjust_reg_min_max_vals(env, insn);
}
return 0;
}
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
struct bpf_reg_state *dst_reg,
enum bpf_reg_type type,
bool range_right_open)
{
struct bpf_func_state *state;
struct bpf_reg_state *reg;
int new_range;
if (dst_reg->off < 0 ||
(dst_reg->off == 0 && range_right_open))
/* This doesn't give us any range */
return;
if (dst_reg->umax_value > MAX_PACKET_OFF ||
dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
/* Risk of overflow. For instance, ptr + (1<<63) may be less
* than pkt_end, but that's because it's also less than pkt.
*/
return;
new_range = dst_reg->off;
if (range_right_open)
new_range++;
/* Examples for register markings:
*
* pkt_data in dst register:
*
* r2 = r3;
* r2 += 8;
* if (r2 > pkt_end) goto <handle exception>
* <access okay>
*
* r2 = r3;
* r2 += 8;
* if (r2 < pkt_end) goto <access okay>
* <handle exception>
*
* Where:
* r2 == dst_reg, pkt_end == src_reg
* r2=pkt(id=n,off=8,r=0)
* r3=pkt(id=n,off=0,r=0)
*
* pkt_data in src register:
*
* r2 = r3;
* r2 += 8;
* if (pkt_end >= r2) goto <access okay>
* <handle exception>
*
* r2 = r3;
* r2 += 8;
* if (pkt_end <= r2) goto <handle exception>
* <access okay>
*
* Where:
* pkt_end == dst_reg, r2 == src_reg
* r2=pkt(id=n,off=8,r=0)
* r3=pkt(id=n,off=0,r=0)
*
* Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
* or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
* and [r3, r3 + 8-1) respectively is safe to access depending on
* the check.
*/
/* If our ids match, then we must have the same max_value. And we
* don't care about the other reg's fixed offset, since if it's too big
* the range won't allow anything.
* dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
*/
bpf_for_each_reg_in_vstate(vstate, state, reg, ({
if (reg->type == type && reg->id == dst_reg->id)
/* keep the maximum range already checked */
reg->range = max(reg->range, new_range);
}));
}
static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
{
struct tnum subreg = tnum_subreg(reg->var_off);
s32 sval = (s32)val;
switch (opcode) {
case BPF_JEQ:
if (tnum_is_const(subreg))
return !!tnum_equals_const(subreg, val);
break;
case BPF_JNE:
if (tnum_is_const(subreg))
return !tnum_equals_const(subreg, val);
break;
case BPF_JSET:
if ((~subreg.mask & subreg.value) & val)
return 1;
if (!((subreg.mask | subreg.value) & val))
return 0;
break;
case BPF_JGT:
if (reg->u32_min_value > val)
return 1;
else if (reg->u32_max_value <= val)
return 0;
break;
case BPF_JSGT:
if (reg->s32_min_value > sval)
return 1;
else if (reg->s32_max_value <= sval)
return 0;
break;
case BPF_JLT:
if (reg->u32_max_value < val)
return 1;
else if (reg->u32_min_value >= val)
return 0;
break;
case BPF_JSLT:
if (reg->s32_max_value < sval)
return 1;
else if (reg->s32_min_value >= sval)
return 0;
break;
case BPF_JGE:
if (reg->u32_min_value >= val)
return 1;
else if (reg->u32_max_value < val)
return 0;
break;
case BPF_JSGE:
if (reg->s32_min_value >= sval)
return 1;
else if (reg->s32_max_value < sval)
return 0;
break;
case BPF_JLE:
if (reg->u32_max_value <= val)
return 1;
else if (reg->u32_min_value > val)
return 0;
break;
case BPF_JSLE:
if (reg->s32_max_value <= sval)
return 1;
else if (reg->s32_min_value > sval)
return 0;
break;
}
return -1;
}
static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
{
s64 sval = (s64)val;
switch (opcode) {
case BPF_JEQ:
if (tnum_is_const(reg->var_off))
return !!tnum_equals_const(reg->var_off, val);
break;
case BPF_JNE:
if (tnum_is_const(reg->var_off))
return !tnum_equals_const(reg->var_off, val);
break;
case BPF_JSET:
if ((~reg->var_off.mask & reg->var_off.value) & val)
return 1;
if (!((reg->var_off.mask | reg->var_off.value) & val))
return 0;
break;
case BPF_JGT:
if (reg->umin_value > val)
return 1;
else if (reg->umax_value <= val)
return 0;
break;
case BPF_JSGT:
if (reg->smin_value > sval)
return 1;
else if (reg->smax_value <= sval)
return 0;
break;
case BPF_JLT:
if (reg->umax_value < val)
return 1;
else if (reg->umin_value >= val)
return 0;
break;
case BPF_JSLT:
if (reg->smax_value < sval)
return 1;
else if (reg->smin_value >= sval)
return 0;
break;
case BPF_JGE:
if (reg->umin_value >= val)
return 1;
else if (reg->umax_value < val)
return 0;
break;
case BPF_JSGE:
if (reg->smin_value >= sval)
return 1;
else if (reg->smax_value < sval)
return 0;
break;
case BPF_JLE:
if (reg->umax_value <= val)
return 1;
else if (reg->umin_value > val)
return 0;
break;
case BPF_JSLE:
if (reg->smax_value <= sval)
return 1;
else if (reg->smin_value > sval)
return 0;
break;
}
return -1;
}
/* compute branch direction of the expression "if (reg opcode val) goto target;"
* and return:
* 1 - branch will be taken and "goto target" will be executed
* 0 - branch will not be taken and fall-through to next insn
* -1 - unknown. Example: "if (reg < 5)" is unknown when register value
* range [0,10]
*/
static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
bool is_jmp32)
{
if (__is_pointer_value(false, reg)) {
if (!reg_type_not_null(reg->type))
return -1;
/* If pointer is valid tests against zero will fail so we can
* use this to direct branch taken.
*/
if (val != 0)
return -1;
switch (opcode) {
case BPF_JEQ:
return 0;
case BPF_JNE:
return 1;
default:
return -1;
}
}
if (is_jmp32)
return is_branch32_taken(reg, val, opcode);
return is_branch64_taken(reg, val, opcode);
}
static int flip_opcode(u32 opcode)
{
/* How can we transform "a <op> b" into "b <op> a"? */
static const u8 opcode_flip[16] = {
/* these stay the same */
[BPF_JEQ >> 4] = BPF_JEQ,
[BPF_JNE >> 4] = BPF_JNE,
[BPF_JSET >> 4] = BPF_JSET,
/* these swap "lesser" and "greater" (L and G in the opcodes) */
[BPF_JGE >> 4] = BPF_JLE,
[BPF_JGT >> 4] = BPF_JLT,
[BPF_JLE >> 4] = BPF_JGE,
[BPF_JLT >> 4] = BPF_JGT,
[BPF_JSGE >> 4] = BPF_JSLE,
[BPF_JSGT >> 4] = BPF_JSLT,
[BPF_JSLE >> 4] = BPF_JSGE,
[BPF_JSLT >> 4] = BPF_JSGT
};
return opcode_flip[opcode >> 4];
}
static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg,
u8 opcode)
{
struct bpf_reg_state *pkt;
if (src_reg->type == PTR_TO_PACKET_END) {
pkt = dst_reg;
} else if (dst_reg->type == PTR_TO_PACKET_END) {
pkt = src_reg;
opcode = flip_opcode(opcode);
} else {
return -1;
}
if (pkt->range >= 0)
return -1;
switch (opcode) {
case BPF_JLE:
/* pkt <= pkt_end */
fallthrough;
case BPF_JGT:
/* pkt > pkt_end */
if (pkt->range == BEYOND_PKT_END)
/* pkt has at last one extra byte beyond pkt_end */
return opcode == BPF_JGT;
break;
case BPF_JLT:
/* pkt < pkt_end */
fallthrough;
case BPF_JGE:
/* pkt >= pkt_end */
if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
return opcode == BPF_JGE;
break;
}
return -1;
}
/* Adjusts the register min/max values in the case that the dst_reg is the
* variable register that we are working on, and src_reg is a constant or we're
* simply doing a BPF_K check.
* In JEQ/JNE cases we also adjust the var_off values.
*/
static void reg_set_min_max(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg,
u64 val, u32 val32,
u8 opcode, bool is_jmp32)
{
struct tnum false_32off = tnum_subreg(false_reg->var_off);
struct tnum false_64off = false_reg->var_off;
struct tnum true_32off = tnum_subreg(true_reg->var_off);
struct tnum true_64off = true_reg->var_off;
s64 sval = (s64)val;
s32 sval32 = (s32)val32;
/* If the dst_reg is a pointer, we can't learn anything about its
* variable offset from the compare (unless src_reg were a pointer into
* the same object, but we don't bother with that.
* Since false_reg and true_reg have the same type by construction, we
* only need to check one of them for pointerness.
*/
if (__is_pointer_value(false, false_reg))
return;
switch (opcode) {
/* JEQ/JNE comparison doesn't change the register equivalence.
*
* r1 = r2;
* if (r1 == 42) goto label;
* ...
* label: // here both r1 and r2 are known to be 42.
*
* Hence when marking register as known preserve it's ID.
*/
case BPF_JEQ:
if (is_jmp32) {
__mark_reg32_known(true_reg, val32);
true_32off = tnum_subreg(true_reg->var_off);
} else {
___mark_reg_known(true_reg, val);
true_64off = true_reg->var_off;
}
break;
case BPF_JNE:
if (is_jmp32) {
__mark_reg32_known(false_reg, val32);
false_32off = tnum_subreg(false_reg->var_off);
} else {
___mark_reg_known(false_reg, val);
false_64off = false_reg->var_off;
}
break;
case BPF_JSET:
if (is_jmp32) {
false_32off = tnum_and(false_32off, tnum_const(~val32));
if (is_power_of_2(val32))
true_32off = tnum_or(true_32off,
tnum_const(val32));
} else {
false_64off = tnum_and(false_64off, tnum_const(~val));
if (is_power_of_2(val))
true_64off = tnum_or(true_64off,
tnum_const(val));
}
break;
case BPF_JGE:
case BPF_JGT:
{
if (is_jmp32) {
u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
false_reg->u32_max_value = min(false_reg->u32_max_value,
false_umax);
true_reg->u32_min_value = max(true_reg->u32_min_value,
true_umin);
} else {
u64 false_umax = opcode == BPF_JGT ? val : val - 1;
u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
false_reg->umax_value = min(false_reg->umax_value, false_umax);
true_reg->umin_value = max(true_reg->umin_value, true_umin);
}
break;
}
case BPF_JSGE:
case BPF_JSGT:
{
if (is_jmp32) {
s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
} else {
s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
false_reg->smax_value = min(false_reg->smax_value, false_smax);
true_reg->smin_value = max(true_reg->smin_value, true_smin);
}
break;
}
case BPF_JLE:
case BPF_JLT:
{
if (is_jmp32) {
u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
false_reg->u32_min_value = max(false_reg->u32_min_value,
false_umin);
true_reg->u32_max_value = min(true_reg->u32_max_value,
true_umax);
} else {
u64 false_umin = opcode == BPF_JLT ? val : val + 1;
u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
false_reg->umin_value = max(false_reg->umin_value, false_umin);
true_reg->umax_value = min(true_reg->umax_value, true_umax);
}
break;
}
case BPF_JSLE:
case BPF_JSLT:
{
if (is_jmp32) {
s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
} else {
s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
false_reg->smin_value = max(false_reg->smin_value, false_smin);
true_reg->smax_value = min(true_reg->smax_value, true_smax);
}
break;
}
default:
return;
}
if (is_jmp32) {
false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
tnum_subreg(false_32off));
true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
tnum_subreg(true_32off));
__reg_combine_32_into_64(false_reg);
__reg_combine_32_into_64(true_reg);
} else {
false_reg->var_off = false_64off;
true_reg->var_off = true_64off;
__reg_combine_64_into_32(false_reg);
__reg_combine_64_into_32(true_reg);
}
}
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
* the variable reg.
*/
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg,
u64 val, u32 val32,
u8 opcode, bool is_jmp32)
{
opcode = flip_opcode(opcode);
/* This uses zero as "not present in table"; luckily the zero opcode,
* BPF_JA, can't get here.
*/
if (opcode)
reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
}
/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
struct bpf_reg_state *dst_reg)
{
src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
dst_reg->umin_value);
src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
dst_reg->umax_value);
src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
dst_reg->smin_value);
src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
dst_reg->smax_value);
src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
dst_reg->var_off);
reg_bounds_sync(src_reg);
reg_bounds_sync(dst_reg);
}
static void reg_combine_min_max(struct bpf_reg_state *true_src,
struct bpf_reg_state *true_dst,
struct bpf_reg_state *false_src,
struct bpf_reg_state *false_dst,
u8 opcode)
{
switch (opcode) {
case BPF_JEQ:
__reg_combine_min_max(true_src, true_dst);
break;
case BPF_JNE:
__reg_combine_min_max(false_src, false_dst);
break;
}
}
static void mark_ptr_or_null_reg(struct bpf_func_state *state,
struct bpf_reg_state *reg, u32 id,
bool is_null)
{
if (type_may_be_null(reg->type) && reg->id == id &&
!WARN_ON_ONCE(!reg->id)) {
if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
!tnum_equals_const(reg->var_off, 0) ||
reg->off)) {
/* Old offset (both fixed and variable parts) should
* have been known-zero, because we don't allow pointer
* arithmetic on pointers that might be NULL. If we
* see this happening, don't convert the register.
*/
return;
}
if (is_null) {
reg->type = SCALAR_VALUE;
/* We don't need id and ref_obj_id from this point
* onwards anymore, thus we should better reset it,
* so that state pruning has chances to take effect.
*/
reg->id = 0;
reg->ref_obj_id = 0;
return;
}
mark_ptr_not_null_reg(reg);
if (!reg_may_point_to_spin_lock(reg)) {
/* For not-NULL ptr, reg->ref_obj_id will be reset
* in release_reference().
*
* reg->id is still used by spin_lock ptr. Other
* than spin_lock ptr type, reg->id can be reset.
*/
reg->id = 0;
}
}
}
/* The logic is similar to find_good_pkt_pointers(), both could eventually
* be folded together at some point.
*/
static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
bool is_null)
{
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *regs = state->regs, *reg;
u32 ref_obj_id = regs[regno].ref_obj_id;
u32 id = regs[regno].id;
if (ref_obj_id && ref_obj_id == id && is_null)
/* regs[regno] is in the " == NULL" branch.
* No one could have freed the reference state before
* doing the NULL check.
*/
WARN_ON_ONCE(release_reference_state(state, id));
bpf_for_each_reg_in_vstate(vstate, state, reg, ({
mark_ptr_or_null_reg(state, reg, id, is_null);
}));
}
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg,
struct bpf_verifier_state *this_branch,
struct bpf_verifier_state *other_branch)
{
if (BPF_SRC(insn->code) != BPF_X)
return false;
/* Pointers are always 64-bit. */
if (BPF_CLASS(insn->code) == BPF_JMP32)
return false;
switch (BPF_OP(insn->code)) {
case BPF_JGT:
if ((dst_reg->type == PTR_TO_PACKET &&
src_reg->type == PTR_TO_PACKET_END) ||
(dst_reg->type == PTR_TO_PACKET_META &&
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
find_good_pkt_pointers(this_branch, dst_reg,
dst_reg->type, false);
mark_pkt_end(other_branch, insn->dst_reg, true);
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
src_reg->type == PTR_TO_PACKET) ||
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
src_reg->type == PTR_TO_PACKET_META)) {
/* pkt_end > pkt_data', pkt_data > pkt_meta' */
find_good_pkt_pointers(other_branch, src_reg,
src_reg->type, true);
mark_pkt_end(this_branch, insn->src_reg, false);
} else {
return false;
}
break;
case BPF_JLT:
if ((dst_reg->type == PTR_TO_PACKET &&
src_reg->type == PTR_TO_PACKET_END) ||
(dst_reg->type == PTR_TO_PACKET_META &&
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
find_good_pkt_pointers(other_branch, dst_reg,
dst_reg->type, true);
mark_pkt_end(this_branch, insn->dst_reg, false);
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
src_reg->type == PTR_TO_PACKET) ||
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
src_reg->type == PTR_TO_PACKET_META)) {
/* pkt_end < pkt_data', pkt_data > pkt_meta' */
find_good_pkt_pointers(this_branch, src_reg,
src_reg->type, false);
mark_pkt_end(other_branch, insn->src_reg, true);
} else {
return false;
}
break;
case BPF_JGE:
if ((dst_reg->type == PTR_TO_PACKET &&
src_reg->type == PTR_TO_PACKET_END) ||
(dst_reg->type == PTR_TO_PACKET_META &&
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
find_good_pkt_pointers(this_branch, dst_reg,
dst_reg->type, true);
mark_pkt_end(other_branch, insn->dst_reg, false);
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
src_reg->type == PTR_TO_PACKET) ||
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
src_reg->type == PTR_TO_PACKET_META)) {
/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
find_good_pkt_pointers(other_branch, src_reg,
src_reg->type, false);
mark_pkt_end(this_branch, insn->src_reg, true);
} else {
return false;
}
break;
case BPF_JLE:
if ((dst_reg->type == PTR_TO_PACKET &&
src_reg->type == PTR_TO_PACKET_END) ||
(dst_reg->type == PTR_TO_PACKET_META &&
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
find_good_pkt_pointers(other_branch, dst_reg,
dst_reg->type, false);
mark_pkt_end(this_branch, insn->dst_reg, true);
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
src_reg->type == PTR_TO_PACKET) ||
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
src_reg->type == PTR_TO_PACKET_META)) {
/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
find_good_pkt_pointers(this_branch, src_reg,
src_reg->type, true);
mark_pkt_end(other_branch, insn->src_reg, false);
} else {
return false;
}
break;
default:
return false;
}
return true;
}
static void find_equal_scalars(struct bpf_verifier_state *vstate,
struct bpf_reg_state *known_reg)
{
struct bpf_func_state *state;
struct bpf_reg_state *reg;
bpf_for_each_reg_in_vstate(vstate, state, reg, ({
if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
*reg = *known_reg;
}));
}
static int check_cond_jmp_op(struct bpf_verifier_env *env,
struct bpf_insn *insn, int *insn_idx)
{
struct bpf_verifier_state *this_branch = env->cur_state;
struct bpf_verifier_state *other_branch;
struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
struct bpf_reg_state *eq_branch_regs;
u8 opcode = BPF_OP(insn->code);
bool is_jmp32;
int pred = -1;
int err;
/* Only conditional jumps are expected to reach here. */
if (opcode == BPF_JA || opcode > BPF_JSLE) {
verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
return -EINVAL;
}
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0) {
verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
if (is_pointer_value(env, insn->src_reg)) {
verbose(env, "R%d pointer comparison prohibited\n",
insn->src_reg);
return -EACCES;
}
src_reg = &regs[insn->src_reg];
} else {
if (insn->src_reg != BPF_REG_0) {
verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
return -EINVAL;
}
}
/* check src2 operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
dst_reg = &regs[insn->dst_reg];
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
if (BPF_SRC(insn->code) == BPF_K) {
pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
} else if (src_reg->type == SCALAR_VALUE &&
is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
pred = is_branch_taken(dst_reg,
tnum_subreg(src_reg->var_off).value,
opcode,
is_jmp32);
} else if (src_reg->type == SCALAR_VALUE &&
!is_jmp32 && tnum_is_const(src_reg->var_off)) {
pred = is_branch_taken(dst_reg,
src_reg->var_off.value,
opcode,
is_jmp32);
} else if (reg_is_pkt_pointer_any(dst_reg) &&
reg_is_pkt_pointer_any(src_reg) &&
!is_jmp32) {
pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
}
if (pred >= 0) {
/* If we get here with a dst_reg pointer type it is because
* above is_branch_taken() special cased the 0 comparison.
*/
if (!__is_pointer_value(false, dst_reg))
err = mark_chain_precision(env, insn->dst_reg);
if (BPF_SRC(insn->code) == BPF_X && !err &&
!__is_pointer_value(false, src_reg))
err = mark_chain_precision(env, insn->src_reg);
if (err)
return err;
}
if (pred == 1) {
/* Only follow the goto, ignore fall-through. If needed, push
* the fall-through branch for simulation under speculative
* execution.
*/
if (!env->bypass_spec_v1 &&
!sanitize_speculative_path(env, insn, *insn_idx + 1,
*insn_idx))
return -EFAULT;
*insn_idx += insn->off;
return 0;
} else if (pred == 0) {
/* Only follow the fall-through branch, since that's where the
* program will go. If needed, push the goto branch for
* simulation under speculative execution.
*/
if (!env->bypass_spec_v1 &&
!sanitize_speculative_path(env, insn,
*insn_idx + insn->off + 1,
*insn_idx))
return -EFAULT;
return 0;
}
other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
false);
if (!other_branch)
return -EFAULT;
other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
/* detect if we are comparing against a constant value so we can adjust
* our min/max values for our dst register.
* this is only legit if both are scalars (or pointers to the same
* object, I suppose, see the PTR_MAYBE_NULL related if block below),
* because otherwise the different base pointers mean the offsets aren't
* comparable.
*/
if (BPF_SRC(insn->code) == BPF_X) {
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
if (dst_reg->type == SCALAR_VALUE &&
src_reg->type == SCALAR_VALUE) {
if (tnum_is_const(src_reg->var_off) ||
(is_jmp32 &&
tnum_is_const(tnum_subreg(src_reg->var_off))))
reg_set_min_max(&other_branch_regs[insn->dst_reg],
dst_reg,
src_reg->var_off.value,
tnum_subreg(src_reg->var_off).value,
opcode, is_jmp32);
else if (tnum_is_const(dst_reg->var_off) ||
(is_jmp32 &&
tnum_is_const(tnum_subreg(dst_reg->var_off))))
reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
src_reg,
dst_reg->var_off.value,
tnum_subreg(dst_reg->var_off).value,
opcode, is_jmp32);
else if (!is_jmp32 &&
(opcode == BPF_JEQ || opcode == BPF_JNE))
/* Comparing for equality, we can combine knowledge */
reg_combine_min_max(&other_branch_regs[insn->src_reg],
&other_branch_regs[insn->dst_reg],
src_reg, dst_reg, opcode);
if (src_reg->id &&
!WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
find_equal_scalars(this_branch, src_reg);
find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
}
}
} else if (dst_reg->type == SCALAR_VALUE) {
reg_set_min_max(&other_branch_regs[insn->dst_reg],
dst_reg, insn->imm, (u32)insn->imm,
opcode, is_jmp32);
}
if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
!WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
find_equal_scalars(this_branch, dst_reg);
find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
}
/* if one pointer register is compared to another pointer
* register check if PTR_MAYBE_NULL could be lifted.
* E.g. register A - maybe null
* register B - not null
* for JNE A, B, ... - A is not null in the false branch;
* for JEQ A, B, ... - A is not null in the true branch.
*/
if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
__is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) {
eq_branch_regs = NULL;
switch (opcode) {
case BPF_JEQ:
eq_branch_regs = other_branch_regs;
break;
case BPF_JNE:
eq_branch_regs = regs;
break;
default:
/* do nothing */
break;
}
if (eq_branch_regs) {
if (type_may_be_null(src_reg->type))
mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
else
mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
}
}
/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
* NOTE: these optimizations below are related with pointer comparison
* which will never be JMP32.
*/
if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
type_may_be_null(dst_reg->type)) {
/* Mark all identical registers in each branch as either
* safe or unknown depending R == 0 or R != 0 conditional.
*/
mark_ptr_or_null_regs(this_branch, insn->dst_reg,
opcode == BPF_JNE);
mark_ptr_or_null_regs(other_branch, insn->dst_reg,
opcode == BPF_JEQ);
} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
this_branch, other_branch) &&
is_pointer_value(env, insn->dst_reg)) {
verbose(env, "R%d pointer comparison prohibited\n",
insn->dst_reg);
return -EACCES;
}
if (env->log.level & BPF_LOG_LEVEL)
print_insn_state(env, this_branch->frame[this_branch->curframe]);
return 0;
}
/* verify BPF_LD_IMM64 instruction */
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
struct bpf_insn_aux_data *aux = cur_aux(env);
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *dst_reg;
struct bpf_map *map;
int err;
if (BPF_SIZE(insn->code) != BPF_DW) {
verbose(env, "invalid BPF_LD_IMM insn\n");
return -EINVAL;
}
if (insn->off != 0) {
verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
return -EINVAL;
}
err = check_reg_arg(env, insn->dst_reg, DST_OP);
if (err)
return err;
dst_reg = &regs[insn->dst_reg];
if (insn->src_reg == 0) {
u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
dst_reg->type = SCALAR_VALUE;
__mark_reg_known(&regs[insn->dst_reg], imm);
return 0;
}
/* All special src_reg cases are listed below. From this point onwards
* we either succeed and assign a corresponding dst_reg->type after
* zeroing the offset, or fail and reject the program.
*/
mark_reg_known_zero(env, regs, insn->dst_reg);
if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
dst_reg->type = aux->btf_var.reg_type;
switch (base_type(dst_reg->type)) {
case PTR_TO_MEM:
dst_reg->mem_size = aux->btf_var.mem_size;
break;
case PTR_TO_BTF_ID:
dst_reg->btf = aux->btf_var.btf;
dst_reg->btf_id = aux->btf_var.btf_id;
break;
default:
verbose(env, "bpf verifier is misconfigured\n");
return -EFAULT;
}
return 0;
}
if (insn->src_reg == BPF_PSEUDO_FUNC) {
struct bpf_prog_aux *aux = env->prog->aux;
u32 subprogno = find_subprog(env,
env->insn_idx + insn->imm + 1);
if (!aux->func_info) {
verbose(env, "missing btf func_info\n");
return -EINVAL;
}
if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
verbose(env, "callback function not static\n");
return -EINVAL;
}
dst_reg->type = PTR_TO_FUNC;
dst_reg->subprogno = subprogno;
return 0;
}
map = env->used_maps[aux->map_index];
dst_reg->map_ptr = map;
if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
dst_reg->type = PTR_TO_MAP_VALUE;
dst_reg->off = aux->map_off;
WARN_ON_ONCE(map->max_entries != 1);
/* We want reg->id to be same (0) as map_value is not distinct */
} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
insn->src_reg == BPF_PSEUDO_MAP_IDX) {
dst_reg->type = CONST_PTR_TO_MAP;
} else {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
return 0;
}
static bool may_access_skb(enum bpf_prog_type type)
{
switch (type) {
case BPF_PROG_TYPE_SOCKET_FILTER:
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
return true;
default:
return false;
}
}
/* verify safety of LD_ABS|LD_IND instructions:
* - they can only appear in the programs where ctx == skb
* - since they are wrappers of function calls, they scratch R1-R5 registers,
* preserve R6-R9, and store return value into R0
*
* Implicit input:
* ctx == skb == R6 == CTX
*
* Explicit input:
* SRC == any register
* IMM == 32-bit immediate
*
* Output:
* R0 - 8/16/32-bit skb data converted to cpu endianness
*/
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
struct bpf_reg_state *regs = cur_regs(env);
static const int ctx_reg = BPF_REG_6;
u8 mode = BPF_MODE(insn->code);
int i, err;
if (!may_access_skb(resolve_prog_type(env->prog))) {
verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
return -EINVAL;
}
if (!env->ops->gen_ld_abs) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
BPF_SIZE(insn->code) == BPF_DW ||
(mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
return -EINVAL;
}
/* check whether implicit source operand (register R6) is readable */
err = check_reg_arg(env, ctx_reg, SRC_OP);
if (err)
return err;
/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
* gen_ld_abs() may terminate the program at runtime, leading to
* reference leak.
*/
err = check_reference_leak(env);
if (err) {
verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
return err;
}
if (env->cur_state->active_lock.ptr) {
verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
return -EINVAL;
}
if (regs[ctx_reg].type != PTR_TO_CTX) {
verbose(env,
"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
return -EINVAL;
}
if (mode == BPF_IND) {
/* check explicit source operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
}
err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
if (err < 0)
return err;
/* reset caller saved regs to unreadable */
for (i = 0; i < CALLER_SAVED_REGS; i++) {
mark_reg_not_init(env, regs, caller_saved[i]);
check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
}
/* mark destination R0 register as readable, since it contains
* the value fetched from the packet.
* Already marked as written above.
*/
mark_reg_unknown(env, regs, BPF_REG_0);
/* ld_abs load up to 32-bit skb data. */
regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
return 0;
}
static int check_return_code(struct bpf_verifier_env *env)
{
struct tnum enforce_attach_type_range = tnum_unknown;
const struct bpf_prog *prog = env->prog;
struct bpf_reg_state *reg;
struct tnum range = tnum_range(0, 1);
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
int err;
struct bpf_func_state *frame = env->cur_state->frame[0];
const bool is_subprog = frame->subprogno;
/* LSM and struct_ops func-ptr's return type could be "void" */
if (!is_subprog) {
switch (prog_type) {
case BPF_PROG_TYPE_LSM:
if (prog->expected_attach_type == BPF_LSM_CGROUP)
/* See below, can be 0 or 0-1 depending on hook. */
break;
fallthrough;
case BPF_PROG_TYPE_STRUCT_OPS:
if (!prog->aux->attach_func_proto->type)
return 0;
break;
default:
break;
}
}
/* eBPF calling convention is such that R0 is used
* to return the value from eBPF program.
* Make sure that it's readable at this time
* of bpf_exit, which means that program wrote
* something into it earlier
*/
err = check_reg_arg(env, BPF_REG_0, SRC_OP);
if (err)
return err;
if (is_pointer_value(env, BPF_REG_0)) {
verbose(env, "R0 leaks addr as return value\n");
return -EACCES;
}
reg = cur_regs(env) + BPF_REG_0;
if (frame->in_async_callback_fn) {
/* enforce return zero from async callbacks like timer */
if (reg->type != SCALAR_VALUE) {
verbose(env, "In async callback the register R0 is not a known value (%s)\n",
reg_type_str(env, reg->type));
return -EINVAL;
}
if (!tnum_in(tnum_const(0), reg->var_off)) {
verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
return -EINVAL;
}
return 0;
}
if (is_subprog) {
if (reg->type != SCALAR_VALUE) {
verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
reg_type_str(env, reg->type));
return -EINVAL;
}
return 0;
}
switch (prog_type) {
case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
range = tnum_range(1, 1);
if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
range = tnum_range(0, 3);
break;
case BPF_PROG_TYPE_CGROUP_SKB:
if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
range = tnum_range(0, 3);
enforce_attach_type_range = tnum_range(2, 3);
}
break;
case BPF_PROG_TYPE_CGROUP_SOCK:
case BPF_PROG_TYPE_SOCK_OPS:
case BPF_PROG_TYPE_CGROUP_DEVICE:
case BPF_PROG_TYPE_CGROUP_SYSCTL:
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
break;
case BPF_PROG_TYPE_RAW_TRACEPOINT:
if (!env->prog->aux->attach_btf_id)
return 0;
range = tnum_const(0);
break;
case BPF_PROG_TYPE_TRACING:
switch (env->prog->expected_attach_type) {
case BPF_TRACE_FENTRY:
case BPF_TRACE_FEXIT:
range = tnum_const(0);
break;
case BPF_TRACE_RAW_TP:
case BPF_MODIFY_RETURN:
return 0;
case BPF_TRACE_ITER:
break;
default:
return -ENOTSUPP;
}
break;
case BPF_PROG_TYPE_SK_LOOKUP:
range = tnum_range(SK_DROP, SK_PASS);
break;
case BPF_PROG_TYPE_LSM:
if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
/* Regular BPF_PROG_TYPE_LSM programs can return
* any value.
*/
return 0;
}
if (!env->prog->aux->attach_func_proto->type) {
/* Make sure programs that attach to void
* hooks don't try to modify return value.
*/
range = tnum_range(1, 1);
}
break;
case BPF_PROG_TYPE_EXT:
/* freplace program can return anything as its return value
* depends on the to-be-replaced kernel func or bpf program.
*/
default:
return 0;
}
if (reg->type != SCALAR_VALUE) {
verbose(env, "At program exit the register R0 is not a known value (%s)\n",
reg_type_str(env, reg->type));
return -EINVAL;
}
if (!tnum_in(range, reg->var_off)) {
verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
if (prog->expected_attach_type == BPF_LSM_CGROUP &&
prog_type == BPF_PROG_TYPE_LSM &&
!prog->aux->attach_func_proto->type)
verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
return -EINVAL;
}
if (!tnum_is_unknown(enforce_attach_type_range) &&
tnum_in(enforce_attach_type_range, reg->var_off))
env->prog->enforce_expected_attach_type = 1;
return 0;
}
/* non-recursive DFS pseudo code
* 1 procedure DFS-iterative(G,v):
* 2 label v as discovered
* 3 let S be a stack
* 4 S.push(v)
* 5 while S is not empty
* 6 t <- S.peek()
* 7 if t is what we're looking for:
* 8 return t
* 9 for all edges e in G.adjacentEdges(t) do
* 10 if edge e is already labelled
* 11 continue with the next edge
* 12 w <- G.adjacentVertex(t,e)
* 13 if vertex w is not discovered and not explored
* 14 label e as tree-edge
* 15 label w as discovered
* 16 S.push(w)
* 17 continue at 5
* 18 else if vertex w is discovered
* 19 label e as back-edge
* 20 else
* 21 // vertex w is explored
* 22 label e as forward- or cross-edge
* 23 label t as explored
* 24 S.pop()
*
* convention:
* 0x10 - discovered
* 0x11 - discovered and fall-through edge labelled
* 0x12 - discovered and fall-through and branch edges labelled
* 0x20 - explored
*/
enum {
DISCOVERED = 0x10,
EXPLORED = 0x20,
FALLTHROUGH = 1,
BRANCH = 2,
};
static u32 state_htab_size(struct bpf_verifier_env *env)
{
return env->prog->len;
}
static struct bpf_verifier_state_list **explored_state(
struct bpf_verifier_env *env,
int idx)
{
struct bpf_verifier_state *cur = env->cur_state;
struct bpf_func_state *state = cur->frame[cur->curframe];
return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
}
static void init_explored_state(struct bpf_verifier_env *env, int idx)
{
env->insn_aux_data[idx].prune_point = true;
}
enum {
DONE_EXPLORING = 0,
KEEP_EXPLORING = 1,
};
/* t, w, e - match pseudo-code above:
* t - index of current instruction
* w - next instruction
* e - edge
*/
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
bool loop_ok)
{
int *insn_stack = env->cfg.insn_stack;
int *insn_state = env->cfg.insn_state;
if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
return DONE_EXPLORING;
if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
return DONE_EXPLORING;
if (w < 0 || w >= env->prog->len) {
verbose_linfo(env, t, "%d: ", t);
verbose(env, "jump out of range from insn %d to %d\n", t, w);
return -EINVAL;
}
if (e == BRANCH)
/* mark branch target for state pruning */
init_explored_state(env, w);
if (insn_state[w] == 0) {
/* tree-edge */
insn_state[t] = DISCOVERED | e;
insn_state[w] = DISCOVERED;
if (env->cfg.cur_stack >= env->prog->len)
return -E2BIG;
insn_stack[env->cfg.cur_stack++] = w;
return KEEP_EXPLORING;
} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
if (loop_ok && env->bpf_capable)
return DONE_EXPLORING;
verbose_linfo(env, t, "%d: ", t);
verbose_linfo(env, w, "%d: ", w);
verbose(env, "back-edge from insn %d to %d\n", t, w);
return -EINVAL;
} else if (insn_state[w] == EXPLORED) {
/* forward- or cross-edge */
insn_state[t] = DISCOVERED | e;
} else {
verbose(env, "insn state internal bug\n");
return -EFAULT;
}
return DONE_EXPLORING;
}
static int visit_func_call_insn(int t, int insn_cnt,
struct bpf_insn *insns,
struct bpf_verifier_env *env,
bool visit_callee)
{
int ret;
ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
if (ret)
return ret;
if (t + 1 < insn_cnt)
init_explored_state(env, t + 1);
if (visit_callee) {
init_explored_state(env, t);
ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
/* It's ok to allow recursion from CFG point of
* view. __check_func_call() will do the actual
* check.
*/
bpf_pseudo_func(insns + t));
}
return ret;
}
/* Visits the instruction at index t and returns one of the following:
* < 0 - an error occurred
* DONE_EXPLORING - the instruction was fully explored
* KEEP_EXPLORING - there is still work to be done before it is fully explored
*/
static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
{
struct bpf_insn *insns = env->prog->insnsi;
int ret;
if (bpf_pseudo_func(insns + t))
return visit_func_call_insn(t, insn_cnt, insns, env, true);
/* All non-branch instructions have a single fall-through edge. */
if (BPF_CLASS(insns[t].code) != BPF_JMP &&
BPF_CLASS(insns[t].code) != BPF_JMP32)
return push_insn(t, t + 1, FALLTHROUGH, env, false);
switch (BPF_OP(insns[t].code)) {
case BPF_EXIT:
return DONE_EXPLORING;
case BPF_CALL:
if (insns[t].imm == BPF_FUNC_timer_set_callback)
/* Mark this call insn to trigger is_state_visited() check
* before call itself is processed by __check_func_call().
* Otherwise new async state will be pushed for further
* exploration.
*/
init_explored_state(env, t);
return visit_func_call_insn(t, insn_cnt, insns, env,
insns[t].src_reg == BPF_PSEUDO_CALL);
case BPF_JA:
if (BPF_SRC(insns[t].code) != BPF_K)
return -EINVAL;
/* unconditional jump with single edge */
ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
true);
if (ret)
return ret;
/* unconditional jmp is not a good pruning point,
* but it's marked, since backtracking needs
* to record jmp history in is_state_visited().
*/
init_explored_state(env, t + insns[t].off + 1);
/* tell verifier to check for equivalent states
* after every call and jump
*/
if (t + 1 < insn_cnt)
init_explored_state(env, t + 1);
return ret;
default:
/* conditional jump with two edges */
init_explored_state(env, t);
ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
if (ret)
return ret;
return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
}
}
/* non-recursive depth-first-search to detect loops in BPF program
* loop == back-edge in directed graph
*/
static int check_cfg(struct bpf_verifier_env *env)
{
int insn_cnt = env->prog->len;
int *insn_stack, *insn_state;
int ret = 0;
int i;
insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
if (!insn_state)
return -ENOMEM;
insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
if (!insn_stack) {
kvfree(insn_state);
return -ENOMEM;
}
insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
insn_stack[0] = 0; /* 0 is the first instruction */
env->cfg.cur_stack = 1;
while (env->cfg.cur_stack > 0) {
int t = insn_stack[env->cfg.cur_stack - 1];
ret = visit_insn(t, insn_cnt, env);
switch (ret) {
case DONE_EXPLORING:
insn_state[t] = EXPLORED;
env->cfg.cur_stack--;
break;
case KEEP_EXPLORING:
break;
default:
if (ret > 0) {
verbose(env, "visit_insn internal bug\n");
ret = -EFAULT;
}
goto err_free;
}
}
if (env->cfg.cur_stack < 0) {
verbose(env, "pop stack internal bug\n");
ret = -EFAULT;
goto err_free;
}
for (i = 0; i < insn_cnt; i++) {
if (insn_state[i] != EXPLORED) {
verbose(env, "unreachable insn %d\n", i);
ret = -EINVAL;
goto err_free;
}
}
ret = 0; /* cfg looks good */
err_free:
kvfree(insn_state);
kvfree(insn_stack);
env->cfg.insn_state = env->cfg.insn_stack = NULL;
return ret;
}
static int check_abnormal_return(struct bpf_verifier_env *env)
{
int i;
for (i = 1; i < env->subprog_cnt; i++) {
if (env->subprog_info[i].has_ld_abs) {
verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
return -EINVAL;
}
if (env->subprog_info[i].has_tail_call) {
verbose(env, "tail_call is not allowed in subprogs without BTF\n");
return -EINVAL;
}
}
return 0;
}
/* The minimum supported BTF func info size */
#define MIN_BPF_FUNCINFO_SIZE 8
#define MAX_FUNCINFO_REC_SIZE 252
static int check_btf_func(struct bpf_verifier_env *env,
const union bpf_attr *attr,
bpfptr_t uattr)
{
const struct btf_type *type, *func_proto, *ret_type;
u32 i, nfuncs, urec_size, min_size;
u32 krec_size = sizeof(struct bpf_func_info);
struct bpf_func_info *krecord;
struct bpf_func_info_aux *info_aux = NULL;
struct bpf_prog *prog;
const struct btf *btf;
bpfptr_t urecord;
u32 prev_offset = 0;
bool scalar_return;
int ret = -ENOMEM;
nfuncs = attr->func_info_cnt;
if (!nfuncs) {
if (check_abnormal_return(env))
return -EINVAL;
return 0;
}
if (nfuncs != env->subprog_cnt) {
verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
return -EINVAL;
}
urec_size = attr->func_info_rec_size;
if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
urec_size > MAX_FUNCINFO_REC_SIZE ||
urec_size % sizeof(u32)) {
verbose(env, "invalid func info rec size %u\n", urec_size);
return -EINVAL;
}
prog = env->prog;
btf = prog->aux->btf;
urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
min_size = min_t(u32, krec_size, urec_size);
krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
if (!krecord)
return -ENOMEM;
info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
if (!info_aux)
goto err_free;
for (i = 0; i < nfuncs; i++) {
ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
if (ret) {
if (ret == -E2BIG) {
verbose(env, "nonzero tailing record in func info");
/* set the size kernel expects so loader can zero
* out the rest of the record.
*/
if (copy_to_bpfptr_offset(uattr,
offsetof(union bpf_attr, func_info_rec_size),
&min_size, sizeof(min_size)))
ret = -EFAULT;
}
goto err_free;
}
if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
ret = -EFAULT;
goto err_free;
}
/* check insn_off */
ret = -EINVAL;
if (i == 0) {
if (krecord[i].insn_off) {
verbose(env,
"nonzero insn_off %u for the first func info record",
krecord[i].insn_off);
goto err_free;
}
} else if (krecord[i].insn_off <= prev_offset) {
verbose(env,
"same or smaller insn offset (%u) than previous func info record (%u)",
krecord[i].insn_off, prev_offset);
goto err_free;
}
if (env->subprog_info[i].start != krecord[i].insn_off) {
verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
goto err_free;
}
/* check type_id */
type = btf_type_by_id(btf, krecord[i].type_id);
if (!type || !btf_type_is_func(type)) {
verbose(env, "invalid type id %d in func info",
krecord[i].type_id);
goto err_free;
}
info_aux[i].linkage = BTF_INFO_VLEN(type->info);
func_proto = btf_type_by_id(btf, type->type);
if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
/* btf_func_check() already verified it during BTF load */
goto err_free;
ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
scalar_return =
btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
goto err_free;
}
if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
goto err_free;
}
prev_offset = krecord[i].insn_off;
bpfptr_add(&urecord, urec_size);
}
prog->aux->func_info = krecord;
prog->aux->func_info_cnt = nfuncs;
prog->aux->func_info_aux = info_aux;
return 0;
err_free:
kvfree(krecord);
kfree(info_aux);
return ret;
}
static void adjust_btf_func(struct bpf_verifier_env *env)
{
struct bpf_prog_aux *aux = env->prog->aux;
int i;
if (!aux->func_info)
return;
for (i = 0; i < env->subprog_cnt; i++)
aux->func_info[i].insn_off = env->subprog_info[i].start;
}
#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
static int check_btf_line(struct bpf_verifier_env *env,
const union bpf_attr *attr,
bpfptr_t uattr)
{
u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
struct bpf_subprog_info *sub;
struct bpf_line_info *linfo;
struct bpf_prog *prog;
const struct btf *btf;
bpfptr_t ulinfo;
int err;
nr_linfo = attr->line_info_cnt;
if (!nr_linfo)
return 0;
if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
return -EINVAL;
rec_size = attr->line_info_rec_size;
if (rec_size < MIN_BPF_LINEINFO_SIZE ||
rec_size > MAX_LINEINFO_REC_SIZE ||
rec_size & (sizeof(u32) - 1))
return -EINVAL;
/* Need to zero it in case the userspace may
* pass in a smaller bpf_line_info object.
*/
linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
GFP_KERNEL | __GFP_NOWARN);
if (!linfo)
return -ENOMEM;
prog = env->prog;
btf = prog->aux->btf;
s = 0;
sub = env->subprog_info;
ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
expected_size = sizeof(struct bpf_line_info);
ncopy = min_t(u32, expected_size, rec_size);
for (i = 0; i < nr_linfo; i++) {
err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
if (err) {
if (err == -E2BIG) {
verbose(env, "nonzero tailing record in line_info");
if (copy_to_bpfptr_offset(uattr,
offsetof(union bpf_attr, line_info_rec_size),
&expected_size, sizeof(expected_size)))
err = -EFAULT;
}
goto err_free;
}
if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
err = -EFAULT;
goto err_free;
}
/*
* Check insn_off to ensure
* 1) strictly increasing AND
* 2) bounded by prog->len
*
* The linfo[0].insn_off == 0 check logically falls into
* the later "missing bpf_line_info for func..." case
* because the first linfo[0].insn_off must be the
* first sub also and the first sub must have
* subprog_info[0].start == 0.
*/
if ((i && linfo[i].insn_off <= prev_offset) ||
linfo[i].insn_off >= prog->len) {
verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
i, linfo[i].insn_off, prev_offset,
prog->len);
err = -EINVAL;
goto err_free;
}
if (!prog->insnsi[linfo[i].insn_off].code) {
verbose(env,
"Invalid insn code at line_info[%u].insn_off\n",
i);
err = -EINVAL;
goto err_free;
}
if (!btf_name_by_offset(btf, linfo[i].line_off) ||
!btf_name_by_offset(btf, linfo[i].file_name_off)) {
verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
err = -EINVAL;
goto err_free;
}
if (s != env->subprog_cnt) {
if (linfo[i].insn_off == sub[s].start) {
sub[s].linfo_idx = i;
s++;
} else if (sub[s].start < linfo[i].insn_off) {
verbose(env, "missing bpf_line_info for func#%u\n", s);
err = -EINVAL;
goto err_free;
}
}
prev_offset = linfo[i].insn_off;
bpfptr_add(&ulinfo, rec_size);
}
if (s != env->subprog_cnt) {
verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
env->subprog_cnt - s, s);
err = -EINVAL;
goto err_free;
}
prog->aux->linfo = linfo;
prog->aux->nr_linfo = nr_linfo;
return 0;
err_free:
kvfree(linfo);
return err;
}
#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
static int check_core_relo(struct bpf_verifier_env *env,
const union bpf_attr *attr,
bpfptr_t uattr)
{
u32 i, nr_core_relo, ncopy, expected_size, rec_size;
struct bpf_core_relo core_relo = {};
struct bpf_prog *prog = env->prog;
const struct btf *btf = prog->aux->btf;
struct bpf_core_ctx ctx = {
.log = &env->log,
.btf = btf,
};
bpfptr_t u_core_relo;
int err;
nr_core_relo = attr->core_relo_cnt;
if (!nr_core_relo)
return 0;
if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
return -EINVAL;
rec_size = attr->core_relo_rec_size;
if (rec_size < MIN_CORE_RELO_SIZE ||
rec_size > MAX_CORE_RELO_SIZE ||
rec_size % sizeof(u32))
return -EINVAL;
u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
expected_size = sizeof(struct bpf_core_relo);
ncopy = min_t(u32, expected_size, rec_size);
/* Unlike func_info and line_info, copy and apply each CO-RE
* relocation record one at a time.
*/
for (i = 0; i < nr_core_relo; i++) {
/* future proofing when sizeof(bpf_core_relo) changes */
err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
if (err) {
if (err == -E2BIG) {
verbose(env, "nonzero tailing record in core_relo");
if (copy_to_bpfptr_offset(uattr,
offsetof(union bpf_attr, core_relo_rec_size),
&expected_size, sizeof(expected_size)))
err = -EFAULT;
}
break;
}
if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
err = -EFAULT;
break;
}
if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
i, core_relo.insn_off, prog->len);
err = -EINVAL;
break;
}
err = bpf_core_apply(&ctx, &core_relo, i,
&prog->insnsi[core_relo.insn_off / 8]);
if (err)
break;
bpfptr_add(&u_core_relo, rec_size);
}
return err;
}
static int check_btf_info(struct bpf_verifier_env *env,
const union bpf_attr *attr,
bpfptr_t uattr)
{
struct btf *btf;
int err;
if (!attr->func_info_cnt && !attr->line_info_cnt) {
if (check_abnormal_return(env))
return -EINVAL;
return 0;
}
btf = btf_get_by_fd(attr->prog_btf_fd);
if (IS_ERR(btf))
return PTR_ERR(btf);
if (btf_is_kernel(btf)) {
btf_put(btf);
return -EACCES;
}
env->prog->aux->btf = btf;
err = check_btf_func(env, attr, uattr);
if (err)
return err;
err = check_btf_line(env, attr, uattr);
if (err)
return err;
err = check_core_relo(env, attr, uattr);
if (err)
return err;
return 0;
}
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
struct bpf_reg_state *cur)
{
return old->umin_value <= cur->umin_value &&
old->umax_value >= cur->umax_value &&
old->smin_value <= cur->smin_value &&
old->smax_value >= cur->smax_value &&
old->u32_min_value <= cur->u32_min_value &&
old->u32_max_value >= cur->u32_max_value &&
old->s32_min_value <= cur->s32_min_value &&
old->s32_max_value >= cur->s32_max_value;
}
/* If in the old state two registers had the same id, then they need to have
* the same id in the new state as well. But that id could be different from
* the old state, so we need to track the mapping from old to new ids.
* Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
* regs with old id 5 must also have new id 9 for the new state to be safe. But
* regs with a different old id could still have new id 9, we don't care about
* that.
* So we look through our idmap to see if this old id has been seen before. If
* so, we require the new id to match; otherwise, we add the id pair to the map.
*/
static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
{
unsigned int i;
for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
if (!idmap[i].old) {
/* Reached an empty slot; haven't seen this id before */
idmap[i].old = old_id;
idmap[i].cur = cur_id;
return true;
}
if (idmap[i].old == old_id)
return idmap[i].cur == cur_id;
}
/* We ran out of idmap slots, which should be impossible */
WARN_ON_ONCE(1);
return false;
}
static void clean_func_state(struct bpf_verifier_env *env,
struct bpf_func_state *st)
{
enum bpf_reg_liveness live;
int i, j;
for (i = 0; i < BPF_REG_FP; i++) {
live = st->regs[i].live;
/* liveness must not touch this register anymore */
st->regs[i].live |= REG_LIVE_DONE;
if (!(live & REG_LIVE_READ))
/* since the register is unused, clear its state
* to make further comparison simpler
*/
__mark_reg_not_init(env, &st->regs[i]);
}
for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
live = st->stack[i].spilled_ptr.live;
/* liveness must not touch this stack slot anymore */
st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
if (!(live & REG_LIVE_READ)) {
__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
for (j = 0; j < BPF_REG_SIZE; j++)
st->stack[i].slot_type[j] = STACK_INVALID;
}
}
}
static void clean_verifier_state(struct bpf_verifier_env *env,
struct bpf_verifier_state *st)
{
int i;
if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
/* all regs in this state in all frames were already marked */
return;
for (i = 0; i <= st->curframe; i++)
clean_func_state(env, st->frame[i]);
}
/* the parentage chains form a tree.
* the verifier states are added to state lists at given insn and
* pushed into state stack for future exploration.
* when the verifier reaches bpf_exit insn some of the verifer states
* stored in the state lists have their final liveness state already,
* but a lot of states will get revised from liveness point of view when
* the verifier explores other branches.
* Example:
* 1: r0 = 1
* 2: if r1 == 100 goto pc+1
* 3: r0 = 2
* 4: exit
* when the verifier reaches exit insn the register r0 in the state list of
* insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
* of insn 2 and goes exploring further. At the insn 4 it will walk the
* parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
*
* Since the verifier pushes the branch states as it sees them while exploring
* the program the condition of walking the branch instruction for the second
* time means that all states below this branch were already explored and
* their final liveness marks are already propagated.
* Hence when the verifier completes the search of state list in is_state_visited()
* we can call this clean_live_states() function to mark all liveness states
* as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
* will not be used.
* This function also clears the registers and stack for states that !READ
* to simplify state merging.
*
* Important note here that walking the same branch instruction in the callee
* doesn't meant that the states are DONE. The verifier has to compare
* the callsites
*/
static void clean_live_states(struct bpf_verifier_env *env, int insn,
struct bpf_verifier_state *cur)
{
struct bpf_verifier_state_list *sl;
int i;
sl = *explored_state(env, insn);
while (sl) {
if (sl->state.branches)
goto next;
if (sl->state.insn_idx != insn ||
sl->state.curframe != cur->curframe)
goto next;
for (i = 0; i <= cur->curframe; i++)
if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
goto next;
clean_verifier_state(env, &sl->state);
next:
sl = sl->next;
}
}
/* Returns true if (rold safe implies rcur safe) */
static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
{
bool equal;
if (!(rold->live & REG_LIVE_READ))
/* explored state didn't use this */
return true;
equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
if (rold->type == PTR_TO_STACK)
/* two stack pointers are equal only if they're pointing to
* the same stack frame, since fp-8 in foo != fp-8 in bar
*/
return equal && rold->frameno == rcur->frameno;
if (equal)
return true;
if (rold->type == NOT_INIT)
/* explored state can't have used this */
return true;
if (rcur->type == NOT_INIT)
return false;
switch (base_type(rold->type)) {
case SCALAR_VALUE:
if (env->explore_alu_limits)
return false;
if (rcur->type == SCALAR_VALUE) {
if (!rold->precise)
return true;
/* new val must satisfy old val knowledge */
return range_within(rold, rcur) &&
tnum_in(rold->var_off, rcur->var_off);
} else {
/* We're trying to use a pointer in place of a scalar.
* Even if the scalar was unbounded, this could lead to
* pointer leaks because scalars are allowed to leak
* while pointers are not. We could make this safe in
* special cases if root is calling us, but it's
* probably not worth the hassle.
*/
return false;
}
case PTR_TO_MAP_KEY:
case PTR_TO_MAP_VALUE:
/* a PTR_TO_MAP_VALUE could be safe to use as a
* PTR_TO_MAP_VALUE_OR_NULL into the same map.
* However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
* checked, doing so could have affected others with the same
* id, and we can't check for that because we lost the id when
* we converted to a PTR_TO_MAP_VALUE.
*/
if (type_may_be_null(rold->type)) {
if (!type_may_be_null(rcur->type))
return false;
if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
return false;
/* Check our ids match any regs they're supposed to */
return check_ids(rold->id, rcur->id, idmap);
}
/* If the new min/max/var_off satisfy the old ones and
* everything else matches, we are OK.
* 'id' is not compared, since it's only used for maps with
* bpf_spin_lock inside map element and in such cases if
* the rest of the prog is valid for one map element then
* it's valid for all map elements regardless of the key
* used in bpf_map_lookup()
*/
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
range_within(rold, rcur) &&
tnum_in(rold->var_off, rcur->var_off);
case PTR_TO_PACKET_META:
case PTR_TO_PACKET:
if (rcur->type != rold->type)
return false;
/* We must have at least as much range as the old ptr
* did, so that any accesses which were safe before are
* still safe. This is true even if old range < old off,
* since someone could have accessed through (ptr - k), or
* even done ptr -= k in a register, to get a safe access.
*/
if (rold->range > rcur->range)
return false;
/* If the offsets don't match, we can't trust our alignment;
* nor can we be sure that we won't fall out of range.
*/
if (rold->off != rcur->off)
return false;
/* id relations must be preserved */
if (rold->id && !check_ids(rold->id, rcur->id, idmap))
return false;
/* new val must satisfy old val knowledge */
return range_within(rold, rcur) &&
tnum_in(rold->var_off, rcur->var_off);
case PTR_TO_CTX:
case CONST_PTR_TO_MAP:
case PTR_TO_PACKET_END:
case PTR_TO_FLOW_KEYS:
case PTR_TO_SOCKET:
case PTR_TO_SOCK_COMMON:
case PTR_TO_TCP_SOCK:
case PTR_TO_XDP_SOCK:
/* Only valid matches are exact, which memcmp() above
* would have accepted
*/
default:
/* Don't know what's going on, just say it's not safe */
return false;
}
/* Shouldn't get here; if we do, say it's not safe */
WARN_ON_ONCE(1);
return false;
}
static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
struct bpf_func_state *cur, struct bpf_id_pair *idmap)
{
int i, spi;
/* walk slots of the explored stack and ignore any additional
* slots in the current stack, since explored(safe) state
* didn't use them
*/
for (i = 0; i < old->allocated_stack; i++) {
spi = i / BPF_REG_SIZE;
if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
i += BPF_REG_SIZE - 1;
/* explored state didn't use this */
continue;
}
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
continue;
/* explored stack has more populated slots than current stack
* and these slots were used
*/
if (i >= cur->allocated_stack)
return false;
/* if old state was safe with misc data in the stack
* it will be safe with zero-initialized stack.
* The opposite is not true
*/
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
continue;
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
cur->stack[spi].slot_type[i % BPF_REG_SIZE])
/* Ex: old explored (safe) state has STACK_SPILL in
* this stack slot, but current has STACK_MISC ->
* this verifier states are not equivalent,
* return false to continue verification of this path
*/
return false;
if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
continue;
if (!is_spilled_reg(&old->stack[spi]))
continue;
if (!regsafe(env, &old->stack[spi].spilled_ptr,
&cur->stack[spi].spilled_ptr, idmap))
/* when explored and current stack slot are both storing
* spilled registers, check that stored pointers types
* are the same as well.
* Ex: explored safe path could have stored
* (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
* but current path has stored:
* (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
* such verifier states are not equivalent.
* return false to continue verification of this path
*/
return false;
}
return true;
}
static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
{
if (old->acquired_refs != cur->acquired_refs)
return false;
return !memcmp(old->refs, cur->refs,
sizeof(*old->refs) * old->acquired_refs);
}
/* compare two verifier states
*
* all states stored in state_list are known to be valid, since
* verifier reached 'bpf_exit' instruction through them
*
* this function is called when verifier exploring different branches of
* execution popped from the state stack. If it sees an old state that has
* more strict register state and more strict stack state then this execution
* branch doesn't need to be explored further, since verifier already
* concluded that more strict state leads to valid finish.
*
* Therefore two states are equivalent if register state is more conservative
* and explored stack state is more conservative than the current one.
* Example:
* explored current
* (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
* (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
*
* In other words if current stack state (one being explored) has more
* valid slots than old one that already passed validation, it means
* the verifier can stop exploring and conclude that current state is valid too
*
* Similarly with registers. If explored state has register type as invalid
* whereas register type in current state is meaningful, it means that
* the current state will reach 'bpf_exit' instruction safely
*/
static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
struct bpf_func_state *cur)
{
int i;
memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
for (i = 0; i < MAX_BPF_REG; i++)
if (!regsafe(env, &old->regs[i], &cur->regs[i],
env->idmap_scratch))
return false;
if (!stacksafe(env, old, cur, env->idmap_scratch))
return false;
if (!refsafe(old, cur))
return false;
return true;
}
static bool states_equal(struct bpf_verifier_env *env,
struct bpf_verifier_state *old,
struct bpf_verifier_state *cur)
{
int i;
if (old->curframe != cur->curframe)
return false;
/* Verification state from speculative execution simulation
* must never prune a non-speculative execution one.
*/
if (old->speculative && !cur->speculative)
return false;
if (old->active_lock.ptr != cur->active_lock.ptr ||
old->active_lock.id != cur->active_lock.id)
return false;
/* for states to be equal callsites have to be the same
* and all frame states need to be equivalent
*/
for (i = 0; i <= old->curframe; i++) {
if (old->frame[i]->callsite != cur->frame[i]->callsite)
return false;
if (!func_states_equal(env, old->frame[i], cur->frame[i]))
return false;
}
return true;
}
/* Return 0 if no propagation happened. Return negative error code if error
* happened. Otherwise, return the propagated bit.
*/
static int propagate_liveness_reg(struct bpf_verifier_env *env,
struct bpf_reg_state *reg,
struct bpf_reg_state *parent_reg)
{
u8 parent_flag = parent_reg->live & REG_LIVE_READ;
u8 flag = reg->live & REG_LIVE_READ;
int err;
/* When comes here, read flags of PARENT_REG or REG could be any of
* REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
* of propagation if PARENT_REG has strongest REG_LIVE_READ64.
*/
if (parent_flag == REG_LIVE_READ64 ||
/* Or if there is no read flag from REG. */
!flag ||
/* Or if the read flag from REG is the same as PARENT_REG. */
parent_flag == flag)
return 0;
err = mark_reg_read(env, reg, parent_reg, flag);
if (err)
return err;
return flag;
}
/* A write screens off any subsequent reads; but write marks come from the
* straight-line code between a state and its parent. When we arrive at an
* equivalent state (jump target or such) we didn't arrive by the straight-line
* code, so read marks in the state must propagate to the parent regardless
* of the state's write marks. That's what 'parent == state->parent' comparison
* in mark_reg_read() is for.
*/
static int propagate_liveness(struct bpf_verifier_env *env,
const struct bpf_verifier_state *vstate,
struct bpf_verifier_state *vparent)
{
struct bpf_reg_state *state_reg, *parent_reg;
struct bpf_func_state *state, *parent;
int i, frame, err = 0;
if (vparent->curframe != vstate->curframe) {
WARN(1, "propagate_live: parent frame %d current frame %d\n",
vparent->curframe, vstate->curframe);
return -EFAULT;
}
/* Propagate read liveness of registers... */
BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
for (frame = 0; frame <= vstate->curframe; frame++) {
parent = vparent->frame[frame];
state = vstate->frame[frame];
parent_reg = parent->regs;
state_reg = state->regs;
/* We don't need to worry about FP liveness, it's read-only */
for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
err = propagate_liveness_reg(env, &state_reg[i],
&parent_reg[i]);
if (err < 0)
return err;
if (err == REG_LIVE_READ64)
mark_insn_zext(env, &parent_reg[i]);
}
/* Propagate stack slots. */
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
i < parent->allocated_stack / BPF_REG_SIZE; i++) {
parent_reg = &parent->stack[i].spilled_ptr;
state_reg = &state->stack[i].spilled_ptr;
err = propagate_liveness_reg(env, state_reg,
parent_reg);
if (err < 0)
return err;
}
}
return 0;
}
/* find precise scalars in the previous equivalent state and
* propagate them into the current state
*/
static int propagate_precision(struct bpf_verifier_env *env,
const struct bpf_verifier_state *old)
{
struct bpf_reg_state *state_reg;
struct bpf_func_state *state;
int i, err = 0, fr;
for (fr = old->curframe; fr >= 0; fr--) {
state = old->frame[fr];
state_reg = state->regs;
for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
if (state_reg->type != SCALAR_VALUE ||
!state_reg->precise)
continue;
if (env->log.level & BPF_LOG_LEVEL2)
verbose(env, "frame %d: propagating r%d\n", i, fr);
err = mark_chain_precision_frame(env, fr, i);
if (err < 0)
return err;
}
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
if (!is_spilled_reg(&state->stack[i]))
continue;
state_reg = &state->stack[i].spilled_ptr;
if (state_reg->type != SCALAR_VALUE ||
!state_reg->precise)
continue;
if (env->log.level & BPF_LOG_LEVEL2)
verbose(env, "frame %d: propagating fp%d\n",
(-i - 1) * BPF_REG_SIZE, fr);
err = mark_chain_precision_stack_frame(env, fr, i);
if (err < 0)
return err;
}
}
return 0;
}
static bool states_maybe_looping(struct bpf_verifier_state *old,
struct bpf_verifier_state *cur)
{
struct bpf_func_state *fold, *fcur;
int i, fr = cur->curframe;
if (old->curframe != fr)
return false;
fold = old->frame[fr];
fcur = cur->frame[fr];
for (i = 0; i < MAX_BPF_REG; i++)
if (memcmp(&fold->regs[i], &fcur->regs[i],
offsetof(struct bpf_reg_state, parent)))
return false;
return true;
}
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
{
struct bpf_verifier_state_list *new_sl;
struct bpf_verifier_state_list *sl, **pprev;
struct bpf_verifier_state *cur = env->cur_state, *new;
int i, j, err, states_cnt = 0;
bool add_new_state = env->test_state_freq ? true : false;
cur->last_insn_idx = env->prev_insn_idx;
if (!env->insn_aux_data[insn_idx].prune_point)
/* this 'insn_idx' instruction wasn't marked, so we will not
* be doing state search here
*/
return 0;
/* bpf progs typically have pruning point every 4 instructions
* http://vger.kernel.org/bpfconf2019.html#session-1
* Do not add new state for future pruning if the verifier hasn't seen
* at least 2 jumps and at least 8 instructions.
* This heuristics helps decrease 'total_states' and 'peak_states' metric.
* In tests that amounts to up to 50% reduction into total verifier
* memory consumption and 20% verifier time speedup.
*/
if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
env->insn_processed - env->prev_insn_processed >= 8)
add_new_state = true;
pprev = explored_state(env, insn_idx);
sl = *pprev;
clean_live_states(env, insn_idx, cur);
while (sl) {
states_cnt++;
if (sl->state.insn_idx != insn_idx)
goto next;
if (sl->state.branches) {
struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
if (frame->in_async_callback_fn &&
frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
/* Different async_entry_cnt means that the verifier is
* processing another entry into async callback.
* Seeing the same state is not an indication of infinite
* loop or infinite recursion.
* But finding the same state doesn't mean that it's safe
* to stop processing the current state. The previous state
* hasn't yet reached bpf_exit, since state.branches > 0.
* Checking in_async_callback_fn alone is not enough either.
* Since the verifier still needs to catch infinite loops
* inside async callbacks.
*/
} else if (states_maybe_looping(&sl->state, cur) &&
states_equal(env, &sl->state, cur)) {
verbose_linfo(env, insn_idx, "; ");
verbose(env, "infinite loop detected at insn %d\n", insn_idx);
return -EINVAL;
}
/* if the verifier is processing a loop, avoid adding new state
* too often, since different loop iterations have distinct
* states and may not help future pruning.
* This threshold shouldn't be too low to make sure that
* a loop with large bound will be rejected quickly.
* The most abusive loop will be:
* r1 += 1
* if r1 < 1000000 goto pc-2
* 1M insn_procssed limit / 100 == 10k peak states.
* This threshold shouldn't be too high either, since states
* at the end of the loop are likely to be useful in pruning.
*/
if (env->jmps_processed - env->prev_jmps_processed < 20 &&
env->insn_processed - env->prev_insn_processed < 100)
add_new_state = false;
goto miss;
}
if (states_equal(env, &sl->state, cur)) {
sl->hit_cnt++;
/* reached equivalent register/stack state,
* prune the search.
* Registers read by the continuation are read by us.
* If we have any write marks in env->cur_state, they
* will prevent corresponding reads in the continuation
* from reaching our parent (an explored_state). Our
* own state will get the read marks recorded, but
* they'll be immediately forgotten as we're pruning
* this state and will pop a new one.
*/
err = propagate_liveness(env, &sl->state, cur);
/* if previous state reached the exit with precision and
* current state is equivalent to it (except precsion marks)
* the precision needs to be propagated back in
* the current state.
*/
err = err ? : push_jmp_history(env, cur);
err = err ? : propagate_precision(env, &sl->state);
if (err)
return err;
return 1;
}
miss:
/* when new state is not going to be added do not increase miss count.
* Otherwise several loop iterations will remove the state
* recorded earlier. The goal of these heuristics is to have
* states from some iterations of the loop (some in the beginning
* and some at the end) to help pruning.
*/
if (add_new_state)
sl->miss_cnt++;
/* heuristic to determine whether this state is beneficial
* to keep checking from state equivalence point of view.
* Higher numbers increase max_states_per_insn and verification time,
* but do not meaningfully decrease insn_processed.
*/
if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
/* the state is unlikely to be useful. Remove it to
* speed up verification
*/
*pprev = sl->next;
if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
u32 br = sl->state.branches;
WARN_ONCE(br,
"BUG live_done but branches_to_explore %d\n",
br);
free_verifier_state(&sl->state, false);
kfree(sl);
env->peak_states--;
} else {
/* cannot free this state, since parentage chain may
* walk it later. Add it for free_list instead to
* be freed at the end of verification
*/
sl->next = env->free_list;
env->free_list = sl;
}
sl = *pprev;
continue;
}
next:
pprev = &sl->next;
sl = *pprev;
}
if (env->max_states_per_insn < states_cnt)
env->max_states_per_insn = states_cnt;
if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
return push_jmp_history(env, cur);
if (!add_new_state)
return push_jmp_history(env, cur);
/* There were no equivalent states, remember the current one.
* Technically the current state is not proven to be safe yet,
* but it will either reach outer most bpf_exit (which means it's safe)
* or it will be rejected. When there are no loops the verifier won't be
* seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
* again on the way to bpf_exit.
* When looping the sl->state.branches will be > 0 and this state
* will not be considered for equivalence until branches == 0.
*/
new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
if (!new_sl)
return -ENOMEM;
env->total_states++;
env->peak_states++;
env->prev_jmps_processed = env->jmps_processed;
env->prev_insn_processed = env->insn_processed;
/* forget precise markings we inherited, see __mark_chain_precision */
if (env->bpf_capable)
mark_all_scalars_imprecise(env, cur);
/* add new state to the head of linked list */
new = &new_sl->state;
err = copy_verifier_state(new, cur);
if (err) {
free_verifier_state(new, false);
kfree(new_sl);
return err;
}
new->insn_idx = insn_idx;
WARN_ONCE(new->branches != 1,
"BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
cur->parent = new;
cur->first_insn_idx = insn_idx;
clear_jmp_history(cur);
new_sl->next = *explored_state(env, insn_idx);
*explored_state(env, insn_idx) = new_sl;
/* connect new state to parentage chain. Current frame needs all
* registers connected. Only r6 - r9 of the callers are alive (pushed
* to the stack implicitly by JITs) so in callers' frames connect just
* r6 - r9 as an optimization. Callers will have r1 - r5 connected to
* the state of the call instruction (with WRITTEN set), and r0 comes
* from callee with its full parentage chain, anyway.
*/
/* clear write marks in current state: the writes we did are not writes
* our child did, so they don't screen off its reads from us.
* (There are no read marks in current state, because reads always mark
* their parent and current state never has children yet. Only
* explored_states can get read marks.)
*/
for (j = 0; j <= cur->curframe; j++) {
for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
for (i = 0; i < BPF_REG_FP; i++)
cur->frame[j]->regs[i].live = REG_LIVE_NONE;
}
/* all stack frames are accessible from callee, clear them all */
for (j = 0; j <= cur->curframe; j++) {
struct bpf_func_state *frame = cur->frame[j];
struct bpf_func_state *newframe = new->frame[j];
for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
frame->stack[i].spilled_ptr.parent =
&newframe->stack[i].spilled_ptr;
}
}
return 0;
}
/* Return true if it's OK to have the same insn return a different type. */
static bool reg_type_mismatch_ok(enum bpf_reg_type type)
{
switch (base_type(type)) {
case PTR_TO_CTX:
case PTR_TO_SOCKET:
case PTR_TO_SOCK_COMMON:
case PTR_TO_TCP_SOCK:
case PTR_TO_XDP_SOCK:
case PTR_TO_BTF_ID:
return false;
default:
return true;
}
}
/* If an instruction was previously used with particular pointer types, then we
* need to be careful to avoid cases such as the below, where it may be ok
* for one branch accessing the pointer, but not ok for the other branch:
*
* R1 = sock_ptr
* goto X;
* ...
* R1 = some_other_valid_ptr;
* goto X;
* ...
* R2 = *(u32 *)(R1 + 0);
*/
static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
{
return src != prev && (!reg_type_mismatch_ok(src) ||
!reg_type_mismatch_ok(prev));
}
static int do_check(struct bpf_verifier_env *env)
{
bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
struct bpf_verifier_state *state = env->cur_state;
struct bpf_insn *insns = env->prog->insnsi;
struct bpf_reg_state *regs;
int insn_cnt = env->prog->len;
bool do_print_state = false;
int prev_insn_idx = -1;
for (;;) {
struct bpf_insn *insn;
u8 class;
int err;
env->prev_insn_idx = prev_insn_idx;
if (env->insn_idx >= insn_cnt) {
verbose(env, "invalid insn idx %d insn_cnt %d\n",
env->insn_idx, insn_cnt);
return -EFAULT;
}
insn = &insns[env->insn_idx];
class = BPF_CLASS(insn->code);
if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
verbose(env,
"BPF program is too large. Processed %d insn\n",
env->insn_processed);
return -E2BIG;
}
err = is_state_visited(env, env->insn_idx);
if (err < 0)
return err;
if (err == 1) {
/* found equivalent state, can prune the search */
if (env->log.level & BPF_LOG_LEVEL) {
if (do_print_state)
verbose(env, "\nfrom %d to %d%s: safe\n",
env->prev_insn_idx, env->insn_idx,
env->cur_state->speculative ?
" (speculative execution)" : "");
else
verbose(env, "%d: safe\n", env->insn_idx);
}
goto process_bpf_exit;
}
if (signal_pending(current))
return -EAGAIN;
if (need_resched())
cond_resched();
if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
verbose(env, "\nfrom %d to %d%s:",
env->prev_insn_idx, env->insn_idx,
env->cur_state->speculative ?
" (speculative execution)" : "");
print_verifier_state(env, state->frame[state->curframe], true);
do_print_state = false;
}
if (env->log.level & BPF_LOG_LEVEL) {
const struct bpf_insn_cbs cbs = {
.cb_call = disasm_kfunc_name,
.cb_print = verbose,
.private_data = env,
};
if (verifier_state_scratched(env))
print_insn_state(env, state->frame[state->curframe]);
verbose_linfo(env, env->insn_idx, "; ");
env->prev_log_len = env->log.len_used;
verbose(env, "%d: ", env->insn_idx);
print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
env->prev_log_len = env->log.len_used;
}
if (bpf_prog_is_dev_bound(env->prog->aux)) {
err = bpf_prog_offload_verify_insn(env, env->insn_idx,
env->prev_insn_idx);
if (err)
return err;
}
regs = cur_regs(env);
sanitize_mark_insn_seen(env);
prev_insn_idx = env->insn_idx;
if (class == BPF_ALU || class == BPF_ALU64) {
err = check_alu_op(env, insn);
if (err)
return err;
} else if (class == BPF_LDX) {
enum bpf_reg_type *prev_src_type, src_reg_type;
/* check for reserved fields is already done */
/* check src operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
if (err)
return err;
src_reg_type = regs[insn->src_reg].type;
/* check that memory (src_reg + off) is readable,
* the state of dst_reg will be updated by this func
*/
err = check_mem_access(env, env->insn_idx, insn->src_reg,
insn->off, BPF_SIZE(insn->code),
BPF_READ, insn->dst_reg, false);
if (err)
return err;
prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
if (*prev_src_type == NOT_INIT) {
/* saw a valid insn
* dst_reg = *(u32 *)(src_reg + off)
* save type to validate intersecting paths
*/
*prev_src_type = src_reg_type;
} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
/* ABuser program is trying to use the same insn
* dst_reg = *(u32*) (src_reg + off)
* with different pointer types:
* src_reg == ctx in one branch and
* src_reg == stack|map in some other branch.
* Reject it.
*/
verbose(env, "same insn cannot be used with different pointers\n");
return -EINVAL;
}
} else if (class == BPF_STX) {
enum bpf_reg_type *prev_dst_type, dst_reg_type;
if (BPF_MODE(insn->code) == BPF_ATOMIC) {
err = check_atomic(env, env->insn_idx, insn);
if (err)
return err;
env->insn_idx++;
continue;
}
if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
verbose(env, "BPF_STX uses reserved fields\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
/* check src2 operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
dst_reg_type = regs[insn->dst_reg].type;
/* check that memory (dst_reg + off) is writeable */
err = check_mem_access(env, env->insn_idx, insn->dst_reg,
insn->off, BPF_SIZE(insn->code),
BPF_WRITE, insn->src_reg, false);
if (err)
return err;
prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
if (*prev_dst_type == NOT_INIT) {
*prev_dst_type = dst_reg_type;
} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
verbose(env, "same insn cannot be used with different pointers\n");
return -EINVAL;
}
} else if (class == BPF_ST) {
if (BPF_MODE(insn->code) != BPF_MEM ||
insn->src_reg != BPF_REG_0) {
verbose(env, "BPF_ST uses reserved fields\n");
return -EINVAL;
}
/* check src operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
if (is_ctx_reg(env, insn->dst_reg)) {
verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
insn->dst_reg,
reg_type_str(env, reg_state(env, insn->dst_reg)->type));
return -EACCES;
}
/* check that memory (dst_reg + off) is writeable */
err = check_mem_access(env, env->insn_idx, insn->dst_reg,
insn->off, BPF_SIZE(insn->code),
BPF_WRITE, -1, false);
if (err)
return err;
} else if (class == BPF_JMP || class == BPF_JMP32) {
u8 opcode = BPF_OP(insn->code);
env->jmps_processed++;
if (opcode == BPF_CALL) {
if (BPF_SRC(insn->code) != BPF_K ||
(insn->src_reg != BPF_PSEUDO_KFUNC_CALL
&& insn->off != 0) ||
(insn->src_reg != BPF_REG_0 &&
insn->src_reg != BPF_PSEUDO_CALL &&
insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
insn->dst_reg != BPF_REG_0 ||
class == BPF_JMP32) {
verbose(env, "BPF_CALL uses reserved fields\n");
return -EINVAL;
}
if (env->cur_state->active_lock.ptr &&
(insn->src_reg == BPF_PSEUDO_CALL ||
insn->imm != BPF_FUNC_spin_unlock)) {
verbose(env, "function calls are not allowed while holding a lock\n");
return -EINVAL;
}
if (insn->src_reg == BPF_PSEUDO_CALL)
err = check_func_call(env, insn, &env->insn_idx);
else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
err = check_kfunc_call(env, insn, &env->insn_idx);
else
err = check_helper_call(env, insn, &env->insn_idx);
if (err)
return err;
} else if (opcode == BPF_JA) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->imm != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->dst_reg != BPF_REG_0 ||
class == BPF_JMP32) {
verbose(env, "BPF_JA uses reserved fields\n");
return -EINVAL;
}
env->insn_idx += insn->off + 1;
continue;
} else if (opcode == BPF_EXIT) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->imm != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->dst_reg != BPF_REG_0 ||
class == BPF_JMP32) {
verbose(env, "BPF_EXIT uses reserved fields\n");
return -EINVAL;
}
if (env->cur_state->active_lock.ptr) {
verbose(env, "bpf_spin_unlock is missing\n");
return -EINVAL;
}
/* We must do check_reference_leak here before
* prepare_func_exit to handle the case when
* state->curframe > 0, it may be a callback
* function, for which reference_state must
* match caller reference state when it exits.
*/
err = check_reference_leak(env);
if (err)
return err;
if (state->curframe) {
/* exit from nested function */
err = prepare_func_exit(env, &env->insn_idx);
if (err)
return err;
do_print_state = true;
continue;
}
err = check_return_code(env);
if (err)
return err;
process_bpf_exit:
mark_verifier_state_scratched(env);
update_branch_counts(env, env->cur_state);
err = pop_stack(env, &prev_insn_idx,
&env->insn_idx, pop_log);
if (err < 0) {
if (err != -ENOENT)
return err;
break;
} else {
do_print_state = true;
continue;
}
} else {
err = check_cond_jmp_op(env, insn, &env->insn_idx);
if (err)
return err;
}
} else if (class == BPF_LD) {
u8 mode = BPF_MODE(insn->code);
if (mode == BPF_ABS || mode == BPF_IND) {
err = check_ld_abs(env, insn);
if (err)
return err;
} else if (mode == BPF_IMM) {
err = check_ld_imm(env, insn);
if (err)
return err;
env->insn_idx++;
sanitize_mark_insn_seen(env);
} else {
verbose(env, "invalid BPF_LD mode\n");
return -EINVAL;
}
} else {
verbose(env, "unknown insn class %d\n", class);
return -EINVAL;
}
env->insn_idx++;
}
return 0;
}
static int find_btf_percpu_datasec(struct btf *btf)
{
const struct btf_type *t;
const char *tname;
int i, n;
/*
* Both vmlinux and module each have their own ".data..percpu"
* DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
* types to look at only module's own BTF types.
*/
n = btf_nr_types(btf);
if (btf_is_module(btf))
i = btf_nr_types(btf_vmlinux);
else
i = 1;
for(; i < n; i++) {
t = btf_type_by_id(btf, i);
if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
continue;
tname = btf_name_by_offset(btf, t->name_off);
if (!strcmp(tname, ".data..percpu"))
return i;
}
return -ENOENT;
}
/* replace pseudo btf_id with kernel symbol address */
static int check_pseudo_btf_id(struct bpf_verifier_env *env,
struct bpf_insn *insn,
struct bpf_insn_aux_data *aux)
{
const struct btf_var_secinfo *vsi;
const struct btf_type *datasec;
struct btf_mod_pair *btf_mod;
const struct btf_type *t;
const char *sym_name;
bool percpu = false;
u32 type, id = insn->imm;
struct btf *btf;
s32 datasec_id;
u64 addr;
int i, btf_fd, err;
btf_fd = insn[1].imm;
if (btf_fd) {
btf = btf_get_by_fd(btf_fd);
if (IS_ERR(btf)) {
verbose(env, "invalid module BTF object FD specified.\n");
return -EINVAL;
}
} else {
if (!btf_vmlinux) {
verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
return -EINVAL;
}
btf = btf_vmlinux;
btf_get(btf);
}
t = btf_type_by_id(btf, id);
if (!t) {
verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
err = -ENOENT;
goto err_put;
}
if (!btf_type_is_var(t)) {
verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
err = -EINVAL;
goto err_put;
}
sym_name = btf_name_by_offset(btf, t->name_off);
addr = kallsyms_lookup_name(sym_name);
if (!addr) {
verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
sym_name);
err = -ENOENT;
goto err_put;
}
datasec_id = find_btf_percpu_datasec(btf);
if (datasec_id > 0) {
datasec = btf_type_by_id(btf, datasec_id);
for_each_vsi(i, datasec, vsi) {
if (vsi->type == id) {
percpu = true;
break;
}
}
}
insn[0].imm = (u32)addr;
insn[1].imm = addr >> 32;
type = t->type;
t = btf_type_skip_modifiers(btf, type, NULL);
if (percpu) {
aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
aux->btf_var.btf = btf;
aux->btf_var.btf_id = type;
} else if (!btf_type_is_struct(t)) {
const struct btf_type *ret;
const char *tname;
u32 tsize;
/* resolve the type size of ksym. */
ret = btf_resolve_size(btf, t, &tsize);
if (IS_ERR(ret)) {
tname = btf_name_by_offset(btf, t->name_off);
verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
tname, PTR_ERR(ret));
err = -EINVAL;
goto err_put;
}
aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
aux->btf_var.mem_size = tsize;
} else {
aux->btf_var.reg_type = PTR_TO_BTF_ID;
aux->btf_var.btf = btf;
aux->btf_var.btf_id = type;
}
/* check whether we recorded this BTF (and maybe module) already */
for (i = 0; i < env->used_btf_cnt; i++) {
if (env->used_btfs[i].btf == btf) {
btf_put(btf);
return 0;
}
}
if (env->used_btf_cnt >= MAX_USED_BTFS) {
err = -E2BIG;
goto err_put;
}
btf_mod = &env->used_btfs[env->used_btf_cnt];
btf_mod->btf = btf;
btf_mod->module = NULL;
/* if we reference variables from kernel module, bump its refcount */
if (btf_is_module(btf)) {
btf_mod->module = btf_try_get_module(btf);
if (!btf_mod->module) {
err = -ENXIO;
goto err_put;
}
}
env->used_btf_cnt++;
return 0;
err_put:
btf_put(btf);
return err;
}
static bool is_tracing_prog_type(enum bpf_prog_type type)
{
switch (type) {
case BPF_PROG_TYPE_KPROBE:
case BPF_PROG_TYPE_TRACEPOINT:
case BPF_PROG_TYPE_PERF_EVENT:
case BPF_PROG_TYPE_RAW_TRACEPOINT:
case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
return true;
default:
return false;
}
}
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
struct bpf_map *map,
struct bpf_prog *prog)
{
enum bpf_prog_type prog_type = resolve_prog_type(prog);
if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
if (is_tracing_prog_type(prog_type)) {
verbose(env, "tracing progs cannot use bpf_list_head yet\n");
return -EINVAL;
}
}
if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
return -EINVAL;
}
if (is_tracing_prog_type(prog_type)) {
verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
return -EINVAL;
}
if (prog->aux->sleepable) {
verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
return -EINVAL;
}
}
if (btf_record_has_field(map->record, BPF_TIMER)) {
if (is_tracing_prog_type(prog_type)) {
verbose(env, "tracing progs cannot use bpf_timer yet\n");
return -EINVAL;
}
}
if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
!bpf_offload_prog_map_match(prog, map)) {
verbose(env, "offload device mismatch between prog and map\n");
return -EINVAL;
}
if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
verbose(env, "bpf_struct_ops map cannot be used in prog\n");
return -EINVAL;
}
if (prog->aux->sleepable)
switch (map->map_type) {
case BPF_MAP_TYPE_HASH:
case BPF_MAP_TYPE_LRU_HASH:
case BPF_MAP_TYPE_ARRAY:
case BPF_MAP_TYPE_PERCPU_HASH:
case BPF_MAP_TYPE_PERCPU_ARRAY:
case BPF_MAP_TYPE_LRU_PERCPU_HASH:
case BPF_MAP_TYPE_ARRAY_OF_MAPS:
case BPF_MAP_TYPE_HASH_OF_MAPS:
case BPF_MAP_TYPE_RINGBUF:
case BPF_MAP_TYPE_USER_RINGBUF:
case BPF_MAP_TYPE_INODE_STORAGE:
case BPF_MAP_TYPE_SK_STORAGE:
case BPF_MAP_TYPE_TASK_STORAGE:
break;
default:
verbose(env,
"Sleepable programs can only use array, hash, and ringbuf maps\n");
return -EINVAL;
}
return 0;
}
static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
{
return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
}
/* find and rewrite pseudo imm in ld_imm64 instructions:
*
* 1. if it accesses map FD, replace it with actual map pointer.
* 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
*
* NOTE: btf_vmlinux is required for converting pseudo btf_id.
*/
static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
{
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
int i, j, err;
err = bpf_prog_calc_tag(env->prog);
if (err)
return err;
for (i = 0; i < insn_cnt; i++, insn++) {
if (BPF_CLASS(insn->code) == BPF_LDX &&
(BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
verbose(env, "BPF_LDX uses reserved fields\n");
return -EINVAL;
}
if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
struct bpf_insn_aux_data *aux;
struct bpf_map *map;
struct fd f;
u64 addr;
u32 fd;
if (i == insn_cnt - 1 || insn[1].code != 0 ||
insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
insn[1].off != 0) {
verbose(env, "invalid bpf_ld_imm64 insn\n");
return -EINVAL;
}
if (insn[0].src_reg == 0)
/* valid generic load 64-bit imm */
goto next_insn;
if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
aux = &env->insn_aux_data[i];
err = check_pseudo_btf_id(env, insn, aux);
if (err)
return err;
goto next_insn;
}
if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
aux = &env->insn_aux_data[i];
aux->ptr_type = PTR_TO_FUNC;
goto next_insn;
}
/* In final convert_pseudo_ld_imm64() step, this is
* converted into regular 64-bit imm load insn.
*/
switch (insn[0].src_reg) {
case BPF_PSEUDO_MAP_VALUE:
case BPF_PSEUDO_MAP_IDX_VALUE:
break;
case BPF_PSEUDO_MAP_FD:
case BPF_PSEUDO_MAP_IDX:
if (insn[1].imm == 0)
break;
fallthrough;
default:
verbose(env, "unrecognized bpf_ld_imm64 insn\n");
return -EINVAL;
}
switch (insn[0].src_reg) {
case BPF_PSEUDO_MAP_IDX_VALUE:
case BPF_PSEUDO_MAP_IDX:
if (bpfptr_is_null(env->fd_array)) {
verbose(env, "fd_idx without fd_array is invalid\n");
return -EPROTO;
}
if (copy_from_bpfptr_offset(&fd, env->fd_array,
insn[0].imm * sizeof(fd),
sizeof(fd)))
return -EFAULT;
break;
default:
fd = insn[0].imm;
break;
}
f = fdget(fd);
map = __bpf_map_get(f);
if (IS_ERR(map)) {
verbose(env, "fd %d is not pointing to valid bpf_map\n",
insn[0].imm);
return PTR_ERR(map);
}
err = check_map_prog_compatibility(env, map, env->prog);
if (err) {
fdput(f);
return err;
}
aux = &env->insn_aux_data[i];
if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
addr = (unsigned long)map;
} else {
u32 off = insn[1].imm;
if (off >= BPF_MAX_VAR_OFF) {
verbose(env, "direct value offset of %u is not allowed\n", off);
fdput(f);
return -EINVAL;
}
if (!map->ops->map_direct_value_addr) {
verbose(env, "no direct value access support for this map type\n");
fdput(f);
return -EINVAL;
}
err = map->ops->map_direct_value_addr(map, &addr, off);
if (err) {
verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
map->value_size, off);
fdput(f);
return err;
}
aux->map_off = off;
addr += off;
}
insn[0].imm = (u32)addr;
insn[1].imm = addr >> 32;
/* check whether we recorded this map already */
for (j = 0; j < env->used_map_cnt; j++) {
if (env->used_maps[j] == map) {
aux->map_index = j;
fdput(f);
goto next_insn;
}
}
if (env->used_map_cnt >= MAX_USED_MAPS) {
fdput(f);
return -E2BIG;
}
/* hold the map. If the program is rejected by verifier,
* the map will be released by release_maps() or it
* will be used by the valid program until it's unloaded
* and all maps are released in free_used_maps()
*/
bpf_map_inc(map);
aux->map_index = env->used_map_cnt;
env->used_maps[env->used_map_cnt++] = map;
if (bpf_map_is_cgroup_storage(map) &&
bpf_cgroup_storage_assign(env->prog->aux, map)) {
verbose(env, "only one cgroup storage of each type is allowed\n");
fdput(f);
return -EBUSY;
}
fdput(f);
next_insn:
insn++;
i++;
continue;
}
/* Basic sanity check before we invest more work here. */
if (!bpf_opcode_in_insntable(insn->code)) {
verbose(env, "unknown opcode %02x\n", insn->code);
return -EINVAL;
}
}
/* now all pseudo BPF_LD_IMM64 instructions load valid
* 'struct bpf_map *' into a register instead of user map_fd.
* These pointers will be used later by verifier to validate map access.
*/
return 0;
}
/* drop refcnt of maps used by the rejected program */
static void release_maps(struct bpf_verifier_env *env)
{
__bpf_free_used_maps(env->prog->aux, env->used_maps,
env->used_map_cnt);
}
/* drop refcnt of maps used by the rejected program */
static void release_btfs(struct bpf_verifier_env *env)
{
__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
env->used_btf_cnt);
}
/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
{
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
int i;
for (i = 0; i < insn_cnt; i++, insn++) {
if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
continue;
if (insn->src_reg == BPF_PSEUDO_FUNC)
continue;
insn->src_reg = 0;
}
}
/* single env->prog->insni[off] instruction was replaced with the range
* insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
* [0, off) and [off, end) to new locations, so the patched range stays zero
*/
static void adjust_insn_aux_data(struct bpf_verifier_env *env,
struct bpf_insn_aux_data *new_data,
struct bpf_prog *new_prog, u32 off, u32 cnt)
{
struct bpf_insn_aux_data *old_data = env->insn_aux_data;
struct bpf_insn *insn = new_prog->insnsi;
u32 old_seen = old_data[off].seen;
u32 prog_len;
int i;
/* aux info at OFF always needs adjustment, no matter fast path
* (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
* original insn at old prog.
*/
old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
if (cnt == 1)
return;
prog_len = new_prog->len;
memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
memcpy(new_data + off + cnt - 1, old_data + off,
sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
for (i = off; i < off + cnt - 1; i++) {
/* Expand insni[off]'s seen count to the patched range. */
new_data[i].seen = old_seen;
new_data[i].zext_dst = insn_has_def32(env, insn + i);
}
env->insn_aux_data = new_data;
vfree(old_data);
}
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
int i;
if (len == 1)
return;
/* NOTE: fake 'exit' subprog should be updated as well. */
for (i = 0; i <= env->subprog_cnt; i++) {
if (env->subprog_info[i].start <= off)
continue;
env->subprog_info[i].start += len - 1;
}
}
static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
{
struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
int i, sz = prog->aux->size_poke_tab;
struct bpf_jit_poke_descriptor *desc;
for (i = 0; i < sz; i++) {
desc = &tab[i];
if (desc->insn_idx <= off)
continue;
desc->insn_idx += len - 1;
}
}
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
const struct bpf_insn *patch, u32 len)
{
struct bpf_prog *new_prog;
struct bpf_insn_aux_data *new_data = NULL;
if (len > 1) {
new_data = vzalloc(array_size(env->prog->len + len - 1,
sizeof(struct bpf_insn_aux_data)));
if (!new_data)
return NULL;
}
new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
if (IS_ERR(new_prog)) {
if (PTR_ERR(new_prog) == -ERANGE)
verbose(env,
"insn %d cannot be patched due to 16-bit range\n",
env->insn_aux_data[off].orig_idx);
vfree(new_data);
return NULL;
}
adjust_insn_aux_data(env, new_data, new_prog, off, len);
adjust_subprog_starts(env, off, len);
adjust_poke_descs(new_prog, off, len);
return new_prog;
}
static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
u32 off, u32 cnt)
{
int i, j;
/* find first prog starting at or after off (first to remove) */
for (i = 0; i < env->subprog_cnt; i++)
if (env->subprog_info[i].start >= off)
break;
/* find first prog starting at or after off + cnt (first to stay) */
for (j = i; j < env->subprog_cnt; j++)
if (env->subprog_info[j].start >= off + cnt)
break;
/* if j doesn't start exactly at off + cnt, we are just removing
* the front of previous prog
*/
if (env->subprog_info[j].start != off + cnt)
j--;
if (j > i) {
struct bpf_prog_aux *aux = env->prog->aux;
int move;
/* move fake 'exit' subprog as well */
move = env->subprog_cnt + 1 - j;
memmove(env->subprog_info + i,
env->subprog_info + j,
sizeof(*env->subprog_info) * move);
env->subprog_cnt -= j - i;
/* remove func_info */
if (aux->func_info) {
move = aux->func_info_cnt - j;
memmove(aux->func_info + i,
aux->func_info + j,
sizeof(*aux->func_info) * move);
aux->func_info_cnt -= j - i;
/* func_info->insn_off is set after all code rewrites,
* in adjust_btf_func() - no need to adjust
*/
}
} else {
/* convert i from "first prog to remove" to "first to adjust" */
if (env->subprog_info[i].start == off)
i++;
}
/* update fake 'exit' subprog as well */
for (; i <= env->subprog_cnt; i++)
env->subprog_info[i].start -= cnt;
return 0;
}
static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
u32 cnt)
{
struct bpf_prog *prog = env->prog;
u32 i, l_off, l_cnt, nr_linfo;
struct bpf_line_info *linfo;
nr_linfo = prog->aux->nr_linfo;
if (!nr_linfo)
return 0;
linfo = prog->aux->linfo;
/* find first line info to remove, count lines to be removed */
for (i = 0; i < nr_linfo; i++)
if (linfo[i].insn_off >= off)
break;
l_off = i;
l_cnt = 0;
for (; i < nr_linfo; i++)
if (linfo[i].insn_off < off + cnt)
l_cnt++;
else
break;
/* First live insn doesn't match first live linfo, it needs to "inherit"
* last removed linfo. prog is already modified, so prog->len == off
* means no live instructions after (tail of the program was removed).
*/
if (prog->len != off && l_cnt &&
(i == nr_linfo || linfo[i].insn_off != off + cnt)) {
l_cnt--;
linfo[--i].insn_off = off + cnt;
}
/* remove the line info which refer to the removed instructions */
if (l_cnt) {
memmove(linfo + l_off, linfo + i,
sizeof(*linfo) * (nr_linfo - i));
prog->aux->nr_linfo -= l_cnt;
nr_linfo = prog->aux->nr_linfo;
}
/* pull all linfo[i].insn_off >= off + cnt in by cnt */
for (i = l_off; i < nr_linfo; i++)
linfo[i].insn_off -= cnt;
/* fix up all subprogs (incl. 'exit') which start >= off */
for (i = 0; i <= env->subprog_cnt; i++)
if (env->subprog_info[i].linfo_idx > l_off) {
/* program may have started in the removed region but
* may not be fully removed
*/
if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
env->subprog_info[i].linfo_idx -= l_cnt;
else
env->subprog_info[i].linfo_idx = l_off;
}
return 0;
}
static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
{
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
unsigned int orig_prog_len = env->prog->len;
int err;
if (bpf_prog_is_dev_bound(env->prog->aux))
bpf_prog_offload_remove_insns(env, off, cnt);
err = bpf_remove_insns(env->prog, off, cnt);
if (err)
return err;
err = adjust_subprog_starts_after_remove(env, off, cnt);
if (err)
return err;
err = bpf_adj_linfo_after_remove(env, off, cnt);
if (err)
return err;
memmove(aux_data + off, aux_data + off + cnt,
sizeof(*aux_data) * (orig_prog_len - off - cnt));
return 0;
}
/* The verifier does more data flow analysis than llvm and will not
* explore branches that are dead at run time. Malicious programs can
* have dead code too. Therefore replace all dead at-run-time code
* with 'ja -1'.
*
* Just nops are not optimal, e.g. if they would sit at the end of the
* program and through another bug we would manage to jump there, then
* we'd execute beyond program memory otherwise. Returning exception
* code also wouldn't work since we can have subprogs where the dead
* code could be located.
*/
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
struct bpf_insn *insn = env->prog->insnsi;
const int insn_cnt = env->prog->len;
int i;
for (i = 0; i < insn_cnt; i++) {
if (aux_data[i].seen)
continue;
memcpy(insn + i, &trap, sizeof(trap));
aux_data[i].zext_dst = false;
}
}
static bool insn_is_cond_jump(u8 code)
{
u8 op;
if (BPF_CLASS(code) == BPF_JMP32)
return true;
if (BPF_CLASS(code) != BPF_JMP)
return false;
op = BPF_OP(code);
return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
}
static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
{
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
struct bpf_insn *insn = env->prog->insnsi;
const int insn_cnt = env->prog->len;
int i;
for (i = 0; i < insn_cnt; i++, insn++) {
if (!insn_is_cond_jump(insn->code))
continue;
if (!aux_data[i + 1].seen)
ja.off = insn->off;
else if (!aux_data[i + 1 + insn->off].seen)
ja.off = 0;
else
continue;
if (bpf_prog_is_dev_bound(env->prog->aux))
bpf_prog_offload_replace_insn(env, i, &ja);
memcpy(insn, &ja, sizeof(ja));
}
}
static int opt_remove_dead_code(struct bpf_verifier_env *env)
{
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
int insn_cnt = env->prog->len;
int i, err;
for (i = 0; i < insn_cnt; i++) {
int j;
j = 0;
while (i + j < insn_cnt && !aux_data[i + j].seen)
j++;
if (!j)
continue;
err = verifier_remove_insns(env, i, j);
if (err)
return err;
insn_cnt = env->prog->len;
}
return 0;
}
static int opt_remove_nops(struct bpf_verifier_env *env)
{
const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
int i, err;
for (i = 0; i < insn_cnt; i++) {
if (memcmp(&insn[i], &ja, sizeof(ja)))
continue;
err = verifier_remove_insns(env, i, 1);
if (err)
return err;
insn_cnt--;
i--;
}
return 0;
}
static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
const union bpf_attr *attr)
{
struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
struct bpf_insn_aux_data *aux = env->insn_aux_data;
int i, patch_len, delta = 0, len = env->prog->len;
struct bpf_insn *insns = env->prog->insnsi;
struct bpf_prog *new_prog;
bool rnd_hi32;
rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
zext_patch[1] = BPF_ZEXT_REG(0);
rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
for (i = 0; i < len; i++) {
int adj_idx = i + delta;
struct bpf_insn insn;
int load_reg;
insn = insns[adj_idx];
load_reg = insn_def_regno(&insn);
if (!aux[adj_idx].zext_dst) {
u8 code, class;
u32 imm_rnd;
if (!rnd_hi32)
continue;
code = insn.code;
class = BPF_CLASS(code);
if (load_reg == -1)
continue;
/* NOTE: arg "reg" (the fourth one) is only used for
* BPF_STX + SRC_OP, so it is safe to pass NULL
* here.
*/
if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
if (class == BPF_LD &&
BPF_MODE(code) == BPF_IMM)
i++;
continue;
}
/* ctx load could be transformed into wider load. */
if (class == BPF_LDX &&
aux[adj_idx].ptr_type == PTR_TO_CTX)
continue;
imm_rnd = get_random_u32();
rnd_hi32_patch[0] = insn;
rnd_hi32_patch[1].imm = imm_rnd;
rnd_hi32_patch[3].dst_reg = load_reg;
patch = rnd_hi32_patch;
patch_len = 4;
goto apply_patch_buffer;
}
/* Add in an zero-extend instruction if a) the JIT has requested
* it or b) it's a CMPXCHG.
*
* The latter is because: BPF_CMPXCHG always loads a value into
* R0, therefore always zero-extends. However some archs'
* equivalent instruction only does this load when the
* comparison is successful. This detail of CMPXCHG is
* orthogonal to the general zero-extension behaviour of the
* CPU, so it's treated independently of bpf_jit_needs_zext.
*/
if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
continue;
if (WARN_ON(load_reg == -1)) {
verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
return -EFAULT;
}
zext_patch[0] = insn;
zext_patch[1].dst_reg = load_reg;
zext_patch[1].src_reg = load_reg;
patch = zext_patch;
patch_len = 2;
apply_patch_buffer:
new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
if (!new_prog)
return -ENOMEM;
env->prog = new_prog;
insns = new_prog->insnsi;
aux = env->insn_aux_data;
delta += patch_len - 1;
}
return 0;
}
/* convert load instructions that access fields of a context type into a
* sequence of instructions that access fields of the underlying structure:
* struct __sk_buff -> struct sk_buff
* struct bpf_sock_ops -> struct sock
*/
static int convert_ctx_accesses(struct bpf_verifier_env *env)
{
const struct bpf_verifier_ops *ops = env->ops;
int i, cnt, size, ctx_field_size, delta = 0;
const int insn_cnt = env->prog->len;
struct bpf_insn insn_buf[16], *insn;
u32 target_size, size_default, off;
struct bpf_prog *new_prog;
enum bpf_access_type type;
bool is_narrower_load;
if (ops->gen_prologue || env->seen_direct_write) {
if (!ops->gen_prologue) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
env->prog);
if (cnt >= ARRAY_SIZE(insn_buf)) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
} else if (cnt) {
new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
env->prog = new_prog;
delta += cnt - 1;
}
}
if (bpf_prog_is_dev_bound(env->prog->aux))
return 0;
insn = env->prog->insnsi + delta;
for (i = 0; i < insn_cnt; i++, insn++) {
bpf_convert_ctx_access_t convert_ctx_access;
bool ctx_access;
if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
type = BPF_READ;
ctx_access = true;
} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
type = BPF_WRITE;
ctx_access = BPF_CLASS(insn->code) == BPF_STX;
} else {
continue;
}
if (type == BPF_WRITE &&
env->insn_aux_data[i + delta].sanitize_stack_spill) {
struct bpf_insn patch[] = {
*insn,
BPF_ST_NOSPEC(),
};
cnt = ARRAY_SIZE(patch);
new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
if (!ctx_access)
continue;
switch ((int)env->insn_aux_data[i + delta].ptr_type) {
case PTR_TO_CTX:
if (!ops->convert_ctx_access)
continue;
convert_ctx_access = ops->convert_ctx_access;
break;
case PTR_TO_SOCKET:
case PTR_TO_SOCK_COMMON:
convert_ctx_access = bpf_sock_convert_ctx_access;
break;
case PTR_TO_TCP_SOCK:
convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
break;
case PTR_TO_XDP_SOCK:
convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
break;
case PTR_TO_BTF_ID:
case PTR_TO_BTF_ID | PTR_UNTRUSTED:
/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
* PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
* be said once it is marked PTR_UNTRUSTED, hence we must handle
* any faults for loads into such types. BPF_WRITE is disallowed
* for this case.
*/
case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
if (type == BPF_READ) {
insn->code = BPF_LDX | BPF_PROBE_MEM |
BPF_SIZE((insn)->code);
env->prog->aux->num_exentries++;
}
continue;
default:
continue;
}
ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
size = BPF_LDST_BYTES(insn);
/* If the read access is a narrower load of the field,
* convert to a 4/8-byte load, to minimum program type specific
* convert_ctx_access changes. If conversion is successful,
* we will apply proper mask to the result.
*/
is_narrower_load = size < ctx_field_size;
size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
off = insn->off;
if (is_narrower_load) {
u8 size_code;
if (type == BPF_WRITE) {
verbose(env, "bpf verifier narrow ctx access misconfigured\n");
return -EINVAL;
}
size_code = BPF_H;
if (ctx_field_size == 4)
size_code = BPF_W;
else if (ctx_field_size == 8)
size_code = BPF_DW;
insn->off = off & ~(size_default - 1);
insn->code = BPF_LDX | BPF_MEM | size_code;
}
target_size = 0;
cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
&target_size);
if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
(ctx_field_size && !target_size)) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
if (is_narrower_load && size < target_size) {
u8 shift = bpf_ctx_narrow_access_offset(
off, size, size_default) * 8;
if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
verbose(env, "bpf verifier narrow ctx load misconfigured\n");
return -EINVAL;
}
if (ctx_field_size <= 4) {
if (shift)
insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
insn->dst_reg,
shift);
insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
(1 << size * 8) - 1);
} else {
if (shift)
insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
insn->dst_reg,
shift);
insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
(1ULL << size * 8) - 1);
}
}
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
/* keep walking new program and skip insns we just inserted */
env->prog = new_prog;
insn = new_prog->insnsi + i + delta;
}
return 0;
}
static int jit_subprogs(struct bpf_verifier_env *env)
{
struct bpf_prog *prog = env->prog, **func, *tmp;
int i, j, subprog_start, subprog_end = 0, len, subprog;
struct bpf_map *map_ptr;
struct bpf_insn *insn;
void *old_bpf_func;
int err, num_exentries;
if (env->subprog_cnt <= 1)
return 0;
for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
continue;
/* Upon error here we cannot fall back to interpreter but
* need a hard reject of the program. Thus -EFAULT is
* propagated in any case.
*/
subprog = find_subprog(env, i + insn->imm + 1);
if (subprog < 0) {
WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
i + insn->imm + 1);
return -EFAULT;
}
/* temporarily remember subprog id inside insn instead of
* aux_data, since next loop will split up all insns into funcs
*/
insn->off = subprog;
/* remember original imm in case JIT fails and fallback
* to interpreter will be needed
*/
env->insn_aux_data[i].call_imm = insn->imm;
/* point imm to __bpf_call_base+1 from JITs point of view */
insn->imm = 1;
if (bpf_pseudo_func(insn))
/* jit (e.g. x86_64) may emit fewer instructions
* if it learns a u32 imm is the same as a u64 imm.
* Force a non zero here.
*/
insn[1].imm = 1;
}
err = bpf_prog_alloc_jited_linfo(prog);
if (err)
goto out_undo_insn;
err = -ENOMEM;
func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
if (!func)
goto out_undo_insn;
for (i = 0; i < env->subprog_cnt; i++) {
subprog_start = subprog_end;
subprog_end = env->subprog_info[i + 1].start;
len = subprog_end - subprog_start;
/* bpf_prog_run() doesn't call subprogs directly,
* hence main prog stats include the runtime of subprogs.
* subprogs don't have IDs and not reachable via prog_get_next_id
* func[i]->stats will never be accessed and stays NULL
*/
func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
if (!func[i])
goto out_free;
memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
len * sizeof(struct bpf_insn));
func[i]->type = prog->type;
func[i]->len = len;
if (bpf_prog_calc_tag(func[i]))
goto out_free;
func[i]->is_func = 1;
func[i]->aux->func_idx = i;
/* Below members will be freed only at prog->aux */
func[i]->aux->btf = prog->aux->btf;
func[i]->aux->func_info = prog->aux->func_info;
func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
func[i]->aux->poke_tab = prog->aux->poke_tab;
func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
for (j = 0; j < prog->aux->size_poke_tab; j++) {
struct bpf_jit_poke_descriptor *poke;
poke = &prog->aux->poke_tab[j];
if (poke->insn_idx < subprog_end &&
poke->insn_idx >= subprog_start)
poke->aux = func[i]->aux;
}
func[i]->aux->name[0] = 'F';
func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
func[i]->jit_requested = 1;
func[i]->blinding_requested = prog->blinding_requested;
func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
func[i]->aux->linfo = prog->aux->linfo;
func[i]->aux->nr_linfo = prog->aux->nr_linfo;
func[i]->aux->jited_linfo = prog->aux->jited_linfo;
func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
num_exentries = 0;
insn = func[i]->insnsi;
for (j = 0; j < func[i]->len; j++, insn++) {
if (BPF_CLASS(insn->code) == BPF_LDX &&
BPF_MODE(insn->code) == BPF_PROBE_MEM)
num_exentries++;
}
func[i]->aux->num_exentries = num_exentries;
func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
func[i] = bpf_int_jit_compile(func[i]);
if (!func[i]->jited) {
err = -ENOTSUPP;
goto out_free;
}
cond_resched();
}
/* at this point all bpf functions were successfully JITed
* now populate all bpf_calls with correct addresses and
* run last pass of JIT
*/
for (i = 0; i < env->subprog_cnt; i++) {
insn = func[i]->insnsi;
for (j = 0; j < func[i]->len; j++, insn++) {
if (bpf_pseudo_func(insn)) {
subprog = insn->off;
insn[0].imm = (u32)(long)func[subprog]->bpf_func;
insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
continue;
}
if (!bpf_pseudo_call(insn))
continue;
subprog = insn->off;
insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
}
/* we use the aux data to keep a list of the start addresses
* of the JITed images for each function in the program
*
* for some architectures, such as powerpc64, the imm field
* might not be large enough to hold the offset of the start
* address of the callee's JITed image from __bpf_call_base
*
* in such cases, we can lookup the start address of a callee
* by using its subprog id, available from the off field of
* the call instruction, as an index for this list
*/
func[i]->aux->func = func;
func[i]->aux->func_cnt = env->subprog_cnt;
}
for (i = 0; i < env->subprog_cnt; i++) {
old_bpf_func = func[i]->bpf_func;
tmp = bpf_int_jit_compile(func[i]);
if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
err = -ENOTSUPP;
goto out_free;
}
cond_resched();
}
/* finally lock prog and jit images for all functions and
* populate kallsysm
*/
for (i = 0; i < env->subprog_cnt; i++) {
bpf_prog_lock_ro(func[i]);
bpf_prog_kallsyms_add(func[i]);
}
/* Last step: make now unused interpreter insns from main
* prog consistent for later dump requests, so they can
* later look the same as if they were interpreted only.
*/
for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
if (bpf_pseudo_func(insn)) {
insn[0].imm = env->insn_aux_data[i].call_imm;
insn[1].imm = insn->off;
insn->off = 0;
continue;
}
if (!bpf_pseudo_call(insn))
continue;
insn->off = env->insn_aux_data[i].call_imm;
subprog = find_subprog(env, i + insn->off + 1);
insn->imm = subprog;
}
prog->jited = 1;
prog->bpf_func = func[0]->bpf_func;
prog->jited_len = func[0]->jited_len;
prog->aux->func = func;
prog->aux->func_cnt = env->subprog_cnt;
bpf_prog_jit_attempt_done(prog);
return 0;
out_free:
/* We failed JIT'ing, so at this point we need to unregister poke
* descriptors from subprogs, so that kernel is not attempting to
* patch it anymore as we're freeing the subprog JIT memory.
*/
for (i = 0; i < prog->aux->size_poke_tab; i++) {
map_ptr = prog->aux->poke_tab[i].tail_call.map;
map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
}
/* At this point we're guaranteed that poke descriptors are not
* live anymore. We can just unlink its descriptor table as it's
* released with the main prog.
*/
for (i = 0; i < env->subprog_cnt; i++) {
if (!func[i])
continue;
func[i]->aux->poke_tab = NULL;
bpf_jit_free(func[i]);
}
kfree(func);
out_undo_insn:
/* cleanup main prog to be interpreted */
prog->jit_requested = 0;
prog->blinding_requested = 0;
for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
if (!bpf_pseudo_call(insn))
continue;
insn->off = 0;
insn->imm = env->insn_aux_data[i].call_imm;
}
bpf_prog_jit_attempt_done(prog);
return err;
}
static int fixup_call_args(struct bpf_verifier_env *env)
{
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
struct bpf_prog *prog = env->prog;
struct bpf_insn *insn = prog->insnsi;
bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
int i, depth;
#endif
int err = 0;
if (env->prog->jit_requested &&
!bpf_prog_is_dev_bound(env->prog->aux)) {
err = jit_subprogs(env);
if (err == 0)
return 0;
if (err == -EFAULT)
return err;
}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
if (has_kfunc_call) {
verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
return -EINVAL;
}
if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
/* When JIT fails the progs with bpf2bpf calls and tail_calls
* have to be rejected, since interpreter doesn't support them yet.
*/
verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
return -EINVAL;
}
for (i = 0; i < prog->len; i++, insn++) {
if (bpf_pseudo_func(insn)) {
/* When JIT fails the progs with callback calls
* have to be rejected, since interpreter doesn't support them yet.
*/
verbose(env, "callbacks are not allowed in non-JITed programs\n");
return -EINVAL;
}
if (!bpf_pseudo_call(insn))
continue;
depth = get_callee_stack_depth(env, insn, i);
if (depth < 0)
return depth;
bpf_patch_call_args(insn, depth);
}
err = 0;
#endif
return err;
}
static int fixup_kfunc_call(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
const struct bpf_kfunc_desc *desc;
if (!insn->imm) {
verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
return -EINVAL;
}
/* insn->imm has the btf func_id. Replace it with
* an address (relative to __bpf_base_call).
*/
desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
if (!desc) {
verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
insn->imm);
return -EFAULT;
}
insn->imm = desc->imm;
return 0;
}
/* Do various post-verification rewrites in a single program pass.
* These rewrites simplify JIT and interpreter implementations.
*/
static int do_misc_fixups(struct bpf_verifier_env *env)
{
struct bpf_prog *prog = env->prog;
enum bpf_attach_type eatype = prog->expected_attach_type;
enum bpf_prog_type prog_type = resolve_prog_type(prog);
struct bpf_insn *insn = prog->insnsi;
const struct bpf_func_proto *fn;
const int insn_cnt = prog->len;
const struct bpf_map_ops *ops;
struct bpf_insn_aux_data *aux;
struct bpf_insn insn_buf[16];
struct bpf_prog *new_prog;
struct bpf_map *map_ptr;
int i, ret, cnt, delta = 0;
for (i = 0; i < insn_cnt; i++, insn++) {
/* Make divide-by-zero exceptions impossible. */
if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
bool isdiv = BPF_OP(insn->code) == BPF_DIV;
struct bpf_insn *patchlet;
struct bpf_insn chk_and_div[] = {
/* [R,W]x div 0 -> 0 */
BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
BPF_JNE | BPF_K, insn->src_reg,
0, 2, 0),
BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
*insn,
};
struct bpf_insn chk_and_mod[] = {
/* [R,W]x mod 0 -> [R,W]x */
BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
BPF_JEQ | BPF_K, insn->src_reg,
0, 1 + (is64 ? 0 : 1), 0),
*insn,
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
};
patchlet = isdiv ? chk_and_div : chk_and_mod;
cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
if (BPF_CLASS(insn->code) == BPF_LD &&
(BPF_MODE(insn->code) == BPF_ABS ||
BPF_MODE(insn->code) == BPF_IND)) {
cnt = env->ops->gen_ld_abs(insn, insn_buf);
if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
/* Rewrite pointer arithmetic to mitigate speculation attacks. */
if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
struct bpf_insn *patch = &insn_buf[0];
bool issrc, isneg, isimm;
u32 off_reg;
aux = &env->insn_aux_data[i + delta];
if (!aux->alu_state ||
aux->alu_state == BPF_ALU_NON_POINTER)
continue;
isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
BPF_ALU_SANITIZE_SRC;
isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
off_reg = issrc ? insn->src_reg : insn->dst_reg;
if (isimm) {
*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
} else {
if (isneg)
*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
}
if (!issrc)
*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
insn->src_reg = BPF_REG_AX;
if (isneg)
insn->code = insn->code == code_add ?
code_sub : code_add;
*patch++ = *insn;
if (issrc && isneg && !isimm)
*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
cnt = patch - insn_buf;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
if (insn->code != (BPF_JMP | BPF_CALL))
continue;
if (insn->src_reg == BPF_PSEUDO_CALL)
continue;
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
ret = fixup_kfunc_call(env, insn);
if (ret)
return ret;
continue;
}
if (insn->imm == BPF_FUNC_get_route_realm)
prog->dst_needed = 1;
if (insn->imm == BPF_FUNC_get_prandom_u32)
bpf_user_rnd_init_once();
if (insn->imm == BPF_FUNC_override_return)
prog->kprobe_override = 1;
if (insn->imm == BPF_FUNC_tail_call) {
/* If we tail call into other programs, we
* cannot make any assumptions since they can
* be replaced dynamically during runtime in
* the program array.
*/
prog->cb_access = 1;
if (!allow_tail_call_in_subprogs(env))
prog->aux->stack_depth = MAX_BPF_STACK;
prog->aux->max_pkt_offset = MAX_PACKET_OFF;
/* mark bpf_tail_call as different opcode to avoid
* conditional branch in the interpreter for every normal
* call and to prevent accidental JITing by JIT compiler
* that doesn't support bpf_tail_call yet
*/
insn->imm = 0;
insn->code = BPF_JMP | BPF_TAIL_CALL;
aux = &env->insn_aux_data[i + delta];
if (env->bpf_capable && !prog->blinding_requested &&
prog->jit_requested &&
!bpf_map_key_poisoned(aux) &&
!bpf_map_ptr_poisoned(aux) &&
!bpf_map_ptr_unpriv(aux)) {
struct bpf_jit_poke_descriptor desc = {
.reason = BPF_POKE_REASON_TAIL_CALL,
.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
.tail_call.key = bpf_map_key_immediate(aux),
.insn_idx = i + delta,
};
ret = bpf_jit_add_poke_descriptor(prog, &desc);
if (ret < 0) {
verbose(env, "adding tail call poke descriptor failed\n");
return ret;
}
insn->imm = ret + 1;
continue;
}
if (!bpf_map_ptr_unpriv(aux))
continue;
/* instead of changing every JIT dealing with tail_call
* emit two extra insns:
* if (index >= max_entries) goto out;
* index &= array->index_mask;
* to avoid out-of-bounds cpu speculation
*/
if (bpf_map_ptr_poisoned(aux)) {
verbose(env, "tail_call abusing map_ptr\n");
return -EINVAL;
}
map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
map_ptr->max_entries, 2);
insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
container_of(map_ptr,
struct bpf_array,
map)->index_mask);
insn_buf[2] = *insn;
cnt = 3;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
if (insn->imm == BPF_FUNC_timer_set_callback) {
/* The verifier will process callback_fn as many times as necessary
* with different maps and the register states prepared by
* set_timer_callback_state will be accurate.
*
* The following use case is valid:
* map1 is shared by prog1, prog2, prog3.
* prog1 calls bpf_timer_init for some map1 elements
* prog2 calls bpf_timer_set_callback for some map1 elements.
* Those that were not bpf_timer_init-ed will return -EINVAL.
* prog3 calls bpf_timer_start for some map1 elements.
* Those that were not both bpf_timer_init-ed and
* bpf_timer_set_callback-ed will return -EINVAL.
*/
struct bpf_insn ld_addrs[2] = {
BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
};
insn_buf[0] = ld_addrs[0];
insn_buf[1] = ld_addrs[1];
insn_buf[2] = *insn;
cnt = 3;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
goto patch_call_imm;
}
if (insn->imm == BPF_FUNC_task_storage_get ||
insn->imm == BPF_FUNC_sk_storage_get ||
insn->imm == BPF_FUNC_inode_storage_get ||
insn->imm == BPF_FUNC_cgrp_storage_get) {
if (env->prog->aux->sleepable)
insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
else
insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
insn_buf[1] = *insn;
cnt = 2;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
goto patch_call_imm;
}
/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
* and other inlining handlers are currently limited to 64 bit
* only.
*/
if (prog->jit_requested && BITS_PER_LONG == 64 &&
(insn->imm == BPF_FUNC_map_lookup_elem ||
insn->imm == BPF_FUNC_map_update_elem ||
insn->imm == BPF_FUNC_map_delete_elem ||
insn->imm == BPF_FUNC_map_push_elem ||
insn->imm == BPF_FUNC_map_pop_elem ||
insn->imm == BPF_FUNC_map_peek_elem ||
insn->imm == BPF_FUNC_redirect_map ||
insn->imm == BPF_FUNC_for_each_map_elem ||
insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
aux = &env->insn_aux_data[i + delta];
if (bpf_map_ptr_poisoned(aux))
goto patch_call_imm;
map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
ops = map_ptr->ops;
if (insn->imm == BPF_FUNC_map_lookup_elem &&
ops->map_gen_lookup) {
cnt = ops->map_gen_lookup(map_ptr, insn_buf);
if (cnt == -EOPNOTSUPP)
goto patch_map_ops_generic;
if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
new_prog = bpf_patch_insn_data(env, i + delta,
insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
(void *(*)(struct bpf_map *map, void *key))NULL));
BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
(int (*)(struct bpf_map *map, void *key))NULL));
BUILD_BUG_ON(!__same_type(ops->map_update_elem,
(int (*)(struct bpf_map *map, void *key, void *value,
u64 flags))NULL));
BUILD_BUG_ON(!__same_type(ops->map_push_elem,
(int (*)(struct bpf_map *map, void *value,
u64 flags))NULL));
BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
(int (*)(struct bpf_map *map, void *value))NULL));
BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
(int (*)(struct bpf_map *map, void *value))NULL));
BUILD_BUG_ON(!__same_type(ops->map_redirect,
(int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
(int (*)(struct bpf_map *map,
bpf_callback_t callback_fn,
void *callback_ctx,
u64 flags))NULL));
BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
(void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
patch_map_ops_generic:
switch (insn->imm) {
case BPF_FUNC_map_lookup_elem:
insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
continue;
case BPF_FUNC_map_update_elem:
insn->imm = BPF_CALL_IMM(ops->map_update_elem);
continue;
case BPF_FUNC_map_delete_elem:
insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
continue;
case BPF_FUNC_map_push_elem:
insn->imm = BPF_CALL_IMM(ops->map_push_elem);
continue;
case BPF_FUNC_map_pop_elem:
insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
continue;
case BPF_FUNC_map_peek_elem:
insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
continue;
case BPF_FUNC_redirect_map:
insn->imm = BPF_CALL_IMM(ops->map_redirect);
continue;
case BPF_FUNC_for_each_map_elem:
insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
continue;
case BPF_FUNC_map_lookup_percpu_elem:
insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
continue;
}
goto patch_call_imm;
}
/* Implement bpf_jiffies64 inline. */
if (prog->jit_requested && BITS_PER_LONG == 64 &&
insn->imm == BPF_FUNC_jiffies64) {
struct bpf_insn ld_jiffies_addr[2] = {
BPF_LD_IMM64(BPF_REG_0,
(unsigned long)&jiffies),
};
insn_buf[0] = ld_jiffies_addr[0];
insn_buf[1] = ld_jiffies_addr[1];
insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
BPF_REG_0, 0);
cnt = 3;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
/* Implement bpf_get_func_arg inline. */
if (prog_type == BPF_PROG_TYPE_TRACING &&
insn->imm == BPF_FUNC_get_func_arg) {
/* Load nr_args from ctx - 8 */
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
insn_buf[7] = BPF_JMP_A(1);
insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
cnt = 9;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
/* Implement bpf_get_func_ret inline. */
if (prog_type == BPF_PROG_TYPE_TRACING &&
insn->imm == BPF_FUNC_get_func_ret) {
if (eatype == BPF_TRACE_FEXIT ||
eatype == BPF_MODIFY_RETURN) {
/* Load nr_args from ctx - 8 */
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
cnt = 6;
} else {
insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
cnt = 1;
}
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
/* Implement get_func_arg_cnt inline. */
if (prog_type == BPF_PROG_TYPE_TRACING &&
insn->imm == BPF_FUNC_get_func_arg_cnt) {
/* Load nr_args from ctx - 8 */
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
if (!new_prog)
return -ENOMEM;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
/* Implement bpf_get_func_ip inline. */
if (prog_type == BPF_PROG_TYPE_TRACING &&
insn->imm == BPF_FUNC_get_func_ip) {
/* Load IP address from ctx - 16 */
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
if (!new_prog)
return -ENOMEM;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
patch_call_imm:
fn = env->ops->get_func_proto(insn->imm, env->prog);
/* all functions that have prototype and verifier allowed
* programs to call them, must be real in-kernel functions
*/
if (!fn->func) {
verbose(env,
"kernel subsystem misconfigured func %s#%d\n",
func_id_name(insn->imm), insn->imm);
return -EFAULT;
}
insn->imm = fn->func - __bpf_call_base;
}
/* Since poke tab is now finalized, publish aux to tracker. */
for (i = 0; i < prog->aux->size_poke_tab; i++) {
map_ptr = prog->aux->poke_tab[i].tail_call.map;
if (!map_ptr->ops->map_poke_track ||
!map_ptr->ops->map_poke_untrack ||
!map_ptr->ops->map_poke_run) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
if (ret < 0) {
verbose(env, "tracking tail call prog failed\n");
return ret;
}
}
sort_kfunc_descs_by_imm(env->prog);
return 0;
}
static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
int position,
s32 stack_base,
u32 callback_subprogno,
u32 *cnt)
{
s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
int reg_loop_max = BPF_REG_6;
int reg_loop_cnt = BPF_REG_7;
int reg_loop_ctx = BPF_REG_8;
struct bpf_prog *new_prog;
u32 callback_start;
u32 call_insn_offset;
s32 callback_offset;
/* This represents an inlined version of bpf_iter.c:bpf_loop,
* be careful to modify this code in sync.
*/
struct bpf_insn insn_buf[] = {
/* Return error and jump to the end of the patch if
* expected number of iterations is too big.
*/
BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
BPF_JMP_IMM(BPF_JA, 0, 0, 16),
/* spill R6, R7, R8 to use these as loop vars */
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
/* initialize loop vars */
BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
BPF_MOV32_IMM(reg_loop_cnt, 0),
BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
/* loop header,
* if reg_loop_cnt >= reg_loop_max skip the loop body
*/
BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
/* callback call,
* correct callback offset would be set after patching
*/
BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
BPF_CALL_REL(0),
/* increment loop counter */
BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
/* jump to loop header if callback returned 0 */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
/* return value of bpf_loop,
* set R0 to the number of iterations
*/
BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
/* restore original values of R6, R7, R8 */
BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
};
*cnt = ARRAY_SIZE(insn_buf);
new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
if (!new_prog)
return new_prog;
/* callback start is known only after patching */
callback_start = env->subprog_info[callback_subprogno].start;
/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
call_insn_offset = position + 12;
callback_offset = callback_start - call_insn_offset - 1;
new_prog->insnsi[call_insn_offset].imm = callback_offset;
return new_prog;
}
static bool is_bpf_loop_call(struct bpf_insn *insn)
{
return insn->code == (BPF_JMP | BPF_CALL) &&
insn->src_reg == 0 &&
insn->imm == BPF_FUNC_loop;
}
/* For all sub-programs in the program (including main) check
* insn_aux_data to see if there are bpf_loop calls that require
* inlining. If such calls are found the calls are replaced with a
* sequence of instructions produced by `inline_bpf_loop` function and
* subprog stack_depth is increased by the size of 3 registers.
* This stack space is used to spill values of the R6, R7, R8. These
* registers are used to store the loop bound, counter and context
* variables.
*/
static int optimize_bpf_loop(struct bpf_verifier_env *env)
{
struct bpf_subprog_info *subprogs = env->subprog_info;
int i, cur_subprog = 0, cnt, delta = 0;
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
u16 stack_depth = subprogs[cur_subprog].stack_depth;
u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
u16 stack_depth_extra = 0;
for (i = 0; i < insn_cnt; i++, insn++) {
struct bpf_loop_inline_state *inline_state =
&env->insn_aux_data[i + delta].loop_inline_state;
if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
struct bpf_prog *new_prog;
stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
new_prog = inline_bpf_loop(env,
i + delta,
-(stack_depth + stack_depth_extra),
inline_state->callback_subprogno,
&cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = new_prog;
insn = new_prog->insnsi + i + delta;
}
if (subprogs[cur_subprog + 1].start == i + delta + 1) {
subprogs[cur_subprog].stack_depth += stack_depth_extra;
cur_subprog++;
stack_depth = subprogs[cur_subprog].stack_depth;
stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
stack_depth_extra = 0;
}
}
env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
return 0;
}
static void free_states(struct bpf_verifier_env *env)
{
struct bpf_verifier_state_list *sl, *sln;
int i;
sl = env->free_list;
while (sl) {
sln = sl->next;
free_verifier_state(&sl->state, false);
kfree(sl);
sl = sln;
}
env->free_list = NULL;
if (!env->explored_states)
return;
for (i = 0; i < state_htab_size(env); i++) {
sl = env->explored_states[i];
while (sl) {
sln = sl->next;
free_verifier_state(&sl->state, false);
kfree(sl);
sl = sln;
}
env->explored_states[i] = NULL;
}
}
static int do_check_common(struct bpf_verifier_env *env, int subprog)
{
bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
struct bpf_verifier_state *state;
struct bpf_reg_state *regs;
int ret, i;
env->prev_linfo = NULL;
env->pass_cnt++;
state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->curframe = 0;
state->speculative = false;
state->branches = 1;
state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
if (!state->frame[0]) {
kfree(state);
return -ENOMEM;
}
env->cur_state = state;
init_func_state(env, state->frame[0],
BPF_MAIN_FUNC /* callsite */,
0 /* frameno */,
subprog);
state->first_insn_idx = env->subprog_info[subprog].start;
state->last_insn_idx = -1;
regs = state->frame[state->curframe]->regs;
if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
ret = btf_prepare_func_args(env, subprog, regs);
if (ret)
goto out;
for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
if (regs[i].type == PTR_TO_CTX)
mark_reg_known_zero(env, regs, i);
else if (regs[i].type == SCALAR_VALUE)
mark_reg_unknown(env, regs, i);
else if (base_type(regs[i].type) == PTR_TO_MEM) {
const u32 mem_size = regs[i].mem_size;
mark_reg_known_zero(env, regs, i);
regs[i].mem_size = mem_size;
regs[i].id = ++env->id_gen;
}
}
} else {
/* 1st arg to a function */
regs[BPF_REG_1].type = PTR_TO_CTX;
mark_reg_known_zero(env, regs, BPF_REG_1);
ret = btf_check_subprog_arg_match(env, subprog, regs);
if (ret == -EFAULT)
/* unlikely verifier bug. abort.
* ret == 0 and ret < 0 are sadly acceptable for
* main() function due to backward compatibility.
* Like socket filter program may be written as:
* int bpf_prog(struct pt_regs *ctx)
* and never dereference that ctx in the program.
* 'struct pt_regs' is a type mismatch for socket
* filter that should be using 'struct __sk_buff'.
*/
goto out;
}
ret = do_check(env);
out:
/* check for NULL is necessary, since cur_state can be freed inside
* do_check() under memory pressure.
*/
if (env->cur_state) {
free_verifier_state(env->cur_state, true);
env->cur_state = NULL;
}
while (!pop_stack(env, NULL, NULL, false));
if (!ret && pop_log)
bpf_vlog_reset(&env->log, 0);
free_states(env);
return ret;
}
/* Verify all global functions in a BPF program one by one based on their BTF.
* All global functions must pass verification. Otherwise the whole program is rejected.
* Consider:
* int bar(int);
* int foo(int f)
* {
* return bar(f);
* }
* int bar(int b)
* {
* ...
* }
* foo() will be verified first for R1=any_scalar_value. During verification it
* will be assumed that bar() already verified successfully and call to bar()
* from foo() will be checked for type match only. Later bar() will be verified
* independently to check that it's safe for R1=any_scalar_value.
*/
static int do_check_subprogs(struct bpf_verifier_env *env)
{
struct bpf_prog_aux *aux = env->prog->aux;
int i, ret;
if (!aux->func_info)
return 0;
for (i = 1; i < env->subprog_cnt; i++) {
if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
continue;
env->insn_idx = env->subprog_info[i].start;
WARN_ON_ONCE(env->insn_idx == 0);
ret = do_check_common(env, i);
if (ret) {
return ret;
} else if (env->log.level & BPF_LOG_LEVEL) {
verbose(env,
"Func#%d is safe for any args that match its prototype\n",
i);
}
}
return 0;
}
static int do_check_main(struct bpf_verifier_env *env)
{
int ret;
env->insn_idx = 0;
ret = do_check_common(env, 0);
if (!ret)
env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
return ret;
}
static void print_verification_stats(struct bpf_verifier_env *env)
{
int i;
if (env->log.level & BPF_LOG_STATS) {
verbose(env, "verification time %lld usec\n",
div_u64(env->verification_time, 1000));
verbose(env, "stack depth ");
for (i = 0; i < env->subprog_cnt; i++) {
u32 depth = env->subprog_info[i].stack_depth;
verbose(env, "%d", depth);
if (i + 1 < env->subprog_cnt)
verbose(env, "+");
}
verbose(env, "\n");
}
verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
"total_states %d peak_states %d mark_read %d\n",
env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
env->max_states_per_insn, env->total_states,
env->peak_states, env->longest_mark_read_walk);
}
static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
{
const struct btf_type *t, *func_proto;
const struct bpf_struct_ops *st_ops;
const struct btf_member *member;
struct bpf_prog *prog = env->prog;
u32 btf_id, member_idx;
const char *mname;
if (!prog->gpl_compatible) {
verbose(env, "struct ops programs must have a GPL compatible license\n");
return -EINVAL;
}
btf_id = prog->aux->attach_btf_id;
st_ops = bpf_struct_ops_find(btf_id);
if (!st_ops) {
verbose(env, "attach_btf_id %u is not a supported struct\n",
btf_id);
return -ENOTSUPP;
}
t = st_ops->type;
member_idx = prog->expected_attach_type;
if (member_idx >= btf_type_vlen(t)) {
verbose(env, "attach to invalid member idx %u of struct %s\n",
member_idx, st_ops->name);
return -EINVAL;
}
member = &btf_type_member(t)[member_idx];
mname = btf_name_by_offset(btf_vmlinux, member->name_off);
func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
NULL);
if (!func_proto) {
verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
mname, member_idx, st_ops->name);
return -EINVAL;
}
if (st_ops->check_member) {
int err = st_ops->check_member(t, member);
if (err) {
verbose(env, "attach to unsupported member %s of struct %s\n",
mname, st_ops->name);
return err;
}
}
prog->aux->attach_func_proto = func_proto;
prog->aux->attach_func_name = mname;
env->ops = st_ops->verifier_ops;
return 0;
}
#define SECURITY_PREFIX "security_"
static int check_attach_modify_return(unsigned long addr, const char *func_name)
{
if (within_error_injection_list(addr) ||
!strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
return 0;
return -EINVAL;
}
/* list of non-sleepable functions that are otherwise on
* ALLOW_ERROR_INJECTION list
*/
BTF_SET_START(btf_non_sleepable_error_inject)
/* Three functions below can be called from sleepable and non-sleepable context.
* Assume non-sleepable from bpf safety point of view.
*/
BTF_ID(func, __filemap_add_folio)
BTF_ID(func, should_fail_alloc_page)
BTF_ID(func, should_failslab)
BTF_SET_END(btf_non_sleepable_error_inject)
static int check_non_sleepable_error_inject(u32 btf_id)
{
return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
}
int bpf_check_attach_target(struct bpf_verifier_log *log,
const struct bpf_prog *prog,
const struct bpf_prog *tgt_prog,
u32 btf_id,
struct bpf_attach_target_info *tgt_info)
{
bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
const char prefix[] = "btf_trace_";
int ret = 0, subprog = -1, i;
const struct btf_type *t;
bool conservative = true;
const char *tname;
struct btf *btf;
long addr = 0;
if (!btf_id) {
bpf_log(log, "Tracing programs must provide btf_id\n");
return -EINVAL;
}
btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
if (!btf) {
bpf_log(log,
"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
return -EINVAL;
}
t = btf_type_by_id(btf, btf_id);
if (!t) {
bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
return -EINVAL;
}
tname = btf_name_by_offset(btf, t->name_off);
if (!tname) {
bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
return -EINVAL;
}
if (tgt_prog) {
struct bpf_prog_aux *aux = tgt_prog->aux;
for (i = 0; i < aux->func_info_cnt; i++)
if (aux->func_info[i].type_id == btf_id) {
subprog = i;
break;
}
if (subprog == -1) {
bpf_log(log, "Subprog %s doesn't exist\n", tname);
return -EINVAL;
}
conservative = aux->func_info_aux[subprog].unreliable;
if (prog_extension) {
if (conservative) {
bpf_log(log,
"Cannot replace static functions\n");
return -EINVAL;
}
if (!prog->jit_requested) {
bpf_log(log,
"Extension programs should be JITed\n");
return -EINVAL;
}
}
if (!tgt_prog->jited) {
bpf_log(log, "Can attach to only JITed progs\n");
return -EINVAL;
}
if (tgt_prog->type == prog->type) {
/* Cannot fentry/fexit another fentry/fexit program.
* Cannot attach program extension to another extension.
* It's ok to attach fentry/fexit to extension program.
*/
bpf_log(log, "Cannot recursively attach\n");
return -EINVAL;
}
if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
prog_extension &&
(tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
/* Program extensions can extend all program types
* except fentry/fexit. The reason is the following.
* The fentry/fexit programs are used for performance
* analysis, stats and can be attached to any program
* type except themselves. When extension program is
* replacing XDP function it is necessary to allow
* performance analysis of all functions. Both original
* XDP program and its program extension. Hence
* attaching fentry/fexit to BPF_PROG_TYPE_EXT is
* allowed. If extending of fentry/fexit was allowed it
* would be possible to create long call chain
* fentry->extension->fentry->extension beyond
* reasonable stack size. Hence extending fentry is not
* allowed.
*/
bpf_log(log, "Cannot extend fentry/fexit\n");
return -EINVAL;
}
} else {
if (prog_extension) {
bpf_log(log, "Cannot replace kernel functions\n");
return -EINVAL;
}
}
switch (prog->expected_attach_type) {
case BPF_TRACE_RAW_TP:
if (tgt_prog) {
bpf_log(log,
"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
return -EINVAL;
}
if (!btf_type_is_typedef(t)) {
bpf_log(log, "attach_btf_id %u is not a typedef\n",
btf_id);
return -EINVAL;
}
if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
btf_id, tname);
return -EINVAL;
}
tname += sizeof(prefix) - 1;
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_ptr(t))
/* should never happen in valid vmlinux build */
return -EINVAL;
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_func_proto(t))
/* should never happen in valid vmlinux build */
return -EINVAL;
break;
case BPF_TRACE_ITER:
if (!btf_type_is_func(t)) {
bpf_log(log, "attach_btf_id %u is not a function\n",
btf_id);
return -EINVAL;
}
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_func_proto(t))
return -EINVAL;
ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
if (ret)
return ret;
break;
default:
if (!prog_extension)
return -EINVAL;
fallthrough;
case BPF_MODIFY_RETURN:
case BPF_LSM_MAC:
case BPF_LSM_CGROUP:
case BPF_TRACE_FENTRY:
case BPF_TRACE_FEXIT:
if (!btf_type_is_func(t)) {
bpf_log(log, "attach_btf_id %u is not a function\n",
btf_id);
return -EINVAL;
}
if (prog_extension &&
btf_check_type_match(log, prog, btf, t))
return -EINVAL;
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_func_proto(t))
return -EINVAL;
if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
(!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
return -EINVAL;
if (tgt_prog && conservative)
t = NULL;
ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
if (ret < 0)
return ret;
if (tgt_prog) {
if (subprog == 0)
addr = (long) tgt_prog->bpf_func;
else
addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
} else {
addr = kallsyms_lookup_name(tname);
if (!addr) {
bpf_log(log,
"The address of function %s cannot be found\n",
tname);
return -ENOENT;
}
}
if (prog->aux->sleepable) {
ret = -EINVAL;
switch (prog->type) {
case BPF_PROG_TYPE_TRACING:
/* fentry/fexit/fmod_ret progs can be sleepable only if they are
* attached to ALLOW_ERROR_INJECTION and are not in denylist.
*/
if (!check_non_sleepable_error_inject(btf_id) &&
within_error_injection_list(addr))
ret = 0;
break;
case BPF_PROG_TYPE_LSM:
/* LSM progs check that they are attached to bpf_lsm_*() funcs.
* Only some of them are sleepable.
*/
if (bpf_lsm_is_sleepable_hook(btf_id))
ret = 0;
break;
default:
break;
}
if (ret) {
bpf_log(log, "%s is not sleepable\n", tname);
return ret;
}
} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
if (tgt_prog) {
bpf_log(log, "can't modify return codes of BPF programs\n");
return -EINVAL;
}
ret = check_attach_modify_return(addr, tname);
if (ret) {
bpf_log(log, "%s() is not modifiable\n", tname);
return ret;
}
}
break;
}
tgt_info->tgt_addr = addr;
tgt_info->tgt_name = tname;
tgt_info->tgt_type = t;
return 0;
}
BTF_SET_START(btf_id_deny)
BTF_ID_UNUSED
#ifdef CONFIG_SMP
BTF_ID(func, migrate_disable)
BTF_ID(func, migrate_enable)
#endif
#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
BTF_ID(func, rcu_read_unlock_strict)
#endif
BTF_SET_END(btf_id_deny)
static int check_attach_btf_id(struct bpf_verifier_env *env)
{
struct bpf_prog *prog = env->prog;
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
struct bpf_attach_target_info tgt_info = {};
u32 btf_id = prog->aux->attach_btf_id;
struct bpf_trampoline *tr;
int ret;
u64 key;
if (prog->type == BPF_PROG_TYPE_SYSCALL) {
if (prog->aux->sleepable)
/* attach_btf_id checked to be zero already */
return 0;
verbose(env, "Syscall programs can only be sleepable\n");
return -EINVAL;
}
if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
return -EINVAL;
}
if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
return check_struct_ops_btf_id(env);
if (prog->type != BPF_PROG_TYPE_TRACING &&
prog->type != BPF_PROG_TYPE_LSM &&
prog->type != BPF_PROG_TYPE_EXT)
return 0;
ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
if (ret)
return ret;
if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
/* to make freplace equivalent to their targets, they need to
* inherit env->ops and expected_attach_type for the rest of the
* verification
*/
env->ops = bpf_verifier_ops[tgt_prog->type];
prog->expected_attach_type = tgt_prog->expected_attach_type;
}
/* store info about the attachment target that will be used later */
prog->aux->attach_func_proto = tgt_info.tgt_type;
prog->aux->attach_func_name = tgt_info.tgt_name;
if (tgt_prog) {
prog->aux->saved_dst_prog_type = tgt_prog->type;
prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
}
if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
prog->aux->attach_btf_trace = true;
return 0;
} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
if (!bpf_iter_prog_supported(prog))
return -EINVAL;
return 0;
}
if (prog->type == BPF_PROG_TYPE_LSM) {
ret = bpf_lsm_verify_prog(&env->log, prog);
if (ret < 0)
return ret;
} else if (prog->type == BPF_PROG_TYPE_TRACING &&
btf_id_set_contains(&btf_id_deny, btf_id)) {
return -EINVAL;
}
key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
tr = bpf_trampoline_get(key, &tgt_info);
if (!tr)
return -ENOMEM;
prog->aux->dst_trampoline = tr;
return 0;
}
struct btf *bpf_get_btf_vmlinux(void)
{
if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
mutex_lock(&bpf_verifier_lock);
if (!btf_vmlinux)
btf_vmlinux = btf_parse_vmlinux();
mutex_unlock(&bpf_verifier_lock);
}
return btf_vmlinux;
}
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
{
u64 start_time = ktime_get_ns();
struct bpf_verifier_env *env;
struct bpf_verifier_log *log;
int i, len, ret = -EINVAL;
bool is_priv;
/* no program is valid */
if (ARRAY_SIZE(bpf_verifier_ops) == 0)
return -EINVAL;
/* 'struct bpf_verifier_env' can be global, but since it's not small,
* allocate/free it every time bpf_check() is called
*/
env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
if (!env)
return -ENOMEM;
log = &env->log;
len = (*prog)->len;
env->insn_aux_data =
vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
ret = -ENOMEM;
if (!env->insn_aux_data)
goto err_free_env;
for (i = 0; i < len; i++)
env->insn_aux_data[i].orig_idx = i;
env->prog = *prog;
env->ops = bpf_verifier_ops[env->prog->type];
env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
is_priv = bpf_capable();
bpf_get_btf_vmlinux();
/* grab the mutex to protect few globals used by verifier */
if (!is_priv)
mutex_lock(&bpf_verifier_lock);
if (attr->log_level || attr->log_buf || attr->log_size) {
/* user requested verbose verifier output
* and supplied buffer to store the verification trace
*/
log->level = attr->log_level;
log->ubuf = (char __user *) (unsigned long) attr->log_buf;
log->len_total = attr->log_size;
/* log attributes have to be sane */
if (!bpf_verifier_log_attr_valid(log)) {
ret = -EINVAL;
goto err_unlock;
}
}
mark_verifier_state_clean(env);
if (IS_ERR(btf_vmlinux)) {
/* Either gcc or pahole or kernel are broken. */
verbose(env, "in-kernel BTF is malformed\n");
ret = PTR_ERR(btf_vmlinux);
goto skip_full_check;
}
env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
env->strict_alignment = true;
if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
env->strict_alignment = false;
env->allow_ptr_leaks = bpf_allow_ptr_leaks();
env->allow_uninit_stack = bpf_allow_uninit_stack();
env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
env->bypass_spec_v1 = bpf_bypass_spec_v1();
env->bypass_spec_v4 = bpf_bypass_spec_v4();
env->bpf_capable = bpf_capable();
if (is_priv)
env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
env->explored_states = kvcalloc(state_htab_size(env),
sizeof(struct bpf_verifier_state_list *),
GFP_USER);
ret = -ENOMEM;
if (!env->explored_states)
goto skip_full_check;
ret = add_subprog_and_kfunc(env);
if (ret < 0)
goto skip_full_check;
ret = check_subprogs(env);
if (ret < 0)
goto skip_full_check;
ret = check_btf_info(env, attr, uattr);
if (ret < 0)
goto skip_full_check;
ret = check_attach_btf_id(env);
if (ret)
goto skip_full_check;
ret = resolve_pseudo_ldimm64(env);
if (ret < 0)
goto skip_full_check;
if (bpf_prog_is_dev_bound(env->prog->aux)) {
ret = bpf_prog_offload_verifier_prep(env->prog);
if (ret)
goto skip_full_check;
}
ret = check_cfg(env);
if (ret < 0)
goto skip_full_check;
ret = do_check_subprogs(env);
ret = ret ?: do_check_main(env);
if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
ret = bpf_prog_offload_finalize(env);
skip_full_check:
kvfree(env->explored_states);
if (ret == 0)
ret = check_max_stack_depth(env);
/* instruction rewrites happen after this point */
if (ret == 0)
ret = optimize_bpf_loop(env);
if (is_priv) {
if (ret == 0)
opt_hard_wire_dead_code_branches(env);
if (ret == 0)
ret = opt_remove_dead_code(env);
if (ret == 0)
ret = opt_remove_nops(env);
} else {
if (ret == 0)
sanitize_dead_code(env);
}
if (ret == 0)
/* program is valid, convert *(u32*)(ctx + off) accesses */
ret = convert_ctx_accesses(env);
if (ret == 0)
ret = do_misc_fixups(env);
/* do 32-bit optimization after insn patching has done so those patched
* insns could be handled correctly.
*/
if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
: false;
}
if (ret == 0)
ret = fixup_call_args(env);
env->verification_time = ktime_get_ns() - start_time;
print_verification_stats(env);
env->prog->aux->verified_insns = env->insn_processed;
if (log->level && bpf_verifier_log_full(log))
ret = -ENOSPC;
if (log->level && !log->ubuf) {
ret = -EFAULT;
goto err_release_maps;
}
if (ret)
goto err_release_maps;
if (env->used_map_cnt) {
/* if program passed verifier, update used_maps in bpf_prog_info */
env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
sizeof(env->used_maps[0]),
GFP_KERNEL);
if (!env->prog->aux->used_maps) {
ret = -ENOMEM;
goto err_release_maps;
}
memcpy(env->prog->aux->used_maps, env->used_maps,
sizeof(env->used_maps[0]) * env->used_map_cnt);
env->prog->aux->used_map_cnt = env->used_map_cnt;
}
if (env->used_btf_cnt) {
/* if program passed verifier, update used_btfs in bpf_prog_aux */
env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
sizeof(env->used_btfs[0]),
GFP_KERNEL);
if (!env->prog->aux->used_btfs) {
ret = -ENOMEM;
goto err_release_maps;
}
memcpy(env->prog->aux->used_btfs, env->used_btfs,
sizeof(env->used_btfs[0]) * env->used_btf_cnt);
env->prog->aux->used_btf_cnt = env->used_btf_cnt;
}
if (env->used_map_cnt || env->used_btf_cnt) {
/* program is valid. Convert pseudo bpf_ld_imm64 into generic
* bpf_ld_imm64 instructions
*/
convert_pseudo_ld_imm64(env);
}
adjust_btf_func(env);
err_release_maps:
if (!env->prog->aux->used_maps)
/* if we didn't copy map pointers into bpf_prog_info, release
* them now. Otherwise free_used_maps() will release them.
*/
release_maps(env);
if (!env->prog->aux->used_btfs)
release_btfs(env);
/* extension progs temporarily inherit the attach_type of their targets
for verification purposes, so set it back to zero before returning
*/
if (env->prog->type == BPF_PROG_TYPE_EXT)
env->prog->expected_attach_type = 0;
*prog = env->prog;
err_unlock:
if (!is_priv)
mutex_unlock(&bpf_verifier_lock);
vfree(env->insn_aux_data);
err_free_env:
kfree(env);
return ret;
}