linux/include/rdma/ib_verbs.h
Gustavo A. R. Silva 5b361328ca RDMA: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:

struct foo {
        int stuff;
        struct boo array[];
};

By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.

Also, notice that, dynamic memory allocations won't be affected by
this change:

"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]

This issue was found with the help of Coccinelle.

[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")

Link: https://lore.kernel.org/r/20200213010425.GA13068@embeddedor.com
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com> # added a few more
2020-02-20 13:33:51 -04:00

4705 lines
137 KiB
C

/*
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
* Copyright (c) 2004 Intel Corporation. All rights reserved.
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#if !defined(IB_VERBS_H)
#define IB_VERBS_H
#include <linux/types.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/rwsem.h>
#include <linux/workqueue.h>
#include <linux/irq_poll.h>
#include <uapi/linux/if_ether.h>
#include <net/ipv6.h>
#include <net/ip.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/refcount.h>
#include <linux/if_link.h>
#include <linux/atomic.h>
#include <linux/mmu_notifier.h>
#include <linux/uaccess.h>
#include <linux/cgroup_rdma.h>
#include <linux/irqflags.h>
#include <linux/preempt.h>
#include <linux/dim.h>
#include <uapi/rdma/ib_user_verbs.h>
#include <rdma/rdma_counter.h>
#include <rdma/restrack.h>
#include <rdma/signature.h>
#include <uapi/rdma/rdma_user_ioctl.h>
#include <uapi/rdma/ib_user_ioctl_verbs.h>
#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
struct ib_umem_odp;
struct ib_uqp_object;
struct ib_usrq_object;
struct ib_uwq_object;
extern struct workqueue_struct *ib_wq;
extern struct workqueue_struct *ib_comp_wq;
extern struct workqueue_struct *ib_comp_unbound_wq;
struct ib_ucq_object;
__printf(3, 4) __cold
void ibdev_printk(const char *level, const struct ib_device *ibdev,
const char *format, ...);
__printf(2, 3) __cold
void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
#if defined(CONFIG_DYNAMIC_DEBUG)
#define ibdev_dbg(__dev, format, args...) \
dynamic_ibdev_dbg(__dev, format, ##args)
#else
__printf(2, 3) __cold
static inline
void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
#endif
#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
do { \
static DEFINE_RATELIMIT_STATE(_rs, \
DEFAULT_RATELIMIT_INTERVAL, \
DEFAULT_RATELIMIT_BURST); \
if (__ratelimit(&_rs)) \
ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
} while (0)
#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_err_ratelimited(ibdev, fmt, ...) \
ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_info_ratelimited(ibdev, fmt, ...) \
ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
#if defined(CONFIG_DYNAMIC_DEBUG)
/* descriptor check is first to prevent flooding with "callbacks suppressed" */
#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
do { \
static DEFINE_RATELIMIT_STATE(_rs, \
DEFAULT_RATELIMIT_INTERVAL, \
DEFAULT_RATELIMIT_BURST); \
DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
__dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
##__VA_ARGS__); \
} while (0)
#else
__printf(2, 3) __cold
static inline
void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
#endif
union ib_gid {
u8 raw[16];
struct {
__be64 subnet_prefix;
__be64 interface_id;
} global;
};
extern union ib_gid zgid;
enum ib_gid_type {
/* If link layer is Ethernet, this is RoCE V1 */
IB_GID_TYPE_IB = 0,
IB_GID_TYPE_ROCE = 0,
IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
IB_GID_TYPE_SIZE
};
#define ROCE_V2_UDP_DPORT 4791
struct ib_gid_attr {
struct net_device __rcu *ndev;
struct ib_device *device;
union ib_gid gid;
enum ib_gid_type gid_type;
u16 index;
u8 port_num;
};
enum {
/* set the local administered indication */
IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
};
enum rdma_transport_type {
RDMA_TRANSPORT_IB,
RDMA_TRANSPORT_IWARP,
RDMA_TRANSPORT_USNIC,
RDMA_TRANSPORT_USNIC_UDP,
RDMA_TRANSPORT_UNSPECIFIED,
};
enum rdma_protocol_type {
RDMA_PROTOCOL_IB,
RDMA_PROTOCOL_IBOE,
RDMA_PROTOCOL_IWARP,
RDMA_PROTOCOL_USNIC_UDP
};
__attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type);
enum rdma_network_type {
RDMA_NETWORK_IB,
RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
RDMA_NETWORK_IPV4,
RDMA_NETWORK_IPV6
};
static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
{
if (network_type == RDMA_NETWORK_IPV4 ||
network_type == RDMA_NETWORK_IPV6)
return IB_GID_TYPE_ROCE_UDP_ENCAP;
/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
return IB_GID_TYPE_IB;
}
static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
{
if (attr->gid_type == IB_GID_TYPE_IB)
return RDMA_NETWORK_IB;
if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
return RDMA_NETWORK_IPV4;
else
return RDMA_NETWORK_IPV6;
}
enum rdma_link_layer {
IB_LINK_LAYER_UNSPECIFIED,
IB_LINK_LAYER_INFINIBAND,
IB_LINK_LAYER_ETHERNET,
};
enum ib_device_cap_flags {
IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
IB_DEVICE_RAW_MULTI = (1 << 3),
IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
/* Not in use, former INIT_TYPE = (1 << 9),*/
IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
IB_DEVICE_SRQ_RESIZE = (1 << 13),
IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
/*
* This device supports a per-device lkey or stag that can be
* used without performing a memory registration for the local
* memory. Note that ULPs should never check this flag, but
* instead of use the local_dma_lkey flag in the ib_pd structure,
* which will always contain a usable lkey.
*/
IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
/* Reserved, old SEND_W_INV = (1 << 16),*/
IB_DEVICE_MEM_WINDOW = (1 << 17),
/*
* Devices should set IB_DEVICE_UD_IP_SUM if they support
* insertion of UDP and TCP checksum on outgoing UD IPoIB
* messages and can verify the validity of checksum for
* incoming messages. Setting this flag implies that the
* IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
*/
IB_DEVICE_UD_IP_CSUM = (1 << 18),
IB_DEVICE_UD_TSO = (1 << 19),
IB_DEVICE_XRC = (1 << 20),
/*
* This device supports the IB "base memory management extension",
* which includes support for fast registrations (IB_WR_REG_MR,
* IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
* also be set by any iWarp device which must support FRs to comply
* to the iWarp verbs spec. iWarp devices also support the
* IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
* stag.
*/
IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
IB_DEVICE_RC_IP_CSUM = (1 << 25),
/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
IB_DEVICE_RAW_IP_CSUM = (1 << 26),
/*
* Devices should set IB_DEVICE_CROSS_CHANNEL if they
* support execution of WQEs that involve synchronization
* of I/O operations with single completion queue managed
* by hardware.
*/
IB_DEVICE_CROSS_CHANNEL = (1 << 27),
IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30),
IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
/* The device supports padding incoming writes to cacheline. */
IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
};
enum ib_atomic_cap {
IB_ATOMIC_NONE,
IB_ATOMIC_HCA,
IB_ATOMIC_GLOB
};
enum ib_odp_general_cap_bits {
IB_ODP_SUPPORT = 1 << 0,
IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
};
enum ib_odp_transport_cap_bits {
IB_ODP_SUPPORT_SEND = 1 << 0,
IB_ODP_SUPPORT_RECV = 1 << 1,
IB_ODP_SUPPORT_WRITE = 1 << 2,
IB_ODP_SUPPORT_READ = 1 << 3,
IB_ODP_SUPPORT_ATOMIC = 1 << 4,
IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
};
struct ib_odp_caps {
uint64_t general_caps;
struct {
uint32_t rc_odp_caps;
uint32_t uc_odp_caps;
uint32_t ud_odp_caps;
uint32_t xrc_odp_caps;
} per_transport_caps;
};
struct ib_rss_caps {
/* Corresponding bit will be set if qp type from
* 'enum ib_qp_type' is supported, e.g.
* supported_qpts |= 1 << IB_QPT_UD
*/
u32 supported_qpts;
u32 max_rwq_indirection_tables;
u32 max_rwq_indirection_table_size;
};
enum ib_tm_cap_flags {
/* Support tag matching with rendezvous offload for RC transport */
IB_TM_CAP_RNDV_RC = 1 << 0,
};
struct ib_tm_caps {
/* Max size of RNDV header */
u32 max_rndv_hdr_size;
/* Max number of entries in tag matching list */
u32 max_num_tags;
/* From enum ib_tm_cap_flags */
u32 flags;
/* Max number of outstanding list operations */
u32 max_ops;
/* Max number of SGE in tag matching entry */
u32 max_sge;
};
struct ib_cq_init_attr {
unsigned int cqe;
u32 comp_vector;
u32 flags;
};
enum ib_cq_attr_mask {
IB_CQ_MODERATE = 1 << 0,
};
struct ib_cq_caps {
u16 max_cq_moderation_count;
u16 max_cq_moderation_period;
};
struct ib_dm_mr_attr {
u64 length;
u64 offset;
u32 access_flags;
};
struct ib_dm_alloc_attr {
u64 length;
u32 alignment;
u32 flags;
};
struct ib_device_attr {
u64 fw_ver;
__be64 sys_image_guid;
u64 max_mr_size;
u64 page_size_cap;
u32 vendor_id;
u32 vendor_part_id;
u32 hw_ver;
int max_qp;
int max_qp_wr;
u64 device_cap_flags;
int max_send_sge;
int max_recv_sge;
int max_sge_rd;
int max_cq;
int max_cqe;
int max_mr;
int max_pd;
int max_qp_rd_atom;
int max_ee_rd_atom;
int max_res_rd_atom;
int max_qp_init_rd_atom;
int max_ee_init_rd_atom;
enum ib_atomic_cap atomic_cap;
enum ib_atomic_cap masked_atomic_cap;
int max_ee;
int max_rdd;
int max_mw;
int max_raw_ipv6_qp;
int max_raw_ethy_qp;
int max_mcast_grp;
int max_mcast_qp_attach;
int max_total_mcast_qp_attach;
int max_ah;
int max_fmr;
int max_map_per_fmr;
int max_srq;
int max_srq_wr;
int max_srq_sge;
unsigned int max_fast_reg_page_list_len;
unsigned int max_pi_fast_reg_page_list_len;
u16 max_pkeys;
u8 local_ca_ack_delay;
int sig_prot_cap;
int sig_guard_cap;
struct ib_odp_caps odp_caps;
uint64_t timestamp_mask;
uint64_t hca_core_clock; /* in KHZ */
struct ib_rss_caps rss_caps;
u32 max_wq_type_rq;
u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
struct ib_tm_caps tm_caps;
struct ib_cq_caps cq_caps;
u64 max_dm_size;
/* Max entries for sgl for optimized performance per READ */
u32 max_sgl_rd;
};
enum ib_mtu {
IB_MTU_256 = 1,
IB_MTU_512 = 2,
IB_MTU_1024 = 3,
IB_MTU_2048 = 4,
IB_MTU_4096 = 5
};
static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
{
switch (mtu) {
case IB_MTU_256: return 256;
case IB_MTU_512: return 512;
case IB_MTU_1024: return 1024;
case IB_MTU_2048: return 2048;
case IB_MTU_4096: return 4096;
default: return -1;
}
}
static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
{
if (mtu >= 4096)
return IB_MTU_4096;
else if (mtu >= 2048)
return IB_MTU_2048;
else if (mtu >= 1024)
return IB_MTU_1024;
else if (mtu >= 512)
return IB_MTU_512;
else
return IB_MTU_256;
}
enum ib_port_state {
IB_PORT_NOP = 0,
IB_PORT_DOWN = 1,
IB_PORT_INIT = 2,
IB_PORT_ARMED = 3,
IB_PORT_ACTIVE = 4,
IB_PORT_ACTIVE_DEFER = 5
};
enum ib_port_phys_state {
IB_PORT_PHYS_STATE_SLEEP = 1,
IB_PORT_PHYS_STATE_POLLING = 2,
IB_PORT_PHYS_STATE_DISABLED = 3,
IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
IB_PORT_PHYS_STATE_LINK_UP = 5,
IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
IB_PORT_PHYS_STATE_PHY_TEST = 7,
};
enum ib_port_width {
IB_WIDTH_1X = 1,
IB_WIDTH_2X = 16,
IB_WIDTH_4X = 2,
IB_WIDTH_8X = 4,
IB_WIDTH_12X = 8
};
static inline int ib_width_enum_to_int(enum ib_port_width width)
{
switch (width) {
case IB_WIDTH_1X: return 1;
case IB_WIDTH_2X: return 2;
case IB_WIDTH_4X: return 4;
case IB_WIDTH_8X: return 8;
case IB_WIDTH_12X: return 12;
default: return -1;
}
}
enum ib_port_speed {
IB_SPEED_SDR = 1,
IB_SPEED_DDR = 2,
IB_SPEED_QDR = 4,
IB_SPEED_FDR10 = 8,
IB_SPEED_FDR = 16,
IB_SPEED_EDR = 32,
IB_SPEED_HDR = 64
};
/**
* struct rdma_hw_stats
* @lock - Mutex to protect parallel write access to lifespan and values
* of counters, which are 64bits and not guaranteeed to be written
* atomicaly on 32bits systems.
* @timestamp - Used by the core code to track when the last update was
* @lifespan - Used by the core code to determine how old the counters
* should be before being updated again. Stored in jiffies, defaults
* to 10 milliseconds, drivers can override the default be specifying
* their own value during their allocation routine.
* @name - Array of pointers to static names used for the counters in
* directory.
* @num_counters - How many hardware counters there are. If name is
* shorter than this number, a kernel oops will result. Driver authors
* are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
* in their code to prevent this.
* @value - Array of u64 counters that are accessed by the sysfs code and
* filled in by the drivers get_stats routine
*/
struct rdma_hw_stats {
struct mutex lock; /* Protect lifespan and values[] */
unsigned long timestamp;
unsigned long lifespan;
const char * const *names;
int num_counters;
u64 value[];
};
#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
/**
* rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
* for drivers.
* @names - Array of static const char *
* @num_counters - How many elements in array
* @lifespan - How many milliseconds between updates
*/
static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
const char * const *names, int num_counters,
unsigned long lifespan)
{
struct rdma_hw_stats *stats;
stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
GFP_KERNEL);
if (!stats)
return NULL;
stats->names = names;
stats->num_counters = num_counters;
stats->lifespan = msecs_to_jiffies(lifespan);
return stats;
}
/* Define bits for the various functionality this port needs to be supported by
* the core.
*/
/* Management 0x00000FFF */
#define RDMA_CORE_CAP_IB_MAD 0x00000001
#define RDMA_CORE_CAP_IB_SMI 0x00000002
#define RDMA_CORE_CAP_IB_CM 0x00000004
#define RDMA_CORE_CAP_IW_CM 0x00000008
#define RDMA_CORE_CAP_IB_SA 0x00000010
#define RDMA_CORE_CAP_OPA_MAD 0x00000020
/* Address format 0x000FF000 */
#define RDMA_CORE_CAP_AF_IB 0x00001000
#define RDMA_CORE_CAP_ETH_AH 0x00002000
#define RDMA_CORE_CAP_OPA_AH 0x00004000
#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
/* Protocol 0xFFF00000 */
#define RDMA_CORE_CAP_PROT_IB 0x00100000
#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
| RDMA_CORE_CAP_PROT_ROCE \
| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
| RDMA_CORE_CAP_IB_MAD \
| RDMA_CORE_CAP_IB_SMI \
| RDMA_CORE_CAP_IB_CM \
| RDMA_CORE_CAP_IB_SA \
| RDMA_CORE_CAP_AF_IB)
#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
| RDMA_CORE_CAP_IB_MAD \
| RDMA_CORE_CAP_IB_CM \
| RDMA_CORE_CAP_AF_IB \
| RDMA_CORE_CAP_ETH_AH)
#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
| RDMA_CORE_CAP_IB_MAD \
| RDMA_CORE_CAP_IB_CM \
| RDMA_CORE_CAP_AF_IB \
| RDMA_CORE_CAP_ETH_AH)
#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
| RDMA_CORE_CAP_IW_CM)
#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
| RDMA_CORE_CAP_OPA_MAD)
#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
struct ib_port_attr {
u64 subnet_prefix;
enum ib_port_state state;
enum ib_mtu max_mtu;
enum ib_mtu active_mtu;
int gid_tbl_len;
unsigned int ip_gids:1;
/* This is the value from PortInfo CapabilityMask, defined by IBA */
u32 port_cap_flags;
u32 max_msg_sz;
u32 bad_pkey_cntr;
u32 qkey_viol_cntr;
u16 pkey_tbl_len;
u32 sm_lid;
u32 lid;
u8 lmc;
u8 max_vl_num;
u8 sm_sl;
u8 subnet_timeout;
u8 init_type_reply;
u8 active_width;
u8 active_speed;
u8 phys_state;
u16 port_cap_flags2;
};
enum ib_device_modify_flags {
IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
};
#define IB_DEVICE_NODE_DESC_MAX 64
struct ib_device_modify {
u64 sys_image_guid;
char node_desc[IB_DEVICE_NODE_DESC_MAX];
};
enum ib_port_modify_flags {
IB_PORT_SHUTDOWN = 1,
IB_PORT_INIT_TYPE = (1<<2),
IB_PORT_RESET_QKEY_CNTR = (1<<3),
IB_PORT_OPA_MASK_CHG = (1<<4)
};
struct ib_port_modify {
u32 set_port_cap_mask;
u32 clr_port_cap_mask;
u8 init_type;
};
enum ib_event_type {
IB_EVENT_CQ_ERR,
IB_EVENT_QP_FATAL,
IB_EVENT_QP_REQ_ERR,
IB_EVENT_QP_ACCESS_ERR,
IB_EVENT_COMM_EST,
IB_EVENT_SQ_DRAINED,
IB_EVENT_PATH_MIG,
IB_EVENT_PATH_MIG_ERR,
IB_EVENT_DEVICE_FATAL,
IB_EVENT_PORT_ACTIVE,
IB_EVENT_PORT_ERR,
IB_EVENT_LID_CHANGE,
IB_EVENT_PKEY_CHANGE,
IB_EVENT_SM_CHANGE,
IB_EVENT_SRQ_ERR,
IB_EVENT_SRQ_LIMIT_REACHED,
IB_EVENT_QP_LAST_WQE_REACHED,
IB_EVENT_CLIENT_REREGISTER,
IB_EVENT_GID_CHANGE,
IB_EVENT_WQ_FATAL,
};
const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
struct ib_event {
struct ib_device *device;
union {
struct ib_cq *cq;
struct ib_qp *qp;
struct ib_srq *srq;
struct ib_wq *wq;
u8 port_num;
} element;
enum ib_event_type event;
};
struct ib_event_handler {
struct ib_device *device;
void (*handler)(struct ib_event_handler *, struct ib_event *);
struct list_head list;
};
#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
do { \
(_ptr)->device = _device; \
(_ptr)->handler = _handler; \
INIT_LIST_HEAD(&(_ptr)->list); \
} while (0)
struct ib_global_route {
const struct ib_gid_attr *sgid_attr;
union ib_gid dgid;
u32 flow_label;
u8 sgid_index;
u8 hop_limit;
u8 traffic_class;
};
struct ib_grh {
__be32 version_tclass_flow;
__be16 paylen;
u8 next_hdr;
u8 hop_limit;
union ib_gid sgid;
union ib_gid dgid;
};
union rdma_network_hdr {
struct ib_grh ibgrh;
struct {
/* The IB spec states that if it's IPv4, the header
* is located in the last 20 bytes of the header.
*/
u8 reserved[20];
struct iphdr roce4grh;
};
};
#define IB_QPN_MASK 0xFFFFFF
enum {
IB_MULTICAST_QPN = 0xffffff
};
#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
enum ib_ah_flags {
IB_AH_GRH = 1
};
enum ib_rate {
IB_RATE_PORT_CURRENT = 0,
IB_RATE_2_5_GBPS = 2,
IB_RATE_5_GBPS = 5,
IB_RATE_10_GBPS = 3,
IB_RATE_20_GBPS = 6,
IB_RATE_30_GBPS = 4,
IB_RATE_40_GBPS = 7,
IB_RATE_60_GBPS = 8,
IB_RATE_80_GBPS = 9,
IB_RATE_120_GBPS = 10,
IB_RATE_14_GBPS = 11,
IB_RATE_56_GBPS = 12,
IB_RATE_112_GBPS = 13,
IB_RATE_168_GBPS = 14,
IB_RATE_25_GBPS = 15,
IB_RATE_100_GBPS = 16,
IB_RATE_200_GBPS = 17,
IB_RATE_300_GBPS = 18,
IB_RATE_28_GBPS = 19,
IB_RATE_50_GBPS = 20,
IB_RATE_400_GBPS = 21,
IB_RATE_600_GBPS = 22,
};
/**
* ib_rate_to_mult - Convert the IB rate enum to a multiple of the
* base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
* converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
* @rate: rate to convert.
*/
__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
/**
* ib_rate_to_mbps - Convert the IB rate enum to Mbps.
* For example, IB_RATE_2_5_GBPS will be converted to 2500.
* @rate: rate to convert.
*/
__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
/**
* enum ib_mr_type - memory region type
* @IB_MR_TYPE_MEM_REG: memory region that is used for
* normal registration
* @IB_MR_TYPE_SG_GAPS: memory region that is capable to
* register any arbitrary sg lists (without
* the normal mr constraints - see
* ib_map_mr_sg)
* @IB_MR_TYPE_DM: memory region that is used for device
* memory registration
* @IB_MR_TYPE_USER: memory region that is used for the user-space
* application
* @IB_MR_TYPE_DMA: memory region that is used for DMA operations
* without address translations (VA=PA)
* @IB_MR_TYPE_INTEGRITY: memory region that is used for
* data integrity operations
*/
enum ib_mr_type {
IB_MR_TYPE_MEM_REG,
IB_MR_TYPE_SG_GAPS,
IB_MR_TYPE_DM,
IB_MR_TYPE_USER,
IB_MR_TYPE_DMA,
IB_MR_TYPE_INTEGRITY,
};
enum ib_mr_status_check {
IB_MR_CHECK_SIG_STATUS = 1,
};
/**
* struct ib_mr_status - Memory region status container
*
* @fail_status: Bitmask of MR checks status. For each
* failed check a corresponding status bit is set.
* @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
* failure.
*/
struct ib_mr_status {
u32 fail_status;
struct ib_sig_err sig_err;
};
/**
* mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
* enum.
* @mult: multiple to convert.
*/
__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
enum rdma_ah_attr_type {
RDMA_AH_ATTR_TYPE_UNDEFINED,
RDMA_AH_ATTR_TYPE_IB,
RDMA_AH_ATTR_TYPE_ROCE,
RDMA_AH_ATTR_TYPE_OPA,
};
struct ib_ah_attr {
u16 dlid;
u8 src_path_bits;
};
struct roce_ah_attr {
u8 dmac[ETH_ALEN];
};
struct opa_ah_attr {
u32 dlid;
u8 src_path_bits;
bool make_grd;
};
struct rdma_ah_attr {
struct ib_global_route grh;
u8 sl;
u8 static_rate;
u8 port_num;
u8 ah_flags;
enum rdma_ah_attr_type type;
union {
struct ib_ah_attr ib;
struct roce_ah_attr roce;
struct opa_ah_attr opa;
};
};
enum ib_wc_status {
IB_WC_SUCCESS,
IB_WC_LOC_LEN_ERR,
IB_WC_LOC_QP_OP_ERR,
IB_WC_LOC_EEC_OP_ERR,
IB_WC_LOC_PROT_ERR,
IB_WC_WR_FLUSH_ERR,
IB_WC_MW_BIND_ERR,
IB_WC_BAD_RESP_ERR,
IB_WC_LOC_ACCESS_ERR,
IB_WC_REM_INV_REQ_ERR,
IB_WC_REM_ACCESS_ERR,
IB_WC_REM_OP_ERR,
IB_WC_RETRY_EXC_ERR,
IB_WC_RNR_RETRY_EXC_ERR,
IB_WC_LOC_RDD_VIOL_ERR,
IB_WC_REM_INV_RD_REQ_ERR,
IB_WC_REM_ABORT_ERR,
IB_WC_INV_EECN_ERR,
IB_WC_INV_EEC_STATE_ERR,
IB_WC_FATAL_ERR,
IB_WC_RESP_TIMEOUT_ERR,
IB_WC_GENERAL_ERR
};
const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
enum ib_wc_opcode {
IB_WC_SEND,
IB_WC_RDMA_WRITE,
IB_WC_RDMA_READ,
IB_WC_COMP_SWAP,
IB_WC_FETCH_ADD,
IB_WC_LSO,
IB_WC_LOCAL_INV,
IB_WC_REG_MR,
IB_WC_MASKED_COMP_SWAP,
IB_WC_MASKED_FETCH_ADD,
/*
* Set value of IB_WC_RECV so consumers can test if a completion is a
* receive by testing (opcode & IB_WC_RECV).
*/
IB_WC_RECV = 1 << 7,
IB_WC_RECV_RDMA_WITH_IMM
};
enum ib_wc_flags {
IB_WC_GRH = 1,
IB_WC_WITH_IMM = (1<<1),
IB_WC_WITH_INVALIDATE = (1<<2),
IB_WC_IP_CSUM_OK = (1<<3),
IB_WC_WITH_SMAC = (1<<4),
IB_WC_WITH_VLAN = (1<<5),
IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
};
struct ib_wc {
union {
u64 wr_id;
struct ib_cqe *wr_cqe;
};
enum ib_wc_status status;
enum ib_wc_opcode opcode;
u32 vendor_err;
u32 byte_len;
struct ib_qp *qp;
union {
__be32 imm_data;
u32 invalidate_rkey;
} ex;
u32 src_qp;
u32 slid;
int wc_flags;
u16 pkey_index;
u8 sl;
u8 dlid_path_bits;
u8 port_num; /* valid only for DR SMPs on switches */
u8 smac[ETH_ALEN];
u16 vlan_id;
u8 network_hdr_type;
};
enum ib_cq_notify_flags {
IB_CQ_SOLICITED = 1 << 0,
IB_CQ_NEXT_COMP = 1 << 1,
IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
};
enum ib_srq_type {
IB_SRQT_BASIC,
IB_SRQT_XRC,
IB_SRQT_TM,
};
static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
{
return srq_type == IB_SRQT_XRC ||
srq_type == IB_SRQT_TM;
}
enum ib_srq_attr_mask {
IB_SRQ_MAX_WR = 1 << 0,
IB_SRQ_LIMIT = 1 << 1,
};
struct ib_srq_attr {
u32 max_wr;
u32 max_sge;
u32 srq_limit;
};
struct ib_srq_init_attr {
void (*event_handler)(struct ib_event *, void *);
void *srq_context;
struct ib_srq_attr attr;
enum ib_srq_type srq_type;
struct {
struct ib_cq *cq;
union {
struct {
struct ib_xrcd *xrcd;
} xrc;
struct {
u32 max_num_tags;
} tag_matching;
};
} ext;
};
struct ib_qp_cap {
u32 max_send_wr;
u32 max_recv_wr;
u32 max_send_sge;
u32 max_recv_sge;
u32 max_inline_data;
/*
* Maximum number of rdma_rw_ctx structures in flight at a time.
* ib_create_qp() will calculate the right amount of neededed WRs
* and MRs based on this.
*/
u32 max_rdma_ctxs;
};
enum ib_sig_type {
IB_SIGNAL_ALL_WR,
IB_SIGNAL_REQ_WR
};
enum ib_qp_type {
/*
* IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
* here (and in that order) since the MAD layer uses them as
* indices into a 2-entry table.
*/
IB_QPT_SMI,
IB_QPT_GSI,
IB_QPT_RC,
IB_QPT_UC,
IB_QPT_UD,
IB_QPT_RAW_IPV6,
IB_QPT_RAW_ETHERTYPE,
IB_QPT_RAW_PACKET = 8,
IB_QPT_XRC_INI = 9,
IB_QPT_XRC_TGT,
IB_QPT_MAX,
IB_QPT_DRIVER = 0xFF,
/* Reserve a range for qp types internal to the low level driver.
* These qp types will not be visible at the IB core layer, so the
* IB_QPT_MAX usages should not be affected in the core layer
*/
IB_QPT_RESERVED1 = 0x1000,
IB_QPT_RESERVED2,
IB_QPT_RESERVED3,
IB_QPT_RESERVED4,
IB_QPT_RESERVED5,
IB_QPT_RESERVED6,
IB_QPT_RESERVED7,
IB_QPT_RESERVED8,
IB_QPT_RESERVED9,
IB_QPT_RESERVED10,
};
enum ib_qp_create_flags {
IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
IB_QP_CREATE_MANAGED_SEND = 1 << 3,
IB_QP_CREATE_MANAGED_RECV = 1 << 4,
IB_QP_CREATE_NETIF_QP = 1 << 5,
IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
/* FREE = 1 << 7, */
IB_QP_CREATE_SCATTER_FCS = 1 << 8,
IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
IB_QP_CREATE_SOURCE_QPN = 1 << 10,
IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
/* reserve bits 26-31 for low level drivers' internal use */
IB_QP_CREATE_RESERVED_START = 1 << 26,
IB_QP_CREATE_RESERVED_END = 1 << 31,
};
/*
* Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
* callback to destroy the passed in QP.
*/
struct ib_qp_init_attr {
/* Consumer's event_handler callback must not block */
void (*event_handler)(struct ib_event *, void *);
void *qp_context;
struct ib_cq *send_cq;
struct ib_cq *recv_cq;
struct ib_srq *srq;
struct ib_xrcd *xrcd; /* XRC TGT QPs only */
struct ib_qp_cap cap;
enum ib_sig_type sq_sig_type;
enum ib_qp_type qp_type;
u32 create_flags;
/*
* Only needed for special QP types, or when using the RW API.
*/
u8 port_num;
struct ib_rwq_ind_table *rwq_ind_tbl;
u32 source_qpn;
};
struct ib_qp_open_attr {
void (*event_handler)(struct ib_event *, void *);
void *qp_context;
u32 qp_num;
enum ib_qp_type qp_type;
};
enum ib_rnr_timeout {
IB_RNR_TIMER_655_36 = 0,
IB_RNR_TIMER_000_01 = 1,
IB_RNR_TIMER_000_02 = 2,
IB_RNR_TIMER_000_03 = 3,
IB_RNR_TIMER_000_04 = 4,
IB_RNR_TIMER_000_06 = 5,
IB_RNR_TIMER_000_08 = 6,
IB_RNR_TIMER_000_12 = 7,
IB_RNR_TIMER_000_16 = 8,
IB_RNR_TIMER_000_24 = 9,
IB_RNR_TIMER_000_32 = 10,
IB_RNR_TIMER_000_48 = 11,
IB_RNR_TIMER_000_64 = 12,
IB_RNR_TIMER_000_96 = 13,
IB_RNR_TIMER_001_28 = 14,
IB_RNR_TIMER_001_92 = 15,
IB_RNR_TIMER_002_56 = 16,
IB_RNR_TIMER_003_84 = 17,
IB_RNR_TIMER_005_12 = 18,
IB_RNR_TIMER_007_68 = 19,
IB_RNR_TIMER_010_24 = 20,
IB_RNR_TIMER_015_36 = 21,
IB_RNR_TIMER_020_48 = 22,
IB_RNR_TIMER_030_72 = 23,
IB_RNR_TIMER_040_96 = 24,
IB_RNR_TIMER_061_44 = 25,
IB_RNR_TIMER_081_92 = 26,
IB_RNR_TIMER_122_88 = 27,
IB_RNR_TIMER_163_84 = 28,
IB_RNR_TIMER_245_76 = 29,
IB_RNR_TIMER_327_68 = 30,
IB_RNR_TIMER_491_52 = 31
};
enum ib_qp_attr_mask {
IB_QP_STATE = 1,
IB_QP_CUR_STATE = (1<<1),
IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
IB_QP_ACCESS_FLAGS = (1<<3),
IB_QP_PKEY_INDEX = (1<<4),
IB_QP_PORT = (1<<5),
IB_QP_QKEY = (1<<6),
IB_QP_AV = (1<<7),
IB_QP_PATH_MTU = (1<<8),
IB_QP_TIMEOUT = (1<<9),
IB_QP_RETRY_CNT = (1<<10),
IB_QP_RNR_RETRY = (1<<11),
IB_QP_RQ_PSN = (1<<12),
IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
IB_QP_ALT_PATH = (1<<14),
IB_QP_MIN_RNR_TIMER = (1<<15),
IB_QP_SQ_PSN = (1<<16),
IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
IB_QP_PATH_MIG_STATE = (1<<18),
IB_QP_CAP = (1<<19),
IB_QP_DEST_QPN = (1<<20),
IB_QP_RESERVED1 = (1<<21),
IB_QP_RESERVED2 = (1<<22),
IB_QP_RESERVED3 = (1<<23),
IB_QP_RESERVED4 = (1<<24),
IB_QP_RATE_LIMIT = (1<<25),
};
enum ib_qp_state {
IB_QPS_RESET,
IB_QPS_INIT,
IB_QPS_RTR,
IB_QPS_RTS,
IB_QPS_SQD,
IB_QPS_SQE,
IB_QPS_ERR
};
enum ib_mig_state {
IB_MIG_MIGRATED,
IB_MIG_REARM,
IB_MIG_ARMED
};
enum ib_mw_type {
IB_MW_TYPE_1 = 1,
IB_MW_TYPE_2 = 2
};
struct ib_qp_attr {
enum ib_qp_state qp_state;
enum ib_qp_state cur_qp_state;
enum ib_mtu path_mtu;
enum ib_mig_state path_mig_state;
u32 qkey;
u32 rq_psn;
u32 sq_psn;
u32 dest_qp_num;
int qp_access_flags;
struct ib_qp_cap cap;
struct rdma_ah_attr ah_attr;
struct rdma_ah_attr alt_ah_attr;
u16 pkey_index;
u16 alt_pkey_index;
u8 en_sqd_async_notify;
u8 sq_draining;
u8 max_rd_atomic;
u8 max_dest_rd_atomic;
u8 min_rnr_timer;
u8 port_num;
u8 timeout;
u8 retry_cnt;
u8 rnr_retry;
u8 alt_port_num;
u8 alt_timeout;
u32 rate_limit;
};
enum ib_wr_opcode {
/* These are shared with userspace */
IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
IB_WR_SEND = IB_UVERBS_WR_SEND,
IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
IB_WR_LSO = IB_UVERBS_WR_TSO,
IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
/* These are kernel only and can not be issued by userspace */
IB_WR_REG_MR = 0x20,
IB_WR_REG_MR_INTEGRITY,
/* reserve values for low level drivers' internal use.
* These values will not be used at all in the ib core layer.
*/
IB_WR_RESERVED1 = 0xf0,
IB_WR_RESERVED2,
IB_WR_RESERVED3,
IB_WR_RESERVED4,
IB_WR_RESERVED5,
IB_WR_RESERVED6,
IB_WR_RESERVED7,
IB_WR_RESERVED8,
IB_WR_RESERVED9,
IB_WR_RESERVED10,
};
enum ib_send_flags {
IB_SEND_FENCE = 1,
IB_SEND_SIGNALED = (1<<1),
IB_SEND_SOLICITED = (1<<2),
IB_SEND_INLINE = (1<<3),
IB_SEND_IP_CSUM = (1<<4),
/* reserve bits 26-31 for low level drivers' internal use */
IB_SEND_RESERVED_START = (1 << 26),
IB_SEND_RESERVED_END = (1 << 31),
};
struct ib_sge {
u64 addr;
u32 length;
u32 lkey;
};
struct ib_cqe {
void (*done)(struct ib_cq *cq, struct ib_wc *wc);
};
struct ib_send_wr {
struct ib_send_wr *next;
union {
u64 wr_id;
struct ib_cqe *wr_cqe;
};
struct ib_sge *sg_list;
int num_sge;
enum ib_wr_opcode opcode;
int send_flags;
union {
__be32 imm_data;
u32 invalidate_rkey;
} ex;
};
struct ib_rdma_wr {
struct ib_send_wr wr;
u64 remote_addr;
u32 rkey;
};
static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
{
return container_of(wr, struct ib_rdma_wr, wr);
}
struct ib_atomic_wr {
struct ib_send_wr wr;
u64 remote_addr;
u64 compare_add;
u64 swap;
u64 compare_add_mask;
u64 swap_mask;
u32 rkey;
};
static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
{
return container_of(wr, struct ib_atomic_wr, wr);
}
struct ib_ud_wr {
struct ib_send_wr wr;
struct ib_ah *ah;
void *header;
int hlen;
int mss;
u32 remote_qpn;
u32 remote_qkey;
u16 pkey_index; /* valid for GSI only */
u8 port_num; /* valid for DR SMPs on switch only */
};
static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
{
return container_of(wr, struct ib_ud_wr, wr);
}
struct ib_reg_wr {
struct ib_send_wr wr;
struct ib_mr *mr;
u32 key;
int access;
};
static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
{
return container_of(wr, struct ib_reg_wr, wr);
}
struct ib_recv_wr {
struct ib_recv_wr *next;
union {
u64 wr_id;
struct ib_cqe *wr_cqe;
};
struct ib_sge *sg_list;
int num_sge;
};
enum ib_access_flags {
IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
IB_ACCESS_SUPPORTED =
((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
};
/*
* XXX: these are apparently used for ->rereg_user_mr, no idea why they
* are hidden here instead of a uapi header!
*/
enum ib_mr_rereg_flags {
IB_MR_REREG_TRANS = 1,
IB_MR_REREG_PD = (1<<1),
IB_MR_REREG_ACCESS = (1<<2),
IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
};
struct ib_fmr_attr {
int max_pages;
int max_maps;
u8 page_shift;
};
struct ib_umem;
enum rdma_remove_reason {
/*
* Userspace requested uobject deletion or initial try
* to remove uobject via cleanup. Call could fail
*/
RDMA_REMOVE_DESTROY,
/* Context deletion. This call should delete the actual object itself */
RDMA_REMOVE_CLOSE,
/* Driver is being hot-unplugged. This call should delete the actual object itself */
RDMA_REMOVE_DRIVER_REMOVE,
/* uobj is being cleaned-up before being committed */
RDMA_REMOVE_ABORT,
};
struct ib_rdmacg_object {
#ifdef CONFIG_CGROUP_RDMA
struct rdma_cgroup *cg; /* owner rdma cgroup */
#endif
};
struct ib_ucontext {
struct ib_device *device;
struct ib_uverbs_file *ufile;
/*
* 'closing' can be read by the driver only during a destroy callback,
* it is set when we are closing the file descriptor and indicates
* that mm_sem may be locked.
*/
bool closing;
bool cleanup_retryable;
struct ib_rdmacg_object cg_obj;
/*
* Implementation details of the RDMA core, don't use in drivers:
*/
struct rdma_restrack_entry res;
struct xarray mmap_xa;
};
struct ib_uobject {
u64 user_handle; /* handle given to us by userspace */
/* ufile & ucontext owning this object */
struct ib_uverbs_file *ufile;
/* FIXME, save memory: ufile->context == context */
struct ib_ucontext *context; /* associated user context */
void *object; /* containing object */
struct list_head list; /* link to context's list */
struct ib_rdmacg_object cg_obj; /* rdmacg object */
int id; /* index into kernel idr */
struct kref ref;
atomic_t usecnt; /* protects exclusive access */
struct rcu_head rcu; /* kfree_rcu() overhead */
const struct uverbs_api_object *uapi_object;
};
struct ib_udata {
const void __user *inbuf;
void __user *outbuf;
size_t inlen;
size_t outlen;
};
struct ib_pd {
u32 local_dma_lkey;
u32 flags;
struct ib_device *device;
struct ib_uobject *uobject;
atomic_t usecnt; /* count all resources */
u32 unsafe_global_rkey;
/*
* Implementation details of the RDMA core, don't use in drivers:
*/
struct ib_mr *__internal_mr;
struct rdma_restrack_entry res;
};
struct ib_xrcd {
struct ib_device *device;
atomic_t usecnt; /* count all exposed resources */
struct inode *inode;
struct mutex tgt_qp_mutex;
struct list_head tgt_qp_list;
};
struct ib_ah {
struct ib_device *device;
struct ib_pd *pd;
struct ib_uobject *uobject;
const struct ib_gid_attr *sgid_attr;
enum rdma_ah_attr_type type;
};
typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
enum ib_poll_context {
IB_POLL_DIRECT, /* caller context, no hw completions */
IB_POLL_SOFTIRQ, /* poll from softirq context */
IB_POLL_WORKQUEUE, /* poll from workqueue */
IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
};
struct ib_cq {
struct ib_device *device;
struct ib_ucq_object *uobject;
ib_comp_handler comp_handler;
void (*event_handler)(struct ib_event *, void *);
void *cq_context;
int cqe;
atomic_t usecnt; /* count number of work queues */
enum ib_poll_context poll_ctx;
struct ib_wc *wc;
union {
struct irq_poll iop;
struct work_struct work;
};
struct workqueue_struct *comp_wq;
struct dim *dim;
/* updated only by trace points */
ktime_t timestamp;
bool interrupt;
/*
* Implementation details of the RDMA core, don't use in drivers:
*/
struct rdma_restrack_entry res;
};
struct ib_srq {
struct ib_device *device;
struct ib_pd *pd;
struct ib_usrq_object *uobject;
void (*event_handler)(struct ib_event *, void *);
void *srq_context;
enum ib_srq_type srq_type;
atomic_t usecnt;
struct {
struct ib_cq *cq;
union {
struct {
struct ib_xrcd *xrcd;
u32 srq_num;
} xrc;
};
} ext;
};
enum ib_raw_packet_caps {
/* Strip cvlan from incoming packet and report it in the matching work
* completion is supported.
*/
IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
/* Scatter FCS field of an incoming packet to host memory is supported.
*/
IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
/* Checksum offloads are supported (for both send and receive). */
IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
/* When a packet is received for an RQ with no receive WQEs, the
* packet processing is delayed.
*/
IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
};
enum ib_wq_type {
IB_WQT_RQ
};
enum ib_wq_state {
IB_WQS_RESET,
IB_WQS_RDY,
IB_WQS_ERR
};
struct ib_wq {
struct ib_device *device;
struct ib_uwq_object *uobject;
void *wq_context;
void (*event_handler)(struct ib_event *, void *);
struct ib_pd *pd;
struct ib_cq *cq;
u32 wq_num;
enum ib_wq_state state;
enum ib_wq_type wq_type;
atomic_t usecnt;
};
enum ib_wq_flags {
IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
};
struct ib_wq_init_attr {
void *wq_context;
enum ib_wq_type wq_type;
u32 max_wr;
u32 max_sge;
struct ib_cq *cq;
void (*event_handler)(struct ib_event *, void *);
u32 create_flags; /* Use enum ib_wq_flags */
};
enum ib_wq_attr_mask {
IB_WQ_STATE = 1 << 0,
IB_WQ_CUR_STATE = 1 << 1,
IB_WQ_FLAGS = 1 << 2,
};
struct ib_wq_attr {
enum ib_wq_state wq_state;
enum ib_wq_state curr_wq_state;
u32 flags; /* Use enum ib_wq_flags */
u32 flags_mask; /* Use enum ib_wq_flags */
};
struct ib_rwq_ind_table {
struct ib_device *device;
struct ib_uobject *uobject;
atomic_t usecnt;
u32 ind_tbl_num;
u32 log_ind_tbl_size;
struct ib_wq **ind_tbl;
};
struct ib_rwq_ind_table_init_attr {
u32 log_ind_tbl_size;
/* Each entry is a pointer to Receive Work Queue */
struct ib_wq **ind_tbl;
};
enum port_pkey_state {
IB_PORT_PKEY_NOT_VALID = 0,
IB_PORT_PKEY_VALID = 1,
IB_PORT_PKEY_LISTED = 2,
};
struct ib_qp_security;
struct ib_port_pkey {
enum port_pkey_state state;
u16 pkey_index;
u8 port_num;
struct list_head qp_list;
struct list_head to_error_list;
struct ib_qp_security *sec;
};
struct ib_ports_pkeys {
struct ib_port_pkey main;
struct ib_port_pkey alt;
};
struct ib_qp_security {
struct ib_qp *qp;
struct ib_device *dev;
/* Hold this mutex when changing port and pkey settings. */
struct mutex mutex;
struct ib_ports_pkeys *ports_pkeys;
/* A list of all open shared QP handles. Required to enforce security
* properly for all users of a shared QP.
*/
struct list_head shared_qp_list;
void *security;
bool destroying;
atomic_t error_list_count;
struct completion error_complete;
int error_comps_pending;
};
/*
* @max_write_sge: Maximum SGE elements per RDMA WRITE request.
* @max_read_sge: Maximum SGE elements per RDMA READ request.
*/
struct ib_qp {
struct ib_device *device;
struct ib_pd *pd;
struct ib_cq *send_cq;
struct ib_cq *recv_cq;
spinlock_t mr_lock;
int mrs_used;
struct list_head rdma_mrs;
struct list_head sig_mrs;
struct ib_srq *srq;
struct ib_xrcd *xrcd; /* XRC TGT QPs only */
struct list_head xrcd_list;
/* count times opened, mcast attaches, flow attaches */
atomic_t usecnt;
struct list_head open_list;
struct ib_qp *real_qp;
struct ib_uqp_object *uobject;
void (*event_handler)(struct ib_event *, void *);
void *qp_context;
/* sgid_attrs associated with the AV's */
const struct ib_gid_attr *av_sgid_attr;
const struct ib_gid_attr *alt_path_sgid_attr;
u32 qp_num;
u32 max_write_sge;
u32 max_read_sge;
enum ib_qp_type qp_type;
struct ib_rwq_ind_table *rwq_ind_tbl;
struct ib_qp_security *qp_sec;
u8 port;
bool integrity_en;
/*
* Implementation details of the RDMA core, don't use in drivers:
*/
struct rdma_restrack_entry res;
/* The counter the qp is bind to */
struct rdma_counter *counter;
};
struct ib_dm {
struct ib_device *device;
u32 length;
u32 flags;
struct ib_uobject *uobject;
atomic_t usecnt;
};
struct ib_mr {
struct ib_device *device;
struct ib_pd *pd;
u32 lkey;
u32 rkey;
u64 iova;
u64 length;
unsigned int page_size;
enum ib_mr_type type;
bool need_inval;
union {
struct ib_uobject *uobject; /* user */
struct list_head qp_entry; /* FR */
};
struct ib_dm *dm;
struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
/*
* Implementation details of the RDMA core, don't use in drivers:
*/
struct rdma_restrack_entry res;
};
struct ib_mw {
struct ib_device *device;
struct ib_pd *pd;
struct ib_uobject *uobject;
u32 rkey;
enum ib_mw_type type;
};
struct ib_fmr {
struct ib_device *device;
struct ib_pd *pd;
struct list_head list;
u32 lkey;
u32 rkey;
};
/* Supported steering options */
enum ib_flow_attr_type {
/* steering according to rule specifications */
IB_FLOW_ATTR_NORMAL = 0x0,
/* default unicast and multicast rule -
* receive all Eth traffic which isn't steered to any QP
*/
IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
/* default multicast rule -
* receive all Eth multicast traffic which isn't steered to any QP
*/
IB_FLOW_ATTR_MC_DEFAULT = 0x2,
/* sniffer rule - receive all port traffic */
IB_FLOW_ATTR_SNIFFER = 0x3
};
/* Supported steering header types */
enum ib_flow_spec_type {
/* L2 headers*/
IB_FLOW_SPEC_ETH = 0x20,
IB_FLOW_SPEC_IB = 0x22,
/* L3 header*/
IB_FLOW_SPEC_IPV4 = 0x30,
IB_FLOW_SPEC_IPV6 = 0x31,
IB_FLOW_SPEC_ESP = 0x34,
/* L4 headers*/
IB_FLOW_SPEC_TCP = 0x40,
IB_FLOW_SPEC_UDP = 0x41,
IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
IB_FLOW_SPEC_GRE = 0x51,
IB_FLOW_SPEC_MPLS = 0x60,
IB_FLOW_SPEC_INNER = 0x100,
/* Actions */
IB_FLOW_SPEC_ACTION_TAG = 0x1000,
IB_FLOW_SPEC_ACTION_DROP = 0x1001,
IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
};
#define IB_FLOW_SPEC_LAYER_MASK 0xF0
#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
/* Flow steering rule priority is set according to it's domain.
* Lower domain value means higher priority.
*/
enum ib_flow_domain {
IB_FLOW_DOMAIN_USER,
IB_FLOW_DOMAIN_ETHTOOL,
IB_FLOW_DOMAIN_RFS,
IB_FLOW_DOMAIN_NIC,
IB_FLOW_DOMAIN_NUM /* Must be last */
};
enum ib_flow_flags {
IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
};
struct ib_flow_eth_filter {
u8 dst_mac[6];
u8 src_mac[6];
__be16 ether_type;
__be16 vlan_tag;
/* Must be last */
u8 real_sz[];
};
struct ib_flow_spec_eth {
u32 type;
u16 size;
struct ib_flow_eth_filter val;
struct ib_flow_eth_filter mask;
};
struct ib_flow_ib_filter {
__be16 dlid;
__u8 sl;
/* Must be last */
u8 real_sz[];
};
struct ib_flow_spec_ib {
u32 type;
u16 size;
struct ib_flow_ib_filter val;
struct ib_flow_ib_filter mask;
};
/* IPv4 header flags */
enum ib_ipv4_flags {
IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
last have this flag set */
};
struct ib_flow_ipv4_filter {
__be32 src_ip;
__be32 dst_ip;
u8 proto;
u8 tos;
u8 ttl;
u8 flags;
/* Must be last */
u8 real_sz[];
};
struct ib_flow_spec_ipv4 {
u32 type;
u16 size;
struct ib_flow_ipv4_filter val;
struct ib_flow_ipv4_filter mask;
};
struct ib_flow_ipv6_filter {
u8 src_ip[16];
u8 dst_ip[16];
__be32 flow_label;
u8 next_hdr;
u8 traffic_class;
u8 hop_limit;
/* Must be last */
u8 real_sz[];
};
struct ib_flow_spec_ipv6 {
u32 type;
u16 size;
struct ib_flow_ipv6_filter val;
struct ib_flow_ipv6_filter mask;
};
struct ib_flow_tcp_udp_filter {
__be16 dst_port;
__be16 src_port;
/* Must be last */
u8 real_sz[];
};
struct ib_flow_spec_tcp_udp {
u32 type;
u16 size;
struct ib_flow_tcp_udp_filter val;
struct ib_flow_tcp_udp_filter mask;
};
struct ib_flow_tunnel_filter {
__be32 tunnel_id;
u8 real_sz[];
};
/* ib_flow_spec_tunnel describes the Vxlan tunnel
* the tunnel_id from val has the vni value
*/
struct ib_flow_spec_tunnel {
u32 type;
u16 size;
struct ib_flow_tunnel_filter val;
struct ib_flow_tunnel_filter mask;
};
struct ib_flow_esp_filter {
__be32 spi;
__be32 seq;
/* Must be last */
u8 real_sz[];
};
struct ib_flow_spec_esp {
u32 type;
u16 size;
struct ib_flow_esp_filter val;
struct ib_flow_esp_filter mask;
};
struct ib_flow_gre_filter {
__be16 c_ks_res0_ver;
__be16 protocol;
__be32 key;
/* Must be last */
u8 real_sz[];
};
struct ib_flow_spec_gre {
u32 type;
u16 size;
struct ib_flow_gre_filter val;
struct ib_flow_gre_filter mask;
};
struct ib_flow_mpls_filter {
__be32 tag;
/* Must be last */
u8 real_sz[];
};
struct ib_flow_spec_mpls {
u32 type;
u16 size;
struct ib_flow_mpls_filter val;
struct ib_flow_mpls_filter mask;
};
struct ib_flow_spec_action_tag {
enum ib_flow_spec_type type;
u16 size;
u32 tag_id;
};
struct ib_flow_spec_action_drop {
enum ib_flow_spec_type type;
u16 size;
};
struct ib_flow_spec_action_handle {
enum ib_flow_spec_type type;
u16 size;
struct ib_flow_action *act;
};
enum ib_counters_description {
IB_COUNTER_PACKETS,
IB_COUNTER_BYTES,
};
struct ib_flow_spec_action_count {
enum ib_flow_spec_type type;
u16 size;
struct ib_counters *counters;
};
union ib_flow_spec {
struct {
u32 type;
u16 size;
};
struct ib_flow_spec_eth eth;
struct ib_flow_spec_ib ib;
struct ib_flow_spec_ipv4 ipv4;
struct ib_flow_spec_tcp_udp tcp_udp;
struct ib_flow_spec_ipv6 ipv6;
struct ib_flow_spec_tunnel tunnel;
struct ib_flow_spec_esp esp;
struct ib_flow_spec_gre gre;
struct ib_flow_spec_mpls mpls;
struct ib_flow_spec_action_tag flow_tag;
struct ib_flow_spec_action_drop drop;
struct ib_flow_spec_action_handle action;
struct ib_flow_spec_action_count flow_count;
};
struct ib_flow_attr {
enum ib_flow_attr_type type;
u16 size;
u16 priority;
u32 flags;
u8 num_of_specs;
u8 port;
union ib_flow_spec flows[];
};
struct ib_flow {
struct ib_qp *qp;
struct ib_device *device;
struct ib_uobject *uobject;
};
enum ib_flow_action_type {
IB_FLOW_ACTION_UNSPECIFIED,
IB_FLOW_ACTION_ESP = 1,
};
struct ib_flow_action_attrs_esp_keymats {
enum ib_uverbs_flow_action_esp_keymat protocol;
union {
struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
} keymat;
};
struct ib_flow_action_attrs_esp_replays {
enum ib_uverbs_flow_action_esp_replay protocol;
union {
struct ib_uverbs_flow_action_esp_replay_bmp bmp;
} replay;
};
enum ib_flow_action_attrs_esp_flags {
/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
* This is done in order to share the same flags between user-space and
* kernel and spare an unnecessary translation.
*/
/* Kernel flags */
IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
};
struct ib_flow_spec_list {
struct ib_flow_spec_list *next;
union ib_flow_spec spec;
};
struct ib_flow_action_attrs_esp {
struct ib_flow_action_attrs_esp_keymats *keymat;
struct ib_flow_action_attrs_esp_replays *replay;
struct ib_flow_spec_list *encap;
/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
* Value of 0 is a valid value.
*/
u32 esn;
u32 spi;
u32 seq;
u32 tfc_pad;
/* Use enum ib_flow_action_attrs_esp_flags */
u64 flags;
u64 hard_limit_pkts;
};
struct ib_flow_action {
struct ib_device *device;
struct ib_uobject *uobject;
enum ib_flow_action_type type;
atomic_t usecnt;
};
struct ib_mad;
struct ib_grh;
enum ib_process_mad_flags {
IB_MAD_IGNORE_MKEY = 1,
IB_MAD_IGNORE_BKEY = 2,
IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
};
enum ib_mad_result {
IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
};
struct ib_port_cache {
u64 subnet_prefix;
struct ib_pkey_cache *pkey;
struct ib_gid_table *gid;
u8 lmc;
enum ib_port_state port_state;
};
struct ib_port_immutable {
int pkey_tbl_len;
int gid_tbl_len;
u32 core_cap_flags;
u32 max_mad_size;
};
struct ib_port_data {
struct ib_device *ib_dev;
struct ib_port_immutable immutable;
spinlock_t pkey_list_lock;
struct list_head pkey_list;
struct ib_port_cache cache;
spinlock_t netdev_lock;
struct net_device __rcu *netdev;
struct hlist_node ndev_hash_link;
struct rdma_port_counter port_counter;
struct rdma_hw_stats *hw_stats;
};
/* rdma netdev type - specifies protocol type */
enum rdma_netdev_t {
RDMA_NETDEV_OPA_VNIC,
RDMA_NETDEV_IPOIB,
};
/**
* struct rdma_netdev - rdma netdev
* For cases where netstack interfacing is required.
*/
struct rdma_netdev {
void *clnt_priv;
struct ib_device *hca;
u8 port_num;
/*
* cleanup function must be specified.
* FIXME: This is only used for OPA_VNIC and that usage should be
* removed too.
*/
void (*free_rdma_netdev)(struct net_device *netdev);
/* control functions */
void (*set_id)(struct net_device *netdev, int id);
/* send packet */
int (*send)(struct net_device *dev, struct sk_buff *skb,
struct ib_ah *address, u32 dqpn);
/* multicast */
int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
union ib_gid *gid, u16 mlid,
int set_qkey, u32 qkey);
int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
union ib_gid *gid, u16 mlid);
};
struct rdma_netdev_alloc_params {
size_t sizeof_priv;
unsigned int txqs;
unsigned int rxqs;
void *param;
int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
struct net_device *netdev, void *param);
};
struct ib_odp_counters {
atomic64_t faults;
atomic64_t invalidations;
};
struct ib_counters {
struct ib_device *device;
struct ib_uobject *uobject;
/* num of objects attached */
atomic_t usecnt;
};
struct ib_counters_read_attr {
u64 *counters_buff;
u32 ncounters;
u32 flags; /* use enum ib_read_counters_flags */
};
struct uverbs_attr_bundle;
struct iw_cm_id;
struct iw_cm_conn_param;
#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
.size_##ib_struct = \
(sizeof(struct drv_struct) + \
BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
BUILD_BUG_ON_ZERO( \
!__same_type(((struct drv_struct *)NULL)->member, \
struct ib_struct)))
#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
struct rdma_user_mmap_entry {
struct kref ref;
struct ib_ucontext *ucontext;
unsigned long start_pgoff;
size_t npages;
bool driver_removed;
};
/* Return the offset (in bytes) the user should pass to libc's mmap() */
static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
{
return (u64)entry->start_pgoff << PAGE_SHIFT;
}
/**
* struct ib_device_ops - InfiniBand device operations
* This structure defines all the InfiniBand device operations, providers will
* need to define the supported operations, otherwise they will be set to null.
*/
struct ib_device_ops {
struct module *owner;
enum rdma_driver_id driver_id;
u32 uverbs_abi_ver;
unsigned int uverbs_no_driver_id_binding:1;
int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
const struct ib_send_wr **bad_send_wr);
int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
const struct ib_recv_wr **bad_recv_wr);
void (*drain_rq)(struct ib_qp *qp);
void (*drain_sq)(struct ib_qp *qp);
int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
int (*post_srq_recv)(struct ib_srq *srq,
const struct ib_recv_wr *recv_wr,
const struct ib_recv_wr **bad_recv_wr);
int (*process_mad)(struct ib_device *device, int process_mad_flags,
u8 port_num, const struct ib_wc *in_wc,
const struct ib_grh *in_grh,
const struct ib_mad *in_mad, struct ib_mad *out_mad,
size_t *out_mad_size, u16 *out_mad_pkey_index);
int (*query_device)(struct ib_device *device,
struct ib_device_attr *device_attr,
struct ib_udata *udata);
int (*modify_device)(struct ib_device *device, int device_modify_mask,
struct ib_device_modify *device_modify);
void (*get_dev_fw_str)(struct ib_device *device, char *str);
const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
int comp_vector);
int (*query_port)(struct ib_device *device, u8 port_num,
struct ib_port_attr *port_attr);
int (*modify_port)(struct ib_device *device, u8 port_num,
int port_modify_mask,
struct ib_port_modify *port_modify);
/**
* The following mandatory functions are used only at device
* registration. Keep functions such as these at the end of this
* structure to avoid cache line misses when accessing struct ib_device
* in fast paths.
*/
int (*get_port_immutable)(struct ib_device *device, u8 port_num,
struct ib_port_immutable *immutable);
enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
u8 port_num);
/**
* When calling get_netdev, the HW vendor's driver should return the
* net device of device @device at port @port_num or NULL if such
* a net device doesn't exist. The vendor driver should call dev_hold
* on this net device. The HW vendor's device driver must guarantee
* that this function returns NULL before the net device has finished
* NETDEV_UNREGISTER state.
*/
struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
/**
* rdma netdev operation
*
* Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
* must return -EOPNOTSUPP if it doesn't support the specified type.
*/
struct net_device *(*alloc_rdma_netdev)(
struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
const char *name, unsigned char name_assign_type,
void (*setup)(struct net_device *));
int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
enum rdma_netdev_t type,
struct rdma_netdev_alloc_params *params);
/**
* query_gid should be return GID value for @device, when @port_num
* link layer is either IB or iWarp. It is no-op if @port_num port
* is RoCE link layer.
*/
int (*query_gid)(struct ib_device *device, u8 port_num, int index,
union ib_gid *gid);
/**
* When calling add_gid, the HW vendor's driver should add the gid
* of device of port at gid index available at @attr. Meta-info of
* that gid (for example, the network device related to this gid) is
* available at @attr. @context allows the HW vendor driver to store
* extra information together with a GID entry. The HW vendor driver may
* allocate memory to contain this information and store it in @context
* when a new GID entry is written to. Params are consistent until the
* next call of add_gid or delete_gid. The function should return 0 on
* success or error otherwise. The function could be called
* concurrently for different ports. This function is only called when
* roce_gid_table is used.
*/
int (*add_gid)(const struct ib_gid_attr *attr, void **context);
/**
* When calling del_gid, the HW vendor's driver should delete the
* gid of device @device at gid index gid_index of port port_num
* available in @attr.
* Upon the deletion of a GID entry, the HW vendor must free any
* allocated memory. The caller will clear @context afterwards.
* This function is only called when roce_gid_table is used.
*/
int (*del_gid)(const struct ib_gid_attr *attr, void **context);
int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
u16 *pkey);
int (*alloc_ucontext)(struct ib_ucontext *context,
struct ib_udata *udata);
void (*dealloc_ucontext)(struct ib_ucontext *context);
int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
/**
* This will be called once refcount of an entry in mmap_xa reaches
* zero. The type of the memory that was mapped may differ between
* entries and is opaque to the rdma_user_mmap interface.
* Therefore needs to be implemented by the driver in mmap_free.
*/
void (*mmap_free)(struct rdma_user_mmap_entry *entry);
void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
u32 flags, struct ib_udata *udata);
int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
void (*destroy_ah)(struct ib_ah *ah, u32 flags);
int (*create_srq)(struct ib_srq *srq,
struct ib_srq_init_attr *srq_init_attr,
struct ib_udata *udata);
int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask,
struct ib_udata *udata);
int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
struct ib_qp *(*create_qp)(struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr,
struct ib_udata *udata);
int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
int qp_attr_mask, struct ib_udata *udata);
int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
struct ib_udata *udata);
int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int mr_access_flags,
struct ib_udata *udata);
int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
u64 virt_addr, int mr_access_flags,
struct ib_pd *pd, struct ib_udata *udata);
int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
u32 max_num_sg, struct ib_udata *udata);
struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
u32 max_num_data_sg,
u32 max_num_meta_sg);
int (*advise_mr)(struct ib_pd *pd,
enum ib_uverbs_advise_mr_advice advice, u32 flags,
struct ib_sge *sg_list, u32 num_sge,
struct uverbs_attr_bundle *attrs);
int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset);
int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
struct ib_mr_status *mr_status);
struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
struct ib_udata *udata);
int (*dealloc_mw)(struct ib_mw *mw);
struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
struct ib_fmr_attr *fmr_attr);
int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
u64 iova);
int (*unmap_fmr)(struct list_head *fmr_list);
int (*dealloc_fmr)(struct ib_fmr *fmr);
int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
struct ib_udata *udata);
int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
struct ib_flow *(*create_flow)(struct ib_qp *qp,
struct ib_flow_attr *flow_attr,
int domain, struct ib_udata *udata);
int (*destroy_flow)(struct ib_flow *flow_id);
struct ib_flow_action *(*create_flow_action_esp)(
struct ib_device *device,
const struct ib_flow_action_attrs_esp *attr,
struct uverbs_attr_bundle *attrs);
int (*destroy_flow_action)(struct ib_flow_action *action);
int (*modify_flow_action_esp)(
struct ib_flow_action *action,
const struct ib_flow_action_attrs_esp *attr,
struct uverbs_attr_bundle *attrs);
int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
int state);
int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
struct ifla_vf_info *ivf);
int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
struct ifla_vf_stats *stats);
int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
struct ifla_vf_guid *node_guid,
struct ifla_vf_guid *port_guid);
int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
int type);
struct ib_wq *(*create_wq)(struct ib_pd *pd,
struct ib_wq_init_attr *init_attr,
struct ib_udata *udata);
void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
u32 wq_attr_mask, struct ib_udata *udata);
struct ib_rwq_ind_table *(*create_rwq_ind_table)(
struct ib_device *device,
struct ib_rwq_ind_table_init_attr *init_attr,
struct ib_udata *udata);
int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
struct ib_dm *(*alloc_dm)(struct ib_device *device,
struct ib_ucontext *context,
struct ib_dm_alloc_attr *attr,
struct uverbs_attr_bundle *attrs);
int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
struct ib_dm_mr_attr *attr,
struct uverbs_attr_bundle *attrs);
struct ib_counters *(*create_counters)(
struct ib_device *device, struct uverbs_attr_bundle *attrs);
int (*destroy_counters)(struct ib_counters *counters);
int (*read_counters)(struct ib_counters *counters,
struct ib_counters_read_attr *counters_read_attr,
struct uverbs_attr_bundle *attrs);
int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset);
/**
* alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
* driver initialized data. The struct is kfree()'ed by the sysfs
* core when the device is removed. A lifespan of -1 in the return
* struct tells the core to set a default lifespan.
*/
struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
u8 port_num);
/**
* get_hw_stats - Fill in the counter value(s) in the stats struct.
* @index - The index in the value array we wish to have updated, or
* num_counters if we want all stats updated
* Return codes -
* < 0 - Error, no counters updated
* index - Updated the single counter pointed to by index
* num_counters - Updated all counters (will reset the timestamp
* and prevent further calls for lifespan milliseconds)
* Drivers are allowed to update all counters in leiu of just the
* one given in index at their option
*/
int (*get_hw_stats)(struct ib_device *device,
struct rdma_hw_stats *stats, u8 port, int index);
/*
* This function is called once for each port when a ib device is
* registered.
*/
int (*init_port)(struct ib_device *device, u8 port_num,
struct kobject *port_sysfs);
/**
* Allows rdma drivers to add their own restrack attributes.
*/
int (*fill_res_entry)(struct sk_buff *msg,
struct rdma_restrack_entry *entry);
/* Device lifecycle callbacks */
/*
* Called after the device becomes registered, before clients are
* attached
*/
int (*enable_driver)(struct ib_device *dev);
/*
* This is called as part of ib_dealloc_device().
*/
void (*dealloc_driver)(struct ib_device *dev);
/* iWarp CM callbacks */
void (*iw_add_ref)(struct ib_qp *qp);
void (*iw_rem_ref)(struct ib_qp *qp);
struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
int (*iw_connect)(struct iw_cm_id *cm_id,
struct iw_cm_conn_param *conn_param);
int (*iw_accept)(struct iw_cm_id *cm_id,
struct iw_cm_conn_param *conn_param);
int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
u8 pdata_len);
int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
/**
* counter_bind_qp - Bind a QP to a counter.
* @counter - The counter to be bound. If counter->id is zero then
* the driver needs to allocate a new counter and set counter->id
*/
int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
/**
* counter_unbind_qp - Unbind the qp from the dynamically-allocated
* counter and bind it onto the default one
*/
int (*counter_unbind_qp)(struct ib_qp *qp);
/**
* counter_dealloc -De-allocate the hw counter
*/
int (*counter_dealloc)(struct rdma_counter *counter);
/**
* counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
* the driver initialized data.
*/
struct rdma_hw_stats *(*counter_alloc_stats)(
struct rdma_counter *counter);
/**
* counter_update_stats - Query the stats value of this counter
*/
int (*counter_update_stats)(struct rdma_counter *counter);
/**
* Allows rdma drivers to add their own restrack attributes
* dumped via 'rdma stat' iproute2 command.
*/
int (*fill_stat_entry)(struct sk_buff *msg,
struct rdma_restrack_entry *entry);
DECLARE_RDMA_OBJ_SIZE(ib_ah);
DECLARE_RDMA_OBJ_SIZE(ib_cq);
DECLARE_RDMA_OBJ_SIZE(ib_pd);
DECLARE_RDMA_OBJ_SIZE(ib_srq);
DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
};
struct ib_core_device {
/* device must be the first element in structure until,
* union of ib_core_device and device exists in ib_device.
*/
struct device dev;
possible_net_t rdma_net;
struct kobject *ports_kobj;
struct list_head port_list;
struct ib_device *owner; /* reach back to owner ib_device */
};
struct rdma_restrack_root;
struct ib_device {
/* Do not access @dma_device directly from ULP nor from HW drivers. */
struct device *dma_device;
struct ib_device_ops ops;
char name[IB_DEVICE_NAME_MAX];
struct rcu_head rcu_head;
struct list_head event_handler_list;
/* Protects event_handler_list */
struct rw_semaphore event_handler_rwsem;
/* Protects QP's event_handler calls and open_qp list */
spinlock_t qp_open_list_lock;
struct rw_semaphore client_data_rwsem;
struct xarray client_data;
struct mutex unregistration_lock;
/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
rwlock_t cache_lock;
/**
* port_data is indexed by port number
*/
struct ib_port_data *port_data;
int num_comp_vectors;
union {
struct device dev;
struct ib_core_device coredev;
};
/* First group for device attributes,
* Second group for driver provided attributes (optional).
* It is NULL terminated array.
*/
const struct attribute_group *groups[3];
u64 uverbs_cmd_mask;
u64 uverbs_ex_cmd_mask;
char node_desc[IB_DEVICE_NODE_DESC_MAX];
__be64 node_guid;
u32 local_dma_lkey;
u16 is_switch:1;
/* Indicates kernel verbs support, should not be used in drivers */
u16 kverbs_provider:1;
/* CQ adaptive moderation (RDMA DIM) */
u16 use_cq_dim:1;
u8 node_type;
u8 phys_port_cnt;
struct ib_device_attr attrs;
struct attribute_group *hw_stats_ag;
struct rdma_hw_stats *hw_stats;
#ifdef CONFIG_CGROUP_RDMA
struct rdmacg_device cg_device;
#endif
u32 index;
struct rdma_restrack_root *res;
const struct uapi_definition *driver_def;
/*
* Positive refcount indicates that the device is currently
* registered and cannot be unregistered.
*/
refcount_t refcount;
struct completion unreg_completion;
struct work_struct unregistration_work;
const struct rdma_link_ops *link_ops;
/* Protects compat_devs xarray modifications */
struct mutex compat_devs_mutex;
/* Maintains compat devices for each net namespace */
struct xarray compat_devs;
/* Used by iWarp CM */
char iw_ifname[IFNAMSIZ];
u32 iw_driver_flags;
};
struct ib_client_nl_info;
struct ib_client {
const char *name;
void (*add) (struct ib_device *);
void (*remove)(struct ib_device *, void *client_data);
void (*rename)(struct ib_device *dev, void *client_data);
int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
struct ib_client_nl_info *res);
int (*get_global_nl_info)(struct ib_client_nl_info *res);
/* Returns the net_dev belonging to this ib_client and matching the
* given parameters.
* @dev: An RDMA device that the net_dev use for communication.
* @port: A physical port number on the RDMA device.
* @pkey: P_Key that the net_dev uses if applicable.
* @gid: A GID that the net_dev uses to communicate.
* @addr: An IP address the net_dev is configured with.
* @client_data: The device's client data set by ib_set_client_data().
*
* An ib_client that implements a net_dev on top of RDMA devices
* (such as IP over IB) should implement this callback, allowing the
* rdma_cm module to find the right net_dev for a given request.
*
* The caller is responsible for calling dev_put on the returned
* netdev. */
struct net_device *(*get_net_dev_by_params)(
struct ib_device *dev,
u8 port,
u16 pkey,
const union ib_gid *gid,
const struct sockaddr *addr,
void *client_data);
refcount_t uses;
struct completion uses_zero;
u32 client_id;
/* kverbs are not required by the client */
u8 no_kverbs_req:1;
};
/*
* IB block DMA iterator
*
* Iterates the DMA-mapped SGL in contiguous memory blocks aligned
* to a HW supported page size.
*/
struct ib_block_iter {
/* internal states */
struct scatterlist *__sg; /* sg holding the current aligned block */
dma_addr_t __dma_addr; /* unaligned DMA address of this block */
unsigned int __sg_nents; /* number of SG entries */
unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
unsigned int __pg_bit; /* alignment of current block */
};
struct ib_device *_ib_alloc_device(size_t size);
#define ib_alloc_device(drv_struct, member) \
container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
BUILD_BUG_ON_ZERO(offsetof( \
struct drv_struct, member))), \
struct drv_struct, member)
void ib_dealloc_device(struct ib_device *device);
void ib_get_device_fw_str(struct ib_device *device, char *str);
int ib_register_device(struct ib_device *device, const char *name);
void ib_unregister_device(struct ib_device *device);
void ib_unregister_driver(enum rdma_driver_id driver_id);
void ib_unregister_device_and_put(struct ib_device *device);
void ib_unregister_device_queued(struct ib_device *ib_dev);
int ib_register_client (struct ib_client *client);
void ib_unregister_client(struct ib_client *client);
void __rdma_block_iter_start(struct ib_block_iter *biter,
struct scatterlist *sglist,
unsigned int nents,
unsigned long pgsz);
bool __rdma_block_iter_next(struct ib_block_iter *biter);
/**
* rdma_block_iter_dma_address - get the aligned dma address of the current
* block held by the block iterator.
* @biter: block iterator holding the memory block
*/
static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter *biter)
{
return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
}
/**
* rdma_for_each_block - iterate over contiguous memory blocks of the sg list
* @sglist: sglist to iterate over
* @biter: block iterator holding the memory block
* @nents: maximum number of sg entries to iterate over
* @pgsz: best HW supported page size to use
*
* Callers may use rdma_block_iter_dma_address() to get each
* blocks aligned DMA address.
*/
#define rdma_for_each_block(sglist, biter, nents, pgsz) \
for (__rdma_block_iter_start(biter, sglist, nents, \
pgsz); \
__rdma_block_iter_next(biter);)
/**
* ib_get_client_data - Get IB client context
* @device:Device to get context for
* @client:Client to get context for
*
* ib_get_client_data() returns the client context data set with
* ib_set_client_data(). This can only be called while the client is
* registered to the device, once the ib_client remove() callback returns this
* cannot be called.
*/
static inline void *ib_get_client_data(struct ib_device *device,
struct ib_client *client)
{
return xa_load(&device->client_data, client->client_id);
}
void ib_set_client_data(struct ib_device *device, struct ib_client *client,
void *data);
void ib_set_device_ops(struct ib_device *device,
const struct ib_device_ops *ops);
int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
unsigned long pfn, unsigned long size, pgprot_t prot,
struct rdma_user_mmap_entry *entry);
int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
struct rdma_user_mmap_entry *entry,
size_t length);
int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
struct rdma_user_mmap_entry *entry,
size_t length, u32 min_pgoff,
u32 max_pgoff);
struct rdma_user_mmap_entry *
rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
unsigned long pgoff);
struct rdma_user_mmap_entry *
rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
struct vm_area_struct *vma);
void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
{
return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
}
static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
{
return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
}
static inline bool ib_is_buffer_cleared(const void __user *p,
size_t len)
{
bool ret;
u8 *buf;
if (len > USHRT_MAX)
return false;
buf = memdup_user(p, len);
if (IS_ERR(buf))
return false;
ret = !memchr_inv(buf, 0, len);
kfree(buf);
return ret;
}
static inline bool ib_is_udata_cleared(struct ib_udata *udata,
size_t offset,
size_t len)
{
return ib_is_buffer_cleared(udata->inbuf + offset, len);
}
/**
* ib_is_destroy_retryable - Check whether the uobject destruction
* is retryable.
* @ret: The initial destruction return code
* @why: remove reason
* @uobj: The uobject that is destroyed
*
* This function is a helper function that IB layer and low-level drivers
* can use to consider whether the destruction of the given uobject is
* retry-able.
* It checks the original return code, if it wasn't success the destruction
* is retryable according to the ucontext state (i.e. cleanup_retryable) and
* the remove reason. (i.e. why).
* Must be called with the object locked for destroy.
*/
static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
struct ib_uobject *uobj)
{
return ret && (why == RDMA_REMOVE_DESTROY ||
uobj->context->cleanup_retryable);
}
/**
* ib_destroy_usecnt - Called during destruction to check the usecnt
* @usecnt: The usecnt atomic
* @why: remove reason
* @uobj: The uobject that is destroyed
*
* Non-zero usecnts will block destruction unless destruction was triggered by
* a ucontext cleanup.
*/
static inline int ib_destroy_usecnt(atomic_t *usecnt,
enum rdma_remove_reason why,
struct ib_uobject *uobj)
{
if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
return -EBUSY;
return 0;
}
/**
* ib_modify_qp_is_ok - Check that the supplied attribute mask
* contains all required attributes and no attributes not allowed for
* the given QP state transition.
* @cur_state: Current QP state
* @next_state: Next QP state
* @type: QP type
* @mask: Mask of supplied QP attributes
*
* This function is a helper function that a low-level driver's
* modify_qp method can use to validate the consumer's input. It
* checks that cur_state and next_state are valid QP states, that a
* transition from cur_state to next_state is allowed by the IB spec,
* and that the attribute mask supplied is allowed for the transition.
*/
bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
enum ib_qp_type type, enum ib_qp_attr_mask mask);
void ib_register_event_handler(struct ib_event_handler *event_handler);
void ib_unregister_event_handler(struct ib_event_handler *event_handler);
void ib_dispatch_event(const struct ib_event *event);
int ib_query_port(struct ib_device *device,
u8 port_num, struct ib_port_attr *port_attr);
enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
u8 port_num);
/**
* rdma_cap_ib_switch - Check if the device is IB switch
* @device: Device to check
*
* Device driver is responsible for setting is_switch bit on
* in ib_device structure at init time.
*
* Return: true if the device is IB switch.
*/
static inline bool rdma_cap_ib_switch(const struct ib_device *device)
{
return device->is_switch;
}
/**
* rdma_start_port - Return the first valid port number for the device
* specified
*
* @device: Device to be checked
*
* Return start port number
*/
static inline u8 rdma_start_port(const struct ib_device *device)
{
return rdma_cap_ib_switch(device) ? 0 : 1;
}
/**
* rdma_for_each_port - Iterate over all valid port numbers of the IB device
* @device - The struct ib_device * to iterate over
* @iter - The unsigned int to store the port number
*/
#define rdma_for_each_port(device, iter) \
for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
unsigned int, iter))); \
iter <= rdma_end_port(device); (iter)++)
/**
* rdma_end_port - Return the last valid port number for the device
* specified
*
* @device: Device to be checked
*
* Return last port number
*/
static inline u8 rdma_end_port(const struct ib_device *device)
{
return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
}
static inline int rdma_is_port_valid(const struct ib_device *device,
unsigned int port)
{
return (port >= rdma_start_port(device) &&
port <= rdma_end_port(device));
}
static inline bool rdma_is_grh_required(const struct ib_device *device,
u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_PORT_IB_GRH_REQUIRED;
}
static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_PROT_IB;
}
static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
}
static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
}
static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_PROT_ROCE;
}
static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_PROT_IWARP;
}
static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
{
return rdma_protocol_ib(device, port_num) ||
rdma_protocol_roce(device, port_num);
}
static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_PROT_RAW_PACKET;
}
static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_PROT_USNIC;
}
/**
* rdma_cap_ib_mad - Check if the port of a device supports Infiniband
* Management Datagrams.
* @device: Device to check
* @port_num: Port number to check
*
* Management Datagrams (MAD) are a required part of the InfiniBand
* specification and are supported on all InfiniBand devices. A slightly
* extended version are also supported on OPA interfaces.
*
* Return: true if the port supports sending/receiving of MAD packets.
*/
static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_IB_MAD;
}
/**
* rdma_cap_opa_mad - Check if the port of device provides support for OPA
* Management Datagrams.
* @device: Device to check
* @port_num: Port number to check
*
* Intel OmniPath devices extend and/or replace the InfiniBand Management
* datagrams with their own versions. These OPA MADs share many but not all of
* the characteristics of InfiniBand MADs.
*
* OPA MADs differ in the following ways:
*
* 1) MADs are variable size up to 2K
* IBTA defined MADs remain fixed at 256 bytes
* 2) OPA SMPs must carry valid PKeys
* 3) OPA SMP packets are a different format
*
* Return: true if the port supports OPA MAD packet formats.
*/
static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_OPA_MAD;
}
/**
* rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
* Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
* @device: Device to check
* @port_num: Port number to check
*
* Each InfiniBand node is required to provide a Subnet Management Agent
* that the subnet manager can access. Prior to the fabric being fully
* configured by the subnet manager, the SMA is accessed via a well known
* interface called the Subnet Management Interface (SMI). This interface
* uses directed route packets to communicate with the SM to get around the
* chicken and egg problem of the SM needing to know what's on the fabric
* in order to configure the fabric, and needing to configure the fabric in
* order to send packets to the devices on the fabric. These directed
* route packets do not need the fabric fully configured in order to reach
* their destination. The SMI is the only method allowed to send
* directed route packets on an InfiniBand fabric.
*
* Return: true if the port provides an SMI.
*/
static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_IB_SMI;
}
/**
* rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
* Communication Manager.
* @device: Device to check
* @port_num: Port number to check
*
* The InfiniBand Communication Manager is one of many pre-defined General
* Service Agents (GSA) that are accessed via the General Service
* Interface (GSI). It's role is to facilitate establishment of connections
* between nodes as well as other management related tasks for established
* connections.
*
* Return: true if the port supports an IB CM (this does not guarantee that
* a CM is actually running however).
*/
static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_IB_CM;
}
/**
* rdma_cap_iw_cm - Check if the port of device has the capability IWARP
* Communication Manager.
* @device: Device to check
* @port_num: Port number to check
*
* Similar to above, but specific to iWARP connections which have a different
* managment protocol than InfiniBand.
*
* Return: true if the port supports an iWARP CM (this does not guarantee that
* a CM is actually running however).
*/
static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_IW_CM;
}
/**
* rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
* Subnet Administration.
* @device: Device to check
* @port_num: Port number to check
*
* An InfiniBand Subnet Administration (SA) service is a pre-defined General
* Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
* fabrics, devices should resolve routes to other hosts by contacting the
* SA to query the proper route.
*
* Return: true if the port should act as a client to the fabric Subnet
* Administration interface. This does not imply that the SA service is
* running locally.
*/
static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_IB_SA;
}
/**
* rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
* Multicast.
* @device: Device to check
* @port_num: Port number to check
*
* InfiniBand multicast registration is more complex than normal IPv4 or
* IPv6 multicast registration. Each Host Channel Adapter must register
* with the Subnet Manager when it wishes to join a multicast group. It
* should do so only once regardless of how many queue pairs it subscribes
* to this group. And it should leave the group only after all queue pairs
* attached to the group have been detached.
*
* Return: true if the port must undertake the additional adminstrative
* overhead of registering/unregistering with the SM and tracking of the
* total number of queue pairs attached to the multicast group.
*/
static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
{
return rdma_cap_ib_sa(device, port_num);
}
/**
* rdma_cap_af_ib - Check if the port of device has the capability
* Native Infiniband Address.
* @device: Device to check
* @port_num: Port number to check
*
* InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
* GID. RoCE uses a different mechanism, but still generates a GID via
* a prescribed mechanism and port specific data.
*
* Return: true if the port uses a GID address to identify devices on the
* network.
*/
static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_AF_IB;
}
/**
* rdma_cap_eth_ah - Check if the port of device has the capability
* Ethernet Address Handle.
* @device: Device to check
* @port_num: Port number to check
*
* RoCE is InfiniBand over Ethernet, and it uses a well defined technique
* to fabricate GIDs over Ethernet/IP specific addresses native to the
* port. Normally, packet headers are generated by the sending host
* adapter, but when sending connectionless datagrams, we must manually
* inject the proper headers for the fabric we are communicating over.
*
* Return: true if we are running as a RoCE port and must force the
* addition of a Global Route Header built from our Ethernet Address
* Handle into our header list for connectionless packets.
*/
static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_ETH_AH;
}
/**
* rdma_cap_opa_ah - Check if the port of device supports
* OPA Address handles
* @device: Device to check
* @port_num: Port number to check
*
* Return: true if we are running on an OPA device which supports
* the extended OPA addressing.
*/
static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
{
return (device->port_data[port_num].immutable.core_cap_flags &
RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
}
/**
* rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
*
* @device: Device
* @port_num: Port number
*
* This MAD size includes the MAD headers and MAD payload. No other headers
* are included.
*
* Return the max MAD size required by the Port. Will return 0 if the port
* does not support MADs
*/
static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
{
return device->port_data[port_num].immutable.max_mad_size;
}
/**
* rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
* @device: Device to check
* @port_num: Port number to check
*
* RoCE GID table mechanism manages the various GIDs for a device.
*
* NOTE: if allocating the port's GID table has failed, this call will still
* return true, but any RoCE GID table API will fail.
*
* Return: true if the port uses RoCE GID table mechanism in order to manage
* its GIDs.
*/
static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
u8 port_num)
{
return rdma_protocol_roce(device, port_num) &&
device->ops.add_gid && device->ops.del_gid;
}
/*
* Check if the device supports READ W/ INVALIDATE.
*/
static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
{
/*
* iWarp drivers must support READ W/ INVALIDATE. No other protocol
* has support for it yet.
*/
return rdma_protocol_iwarp(dev, port_num);
}
/**
* rdma_find_pg_bit - Find page bit given address and HW supported page sizes
*
* @addr: address
* @pgsz_bitmap: bitmap of HW supported page sizes
*/
static inline unsigned int rdma_find_pg_bit(unsigned long addr,
unsigned long pgsz_bitmap)
{
unsigned long align;
unsigned long pgsz;
align = addr & -addr;
/* Find page bit such that addr is aligned to the highest supported
* HW page size
*/
pgsz = pgsz_bitmap & ~(-align << 1);
if (!pgsz)
return __ffs(pgsz_bitmap);
return __fls(pgsz);
}
int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
int state);
int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
struct ifla_vf_info *info);
int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
struct ifla_vf_stats *stats);
int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
struct ifla_vf_guid *node_guid,
struct ifla_vf_guid *port_guid);
int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
int type);
int ib_query_pkey(struct ib_device *device,
u8 port_num, u16 index, u16 *pkey);
int ib_modify_device(struct ib_device *device,
int device_modify_mask,
struct ib_device_modify *device_modify);
int ib_modify_port(struct ib_device *device,
u8 port_num, int port_modify_mask,
struct ib_port_modify *port_modify);
int ib_find_gid(struct ib_device *device, union ib_gid *gid,
u8 *port_num, u16 *index);
int ib_find_pkey(struct ib_device *device,
u8 port_num, u16 pkey, u16 *index);
enum ib_pd_flags {
/*
* Create a memory registration for all memory in the system and place
* the rkey for it into pd->unsafe_global_rkey. This can be used by
* ULPs to avoid the overhead of dynamic MRs.
*
* This flag is generally considered unsafe and must only be used in
* extremly trusted environments. Every use of it will log a warning
* in the kernel log.
*/
IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
};
struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
const char *caller);
#define ib_alloc_pd(device, flags) \
__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
/**
* ib_dealloc_pd_user - Deallocate kernel/user PD
* @pd: The protection domain
* @udata: Valid user data or NULL for kernel objects
*/
void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
/**
* ib_dealloc_pd - Deallocate kernel PD
* @pd: The protection domain
*
* NOTE: for user PD use ib_dealloc_pd_user with valid udata!
*/
static inline void ib_dealloc_pd(struct ib_pd *pd)
{
ib_dealloc_pd_user(pd, NULL);
}
enum rdma_create_ah_flags {
/* In a sleepable context */
RDMA_CREATE_AH_SLEEPABLE = BIT(0),
};
/**
* rdma_create_ah - Creates an address handle for the given address vector.
* @pd: The protection domain associated with the address handle.
* @ah_attr: The attributes of the address vector.
* @flags: Create address handle flags (see enum rdma_create_ah_flags).
*
* The address handle is used to reference a local or global destination
* in all UD QP post sends.
*/
struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
u32 flags);
/**
* rdma_create_user_ah - Creates an address handle for the given address vector.
* It resolves destination mac address for ah attribute of RoCE type.
* @pd: The protection domain associated with the address handle.
* @ah_attr: The attributes of the address vector.
* @udata: pointer to user's input output buffer information need by
* provider driver.
*
* It returns 0 on success and returns appropriate error code on error.
* The address handle is used to reference a local or global destination
* in all UD QP post sends.
*/
struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
struct rdma_ah_attr *ah_attr,
struct ib_udata *udata);
/**
* ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
* work completion.
* @hdr: the L3 header to parse
* @net_type: type of header to parse
* @sgid: place to store source gid
* @dgid: place to store destination gid
*/
int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
enum rdma_network_type net_type,
union ib_gid *sgid, union ib_gid *dgid);
/**
* ib_get_rdma_header_version - Get the header version
* @hdr: the L3 header to parse
*/
int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
/**
* ib_init_ah_attr_from_wc - Initializes address handle attributes from a
* work completion.
* @device: Device on which the received message arrived.
* @port_num: Port on which the received message arrived.
* @wc: Work completion associated with the received message.
* @grh: References the received global route header. This parameter is
* ignored unless the work completion indicates that the GRH is valid.
* @ah_attr: Returned attributes that can be used when creating an address
* handle for replying to the message.
* When ib_init_ah_attr_from_wc() returns success,
* (a) for IB link layer it optionally contains a reference to SGID attribute
* when GRH is present for IB link layer.
* (b) for RoCE link layer it contains a reference to SGID attribute.
* User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
* attributes which are initialized using ib_init_ah_attr_from_wc().
*
*/
int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
const struct ib_wc *wc, const struct ib_grh *grh,
struct rdma_ah_attr *ah_attr);
/**
* ib_create_ah_from_wc - Creates an address handle associated with the
* sender of the specified work completion.
* @pd: The protection domain associated with the address handle.
* @wc: Work completion information associated with a received message.
* @grh: References the received global route header. This parameter is
* ignored unless the work completion indicates that the GRH is valid.
* @port_num: The outbound port number to associate with the address.
*
* The address handle is used to reference a local or global destination
* in all UD QP post sends.
*/
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
const struct ib_grh *grh, u8 port_num);
/**
* rdma_modify_ah - Modifies the address vector associated with an address
* handle.
* @ah: The address handle to modify.
* @ah_attr: The new address vector attributes to associate with the
* address handle.
*/
int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
/**
* rdma_query_ah - Queries the address vector associated with an address
* handle.
* @ah: The address handle to query.
* @ah_attr: The address vector attributes associated with the address
* handle.
*/
int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
enum rdma_destroy_ah_flags {
/* In a sleepable context */
RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
};
/**
* rdma_destroy_ah_user - Destroys an address handle.
* @ah: The address handle to destroy.
* @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
* @udata: Valid user data or NULL for kernel objects
*/
int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
/**
* rdma_destroy_ah - Destroys an kernel address handle.
* @ah: The address handle to destroy.
* @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
*
* NOTE: for user ah use rdma_destroy_ah_user with valid udata!
*/
static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
{
return rdma_destroy_ah_user(ah, flags, NULL);
}
/**
* ib_create_srq - Creates a SRQ associated with the specified protection
* domain.
* @pd: The protection domain associated with the SRQ.
* @srq_init_attr: A list of initial attributes required to create the
* SRQ. If SRQ creation succeeds, then the attributes are updated to
* the actual capabilities of the created SRQ.
*
* srq_attr->max_wr and srq_attr->max_sge are read the determine the
* requested size of the SRQ, and set to the actual values allocated
* on return. If ib_create_srq() succeeds, then max_wr and max_sge
* will always be at least as large as the requested values.
*/
struct ib_srq *ib_create_srq(struct ib_pd *pd,
struct ib_srq_init_attr *srq_init_attr);
/**
* ib_modify_srq - Modifies the attributes for the specified SRQ.
* @srq: The SRQ to modify.
* @srq_attr: On input, specifies the SRQ attributes to modify. On output,
* the current values of selected SRQ attributes are returned.
* @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
* are being modified.
*
* The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
* IB_SRQ_LIMIT to set the SRQ's limit and request notification when
* the number of receives queued drops below the limit.
*/
int ib_modify_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask);
/**
* ib_query_srq - Returns the attribute list and current values for the
* specified SRQ.
* @srq: The SRQ to query.
* @srq_attr: The attributes of the specified SRQ.
*/
int ib_query_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr);
/**
* ib_destroy_srq_user - Destroys the specified SRQ.
* @srq: The SRQ to destroy.
* @udata: Valid user data or NULL for kernel objects
*/
int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
/**
* ib_destroy_srq - Destroys the specified kernel SRQ.
* @srq: The SRQ to destroy.
*
* NOTE: for user srq use ib_destroy_srq_user with valid udata!
*/
static inline int ib_destroy_srq(struct ib_srq *srq)
{
return ib_destroy_srq_user(srq, NULL);
}
/**
* ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
* @srq: The SRQ to post the work request on.
* @recv_wr: A list of work requests to post on the receive queue.
* @bad_recv_wr: On an immediate failure, this parameter will reference
* the work request that failed to be posted on the QP.
*/
static inline int ib_post_srq_recv(struct ib_srq *srq,
const struct ib_recv_wr *recv_wr,
const struct ib_recv_wr **bad_recv_wr)
{
const struct ib_recv_wr *dummy;
return srq->device->ops.post_srq_recv(srq, recv_wr,
bad_recv_wr ? : &dummy);
}
struct ib_qp *ib_create_qp(struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr);
/**
* ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
* @qp: The QP to modify.
* @attr: On input, specifies the QP attributes to modify. On output,
* the current values of selected QP attributes are returned.
* @attr_mask: A bit-mask used to specify which attributes of the QP
* are being modified.
* @udata: pointer to user's input output buffer information
* are being modified.
* It returns 0 on success and returns appropriate error code on error.
*/
int ib_modify_qp_with_udata(struct ib_qp *qp,
struct ib_qp_attr *attr,
int attr_mask,
struct ib_udata *udata);
/**
* ib_modify_qp - Modifies the attributes for the specified QP and then
* transitions the QP to the given state.
* @qp: The QP to modify.
* @qp_attr: On input, specifies the QP attributes to modify. On output,
* the current values of selected QP attributes are returned.
* @qp_attr_mask: A bit-mask used to specify which attributes of the QP
* are being modified.
*/
int ib_modify_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask);
/**
* ib_query_qp - Returns the attribute list and current values for the
* specified QP.
* @qp: The QP to query.
* @qp_attr: The attributes of the specified QP.
* @qp_attr_mask: A bit-mask used to select specific attributes to query.
* @qp_init_attr: Additional attributes of the selected QP.
*
* The qp_attr_mask may be used to limit the query to gathering only the
* selected attributes.
*/
int ib_query_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask,
struct ib_qp_init_attr *qp_init_attr);
/**
* ib_destroy_qp - Destroys the specified QP.
* @qp: The QP to destroy.
* @udata: Valid udata or NULL for kernel objects
*/
int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
/**
* ib_destroy_qp - Destroys the specified kernel QP.
* @qp: The QP to destroy.
*
* NOTE: for user qp use ib_destroy_qp_user with valid udata!
*/
static inline int ib_destroy_qp(struct ib_qp *qp)
{
return ib_destroy_qp_user(qp, NULL);
}
/**
* ib_open_qp - Obtain a reference to an existing sharable QP.
* @xrcd - XRC domain
* @qp_open_attr: Attributes identifying the QP to open.
*
* Returns a reference to a sharable QP.
*/
struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
struct ib_qp_open_attr *qp_open_attr);
/**
* ib_close_qp - Release an external reference to a QP.
* @qp: The QP handle to release
*
* The opened QP handle is released by the caller. The underlying
* shared QP is not destroyed until all internal references are released.
*/
int ib_close_qp(struct ib_qp *qp);
/**
* ib_post_send - Posts a list of work requests to the send queue of
* the specified QP.
* @qp: The QP to post the work request on.
* @send_wr: A list of work requests to post on the send queue.
* @bad_send_wr: On an immediate failure, this parameter will reference
* the work request that failed to be posted on the QP.
*
* While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
* error is returned, the QP state shall not be affected,
* ib_post_send() will return an immediate error after queueing any
* earlier work requests in the list.
*/
static inline int ib_post_send(struct ib_qp *qp,
const struct ib_send_wr *send_wr,
const struct ib_send_wr **bad_send_wr)
{
const struct ib_send_wr *dummy;
return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
}
/**
* ib_post_recv - Posts a list of work requests to the receive queue of
* the specified QP.
* @qp: The QP to post the work request on.
* @recv_wr: A list of work requests to post on the receive queue.
* @bad_recv_wr: On an immediate failure, this parameter will reference
* the work request that failed to be posted on the QP.
*/
static inline int ib_post_recv(struct ib_qp *qp,
const struct ib_recv_wr *recv_wr,
const struct ib_recv_wr **bad_recv_wr)
{
const struct ib_recv_wr *dummy;
return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
}
struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
int nr_cqe, int comp_vector,
enum ib_poll_context poll_ctx,
const char *caller, struct ib_udata *udata);
/**
* ib_alloc_cq_user: Allocate kernel/user CQ
* @dev: The IB device
* @private: Private data attached to the CQE
* @nr_cqe: Number of CQEs in the CQ
* @comp_vector: Completion vector used for the IRQs
* @poll_ctx: Context used for polling the CQ
* @udata: Valid user data or NULL for kernel objects
*/
static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
void *private, int nr_cqe,
int comp_vector,
enum ib_poll_context poll_ctx,
struct ib_udata *udata)
{
return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
KBUILD_MODNAME, udata);
}
/**
* ib_alloc_cq: Allocate kernel CQ
* @dev: The IB device
* @private: Private data attached to the CQE
* @nr_cqe: Number of CQEs in the CQ
* @comp_vector: Completion vector used for the IRQs
* @poll_ctx: Context used for polling the CQ
*
* NOTE: for user cq use ib_alloc_cq_user with valid udata!
*/
static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
int nr_cqe, int comp_vector,
enum ib_poll_context poll_ctx)
{
return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
NULL);
}
struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
int nr_cqe, enum ib_poll_context poll_ctx,
const char *caller);
/**
* ib_alloc_cq_any: Allocate kernel CQ
* @dev: The IB device
* @private: Private data attached to the CQE
* @nr_cqe: Number of CQEs in the CQ
* @poll_ctx: Context used for polling the CQ
*/
static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
void *private, int nr_cqe,
enum ib_poll_context poll_ctx)
{
return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
KBUILD_MODNAME);
}
/**
* ib_free_cq_user - Free kernel/user CQ
* @cq: The CQ to free
* @udata: Valid user data or NULL for kernel objects
*/
void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
/**
* ib_free_cq - Free kernel CQ
* @cq: The CQ to free
*
* NOTE: for user cq use ib_free_cq_user with valid udata!
*/
static inline void ib_free_cq(struct ib_cq *cq)
{
ib_free_cq_user(cq, NULL);
}
int ib_process_cq_direct(struct ib_cq *cq, int budget);
/**
* ib_create_cq - Creates a CQ on the specified device.
* @device: The device on which to create the CQ.
* @comp_handler: A user-specified callback that is invoked when a
* completion event occurs on the CQ.
* @event_handler: A user-specified callback that is invoked when an
* asynchronous event not associated with a completion occurs on the CQ.
* @cq_context: Context associated with the CQ returned to the user via
* the associated completion and event handlers.
* @cq_attr: The attributes the CQ should be created upon.
*
* Users can examine the cq structure to determine the actual CQ size.
*/
struct ib_cq *__ib_create_cq(struct ib_device *device,
ib_comp_handler comp_handler,
void (*event_handler)(struct ib_event *, void *),
void *cq_context,
const struct ib_cq_init_attr *cq_attr,
const char *caller);
#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
/**
* ib_resize_cq - Modifies the capacity of the CQ.
* @cq: The CQ to resize.
* @cqe: The minimum size of the CQ.
*
* Users can examine the cq structure to determine the actual CQ size.
*/
int ib_resize_cq(struct ib_cq *cq, int cqe);
/**
* rdma_set_cq_moderation - Modifies moderation params of the CQ
* @cq: The CQ to modify.
* @cq_count: number of CQEs that will trigger an event
* @cq_period: max period of time in usec before triggering an event
*
*/
int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
/**
* ib_destroy_cq_user - Destroys the specified CQ.
* @cq: The CQ to destroy.
* @udata: Valid user data or NULL for kernel objects
*/
int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
/**
* ib_destroy_cq - Destroys the specified kernel CQ.
* @cq: The CQ to destroy.
*
* NOTE: for user cq use ib_destroy_cq_user with valid udata!
*/
static inline void ib_destroy_cq(struct ib_cq *cq)
{
ib_destroy_cq_user(cq, NULL);
}
/**
* ib_poll_cq - poll a CQ for completion(s)
* @cq:the CQ being polled
* @num_entries:maximum number of completions to return
* @wc:array of at least @num_entries &struct ib_wc where completions
* will be returned
*
* Poll a CQ for (possibly multiple) completions. If the return value
* is < 0, an error occurred. If the return value is >= 0, it is the
* number of completions returned. If the return value is
* non-negative and < num_entries, then the CQ was emptied.
*/
static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
struct ib_wc *wc)
{
return cq->device->ops.poll_cq(cq, num_entries, wc);
}
/**
* ib_req_notify_cq - Request completion notification on a CQ.
* @cq: The CQ to generate an event for.
* @flags:
* Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
* to request an event on the next solicited event or next work
* completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
* may also be |ed in to request a hint about missed events, as
* described below.
*
* Return Value:
* < 0 means an error occurred while requesting notification
* == 0 means notification was requested successfully, and if
* IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
* were missed and it is safe to wait for another event. In
* this case is it guaranteed that any work completions added
* to the CQ since the last CQ poll will trigger a completion
* notification event.
* > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
* in. It means that the consumer must poll the CQ again to
* make sure it is empty to avoid missing an event because of a
* race between requesting notification and an entry being
* added to the CQ. This return value means it is possible
* (but not guaranteed) that a work completion has been added
* to the CQ since the last poll without triggering a
* completion notification event.
*/
static inline int ib_req_notify_cq(struct ib_cq *cq,
enum ib_cq_notify_flags flags)
{
return cq->device->ops.req_notify_cq(cq, flags);
}
/**
* ib_req_ncomp_notif - Request completion notification when there are
* at least the specified number of unreaped completions on the CQ.
* @cq: The CQ to generate an event for.
* @wc_cnt: The number of unreaped completions that should be on the
* CQ before an event is generated.
*/
static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
{
return cq->device->ops.req_ncomp_notif ?
cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
-ENOSYS;
}
/**
* ib_dma_mapping_error - check a DMA addr for error
* @dev: The device for which the dma_addr was created
* @dma_addr: The DMA address to check
*/
static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
{
return dma_mapping_error(dev->dma_device, dma_addr);
}
/**
* ib_dma_map_single - Map a kernel virtual address to DMA address
* @dev: The device for which the dma_addr is to be created
* @cpu_addr: The kernel virtual address
* @size: The size of the region in bytes
* @direction: The direction of the DMA
*/
static inline u64 ib_dma_map_single(struct ib_device *dev,
void *cpu_addr, size_t size,
enum dma_data_direction direction)
{
return dma_map_single(dev->dma_device, cpu_addr, size, direction);
}
/**
* ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
* @dev: The device for which the DMA address was created
* @addr: The DMA address
* @size: The size of the region in bytes
* @direction: The direction of the DMA
*/
static inline void ib_dma_unmap_single(struct ib_device *dev,
u64 addr, size_t size,
enum dma_data_direction direction)
{
dma_unmap_single(dev->dma_device, addr, size, direction);
}
/**
* ib_dma_map_page - Map a physical page to DMA address
* @dev: The device for which the dma_addr is to be created
* @page: The page to be mapped
* @offset: The offset within the page
* @size: The size of the region in bytes
* @direction: The direction of the DMA
*/
static inline u64 ib_dma_map_page(struct ib_device *dev,
struct page *page,
unsigned long offset,
size_t size,
enum dma_data_direction direction)
{
return dma_map_page(dev->dma_device, page, offset, size, direction);
}
/**
* ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
* @dev: The device for which the DMA address was created
* @addr: The DMA address
* @size: The size of the region in bytes
* @direction: The direction of the DMA
*/
static inline void ib_dma_unmap_page(struct ib_device *dev,
u64 addr, size_t size,
enum dma_data_direction direction)
{
dma_unmap_page(dev->dma_device, addr, size, direction);
}
/**
* ib_dma_map_sg - Map a scatter/gather list to DMA addresses
* @dev: The device for which the DMA addresses are to be created
* @sg: The array of scatter/gather entries
* @nents: The number of scatter/gather entries
* @direction: The direction of the DMA
*/
static inline int ib_dma_map_sg(struct ib_device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction direction)
{
return dma_map_sg(dev->dma_device, sg, nents, direction);
}
/**
* ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
* @dev: The device for which the DMA addresses were created
* @sg: The array of scatter/gather entries
* @nents: The number of scatter/gather entries
* @direction: The direction of the DMA
*/
static inline void ib_dma_unmap_sg(struct ib_device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction direction)
{
dma_unmap_sg(dev->dma_device, sg, nents, direction);
}
static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction direction,
unsigned long dma_attrs)
{
return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
dma_attrs);
}
static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction direction,
unsigned long dma_attrs)
{
dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
}
/**
* ib_dma_max_seg_size - Return the size limit of a single DMA transfer
* @dev: The device to query
*
* The returned value represents a size in bytes.
*/
static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
{
return dma_get_max_seg_size(dev->dma_device);
}
/**
* ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
* @dev: The device for which the DMA address was created
* @addr: The DMA address
* @size: The size of the region in bytes
* @dir: The direction of the DMA
*/
static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
u64 addr,
size_t size,
enum dma_data_direction dir)
{
dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
}
/**
* ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
* @dev: The device for which the DMA address was created
* @addr: The DMA address
* @size: The size of the region in bytes
* @dir: The direction of the DMA
*/
static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
u64 addr,
size_t size,
enum dma_data_direction dir)
{
dma_sync_single_for_device(dev->dma_device, addr, size, dir);
}
/**
* ib_dma_alloc_coherent - Allocate memory and map it for DMA
* @dev: The device for which the DMA address is requested
* @size: The size of the region to allocate in bytes
* @dma_handle: A pointer for returning the DMA address of the region
* @flag: memory allocator flags
*/
static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
size_t size,
dma_addr_t *dma_handle,
gfp_t flag)
{
return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
}
/**
* ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
* @dev: The device for which the DMA addresses were allocated
* @size: The size of the region
* @cpu_addr: the address returned by ib_dma_alloc_coherent()
* @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
*/
static inline void ib_dma_free_coherent(struct ib_device *dev,
size_t size, void *cpu_addr,
dma_addr_t dma_handle)
{
dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
}
/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
* space. This function should be called when 'current' is the owning MM.
*/
struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int mr_access_flags);
/* ib_advise_mr - give an advice about an address range in a memory region */
int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
u32 flags, struct ib_sge *sg_list, u32 num_sge);
/**
* ib_dereg_mr_user - Deregisters a memory region and removes it from the
* HCA translation table.
* @mr: The memory region to deregister.
* @udata: Valid user data or NULL for kernel object
*
* This function can fail, if the memory region has memory windows bound to it.
*/
int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
/**
* ib_dereg_mr - Deregisters a kernel memory region and removes it from the
* HCA translation table.
* @mr: The memory region to deregister.
*
* This function can fail, if the memory region has memory windows bound to it.
*
* NOTE: for user mr use ib_dereg_mr_user with valid udata!
*/
static inline int ib_dereg_mr(struct ib_mr *mr)
{
return ib_dereg_mr_user(mr, NULL);
}
struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
u32 max_num_sg, struct ib_udata *udata);
static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
enum ib_mr_type mr_type, u32 max_num_sg)
{
return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
}
struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
u32 max_num_data_sg,
u32 max_num_meta_sg);
/**
* ib_update_fast_reg_key - updates the key portion of the fast_reg MR
* R_Key and L_Key.
* @mr - struct ib_mr pointer to be updated.
* @newkey - new key to be used.
*/
static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
{
mr->lkey = (mr->lkey & 0xffffff00) | newkey;
mr->rkey = (mr->rkey & 0xffffff00) | newkey;
}
/**
* ib_inc_rkey - increments the key portion of the given rkey. Can be used
* for calculating a new rkey for type 2 memory windows.
* @rkey - the rkey to increment.
*/
static inline u32 ib_inc_rkey(u32 rkey)
{
const u32 mask = 0x000000ff;
return ((rkey + 1) & mask) | (rkey & ~mask);
}
/**
* ib_alloc_fmr - Allocates a unmapped fast memory region.
* @pd: The protection domain associated with the unmapped region.
* @mr_access_flags: Specifies the memory access rights.
* @fmr_attr: Attributes of the unmapped region.
*
* A fast memory region must be mapped before it can be used as part of
* a work request.
*/
struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
int mr_access_flags,
struct ib_fmr_attr *fmr_attr);
/**
* ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
* @fmr: The fast memory region to associate with the pages.
* @page_list: An array of physical pages to map to the fast memory region.
* @list_len: The number of pages in page_list.
* @iova: The I/O virtual address to use with the mapped region.
*/
static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
u64 *page_list, int list_len,
u64 iova)
{
return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
}
/**
* ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
* @fmr_list: A linked list of fast memory regions to unmap.
*/
int ib_unmap_fmr(struct list_head *fmr_list);
/**
* ib_dealloc_fmr - Deallocates a fast memory region.
* @fmr: The fast memory region to deallocate.
*/
int ib_dealloc_fmr(struct ib_fmr *fmr);
/**
* ib_attach_mcast - Attaches the specified QP to a multicast group.
* @qp: QP to attach to the multicast group. The QP must be type
* IB_QPT_UD.
* @gid: Multicast group GID.
* @lid: Multicast group LID in host byte order.
*
* In order to send and receive multicast packets, subnet
* administration must have created the multicast group and configured
* the fabric appropriately. The port associated with the specified
* QP must also be a member of the multicast group.
*/
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
/**
* ib_detach_mcast - Detaches the specified QP from a multicast group.
* @qp: QP to detach from the multicast group.
* @gid: Multicast group GID.
* @lid: Multicast group LID in host byte order.
*/
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
/**
* ib_alloc_xrcd - Allocates an XRC domain.
* @device: The device on which to allocate the XRC domain.
* @caller: Module name for kernel consumers
*/
struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
#define ib_alloc_xrcd(device) \
__ib_alloc_xrcd((device), KBUILD_MODNAME)
/**
* ib_dealloc_xrcd - Deallocates an XRC domain.
* @xrcd: The XRC domain to deallocate.
* @udata: Valid user data or NULL for kernel object
*/
int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
static inline int ib_check_mr_access(int flags)
{
/*
* Local write permission is required if remote write or
* remote atomic permission is also requested.
*/
if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
!(flags & IB_ACCESS_LOCAL_WRITE))
return -EINVAL;
if (flags & ~IB_ACCESS_SUPPORTED)
return -EINVAL;
return 0;
}
static inline bool ib_access_writable(int access_flags)
{
/*
* We have writable memory backing the MR if any of the following
* access flags are set. "Local write" and "remote write" obviously
* require write access. "Remote atomic" can do things like fetch and
* add, which will modify memory, and "MW bind" can change permissions
* by binding a window.
*/
return access_flags &
(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
}
/**
* ib_check_mr_status: lightweight check of MR status.
* This routine may provide status checks on a selected
* ib_mr. first use is for signature status check.
*
* @mr: A memory region.
* @check_mask: Bitmask of which checks to perform from
* ib_mr_status_check enumeration.
* @mr_status: The container of relevant status checks.
* failed checks will be indicated in the status bitmask
* and the relevant info shall be in the error item.
*/
int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
struct ib_mr_status *mr_status);
/**
* ib_device_try_get: Hold a registration lock
* device: The device to lock
*
* A device under an active registration lock cannot become unregistered. It
* is only possible to obtain a registration lock on a device that is fully
* registered, otherwise this function returns false.
*
* The registration lock is only necessary for actions which require the
* device to still be registered. Uses that only require the device pointer to
* be valid should use get_device(&ibdev->dev) to hold the memory.
*
*/
static inline bool ib_device_try_get(struct ib_device *dev)
{
return refcount_inc_not_zero(&dev->refcount);
}
void ib_device_put(struct ib_device *device);
struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
enum rdma_driver_id driver_id);
struct ib_device *ib_device_get_by_name(const char *name,
enum rdma_driver_id driver_id);
struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
u16 pkey, const union ib_gid *gid,
const struct sockaddr *addr);
int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
unsigned int port);
struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
struct ib_wq *ib_create_wq(struct ib_pd *pd,
struct ib_wq_init_attr *init_attr);
int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
u32 wq_attr_mask);
struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
struct ib_rwq_ind_table_init_attr*
wq_ind_table_init_attr);
int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset, unsigned int page_size);
int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset, unsigned int page_size);
static inline int
ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset, unsigned int page_size)
{
int n;
n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
mr->iova = 0;
return n;
}
int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
void ib_drain_rq(struct ib_qp *qp);
void ib_drain_sq(struct ib_qp *qp);
void ib_drain_qp(struct ib_qp *qp);
int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
{
if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
return attr->roce.dmac;
return NULL;
}
static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
{
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
attr->ib.dlid = (u16)dlid;
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
attr->opa.dlid = dlid;
}
static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
{
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
return attr->ib.dlid;
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
return attr->opa.dlid;
return 0;
}
static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
{
attr->sl = sl;
}
static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
{
return attr->sl;
}
static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
u8 src_path_bits)
{
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
attr->ib.src_path_bits = src_path_bits;
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
attr->opa.src_path_bits = src_path_bits;
}
static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
{
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
return attr->ib.src_path_bits;
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
return attr->opa.src_path_bits;
return 0;
}
static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
bool make_grd)
{
if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
attr->opa.make_grd = make_grd;
}
static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
{
if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
return attr->opa.make_grd;
return false;
}
static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
{
attr->port_num = port_num;
}
static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
{
return attr->port_num;
}
static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
u8 static_rate)
{
attr->static_rate = static_rate;
}
static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
{
return attr->static_rate;
}
static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
enum ib_ah_flags flag)
{
attr->ah_flags = flag;
}
static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
{
return attr->ah_flags;
}
static inline const struct ib_global_route
*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
{
return &attr->grh;
}
/*To retrieve and modify the grh */
static inline struct ib_global_route
*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
{
return &attr->grh;
}
static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
{
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
}
static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
__be64 prefix)
{
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
grh->dgid.global.subnet_prefix = prefix;
}
static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
__be64 if_id)
{
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
grh->dgid.global.interface_id = if_id;
}
static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
union ib_gid *dgid, u32 flow_label,
u8 sgid_index, u8 hop_limit,
u8 traffic_class)
{
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
attr->ah_flags = IB_AH_GRH;
if (dgid)
grh->dgid = *dgid;
grh->flow_label = flow_label;
grh->sgid_index = sgid_index;
grh->hop_limit = hop_limit;
grh->traffic_class = traffic_class;
grh->sgid_attr = NULL;
}
void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
u32 flow_label, u8 hop_limit, u8 traffic_class,
const struct ib_gid_attr *sgid_attr);
void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
const struct rdma_ah_attr *src);
void rdma_replace_ah_attr(struct rdma_ah_attr *old,
const struct rdma_ah_attr *new);
void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
/**
* rdma_ah_find_type - Return address handle type.
*
* @dev: Device to be checked
* @port_num: Port number
*/
static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
u8 port_num)
{
if (rdma_protocol_roce(dev, port_num))
return RDMA_AH_ATTR_TYPE_ROCE;
if (rdma_protocol_ib(dev, port_num)) {
if (rdma_cap_opa_ah(dev, port_num))
return RDMA_AH_ATTR_TYPE_OPA;
return RDMA_AH_ATTR_TYPE_IB;
}
return RDMA_AH_ATTR_TYPE_UNDEFINED;
}
/**
* ib_lid_cpu16 - Return lid in 16bit CPU encoding.
* In the current implementation the only way to get
* get the 32bit lid is from other sources for OPA.
* For IB, lids will always be 16bits so cast the
* value accordingly.
*
* @lid: A 32bit LID
*/
static inline u16 ib_lid_cpu16(u32 lid)
{
WARN_ON_ONCE(lid & 0xFFFF0000);
return (u16)lid;
}
/**
* ib_lid_be16 - Return lid in 16bit BE encoding.
*
* @lid: A 32bit LID
*/
static inline __be16 ib_lid_be16(u32 lid)
{
WARN_ON_ONCE(lid & 0xFFFF0000);
return cpu_to_be16((u16)lid);
}
/**
* ib_get_vector_affinity - Get the affinity mappings of a given completion
* vector
* @device: the rdma device
* @comp_vector: index of completion vector
*
* Returns NULL on failure, otherwise a corresponding cpu map of the
* completion vector (returns all-cpus map if the device driver doesn't
* implement get_vector_affinity).
*/
static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device *device, int comp_vector)
{
if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
!device->ops.get_vector_affinity)
return NULL;
return device->ops.get_vector_affinity(device, comp_vector);
}
/**
* rdma_roce_rescan_device - Rescan all of the network devices in the system
* and add their gids, as needed, to the relevant RoCE devices.
*
* @device: the rdma device
*/
void rdma_roce_rescan_device(struct ib_device *ibdev);
struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
enum rdma_netdev_t type, const char *name,
unsigned char name_assign_type,
void (*setup)(struct net_device *));
int rdma_init_netdev(struct ib_device *device, u8 port_num,
enum rdma_netdev_t type, const char *name,
unsigned char name_assign_type,
void (*setup)(struct net_device *),
struct net_device *netdev);
/**
* rdma_set_device_sysfs_group - Set device attributes group to have
* driver specific sysfs entries at
* for infiniband class.
*
* @device: device pointer for which attributes to be created
* @group: Pointer to group which should be added when device
* is registered with sysfs.
* rdma_set_device_sysfs_group() allows existing drivers to expose one
* group per device to have sysfs attributes.
*
* NOTE: New drivers should not make use of this API; instead new device
* parameter should be exposed via netlink command. This API and mechanism
* exist only for existing drivers.
*/
static inline void
rdma_set_device_sysfs_group(struct ib_device *dev,
const struct attribute_group *group)
{
dev->groups[1] = group;
}
/**
* rdma_device_to_ibdev - Get ib_device pointer from device pointer
*
* @device: device pointer for which ib_device pointer to retrieve
*
* rdma_device_to_ibdev() retrieves ib_device pointer from device.
*
*/
static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
{
struct ib_core_device *coredev =
container_of(device, struct ib_core_device, dev);
return coredev->owner;
}
/**
* rdma_device_to_drv_device - Helper macro to reach back to driver's
* ib_device holder structure from device pointer.
*
* NOTE: New drivers should not make use of this API; This API is only for
* existing drivers who have exposed sysfs entries using
* rdma_set_device_sysfs_group().
*/
#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
bool rdma_dev_access_netns(const struct ib_device *device,
const struct net *net);
#endif /* IB_VERBS_H */