5f9b4b0de8
In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
1207 lines
32 KiB
C
1207 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
|
|
* Copyright (C) 2010 Red Hat, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_extent_busy.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_dquot_item.h"
|
|
#include "xfs_dquot.h"
|
|
#include "xfs_icache.h"
|
|
|
|
kmem_zone_t *xfs_trans_zone;
|
|
|
|
#if defined(CONFIG_TRACEPOINTS)
|
|
static void
|
|
xfs_trans_trace_reservations(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_trans_res resv;
|
|
struct xfs_trans_res *res;
|
|
struct xfs_trans_res *end_res;
|
|
int i;
|
|
|
|
res = (struct xfs_trans_res *)M_RES(mp);
|
|
end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
|
|
for (i = 0; res < end_res; i++, res++)
|
|
trace_xfs_trans_resv_calc(mp, i, res);
|
|
xfs_log_get_max_trans_res(mp, &resv);
|
|
trace_xfs_trans_resv_calc(mp, -1, &resv);
|
|
}
|
|
#else
|
|
# define xfs_trans_trace_reservations(mp)
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the precomputed transaction reservation values
|
|
* in the mount structure.
|
|
*/
|
|
void
|
|
xfs_trans_init(
|
|
struct xfs_mount *mp)
|
|
{
|
|
xfs_trans_resv_calc(mp, M_RES(mp));
|
|
xfs_trans_trace_reservations(mp);
|
|
}
|
|
|
|
/*
|
|
* Free the transaction structure. If there is more clean up
|
|
* to do when the structure is freed, add it here.
|
|
*/
|
|
STATIC void
|
|
xfs_trans_free(
|
|
struct xfs_trans *tp)
|
|
{
|
|
xfs_extent_busy_sort(&tp->t_busy);
|
|
xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
|
|
|
|
trace_xfs_trans_free(tp, _RET_IP_);
|
|
xfs_trans_clear_context(tp);
|
|
if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
|
|
sb_end_intwrite(tp->t_mountp->m_super);
|
|
xfs_trans_free_dqinfo(tp);
|
|
kmem_cache_free(xfs_trans_zone, tp);
|
|
}
|
|
|
|
/*
|
|
* This is called to create a new transaction which will share the
|
|
* permanent log reservation of the given transaction. The remaining
|
|
* unused block and rt extent reservations are also inherited. This
|
|
* implies that the original transaction is no longer allowed to allocate
|
|
* blocks. Locks and log items, however, are no inherited. They must
|
|
* be added to the new transaction explicitly.
|
|
*/
|
|
STATIC struct xfs_trans *
|
|
xfs_trans_dup(
|
|
struct xfs_trans *tp)
|
|
{
|
|
struct xfs_trans *ntp;
|
|
|
|
trace_xfs_trans_dup(tp, _RET_IP_);
|
|
|
|
ntp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
/*
|
|
* Initialize the new transaction structure.
|
|
*/
|
|
ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
|
|
ntp->t_mountp = tp->t_mountp;
|
|
INIT_LIST_HEAD(&ntp->t_items);
|
|
INIT_LIST_HEAD(&ntp->t_busy);
|
|
INIT_LIST_HEAD(&ntp->t_dfops);
|
|
ntp->t_firstblock = NULLFSBLOCK;
|
|
|
|
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
|
|
ASSERT(tp->t_ticket != NULL);
|
|
|
|
ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
|
|
(tp->t_flags & XFS_TRANS_RESERVE) |
|
|
(tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
|
|
(tp->t_flags & XFS_TRANS_RES_FDBLKS);
|
|
/* We gave our writer reference to the new transaction */
|
|
tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
|
|
ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
|
|
|
|
ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
|
|
ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
|
|
tp->t_blk_res = tp->t_blk_res_used;
|
|
|
|
ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
|
|
tp->t_rtx_res = tp->t_rtx_res_used;
|
|
|
|
xfs_trans_switch_context(tp, ntp);
|
|
|
|
/* move deferred ops over to the new tp */
|
|
xfs_defer_move(ntp, tp);
|
|
|
|
xfs_trans_dup_dqinfo(tp, ntp);
|
|
return ntp;
|
|
}
|
|
|
|
/*
|
|
* This is called to reserve free disk blocks and log space for the
|
|
* given transaction. This must be done before allocating any resources
|
|
* within the transaction.
|
|
*
|
|
* This will return ENOSPC if there are not enough blocks available.
|
|
* It will sleep waiting for available log space.
|
|
* The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
|
|
* is used by long running transactions. If any one of the reservations
|
|
* fails then they will all be backed out.
|
|
*
|
|
* This does not do quota reservations. That typically is done by the
|
|
* caller afterwards.
|
|
*/
|
|
static int
|
|
xfs_trans_reserve(
|
|
struct xfs_trans *tp,
|
|
struct xfs_trans_res *resp,
|
|
uint blocks,
|
|
uint rtextents)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
int error = 0;
|
|
bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
|
|
|
|
/*
|
|
* Attempt to reserve the needed disk blocks by decrementing
|
|
* the number needed from the number available. This will
|
|
* fail if the count would go below zero.
|
|
*/
|
|
if (blocks > 0) {
|
|
error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
|
|
if (error != 0)
|
|
return -ENOSPC;
|
|
tp->t_blk_res += blocks;
|
|
}
|
|
|
|
/*
|
|
* Reserve the log space needed for this transaction.
|
|
*/
|
|
if (resp->tr_logres > 0) {
|
|
bool permanent = false;
|
|
|
|
ASSERT(tp->t_log_res == 0 ||
|
|
tp->t_log_res == resp->tr_logres);
|
|
ASSERT(tp->t_log_count == 0 ||
|
|
tp->t_log_count == resp->tr_logcount);
|
|
|
|
if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
|
|
tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
|
|
permanent = true;
|
|
} else {
|
|
ASSERT(tp->t_ticket == NULL);
|
|
ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
|
|
}
|
|
|
|
if (tp->t_ticket != NULL) {
|
|
ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
|
|
error = xfs_log_regrant(mp, tp->t_ticket);
|
|
} else {
|
|
error = xfs_log_reserve(mp,
|
|
resp->tr_logres,
|
|
resp->tr_logcount,
|
|
&tp->t_ticket, XFS_TRANSACTION,
|
|
permanent);
|
|
}
|
|
|
|
if (error)
|
|
goto undo_blocks;
|
|
|
|
tp->t_log_res = resp->tr_logres;
|
|
tp->t_log_count = resp->tr_logcount;
|
|
}
|
|
|
|
/*
|
|
* Attempt to reserve the needed realtime extents by decrementing
|
|
* the number needed from the number available. This will
|
|
* fail if the count would go below zero.
|
|
*/
|
|
if (rtextents > 0) {
|
|
error = xfs_mod_frextents(mp, -((int64_t)rtextents));
|
|
if (error) {
|
|
error = -ENOSPC;
|
|
goto undo_log;
|
|
}
|
|
tp->t_rtx_res += rtextents;
|
|
}
|
|
|
|
return 0;
|
|
|
|
/*
|
|
* Error cases jump to one of these labels to undo any
|
|
* reservations which have already been performed.
|
|
*/
|
|
undo_log:
|
|
if (resp->tr_logres > 0) {
|
|
xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
|
|
tp->t_ticket = NULL;
|
|
tp->t_log_res = 0;
|
|
tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
|
|
}
|
|
|
|
undo_blocks:
|
|
if (blocks > 0) {
|
|
xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
|
|
tp->t_blk_res = 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_trans_alloc(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans_res *resp,
|
|
uint blocks,
|
|
uint rtextents,
|
|
uint flags,
|
|
struct xfs_trans **tpp)
|
|
{
|
|
struct xfs_trans *tp;
|
|
bool want_retry = true;
|
|
int error;
|
|
|
|
/*
|
|
* Allocate the handle before we do our freeze accounting and setting up
|
|
* GFP_NOFS allocation context so that we avoid lockdep false positives
|
|
* by doing GFP_KERNEL allocations inside sb_start_intwrite().
|
|
*/
|
|
retry:
|
|
tp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
|
|
if (!(flags & XFS_TRANS_NO_WRITECOUNT))
|
|
sb_start_intwrite(mp->m_super);
|
|
xfs_trans_set_context(tp);
|
|
|
|
/*
|
|
* Zero-reservation ("empty") transactions can't modify anything, so
|
|
* they're allowed to run while we're frozen.
|
|
*/
|
|
WARN_ON(resp->tr_logres > 0 &&
|
|
mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
|
|
ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
|
|
xfs_sb_version_haslazysbcount(&mp->m_sb));
|
|
|
|
tp->t_magic = XFS_TRANS_HEADER_MAGIC;
|
|
tp->t_flags = flags;
|
|
tp->t_mountp = mp;
|
|
INIT_LIST_HEAD(&tp->t_items);
|
|
INIT_LIST_HEAD(&tp->t_busy);
|
|
INIT_LIST_HEAD(&tp->t_dfops);
|
|
tp->t_firstblock = NULLFSBLOCK;
|
|
|
|
error = xfs_trans_reserve(tp, resp, blocks, rtextents);
|
|
if (error == -ENOSPC && want_retry) {
|
|
xfs_trans_cancel(tp);
|
|
|
|
/*
|
|
* We weren't able to reserve enough space for the transaction.
|
|
* Flush the other speculative space allocations to free space.
|
|
* Do not perform a synchronous scan because callers can hold
|
|
* other locks.
|
|
*/
|
|
error = xfs_blockgc_free_space(mp, NULL);
|
|
if (error)
|
|
return error;
|
|
|
|
want_retry = false;
|
|
goto retry;
|
|
}
|
|
if (error) {
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
trace_xfs_trans_alloc(tp, _RET_IP_);
|
|
|
|
*tpp = tp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create an empty transaction with no reservation. This is a defensive
|
|
* mechanism for routines that query metadata without actually modifying them --
|
|
* if the metadata being queried is somehow cross-linked (think a btree block
|
|
* pointer that points higher in the tree), we risk deadlock. However, blocks
|
|
* grabbed as part of a transaction can be re-grabbed. The verifiers will
|
|
* notice the corrupt block and the operation will fail back to userspace
|
|
* without deadlocking.
|
|
*
|
|
* Note the zero-length reservation; this transaction MUST be cancelled without
|
|
* any dirty data.
|
|
*
|
|
* Callers should obtain freeze protection to avoid a conflict with fs freezing
|
|
* where we can be grabbing buffers at the same time that freeze is trying to
|
|
* drain the buffer LRU list.
|
|
*/
|
|
int
|
|
xfs_trans_alloc_empty(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans **tpp)
|
|
{
|
|
struct xfs_trans_res resv = {0};
|
|
|
|
return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
|
|
}
|
|
|
|
/*
|
|
* Record the indicated change to the given field for application
|
|
* to the file system's superblock when the transaction commits.
|
|
* For now, just store the change in the transaction structure.
|
|
*
|
|
* Mark the transaction structure to indicate that the superblock
|
|
* needs to be updated before committing.
|
|
*
|
|
* Because we may not be keeping track of allocated/free inodes and
|
|
* used filesystem blocks in the superblock, we do not mark the
|
|
* superblock dirty in this transaction if we modify these fields.
|
|
* We still need to update the transaction deltas so that they get
|
|
* applied to the incore superblock, but we don't want them to
|
|
* cause the superblock to get locked and logged if these are the
|
|
* only fields in the superblock that the transaction modifies.
|
|
*/
|
|
void
|
|
xfs_trans_mod_sb(
|
|
xfs_trans_t *tp,
|
|
uint field,
|
|
int64_t delta)
|
|
{
|
|
uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
|
|
xfs_mount_t *mp = tp->t_mountp;
|
|
|
|
switch (field) {
|
|
case XFS_TRANS_SB_ICOUNT:
|
|
tp->t_icount_delta += delta;
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
flags &= ~XFS_TRANS_SB_DIRTY;
|
|
break;
|
|
case XFS_TRANS_SB_IFREE:
|
|
tp->t_ifree_delta += delta;
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
flags &= ~XFS_TRANS_SB_DIRTY;
|
|
break;
|
|
case XFS_TRANS_SB_FDBLOCKS:
|
|
/*
|
|
* Track the number of blocks allocated in the transaction.
|
|
* Make sure it does not exceed the number reserved. If so,
|
|
* shutdown as this can lead to accounting inconsistency.
|
|
*/
|
|
if (delta < 0) {
|
|
tp->t_blk_res_used += (uint)-delta;
|
|
if (tp->t_blk_res_used > tp->t_blk_res)
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
|
|
int64_t blkres_delta;
|
|
|
|
/*
|
|
* Return freed blocks directly to the reservation
|
|
* instead of the global pool, being careful not to
|
|
* overflow the trans counter. This is used to preserve
|
|
* reservation across chains of transaction rolls that
|
|
* repeatedly free and allocate blocks.
|
|
*/
|
|
blkres_delta = min_t(int64_t, delta,
|
|
UINT_MAX - tp->t_blk_res);
|
|
tp->t_blk_res += blkres_delta;
|
|
delta -= blkres_delta;
|
|
}
|
|
tp->t_fdblocks_delta += delta;
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
flags &= ~XFS_TRANS_SB_DIRTY;
|
|
break;
|
|
case XFS_TRANS_SB_RES_FDBLOCKS:
|
|
/*
|
|
* The allocation has already been applied to the
|
|
* in-core superblock's counter. This should only
|
|
* be applied to the on-disk superblock.
|
|
*/
|
|
tp->t_res_fdblocks_delta += delta;
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
flags &= ~XFS_TRANS_SB_DIRTY;
|
|
break;
|
|
case XFS_TRANS_SB_FREXTENTS:
|
|
/*
|
|
* Track the number of blocks allocated in the
|
|
* transaction. Make sure it does not exceed the
|
|
* number reserved.
|
|
*/
|
|
if (delta < 0) {
|
|
tp->t_rtx_res_used += (uint)-delta;
|
|
ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
|
|
}
|
|
tp->t_frextents_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_RES_FREXTENTS:
|
|
/*
|
|
* The allocation has already been applied to the
|
|
* in-core superblock's counter. This should only
|
|
* be applied to the on-disk superblock.
|
|
*/
|
|
ASSERT(delta < 0);
|
|
tp->t_res_frextents_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_DBLOCKS:
|
|
tp->t_dblocks_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_AGCOUNT:
|
|
ASSERT(delta > 0);
|
|
tp->t_agcount_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_IMAXPCT:
|
|
tp->t_imaxpct_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_REXTSIZE:
|
|
tp->t_rextsize_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_RBMBLOCKS:
|
|
tp->t_rbmblocks_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_RBLOCKS:
|
|
tp->t_rblocks_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_REXTENTS:
|
|
tp->t_rextents_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_REXTSLOG:
|
|
tp->t_rextslog_delta += delta;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
return;
|
|
}
|
|
|
|
tp->t_flags |= flags;
|
|
}
|
|
|
|
/*
|
|
* xfs_trans_apply_sb_deltas() is called from the commit code
|
|
* to bring the superblock buffer into the current transaction
|
|
* and modify it as requested by earlier calls to xfs_trans_mod_sb().
|
|
*
|
|
* For now we just look at each field allowed to change and change
|
|
* it if necessary.
|
|
*/
|
|
STATIC void
|
|
xfs_trans_apply_sb_deltas(
|
|
xfs_trans_t *tp)
|
|
{
|
|
xfs_dsb_t *sbp;
|
|
struct xfs_buf *bp;
|
|
int whole = 0;
|
|
|
|
bp = xfs_trans_getsb(tp);
|
|
sbp = bp->b_addr;
|
|
|
|
/*
|
|
* Only update the superblock counters if we are logging them
|
|
*/
|
|
if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
|
|
if (tp->t_icount_delta)
|
|
be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
|
|
if (tp->t_ifree_delta)
|
|
be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
|
|
if (tp->t_fdblocks_delta)
|
|
be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
|
|
if (tp->t_res_fdblocks_delta)
|
|
be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
|
|
}
|
|
|
|
if (tp->t_frextents_delta)
|
|
be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
|
|
if (tp->t_res_frextents_delta)
|
|
be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
|
|
|
|
if (tp->t_dblocks_delta) {
|
|
be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_agcount_delta) {
|
|
be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_imaxpct_delta) {
|
|
sbp->sb_imax_pct += tp->t_imaxpct_delta;
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rextsize_delta) {
|
|
be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rbmblocks_delta) {
|
|
be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rblocks_delta) {
|
|
be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rextents_delta) {
|
|
be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rextslog_delta) {
|
|
sbp->sb_rextslog += tp->t_rextslog_delta;
|
|
whole = 1;
|
|
}
|
|
|
|
xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
|
|
if (whole)
|
|
/*
|
|
* Log the whole thing, the fields are noncontiguous.
|
|
*/
|
|
xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
|
|
else
|
|
/*
|
|
* Since all the modifiable fields are contiguous, we
|
|
* can get away with this.
|
|
*/
|
|
xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
|
|
offsetof(xfs_dsb_t, sb_frextents) +
|
|
sizeof(sbp->sb_frextents) - 1);
|
|
}
|
|
|
|
/*
|
|
* xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
|
|
* apply superblock counter changes to the in-core superblock. The
|
|
* t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
|
|
* applied to the in-core superblock. The idea is that that has already been
|
|
* done.
|
|
*
|
|
* If we are not logging superblock counters, then the inode allocated/free and
|
|
* used block counts are not updated in the on disk superblock. In this case,
|
|
* XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
|
|
* still need to update the incore superblock with the changes.
|
|
*
|
|
* Deltas for the inode count are +/-64, hence we use a large batch size of 128
|
|
* so we don't need to take the counter lock on every update.
|
|
*/
|
|
#define XFS_ICOUNT_BATCH 128
|
|
|
|
void
|
|
xfs_trans_unreserve_and_mod_sb(
|
|
struct xfs_trans *tp)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
|
|
int64_t blkdelta = 0;
|
|
int64_t rtxdelta = 0;
|
|
int64_t idelta = 0;
|
|
int64_t ifreedelta = 0;
|
|
int error;
|
|
|
|
/* calculate deltas */
|
|
if (tp->t_blk_res > 0)
|
|
blkdelta = tp->t_blk_res;
|
|
if ((tp->t_fdblocks_delta != 0) &&
|
|
(xfs_sb_version_haslazysbcount(&mp->m_sb) ||
|
|
(tp->t_flags & XFS_TRANS_SB_DIRTY)))
|
|
blkdelta += tp->t_fdblocks_delta;
|
|
|
|
if (tp->t_rtx_res > 0)
|
|
rtxdelta = tp->t_rtx_res;
|
|
if ((tp->t_frextents_delta != 0) &&
|
|
(tp->t_flags & XFS_TRANS_SB_DIRTY))
|
|
rtxdelta += tp->t_frextents_delta;
|
|
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
|
|
(tp->t_flags & XFS_TRANS_SB_DIRTY)) {
|
|
idelta = tp->t_icount_delta;
|
|
ifreedelta = tp->t_ifree_delta;
|
|
}
|
|
|
|
/* apply the per-cpu counters */
|
|
if (blkdelta) {
|
|
error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
|
|
ASSERT(!error);
|
|
}
|
|
|
|
if (idelta)
|
|
percpu_counter_add_batch(&mp->m_icount, idelta,
|
|
XFS_ICOUNT_BATCH);
|
|
|
|
if (ifreedelta)
|
|
percpu_counter_add(&mp->m_ifree, ifreedelta);
|
|
|
|
if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY))
|
|
return;
|
|
|
|
/* apply remaining deltas */
|
|
spin_lock(&mp->m_sb_lock);
|
|
mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
|
|
mp->m_sb.sb_icount += idelta;
|
|
mp->m_sb.sb_ifree += ifreedelta;
|
|
mp->m_sb.sb_frextents += rtxdelta;
|
|
mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
|
|
mp->m_sb.sb_agcount += tp->t_agcount_delta;
|
|
mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
|
|
mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
|
|
mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
|
|
mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
|
|
mp->m_sb.sb_rextents += tp->t_rextents_delta;
|
|
mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
|
|
spin_unlock(&mp->m_sb_lock);
|
|
|
|
/*
|
|
* Debug checks outside of the spinlock so they don't lock up the
|
|
* machine if they fail.
|
|
*/
|
|
ASSERT(mp->m_sb.sb_imax_pct >= 0);
|
|
ASSERT(mp->m_sb.sb_rextslog >= 0);
|
|
return;
|
|
}
|
|
|
|
/* Add the given log item to the transaction's list of log items. */
|
|
void
|
|
xfs_trans_add_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *lip)
|
|
{
|
|
ASSERT(lip->li_mountp == tp->t_mountp);
|
|
ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
|
|
ASSERT(list_empty(&lip->li_trans));
|
|
ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
|
|
|
|
list_add_tail(&lip->li_trans, &tp->t_items);
|
|
trace_xfs_trans_add_item(tp, _RET_IP_);
|
|
}
|
|
|
|
/*
|
|
* Unlink the log item from the transaction. the log item is no longer
|
|
* considered dirty in this transaction, as the linked transaction has
|
|
* finished, either by abort or commit completion.
|
|
*/
|
|
void
|
|
xfs_trans_del_item(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
clear_bit(XFS_LI_DIRTY, &lip->li_flags);
|
|
list_del_init(&lip->li_trans);
|
|
}
|
|
|
|
/* Detach and unlock all of the items in a transaction */
|
|
static void
|
|
xfs_trans_free_items(
|
|
struct xfs_trans *tp,
|
|
bool abort)
|
|
{
|
|
struct xfs_log_item *lip, *next;
|
|
|
|
trace_xfs_trans_free_items(tp, _RET_IP_);
|
|
|
|
list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
|
|
xfs_trans_del_item(lip);
|
|
if (abort)
|
|
set_bit(XFS_LI_ABORTED, &lip->li_flags);
|
|
if (lip->li_ops->iop_release)
|
|
lip->li_ops->iop_release(lip);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
xfs_log_item_batch_insert(
|
|
struct xfs_ail *ailp,
|
|
struct xfs_ail_cursor *cur,
|
|
struct xfs_log_item **log_items,
|
|
int nr_items,
|
|
xfs_lsn_t commit_lsn)
|
|
{
|
|
int i;
|
|
|
|
spin_lock(&ailp->ail_lock);
|
|
/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
|
|
xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
|
|
|
|
for (i = 0; i < nr_items; i++) {
|
|
struct xfs_log_item *lip = log_items[i];
|
|
|
|
if (lip->li_ops->iop_unpin)
|
|
lip->li_ops->iop_unpin(lip, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Bulk operation version of xfs_trans_committed that takes a log vector of
|
|
* items to insert into the AIL. This uses bulk AIL insertion techniques to
|
|
* minimise lock traffic.
|
|
*
|
|
* If we are called with the aborted flag set, it is because a log write during
|
|
* a CIL checkpoint commit has failed. In this case, all the items in the
|
|
* checkpoint have already gone through iop_committed and iop_committing, which
|
|
* means that checkpoint commit abort handling is treated exactly the same
|
|
* as an iclog write error even though we haven't started any IO yet. Hence in
|
|
* this case all we need to do is iop_committed processing, followed by an
|
|
* iop_unpin(aborted) call.
|
|
*
|
|
* The AIL cursor is used to optimise the insert process. If commit_lsn is not
|
|
* at the end of the AIL, the insert cursor avoids the need to walk
|
|
* the AIL to find the insertion point on every xfs_log_item_batch_insert()
|
|
* call. This saves a lot of needless list walking and is a net win, even
|
|
* though it slightly increases that amount of AIL lock traffic to set it up
|
|
* and tear it down.
|
|
*/
|
|
void
|
|
xfs_trans_committed_bulk(
|
|
struct xfs_ail *ailp,
|
|
struct xfs_log_vec *log_vector,
|
|
xfs_lsn_t commit_lsn,
|
|
bool aborted)
|
|
{
|
|
#define LOG_ITEM_BATCH_SIZE 32
|
|
struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
|
|
struct xfs_log_vec *lv;
|
|
struct xfs_ail_cursor cur;
|
|
int i = 0;
|
|
|
|
spin_lock(&ailp->ail_lock);
|
|
xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
|
|
spin_unlock(&ailp->ail_lock);
|
|
|
|
/* unpin all the log items */
|
|
for (lv = log_vector; lv; lv = lv->lv_next ) {
|
|
struct xfs_log_item *lip = lv->lv_item;
|
|
xfs_lsn_t item_lsn;
|
|
|
|
if (aborted)
|
|
set_bit(XFS_LI_ABORTED, &lip->li_flags);
|
|
|
|
if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
|
|
lip->li_ops->iop_release(lip);
|
|
continue;
|
|
}
|
|
|
|
if (lip->li_ops->iop_committed)
|
|
item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
|
|
else
|
|
item_lsn = commit_lsn;
|
|
|
|
/* item_lsn of -1 means the item needs no further processing */
|
|
if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* if we are aborting the operation, no point in inserting the
|
|
* object into the AIL as we are in a shutdown situation.
|
|
*/
|
|
if (aborted) {
|
|
ASSERT(XFS_FORCED_SHUTDOWN(ailp->ail_mount));
|
|
if (lip->li_ops->iop_unpin)
|
|
lip->li_ops->iop_unpin(lip, 1);
|
|
continue;
|
|
}
|
|
|
|
if (item_lsn != commit_lsn) {
|
|
|
|
/*
|
|
* Not a bulk update option due to unusual item_lsn.
|
|
* Push into AIL immediately, rechecking the lsn once
|
|
* we have the ail lock. Then unpin the item. This does
|
|
* not affect the AIL cursor the bulk insert path is
|
|
* using.
|
|
*/
|
|
spin_lock(&ailp->ail_lock);
|
|
if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
|
|
xfs_trans_ail_update(ailp, lip, item_lsn);
|
|
else
|
|
spin_unlock(&ailp->ail_lock);
|
|
if (lip->li_ops->iop_unpin)
|
|
lip->li_ops->iop_unpin(lip, 0);
|
|
continue;
|
|
}
|
|
|
|
/* Item is a candidate for bulk AIL insert. */
|
|
log_items[i++] = lv->lv_item;
|
|
if (i >= LOG_ITEM_BATCH_SIZE) {
|
|
xfs_log_item_batch_insert(ailp, &cur, log_items,
|
|
LOG_ITEM_BATCH_SIZE, commit_lsn);
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
/* make sure we insert the remainder! */
|
|
if (i)
|
|
xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
|
|
|
|
spin_lock(&ailp->ail_lock);
|
|
xfs_trans_ail_cursor_done(&cur);
|
|
spin_unlock(&ailp->ail_lock);
|
|
}
|
|
|
|
/*
|
|
* Commit the given transaction to the log.
|
|
*
|
|
* XFS disk error handling mechanism is not based on a typical
|
|
* transaction abort mechanism. Logically after the filesystem
|
|
* gets marked 'SHUTDOWN', we can't let any new transactions
|
|
* be durable - ie. committed to disk - because some metadata might
|
|
* be inconsistent. In such cases, this returns an error, and the
|
|
* caller may assume that all locked objects joined to the transaction
|
|
* have already been unlocked as if the commit had succeeded.
|
|
* Do not reference the transaction structure after this call.
|
|
*/
|
|
static int
|
|
__xfs_trans_commit(
|
|
struct xfs_trans *tp,
|
|
bool regrant)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_csn_t commit_seq = 0;
|
|
int error = 0;
|
|
int sync = tp->t_flags & XFS_TRANS_SYNC;
|
|
|
|
trace_xfs_trans_commit(tp, _RET_IP_);
|
|
|
|
/*
|
|
* Finish deferred items on final commit. Only permanent transactions
|
|
* should ever have deferred ops.
|
|
*/
|
|
WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
|
|
!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
|
|
if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
|
|
error = xfs_defer_finish_noroll(&tp);
|
|
if (error)
|
|
goto out_unreserve;
|
|
}
|
|
|
|
/*
|
|
* If there is nothing to be logged by the transaction,
|
|
* then unlock all of the items associated with the
|
|
* transaction and free the transaction structure.
|
|
* Also make sure to return any reserved blocks to
|
|
* the free pool.
|
|
*/
|
|
if (!(tp->t_flags & XFS_TRANS_DIRTY))
|
|
goto out_unreserve;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
error = -EIO;
|
|
goto out_unreserve;
|
|
}
|
|
|
|
ASSERT(tp->t_ticket != NULL);
|
|
|
|
/*
|
|
* If we need to update the superblock, then do it now.
|
|
*/
|
|
if (tp->t_flags & XFS_TRANS_SB_DIRTY)
|
|
xfs_trans_apply_sb_deltas(tp);
|
|
xfs_trans_apply_dquot_deltas(tp);
|
|
|
|
xlog_cil_commit(mp->m_log, tp, &commit_seq, regrant);
|
|
|
|
xfs_trans_free(tp);
|
|
|
|
/*
|
|
* If the transaction needs to be synchronous, then force the
|
|
* log out now and wait for it.
|
|
*/
|
|
if (sync) {
|
|
error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
|
|
XFS_STATS_INC(mp, xs_trans_sync);
|
|
} else {
|
|
XFS_STATS_INC(mp, xs_trans_async);
|
|
}
|
|
|
|
return error;
|
|
|
|
out_unreserve:
|
|
xfs_trans_unreserve_and_mod_sb(tp);
|
|
|
|
/*
|
|
* It is indeed possible for the transaction to be not dirty but
|
|
* the dqinfo portion to be. All that means is that we have some
|
|
* (non-persistent) quota reservations that need to be unreserved.
|
|
*/
|
|
xfs_trans_unreserve_and_mod_dquots(tp);
|
|
if (tp->t_ticket) {
|
|
if (regrant && !XLOG_FORCED_SHUTDOWN(mp->m_log))
|
|
xfs_log_ticket_regrant(mp->m_log, tp->t_ticket);
|
|
else
|
|
xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
|
|
tp->t_ticket = NULL;
|
|
}
|
|
xfs_trans_free_items(tp, !!error);
|
|
xfs_trans_free(tp);
|
|
|
|
XFS_STATS_INC(mp, xs_trans_empty);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_trans_commit(
|
|
struct xfs_trans *tp)
|
|
{
|
|
return __xfs_trans_commit(tp, false);
|
|
}
|
|
|
|
/*
|
|
* Unlock all of the transaction's items and free the transaction.
|
|
* The transaction must not have modified any of its items, because
|
|
* there is no way to restore them to their previous state.
|
|
*
|
|
* If the transaction has made a log reservation, make sure to release
|
|
* it as well.
|
|
*/
|
|
void
|
|
xfs_trans_cancel(
|
|
struct xfs_trans *tp)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
|
|
|
|
trace_xfs_trans_cancel(tp, _RET_IP_);
|
|
|
|
if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
|
|
xfs_defer_cancel(tp);
|
|
|
|
/*
|
|
* See if the caller is relying on us to shut down the
|
|
* filesystem. This happens in paths where we detect
|
|
* corruption and decide to give up.
|
|
*/
|
|
if (dirty && !XFS_FORCED_SHUTDOWN(mp)) {
|
|
XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
}
|
|
#ifdef DEBUG
|
|
if (!dirty && !XFS_FORCED_SHUTDOWN(mp)) {
|
|
struct xfs_log_item *lip;
|
|
|
|
list_for_each_entry(lip, &tp->t_items, li_trans)
|
|
ASSERT(!xlog_item_is_intent_done(lip));
|
|
}
|
|
#endif
|
|
xfs_trans_unreserve_and_mod_sb(tp);
|
|
xfs_trans_unreserve_and_mod_dquots(tp);
|
|
|
|
if (tp->t_ticket) {
|
|
xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
|
|
tp->t_ticket = NULL;
|
|
}
|
|
|
|
xfs_trans_free_items(tp, dirty);
|
|
xfs_trans_free(tp);
|
|
}
|
|
|
|
/*
|
|
* Roll from one trans in the sequence of PERMANENT transactions to
|
|
* the next: permanent transactions are only flushed out when
|
|
* committed with xfs_trans_commit(), but we still want as soon
|
|
* as possible to let chunks of it go to the log. So we commit the
|
|
* chunk we've been working on and get a new transaction to continue.
|
|
*/
|
|
int
|
|
xfs_trans_roll(
|
|
struct xfs_trans **tpp)
|
|
{
|
|
struct xfs_trans *trans = *tpp;
|
|
struct xfs_trans_res tres;
|
|
int error;
|
|
|
|
trace_xfs_trans_roll(trans, _RET_IP_);
|
|
|
|
/*
|
|
* Copy the critical parameters from one trans to the next.
|
|
*/
|
|
tres.tr_logres = trans->t_log_res;
|
|
tres.tr_logcount = trans->t_log_count;
|
|
|
|
*tpp = xfs_trans_dup(trans);
|
|
|
|
/*
|
|
* Commit the current transaction.
|
|
* If this commit failed, then it'd just unlock those items that
|
|
* are not marked ihold. That also means that a filesystem shutdown
|
|
* is in progress. The caller takes the responsibility to cancel
|
|
* the duplicate transaction that gets returned.
|
|
*/
|
|
error = __xfs_trans_commit(trans, true);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Reserve space in the log for the next transaction.
|
|
* This also pushes items in the "AIL", the list of logged items,
|
|
* out to disk if they are taking up space at the tail of the log
|
|
* that we want to use. This requires that either nothing be locked
|
|
* across this call, or that anything that is locked be logged in
|
|
* the prior and the next transactions.
|
|
*/
|
|
tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
|
|
return xfs_trans_reserve(*tpp, &tres, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Allocate an transaction, lock and join the inode to it, and reserve quota.
|
|
*
|
|
* The caller must ensure that the on-disk dquots attached to this inode have
|
|
* already been allocated and initialized. The caller is responsible for
|
|
* releasing ILOCK_EXCL if a new transaction is returned.
|
|
*/
|
|
int
|
|
xfs_trans_alloc_inode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_trans_res *resv,
|
|
unsigned int dblocks,
|
|
unsigned int rblocks,
|
|
bool force,
|
|
struct xfs_trans **tpp)
|
|
{
|
|
struct xfs_trans *tp;
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
bool retried = false;
|
|
int error;
|
|
|
|
retry:
|
|
error = xfs_trans_alloc(mp, resv, dblocks,
|
|
rblocks / mp->m_sb.sb_rextsize,
|
|
force ? XFS_TRANS_RESERVE : 0, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, 0);
|
|
|
|
error = xfs_qm_dqattach_locked(ip, false);
|
|
if (error) {
|
|
/* Caller should have allocated the dquots! */
|
|
ASSERT(error != -ENOENT);
|
|
goto out_cancel;
|
|
}
|
|
|
|
error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
|
|
if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
|
|
xfs_trans_cancel(tp);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
xfs_blockgc_free_quota(ip, 0);
|
|
retried = true;
|
|
goto retry;
|
|
}
|
|
if (error)
|
|
goto out_cancel;
|
|
|
|
*tpp = tp;
|
|
return 0;
|
|
|
|
out_cancel:
|
|
xfs_trans_cancel(tp);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate an transaction in preparation for inode creation by reserving quota
|
|
* against the given dquots. Callers are not required to hold any inode locks.
|
|
*/
|
|
int
|
|
xfs_trans_alloc_icreate(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans_res *resv,
|
|
struct xfs_dquot *udqp,
|
|
struct xfs_dquot *gdqp,
|
|
struct xfs_dquot *pdqp,
|
|
unsigned int dblocks,
|
|
struct xfs_trans **tpp)
|
|
{
|
|
struct xfs_trans *tp;
|
|
bool retried = false;
|
|
int error;
|
|
|
|
retry:
|
|
error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
|
|
if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
|
|
xfs_trans_cancel(tp);
|
|
xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
|
|
retried = true;
|
|
goto retry;
|
|
}
|
|
if (error) {
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
*tpp = tp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate an transaction, lock and join the inode to it, and reserve quota
|
|
* in preparation for inode attribute changes that include uid, gid, or prid
|
|
* changes.
|
|
*
|
|
* The caller must ensure that the on-disk dquots attached to this inode have
|
|
* already been allocated and initialized. The ILOCK will be dropped when the
|
|
* transaction is committed or cancelled.
|
|
*/
|
|
int
|
|
xfs_trans_alloc_ichange(
|
|
struct xfs_inode *ip,
|
|
struct xfs_dquot *new_udqp,
|
|
struct xfs_dquot *new_gdqp,
|
|
struct xfs_dquot *new_pdqp,
|
|
bool force,
|
|
struct xfs_trans **tpp)
|
|
{
|
|
struct xfs_trans *tp;
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_dquot *udqp;
|
|
struct xfs_dquot *gdqp;
|
|
struct xfs_dquot *pdqp;
|
|
bool retried = false;
|
|
int error;
|
|
|
|
retry:
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
|
|
error = xfs_qm_dqattach_locked(ip, false);
|
|
if (error) {
|
|
/* Caller should have allocated the dquots! */
|
|
ASSERT(error != -ENOENT);
|
|
goto out_cancel;
|
|
}
|
|
|
|
/*
|
|
* For each quota type, skip quota reservations if the inode's dquots
|
|
* now match the ones that came from the caller, or the caller didn't
|
|
* pass one in. The inode's dquots can change if we drop the ILOCK to
|
|
* perform a blockgc scan, so we must preserve the caller's arguments.
|
|
*/
|
|
udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
|
|
gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
|
|
pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
|
|
if (udqp || gdqp || pdqp) {
|
|
unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
|
|
|
|
if (force)
|
|
qflags |= XFS_QMOPT_FORCE_RES;
|
|
|
|
/*
|
|
* Reserve enough quota to handle blocks on disk and reserved
|
|
* for a delayed allocation. We'll actually transfer the
|
|
* delalloc reservation between dquots at chown time, even
|
|
* though that part is only semi-transactional.
|
|
*/
|
|
error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
|
|
pdqp, ip->i_nblocks + ip->i_delayed_blks,
|
|
1, qflags);
|
|
if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
|
|
xfs_trans_cancel(tp);
|
|
xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
|
|
retried = true;
|
|
goto retry;
|
|
}
|
|
if (error)
|
|
goto out_cancel;
|
|
}
|
|
|
|
*tpp = tp;
|
|
return 0;
|
|
|
|
out_cancel:
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|