Defer loading of FPU state until return to userspace. This gives the kernel the potential to skip loading FPU state for tasks that stay in kernel mode, or for tasks that end up with repeated invocations of kernel_fpu_begin() & kernel_fpu_end(). The fpregs_lock/unlock() section ensures that the registers remain unchanged. Otherwise a context switch or a bottom half could save the registers to its FPU context and the processor's FPU registers would became random if modified at the same time. KVM swaps the host/guest registers on entry/exit path. This flow has been kept as is. First it ensures that the registers are loaded and then saves the current (host) state before it loads the guest's registers. The swap is done at the very end with disabled interrupts so it should not change anymore before theg guest is entered. The read/save version seems to be cheaper compared to memcpy() in a micro benchmark. Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy(). For kernel threads, this flag gets never cleared which avoids saving / restoring the FPU state for kernel threads and during in-kernel usage of the FPU registers. [ bp: Correct and update commit message and fix checkpatch warnings. s/register/registers/ where it is used in plural. minor comment corrections. remove unused trace_x86_fpu_activate_state() TP. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aubrey Li <aubrey.li@intel.com> Cc: Babu Moger <Babu.Moger@amd.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dmitry Safonov <dima@arista.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Nicolai Stange <nstange@suse.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Waiman Long <longman@redhat.com> Cc: x86-ml <x86@kernel.org> Cc: Yi Wang <wang.yi59@zte.com.cn> Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
464 lines
11 KiB
C
464 lines
11 KiB
C
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*/
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/fpu/regset.h>
|
|
#include <asm/fpu/signal.h>
|
|
#include <asm/fpu/types.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include <linux/hardirq.h>
|
|
#include <linux/pkeys.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <asm/trace/fpu.h>
|
|
|
|
/*
|
|
* Represents the initial FPU state. It's mostly (but not completely) zeroes,
|
|
* depending on the FPU hardware format:
|
|
*/
|
|
union fpregs_state init_fpstate __read_mostly;
|
|
|
|
/*
|
|
* Track whether the kernel is using the FPU state
|
|
* currently.
|
|
*
|
|
* This flag is used:
|
|
*
|
|
* - by IRQ context code to potentially use the FPU
|
|
* if it's unused.
|
|
*
|
|
* - to debug kernel_fpu_begin()/end() correctness
|
|
*/
|
|
static DEFINE_PER_CPU(bool, in_kernel_fpu);
|
|
|
|
/*
|
|
* Track which context is using the FPU on the CPU:
|
|
*/
|
|
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
|
|
|
|
static void kernel_fpu_disable(void)
|
|
{
|
|
WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
|
|
this_cpu_write(in_kernel_fpu, true);
|
|
}
|
|
|
|
static void kernel_fpu_enable(void)
|
|
{
|
|
WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
|
|
this_cpu_write(in_kernel_fpu, false);
|
|
}
|
|
|
|
static bool kernel_fpu_disabled(void)
|
|
{
|
|
return this_cpu_read(in_kernel_fpu);
|
|
}
|
|
|
|
static bool interrupted_kernel_fpu_idle(void)
|
|
{
|
|
return !kernel_fpu_disabled();
|
|
}
|
|
|
|
/*
|
|
* Were we in user mode (or vm86 mode) when we were
|
|
* interrupted?
|
|
*
|
|
* Doing kernel_fpu_begin/end() is ok if we are running
|
|
* in an interrupt context from user mode - we'll just
|
|
* save the FPU state as required.
|
|
*/
|
|
static bool interrupted_user_mode(void)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
return regs && user_mode(regs);
|
|
}
|
|
|
|
/*
|
|
* Can we use the FPU in kernel mode with the
|
|
* whole "kernel_fpu_begin/end()" sequence?
|
|
*
|
|
* It's always ok in process context (ie "not interrupt")
|
|
* but it is sometimes ok even from an irq.
|
|
*/
|
|
bool irq_fpu_usable(void)
|
|
{
|
|
return !in_interrupt() ||
|
|
interrupted_user_mode() ||
|
|
interrupted_kernel_fpu_idle();
|
|
}
|
|
EXPORT_SYMBOL(irq_fpu_usable);
|
|
|
|
static void __kernel_fpu_begin(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
WARN_ON_FPU(!irq_fpu_usable());
|
|
|
|
kernel_fpu_disable();
|
|
|
|
if (current->mm) {
|
|
if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
|
|
set_thread_flag(TIF_NEED_FPU_LOAD);
|
|
/*
|
|
* Ignore return value -- we don't care if reg state
|
|
* is clobbered.
|
|
*/
|
|
copy_fpregs_to_fpstate(fpu);
|
|
}
|
|
}
|
|
__cpu_invalidate_fpregs_state();
|
|
}
|
|
|
|
static void __kernel_fpu_end(void)
|
|
{
|
|
kernel_fpu_enable();
|
|
}
|
|
|
|
void kernel_fpu_begin(void)
|
|
{
|
|
preempt_disable();
|
|
__kernel_fpu_begin();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_fpu_begin);
|
|
|
|
void kernel_fpu_end(void)
|
|
{
|
|
__kernel_fpu_end();
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_fpu_end);
|
|
|
|
/*
|
|
* Save the FPU state (mark it for reload if necessary):
|
|
*
|
|
* This only ever gets called for the current task.
|
|
*/
|
|
void fpu__save(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu != ¤t->thread.fpu);
|
|
|
|
fpregs_lock();
|
|
trace_x86_fpu_before_save(fpu);
|
|
|
|
if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
|
|
if (!copy_fpregs_to_fpstate(fpu)) {
|
|
copy_kernel_to_fpregs(&fpu->state);
|
|
}
|
|
}
|
|
|
|
trace_x86_fpu_after_save(fpu);
|
|
fpregs_unlock();
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu__save);
|
|
|
|
/*
|
|
* Legacy x87 fpstate state init:
|
|
*/
|
|
static inline void fpstate_init_fstate(struct fregs_state *fp)
|
|
{
|
|
fp->cwd = 0xffff037fu;
|
|
fp->swd = 0xffff0000u;
|
|
fp->twd = 0xffffffffu;
|
|
fp->fos = 0xffff0000u;
|
|
}
|
|
|
|
void fpstate_init(union fpregs_state *state)
|
|
{
|
|
if (!static_cpu_has(X86_FEATURE_FPU)) {
|
|
fpstate_init_soft(&state->soft);
|
|
return;
|
|
}
|
|
|
|
memset(state, 0, fpu_kernel_xstate_size);
|
|
|
|
if (static_cpu_has(X86_FEATURE_XSAVES))
|
|
fpstate_init_xstate(&state->xsave);
|
|
if (static_cpu_has(X86_FEATURE_FXSR))
|
|
fpstate_init_fxstate(&state->fxsave);
|
|
else
|
|
fpstate_init_fstate(&state->fsave);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpstate_init);
|
|
|
|
int fpu__copy(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
struct fpu *dst_fpu = &dst->thread.fpu;
|
|
struct fpu *src_fpu = &src->thread.fpu;
|
|
|
|
dst_fpu->last_cpu = -1;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return 0;
|
|
|
|
WARN_ON_FPU(src_fpu != ¤t->thread.fpu);
|
|
|
|
/*
|
|
* Don't let 'init optimized' areas of the XSAVE area
|
|
* leak into the child task:
|
|
*/
|
|
memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
|
|
|
|
/*
|
|
* If the FPU registers are not current just memcpy() the state.
|
|
* Otherwise save current FPU registers directly into the child's FPU
|
|
* context, without any memory-to-memory copying.
|
|
*
|
|
* ( The function 'fails' in the FNSAVE case, which destroys
|
|
* register contents so we have to load them back. )
|
|
*/
|
|
fpregs_lock();
|
|
if (test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
|
|
|
|
else if (!copy_fpregs_to_fpstate(dst_fpu))
|
|
copy_kernel_to_fpregs(&dst_fpu->state);
|
|
|
|
fpregs_unlock();
|
|
|
|
set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
|
|
|
|
trace_x86_fpu_copy_src(src_fpu);
|
|
trace_x86_fpu_copy_dst(dst_fpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Activate the current task's in-memory FPU context,
|
|
* if it has not been used before:
|
|
*/
|
|
static void fpu__initialize(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu != ¤t->thread.fpu);
|
|
|
|
set_thread_flag(TIF_NEED_FPU_LOAD);
|
|
fpstate_init(&fpu->state);
|
|
trace_x86_fpu_init_state(fpu);
|
|
}
|
|
|
|
/*
|
|
* This function must be called before we read a task's fpstate.
|
|
*
|
|
* There's two cases where this gets called:
|
|
*
|
|
* - for the current task (when coredumping), in which case we have
|
|
* to save the latest FPU registers into the fpstate,
|
|
*
|
|
* - or it's called for stopped tasks (ptrace), in which case the
|
|
* registers were already saved by the context-switch code when
|
|
* the task scheduled out.
|
|
*
|
|
* If the task has used the FPU before then save it.
|
|
*/
|
|
void fpu__prepare_read(struct fpu *fpu)
|
|
{
|
|
if (fpu == ¤t->thread.fpu)
|
|
fpu__save(fpu);
|
|
}
|
|
|
|
/*
|
|
* This function must be called before we write a task's fpstate.
|
|
*
|
|
* Invalidate any cached FPU registers.
|
|
*
|
|
* After this function call, after registers in the fpstate are
|
|
* modified and the child task has woken up, the child task will
|
|
* restore the modified FPU state from the modified context. If we
|
|
* didn't clear its cached status here then the cached in-registers
|
|
* state pending on its former CPU could be restored, corrupting
|
|
* the modifications.
|
|
*/
|
|
void fpu__prepare_write(struct fpu *fpu)
|
|
{
|
|
/*
|
|
* Only stopped child tasks can be used to modify the FPU
|
|
* state in the fpstate buffer:
|
|
*/
|
|
WARN_ON_FPU(fpu == ¤t->thread.fpu);
|
|
|
|
/* Invalidate any cached state: */
|
|
__fpu_invalidate_fpregs_state(fpu);
|
|
}
|
|
|
|
/*
|
|
* Drops current FPU state: deactivates the fpregs and
|
|
* the fpstate. NOTE: it still leaves previous contents
|
|
* in the fpregs in the eager-FPU case.
|
|
*
|
|
* This function can be used in cases where we know that
|
|
* a state-restore is coming: either an explicit one,
|
|
* or a reschedule.
|
|
*/
|
|
void fpu__drop(struct fpu *fpu)
|
|
{
|
|
preempt_disable();
|
|
|
|
if (fpu == ¤t->thread.fpu) {
|
|
/* Ignore delayed exceptions from user space */
|
|
asm volatile("1: fwait\n"
|
|
"2:\n"
|
|
_ASM_EXTABLE(1b, 2b));
|
|
fpregs_deactivate(fpu);
|
|
}
|
|
|
|
trace_x86_fpu_dropped(fpu);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Clear FPU registers by setting them up from
|
|
* the init fpstate:
|
|
*/
|
|
static inline void copy_init_fpstate_to_fpregs(void)
|
|
{
|
|
fpregs_lock();
|
|
|
|
if (use_xsave())
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, -1);
|
|
else if (static_cpu_has(X86_FEATURE_FXSR))
|
|
copy_kernel_to_fxregs(&init_fpstate.fxsave);
|
|
else
|
|
copy_kernel_to_fregs(&init_fpstate.fsave);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_OSPKE))
|
|
copy_init_pkru_to_fpregs();
|
|
|
|
fpregs_mark_activate();
|
|
fpregs_unlock();
|
|
}
|
|
|
|
/*
|
|
* Clear the FPU state back to init state.
|
|
*
|
|
* Called by sys_execve(), by the signal handler code and by various
|
|
* error paths.
|
|
*/
|
|
void fpu__clear(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */
|
|
|
|
fpu__drop(fpu);
|
|
|
|
/*
|
|
* Make sure fpstate is cleared and initialized.
|
|
*/
|
|
fpu__initialize(fpu);
|
|
if (static_cpu_has(X86_FEATURE_FPU))
|
|
copy_init_fpstate_to_fpregs();
|
|
}
|
|
|
|
/*
|
|
* Load FPU context before returning to userspace.
|
|
*/
|
|
void switch_fpu_return(void)
|
|
{
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return;
|
|
|
|
__fpregs_load_activate();
|
|
}
|
|
EXPORT_SYMBOL_GPL(switch_fpu_return);
|
|
|
|
#ifdef CONFIG_X86_DEBUG_FPU
|
|
/*
|
|
* If current FPU state according to its tracking (loaded FPU context on this
|
|
* CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
|
|
* loaded on return to userland.
|
|
*/
|
|
void fpregs_assert_state_consistent(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
if (test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
return;
|
|
|
|
WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
|
|
#endif
|
|
|
|
void fpregs_mark_activate(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
fpregs_activate(fpu);
|
|
fpu->last_cpu = smp_processor_id();
|
|
clear_thread_flag(TIF_NEED_FPU_LOAD);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpregs_mark_activate);
|
|
|
|
/*
|
|
* x87 math exception handling:
|
|
*/
|
|
|
|
int fpu__exception_code(struct fpu *fpu, int trap_nr)
|
|
{
|
|
int err;
|
|
|
|
if (trap_nr == X86_TRAP_MF) {
|
|
unsigned short cwd, swd;
|
|
/*
|
|
* (~cwd & swd) will mask out exceptions that are not set to unmasked
|
|
* status. 0x3f is the exception bits in these regs, 0x200 is the
|
|
* C1 reg you need in case of a stack fault, 0x040 is the stack
|
|
* fault bit. We should only be taking one exception at a time,
|
|
* so if this combination doesn't produce any single exception,
|
|
* then we have a bad program that isn't synchronizing its FPU usage
|
|
* and it will suffer the consequences since we won't be able to
|
|
* fully reproduce the context of the exception.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_FXSR)) {
|
|
cwd = fpu->state.fxsave.cwd;
|
|
swd = fpu->state.fxsave.swd;
|
|
} else {
|
|
cwd = (unsigned short)fpu->state.fsave.cwd;
|
|
swd = (unsigned short)fpu->state.fsave.swd;
|
|
}
|
|
|
|
err = swd & ~cwd;
|
|
} else {
|
|
/*
|
|
* The SIMD FPU exceptions are handled a little differently, as there
|
|
* is only a single status/control register. Thus, to determine which
|
|
* unmasked exception was caught we must mask the exception mask bits
|
|
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
|
|
*/
|
|
unsigned short mxcsr = MXCSR_DEFAULT;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_XMM))
|
|
mxcsr = fpu->state.fxsave.mxcsr;
|
|
|
|
err = ~(mxcsr >> 7) & mxcsr;
|
|
}
|
|
|
|
if (err & 0x001) { /* Invalid op */
|
|
/*
|
|
* swd & 0x240 == 0x040: Stack Underflow
|
|
* swd & 0x240 == 0x240: Stack Overflow
|
|
* User must clear the SF bit (0x40) if set
|
|
*/
|
|
return FPE_FLTINV;
|
|
} else if (err & 0x004) { /* Divide by Zero */
|
|
return FPE_FLTDIV;
|
|
} else if (err & 0x008) { /* Overflow */
|
|
return FPE_FLTOVF;
|
|
} else if (err & 0x012) { /* Denormal, Underflow */
|
|
return FPE_FLTUND;
|
|
} else if (err & 0x020) { /* Precision */
|
|
return FPE_FLTRES;
|
|
}
|
|
|
|
/*
|
|
* If we're using IRQ 13, or supposedly even some trap
|
|
* X86_TRAP_MF implementations, it's possible
|
|
* we get a spurious trap, which is not an error.
|
|
*/
|
|
return 0;
|
|
}
|