d3add1a951
When a file is opened for writing, the vfs code (do_dentry_open) calls get_write_access for the inode, thus incrementing the inode's write count. That writer normally then creates a multi-block reservation for the inode (i_res) that can be re-used by other writers, which speeds up writes for applications that stupidly loop on open/write/close. When the writes are all done, the multi-block reservation should be deleted when the file is closed by the last "writer." Commit0ec9b9ea4f
broke that concept when it moved the call to gfs2_rs_delete before the check for FMODE_WRITE. Non-writers have no business removing the multi-block reservations of writers. In fact, if someone opens and closes the file for RO while a writer has a multi-block reservation, the RO closer will delete the reservation midway through the write, and this results in: kernel BUG at fs/gfs2/rgrp.c:677! (or thereabouts) which is: BUG_ON(rs->rs_requested); from function gfs2_rs_deltree. This patch moves the check back inside the check for FMODE_WRITE. Fixes:0ec9b9ea4f
("gfs2: Check for active reservation in gfs2_release") Cc: stable@vger.kernel.org # v5.12+ Signed-off-by: Bob Peterson <rpeterso@redhat.com> Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
1613 lines
40 KiB
C
1613 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
|
|
* Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/gfs2_ondisk.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/dlm.h>
|
|
#include <linux/dlm_plock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/fileattr.h>
|
|
|
|
#include "gfs2.h"
|
|
#include "incore.h"
|
|
#include "bmap.h"
|
|
#include "aops.h"
|
|
#include "dir.h"
|
|
#include "glock.h"
|
|
#include "glops.h"
|
|
#include "inode.h"
|
|
#include "log.h"
|
|
#include "meta_io.h"
|
|
#include "quota.h"
|
|
#include "rgrp.h"
|
|
#include "trans.h"
|
|
#include "util.h"
|
|
|
|
/**
|
|
* gfs2_llseek - seek to a location in a file
|
|
* @file: the file
|
|
* @offset: the offset
|
|
* @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
|
|
*
|
|
* SEEK_END requires the glock for the file because it references the
|
|
* file's size.
|
|
*
|
|
* Returns: The new offset, or errno
|
|
*/
|
|
|
|
static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
|
|
{
|
|
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
|
|
struct gfs2_holder i_gh;
|
|
loff_t error;
|
|
|
|
switch (whence) {
|
|
case SEEK_END:
|
|
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
|
|
&i_gh);
|
|
if (!error) {
|
|
error = generic_file_llseek(file, offset, whence);
|
|
gfs2_glock_dq_uninit(&i_gh);
|
|
}
|
|
break;
|
|
|
|
case SEEK_DATA:
|
|
error = gfs2_seek_data(file, offset);
|
|
break;
|
|
|
|
case SEEK_HOLE:
|
|
error = gfs2_seek_hole(file, offset);
|
|
break;
|
|
|
|
case SEEK_CUR:
|
|
case SEEK_SET:
|
|
/*
|
|
* These don't reference inode->i_size and don't depend on the
|
|
* block mapping, so we don't need the glock.
|
|
*/
|
|
error = generic_file_llseek(file, offset, whence);
|
|
break;
|
|
default:
|
|
error = -EINVAL;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* gfs2_readdir - Iterator for a directory
|
|
* @file: The directory to read from
|
|
* @ctx: What to feed directory entries to
|
|
*
|
|
* Returns: errno
|
|
*/
|
|
|
|
static int gfs2_readdir(struct file *file, struct dir_context *ctx)
|
|
{
|
|
struct inode *dir = file->f_mapping->host;
|
|
struct gfs2_inode *dip = GFS2_I(dir);
|
|
struct gfs2_holder d_gh;
|
|
int error;
|
|
|
|
error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
|
|
if (error)
|
|
return error;
|
|
|
|
error = gfs2_dir_read(dir, ctx, &file->f_ra);
|
|
|
|
gfs2_glock_dq_uninit(&d_gh);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* struct fsflag_gfs2flag
|
|
*
|
|
* The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
|
|
* and to GFS2_DIF_JDATA for non-directories.
|
|
*/
|
|
static struct {
|
|
u32 fsflag;
|
|
u32 gfsflag;
|
|
} fsflag_gfs2flag[] = {
|
|
{FS_SYNC_FL, GFS2_DIF_SYNC},
|
|
{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
|
|
{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
|
|
{FS_NOATIME_FL, GFS2_DIF_NOATIME},
|
|
{FS_INDEX_FL, GFS2_DIF_EXHASH},
|
|
{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
|
|
{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
|
|
};
|
|
|
|
static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
|
|
{
|
|
int i;
|
|
u32 fsflags = 0;
|
|
|
|
if (S_ISDIR(inode->i_mode))
|
|
gfsflags &= ~GFS2_DIF_JDATA;
|
|
else
|
|
gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
|
|
if (gfsflags & fsflag_gfs2flag[i].gfsflag)
|
|
fsflags |= fsflag_gfs2flag[i].fsflag;
|
|
return fsflags;
|
|
}
|
|
|
|
int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
struct gfs2_holder gh;
|
|
int error;
|
|
u32 fsflags;
|
|
|
|
if (d_is_special(dentry))
|
|
return -ENOTTY;
|
|
|
|
gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
|
|
error = gfs2_glock_nq(&gh);
|
|
if (error)
|
|
goto out_uninit;
|
|
|
|
fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
|
|
|
|
fileattr_fill_flags(fa, fsflags);
|
|
|
|
gfs2_glock_dq(&gh);
|
|
out_uninit:
|
|
gfs2_holder_uninit(&gh);
|
|
return error;
|
|
}
|
|
|
|
void gfs2_set_inode_flags(struct inode *inode)
|
|
{
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
unsigned int flags = inode->i_flags;
|
|
|
|
flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
|
|
if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
|
|
flags |= S_NOSEC;
|
|
if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
|
|
flags |= S_IMMUTABLE;
|
|
if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
|
|
flags |= S_APPEND;
|
|
if (ip->i_diskflags & GFS2_DIF_NOATIME)
|
|
flags |= S_NOATIME;
|
|
if (ip->i_diskflags & GFS2_DIF_SYNC)
|
|
flags |= S_SYNC;
|
|
inode->i_flags = flags;
|
|
}
|
|
|
|
/* Flags that can be set by user space */
|
|
#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
|
|
GFS2_DIF_IMMUTABLE| \
|
|
GFS2_DIF_APPENDONLY| \
|
|
GFS2_DIF_NOATIME| \
|
|
GFS2_DIF_SYNC| \
|
|
GFS2_DIF_TOPDIR| \
|
|
GFS2_DIF_INHERIT_JDATA)
|
|
|
|
/**
|
|
* do_gfs2_set_flags - set flags on an inode
|
|
* @inode: The inode
|
|
* @reqflags: The flags to set
|
|
* @mask: Indicates which flags are valid
|
|
*
|
|
*/
|
|
static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
|
|
{
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
struct gfs2_sbd *sdp = GFS2_SB(inode);
|
|
struct buffer_head *bh;
|
|
struct gfs2_holder gh;
|
|
int error;
|
|
u32 new_flags, flags;
|
|
|
|
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
|
|
if (error)
|
|
return error;
|
|
|
|
error = 0;
|
|
flags = ip->i_diskflags;
|
|
new_flags = (flags & ~mask) | (reqflags & mask);
|
|
if ((new_flags ^ flags) == 0)
|
|
goto out;
|
|
|
|
if (!IS_IMMUTABLE(inode)) {
|
|
error = gfs2_permission(&init_user_ns, inode, MAY_WRITE);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
|
|
if (new_flags & GFS2_DIF_JDATA)
|
|
gfs2_log_flush(sdp, ip->i_gl,
|
|
GFS2_LOG_HEAD_FLUSH_NORMAL |
|
|
GFS2_LFC_SET_FLAGS);
|
|
error = filemap_fdatawrite(inode->i_mapping);
|
|
if (error)
|
|
goto out;
|
|
error = filemap_fdatawait(inode->i_mapping);
|
|
if (error)
|
|
goto out;
|
|
if (new_flags & GFS2_DIF_JDATA)
|
|
gfs2_ordered_del_inode(ip);
|
|
}
|
|
error = gfs2_trans_begin(sdp, RES_DINODE, 0);
|
|
if (error)
|
|
goto out;
|
|
error = gfs2_meta_inode_buffer(ip, &bh);
|
|
if (error)
|
|
goto out_trans_end;
|
|
inode->i_ctime = current_time(inode);
|
|
gfs2_trans_add_meta(ip->i_gl, bh);
|
|
ip->i_diskflags = new_flags;
|
|
gfs2_dinode_out(ip, bh->b_data);
|
|
brelse(bh);
|
|
gfs2_set_inode_flags(inode);
|
|
gfs2_set_aops(inode);
|
|
out_trans_end:
|
|
gfs2_trans_end(sdp);
|
|
out:
|
|
gfs2_glock_dq_uninit(&gh);
|
|
return error;
|
|
}
|
|
|
|
int gfs2_fileattr_set(struct user_namespace *mnt_userns,
|
|
struct dentry *dentry, struct fileattr *fa)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
u32 fsflags = fa->flags, gfsflags = 0;
|
|
u32 mask;
|
|
int i;
|
|
|
|
if (d_is_special(dentry))
|
|
return -ENOTTY;
|
|
|
|
if (fileattr_has_fsx(fa))
|
|
return -EOPNOTSUPP;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
|
|
if (fsflags & fsflag_gfs2flag[i].fsflag) {
|
|
fsflags &= ~fsflag_gfs2flag[i].fsflag;
|
|
gfsflags |= fsflag_gfs2flag[i].gfsflag;
|
|
}
|
|
}
|
|
if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
|
|
return -EINVAL;
|
|
|
|
mask = GFS2_FLAGS_USER_SET;
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
mask &= ~GFS2_DIF_JDATA;
|
|
} else {
|
|
/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
|
|
if (gfsflags & GFS2_DIF_TOPDIR)
|
|
return -EINVAL;
|
|
mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
|
|
}
|
|
|
|
return do_gfs2_set_flags(inode, gfsflags, mask);
|
|
}
|
|
|
|
static int gfs2_getlabel(struct file *filp, char __user *label)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct gfs2_sbd *sdp = GFS2_SB(inode);
|
|
|
|
if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch(cmd) {
|
|
case FITRIM:
|
|
return gfs2_fitrim(filp, (void __user *)arg);
|
|
case FS_IOC_GETFSLABEL:
|
|
return gfs2_getlabel(filp, (char __user *)arg);
|
|
}
|
|
|
|
return -ENOTTY;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch(cmd) {
|
|
/* Keep this list in sync with gfs2_ioctl */
|
|
case FITRIM:
|
|
case FS_IOC_GETFSLABEL:
|
|
break;
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
|
|
}
|
|
#else
|
|
#define gfs2_compat_ioctl NULL
|
|
#endif
|
|
|
|
/**
|
|
* gfs2_size_hint - Give a hint to the size of a write request
|
|
* @filep: The struct file
|
|
* @offset: The file offset of the write
|
|
* @size: The length of the write
|
|
*
|
|
* When we are about to do a write, this function records the total
|
|
* write size in order to provide a suitable hint to the lower layers
|
|
* about how many blocks will be required.
|
|
*
|
|
*/
|
|
|
|
static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
|
|
{
|
|
struct inode *inode = file_inode(filep);
|
|
struct gfs2_sbd *sdp = GFS2_SB(inode);
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
|
|
int hint = min_t(size_t, INT_MAX, blks);
|
|
|
|
if (hint > atomic_read(&ip->i_sizehint))
|
|
atomic_set(&ip->i_sizehint, hint);
|
|
}
|
|
|
|
/**
|
|
* gfs2_allocate_page_backing - Allocate blocks for a write fault
|
|
* @page: The (locked) page to allocate backing for
|
|
* @length: Size of the allocation
|
|
*
|
|
* We try to allocate all the blocks required for the page in one go. This
|
|
* might fail for various reasons, so we keep trying until all the blocks to
|
|
* back this page are allocated. If some of the blocks are already allocated,
|
|
* that is ok too.
|
|
*/
|
|
static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
|
|
{
|
|
u64 pos = page_offset(page);
|
|
|
|
do {
|
|
struct iomap iomap = { };
|
|
|
|
if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
|
|
return -EIO;
|
|
|
|
if (length < iomap.length)
|
|
iomap.length = length;
|
|
length -= iomap.length;
|
|
pos += iomap.length;
|
|
} while (length > 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
|
|
* @vmf: The virtual memory fault containing the page to become writable
|
|
*
|
|
* When the page becomes writable, we need to ensure that we have
|
|
* blocks allocated on disk to back that page.
|
|
*/
|
|
|
|
static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
|
|
{
|
|
struct page *page = vmf->page;
|
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
struct gfs2_sbd *sdp = GFS2_SB(inode);
|
|
struct gfs2_alloc_parms ap = { .aflags = 0, };
|
|
u64 offset = page_offset(page);
|
|
unsigned int data_blocks, ind_blocks, rblocks;
|
|
vm_fault_t ret = VM_FAULT_LOCKED;
|
|
struct gfs2_holder gh;
|
|
unsigned int length;
|
|
loff_t size;
|
|
int err;
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
|
|
gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
|
|
err = gfs2_glock_nq(&gh);
|
|
if (err) {
|
|
ret = block_page_mkwrite_return(err);
|
|
goto out_uninit;
|
|
}
|
|
|
|
/* Check page index against inode size */
|
|
size = i_size_read(inode);
|
|
if (offset >= size) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Update file times before taking page lock */
|
|
file_update_time(vmf->vma->vm_file);
|
|
|
|
/* page is wholly or partially inside EOF */
|
|
if (size - offset < PAGE_SIZE)
|
|
length = size - offset;
|
|
else
|
|
length = PAGE_SIZE;
|
|
|
|
gfs2_size_hint(vmf->vma->vm_file, offset, length);
|
|
|
|
set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
|
|
set_bit(GIF_SW_PAGED, &ip->i_flags);
|
|
|
|
/*
|
|
* iomap_writepage / iomap_writepages currently don't support inline
|
|
* files, so always unstuff here.
|
|
*/
|
|
|
|
if (!gfs2_is_stuffed(ip) &&
|
|
!gfs2_write_alloc_required(ip, offset, length)) {
|
|
lock_page(page);
|
|
if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
|
|
ret = VM_FAULT_NOPAGE;
|
|
unlock_page(page);
|
|
}
|
|
goto out_unlock;
|
|
}
|
|
|
|
err = gfs2_rindex_update(sdp);
|
|
if (err) {
|
|
ret = block_page_mkwrite_return(err);
|
|
goto out_unlock;
|
|
}
|
|
|
|
gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
|
|
ap.target = data_blocks + ind_blocks;
|
|
err = gfs2_quota_lock_check(ip, &ap);
|
|
if (err) {
|
|
ret = block_page_mkwrite_return(err);
|
|
goto out_unlock;
|
|
}
|
|
err = gfs2_inplace_reserve(ip, &ap);
|
|
if (err) {
|
|
ret = block_page_mkwrite_return(err);
|
|
goto out_quota_unlock;
|
|
}
|
|
|
|
rblocks = RES_DINODE + ind_blocks;
|
|
if (gfs2_is_jdata(ip))
|
|
rblocks += data_blocks ? data_blocks : 1;
|
|
if (ind_blocks || data_blocks) {
|
|
rblocks += RES_STATFS + RES_QUOTA;
|
|
rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
|
|
}
|
|
err = gfs2_trans_begin(sdp, rblocks, 0);
|
|
if (err) {
|
|
ret = block_page_mkwrite_return(err);
|
|
goto out_trans_fail;
|
|
}
|
|
|
|
/* Unstuff, if required, and allocate backing blocks for page */
|
|
if (gfs2_is_stuffed(ip)) {
|
|
err = gfs2_unstuff_dinode(ip);
|
|
if (err) {
|
|
ret = block_page_mkwrite_return(err);
|
|
goto out_trans_end;
|
|
}
|
|
}
|
|
|
|
lock_page(page);
|
|
/* If truncated, we must retry the operation, we may have raced
|
|
* with the glock demotion code.
|
|
*/
|
|
if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
|
|
ret = VM_FAULT_NOPAGE;
|
|
goto out_page_locked;
|
|
}
|
|
|
|
err = gfs2_allocate_page_backing(page, length);
|
|
if (err)
|
|
ret = block_page_mkwrite_return(err);
|
|
|
|
out_page_locked:
|
|
if (ret != VM_FAULT_LOCKED)
|
|
unlock_page(page);
|
|
out_trans_end:
|
|
gfs2_trans_end(sdp);
|
|
out_trans_fail:
|
|
gfs2_inplace_release(ip);
|
|
out_quota_unlock:
|
|
gfs2_quota_unlock(ip);
|
|
out_unlock:
|
|
gfs2_glock_dq(&gh);
|
|
out_uninit:
|
|
gfs2_holder_uninit(&gh);
|
|
if (ret == VM_FAULT_LOCKED) {
|
|
set_page_dirty(page);
|
|
wait_for_stable_page(page);
|
|
}
|
|
sb_end_pagefault(inode->i_sb);
|
|
return ret;
|
|
}
|
|
|
|
static vm_fault_t gfs2_fault(struct vm_fault *vmf)
|
|
{
|
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
struct gfs2_holder gh;
|
|
vm_fault_t ret;
|
|
int err;
|
|
|
|
gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
|
|
err = gfs2_glock_nq(&gh);
|
|
if (err) {
|
|
ret = block_page_mkwrite_return(err);
|
|
goto out_uninit;
|
|
}
|
|
ret = filemap_fault(vmf);
|
|
gfs2_glock_dq(&gh);
|
|
out_uninit:
|
|
gfs2_holder_uninit(&gh);
|
|
return ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct gfs2_vm_ops = {
|
|
.fault = gfs2_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = gfs2_page_mkwrite,
|
|
};
|
|
|
|
/**
|
|
* gfs2_mmap
|
|
* @file: The file to map
|
|
* @vma: The VMA which described the mapping
|
|
*
|
|
* There is no need to get a lock here unless we should be updating
|
|
* atime. We ignore any locking errors since the only consequence is
|
|
* a missed atime update (which will just be deferred until later).
|
|
*
|
|
* Returns: 0
|
|
*/
|
|
|
|
static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
|
|
|
|
if (!(file->f_flags & O_NOATIME) &&
|
|
!IS_NOATIME(&ip->i_inode)) {
|
|
struct gfs2_holder i_gh;
|
|
int error;
|
|
|
|
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
|
|
&i_gh);
|
|
if (error)
|
|
return error;
|
|
/* grab lock to update inode */
|
|
gfs2_glock_dq_uninit(&i_gh);
|
|
file_accessed(file);
|
|
}
|
|
vma->vm_ops = &gfs2_vm_ops;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gfs2_open_common - This is common to open and atomic_open
|
|
* @inode: The inode being opened
|
|
* @file: The file being opened
|
|
*
|
|
* This maybe called under a glock or not depending upon how it has
|
|
* been called. We must always be called under a glock for regular
|
|
* files, however. For other file types, it does not matter whether
|
|
* we hold the glock or not.
|
|
*
|
|
* Returns: Error code or 0 for success
|
|
*/
|
|
|
|
int gfs2_open_common(struct inode *inode, struct file *file)
|
|
{
|
|
struct gfs2_file *fp;
|
|
int ret;
|
|
|
|
if (S_ISREG(inode->i_mode)) {
|
|
ret = generic_file_open(inode, file);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
|
|
if (!fp)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&fp->f_fl_mutex);
|
|
|
|
gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
|
|
file->private_data = fp;
|
|
if (file->f_mode & FMODE_WRITE) {
|
|
ret = gfs2_qa_get(GFS2_I(inode));
|
|
if (ret)
|
|
goto fail;
|
|
}
|
|
return 0;
|
|
|
|
fail:
|
|
kfree(file->private_data);
|
|
file->private_data = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* gfs2_open - open a file
|
|
* @inode: the inode to open
|
|
* @file: the struct file for this opening
|
|
*
|
|
* After atomic_open, this function is only used for opening files
|
|
* which are already cached. We must still get the glock for regular
|
|
* files to ensure that we have the file size uptodate for the large
|
|
* file check which is in the common code. That is only an issue for
|
|
* regular files though.
|
|
*
|
|
* Returns: errno
|
|
*/
|
|
|
|
static int gfs2_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
struct gfs2_holder i_gh;
|
|
int error;
|
|
bool need_unlock = false;
|
|
|
|
if (S_ISREG(ip->i_inode.i_mode)) {
|
|
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
|
|
&i_gh);
|
|
if (error)
|
|
return error;
|
|
need_unlock = true;
|
|
}
|
|
|
|
error = gfs2_open_common(inode, file);
|
|
|
|
if (need_unlock)
|
|
gfs2_glock_dq_uninit(&i_gh);
|
|
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* gfs2_release - called to close a struct file
|
|
* @inode: the inode the struct file belongs to
|
|
* @file: the struct file being closed
|
|
*
|
|
* Returns: errno
|
|
*/
|
|
|
|
static int gfs2_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
|
|
kfree(file->private_data);
|
|
file->private_data = NULL;
|
|
|
|
if (file->f_mode & FMODE_WRITE) {
|
|
if (gfs2_rs_active(&ip->i_res))
|
|
gfs2_rs_delete(ip, &inode->i_writecount);
|
|
gfs2_qa_put(ip);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gfs2_fsync - sync the dirty data for a file (across the cluster)
|
|
* @file: the file that points to the dentry
|
|
* @start: the start position in the file to sync
|
|
* @end: the end position in the file to sync
|
|
* @datasync: set if we can ignore timestamp changes
|
|
*
|
|
* We split the data flushing here so that we don't wait for the data
|
|
* until after we've also sent the metadata to disk. Note that for
|
|
* data=ordered, we will write & wait for the data at the log flush
|
|
* stage anyway, so this is unlikely to make much of a difference
|
|
* except in the data=writeback case.
|
|
*
|
|
* If the fdatawrite fails due to any reason except -EIO, we will
|
|
* continue the remainder of the fsync, although we'll still report
|
|
* the error at the end. This is to match filemap_write_and_wait_range()
|
|
* behaviour.
|
|
*
|
|
* Returns: errno
|
|
*/
|
|
|
|
static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
|
|
int datasync)
|
|
{
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
int sync_state = inode->i_state & I_DIRTY;
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
int ret = 0, ret1 = 0;
|
|
|
|
if (mapping->nrpages) {
|
|
ret1 = filemap_fdatawrite_range(mapping, start, end);
|
|
if (ret1 == -EIO)
|
|
return ret1;
|
|
}
|
|
|
|
if (!gfs2_is_jdata(ip))
|
|
sync_state &= ~I_DIRTY_PAGES;
|
|
if (datasync)
|
|
sync_state &= ~I_DIRTY_SYNC;
|
|
|
|
if (sync_state) {
|
|
ret = sync_inode_metadata(inode, 1);
|
|
if (ret)
|
|
return ret;
|
|
if (gfs2_is_jdata(ip))
|
|
ret = file_write_and_wait(file);
|
|
if (ret)
|
|
return ret;
|
|
gfs2_ail_flush(ip->i_gl, 1);
|
|
}
|
|
|
|
if (mapping->nrpages)
|
|
ret = file_fdatawait_range(file, start, end);
|
|
|
|
return ret ? ret : ret1;
|
|
}
|
|
|
|
static inline bool should_fault_in_pages(ssize_t ret, struct iov_iter *i,
|
|
size_t *prev_count,
|
|
size_t *window_size)
|
|
{
|
|
size_t count = iov_iter_count(i);
|
|
char __user *p;
|
|
int pages = 1;
|
|
|
|
if (likely(!count))
|
|
return false;
|
|
if (ret <= 0 && ret != -EFAULT)
|
|
return false;
|
|
if (!iter_is_iovec(i))
|
|
return false;
|
|
|
|
if (*prev_count != count || !*window_size) {
|
|
int pages, nr_dirtied;
|
|
|
|
pages = min_t(int, BIO_MAX_VECS, DIV_ROUND_UP(count, PAGE_SIZE));
|
|
nr_dirtied = max(current->nr_dirtied_pause -
|
|
current->nr_dirtied, 1);
|
|
pages = min(pages, nr_dirtied);
|
|
}
|
|
|
|
*prev_count = count;
|
|
p = i->iov[0].iov_base + i->iov_offset;
|
|
*window_size = (size_t)PAGE_SIZE * pages - offset_in_page(p);
|
|
return true;
|
|
}
|
|
|
|
static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
|
|
struct gfs2_holder *gh)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
|
|
size_t prev_count = 0, window_size = 0;
|
|
size_t written = 0;
|
|
ssize_t ret;
|
|
|
|
/*
|
|
* In this function, we disable page faults when we're holding the
|
|
* inode glock while doing I/O. If a page fault occurs, we indicate
|
|
* that the inode glock may be dropped, fault in the pages manually,
|
|
* and retry.
|
|
*
|
|
* Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
|
|
* physical as well as manual page faults, and we need to disable both
|
|
* kinds.
|
|
*
|
|
* For direct I/O, gfs2 takes the inode glock in deferred mode. This
|
|
* locking mode is compatible with other deferred holders, so multiple
|
|
* processes and nodes can do direct I/O to a file at the same time.
|
|
* There's no guarantee that reads or writes will be atomic. Any
|
|
* coordination among readers and writers needs to happen externally.
|
|
*/
|
|
|
|
if (!iov_iter_count(to))
|
|
return 0; /* skip atime */
|
|
|
|
gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
|
|
retry:
|
|
ret = gfs2_glock_nq(gh);
|
|
if (ret)
|
|
goto out_uninit;
|
|
retry_under_glock:
|
|
pagefault_disable();
|
|
to->nofault = true;
|
|
ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
|
|
IOMAP_DIO_PARTIAL, written);
|
|
to->nofault = false;
|
|
pagefault_enable();
|
|
if (ret > 0)
|
|
written = ret;
|
|
|
|
if (should_fault_in_pages(ret, to, &prev_count, &window_size)) {
|
|
size_t leftover;
|
|
|
|
gfs2_holder_allow_demote(gh);
|
|
leftover = fault_in_iov_iter_writeable(to, window_size);
|
|
gfs2_holder_disallow_demote(gh);
|
|
if (leftover != window_size) {
|
|
if (!gfs2_holder_queued(gh))
|
|
goto retry;
|
|
goto retry_under_glock;
|
|
}
|
|
}
|
|
if (gfs2_holder_queued(gh))
|
|
gfs2_glock_dq(gh);
|
|
out_uninit:
|
|
gfs2_holder_uninit(gh);
|
|
if (ret < 0)
|
|
return ret;
|
|
return written;
|
|
}
|
|
|
|
static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
|
|
struct gfs2_holder *gh)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
size_t prev_count = 0, window_size = 0;
|
|
size_t read = 0;
|
|
ssize_t ret;
|
|
|
|
/*
|
|
* In this function, we disable page faults when we're holding the
|
|
* inode glock while doing I/O. If a page fault occurs, we indicate
|
|
* that the inode glock may be dropped, fault in the pages manually,
|
|
* and retry.
|
|
*
|
|
* For writes, iomap_dio_rw only triggers manual page faults, so we
|
|
* don't need to disable physical ones.
|
|
*/
|
|
|
|
/*
|
|
* Deferred lock, even if its a write, since we do no allocation on
|
|
* this path. All we need to change is the atime, and this lock mode
|
|
* ensures that other nodes have flushed their buffered read caches
|
|
* (i.e. their page cache entries for this inode). We do not,
|
|
* unfortunately, have the option of only flushing a range like the
|
|
* VFS does.
|
|
*/
|
|
gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
|
|
retry:
|
|
ret = gfs2_glock_nq(gh);
|
|
if (ret)
|
|
goto out_uninit;
|
|
retry_under_glock:
|
|
/* Silently fall back to buffered I/O when writing beyond EOF */
|
|
if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
|
|
goto out;
|
|
|
|
from->nofault = true;
|
|
ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
|
|
IOMAP_DIO_PARTIAL, read);
|
|
from->nofault = false;
|
|
|
|
if (ret == -ENOTBLK)
|
|
ret = 0;
|
|
if (ret > 0)
|
|
read = ret;
|
|
|
|
if (should_fault_in_pages(ret, from, &prev_count, &window_size)) {
|
|
size_t leftover;
|
|
|
|
gfs2_holder_allow_demote(gh);
|
|
leftover = fault_in_iov_iter_readable(from, window_size);
|
|
gfs2_holder_disallow_demote(gh);
|
|
if (leftover != window_size) {
|
|
if (!gfs2_holder_queued(gh))
|
|
goto retry;
|
|
goto retry_under_glock;
|
|
}
|
|
}
|
|
out:
|
|
if (gfs2_holder_queued(gh))
|
|
gfs2_glock_dq(gh);
|
|
out_uninit:
|
|
gfs2_holder_uninit(gh);
|
|
if (ret < 0)
|
|
return ret;
|
|
return read;
|
|
}
|
|
|
|
static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
struct gfs2_inode *ip;
|
|
struct gfs2_holder gh;
|
|
size_t prev_count = 0, window_size = 0;
|
|
size_t written = 0;
|
|
ssize_t ret;
|
|
|
|
/*
|
|
* In this function, we disable page faults when we're holding the
|
|
* inode glock while doing I/O. If a page fault occurs, we indicate
|
|
* that the inode glock may be dropped, fault in the pages manually,
|
|
* and retry.
|
|
*/
|
|
|
|
if (iocb->ki_flags & IOCB_DIRECT) {
|
|
ret = gfs2_file_direct_read(iocb, to, &gh);
|
|
if (likely(ret != -ENOTBLK))
|
|
return ret;
|
|
iocb->ki_flags &= ~IOCB_DIRECT;
|
|
}
|
|
iocb->ki_flags |= IOCB_NOIO;
|
|
ret = generic_file_read_iter(iocb, to);
|
|
iocb->ki_flags &= ~IOCB_NOIO;
|
|
if (ret >= 0) {
|
|
if (!iov_iter_count(to))
|
|
return ret;
|
|
written = ret;
|
|
} else {
|
|
if (ret != -EAGAIN)
|
|
return ret;
|
|
if (iocb->ki_flags & IOCB_NOWAIT)
|
|
return ret;
|
|
}
|
|
ip = GFS2_I(iocb->ki_filp->f_mapping->host);
|
|
gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
|
|
retry:
|
|
ret = gfs2_glock_nq(&gh);
|
|
if (ret)
|
|
goto out_uninit;
|
|
retry_under_glock:
|
|
pagefault_disable();
|
|
ret = generic_file_read_iter(iocb, to);
|
|
pagefault_enable();
|
|
if (ret > 0)
|
|
written += ret;
|
|
|
|
if (should_fault_in_pages(ret, to, &prev_count, &window_size)) {
|
|
size_t leftover;
|
|
|
|
gfs2_holder_allow_demote(&gh);
|
|
leftover = fault_in_iov_iter_writeable(to, window_size);
|
|
gfs2_holder_disallow_demote(&gh);
|
|
if (leftover != window_size) {
|
|
if (!gfs2_holder_queued(&gh)) {
|
|
if (written)
|
|
goto out_uninit;
|
|
goto retry;
|
|
}
|
|
goto retry_under_glock;
|
|
}
|
|
}
|
|
if (gfs2_holder_queued(&gh))
|
|
gfs2_glock_dq(&gh);
|
|
out_uninit:
|
|
gfs2_holder_uninit(&gh);
|
|
return written ? written : ret;
|
|
}
|
|
|
|
static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
|
|
struct iov_iter *from,
|
|
struct gfs2_holder *gh)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
struct gfs2_sbd *sdp = GFS2_SB(inode);
|
|
struct gfs2_holder *statfs_gh = NULL;
|
|
size_t prev_count = 0, window_size = 0;
|
|
size_t orig_count = iov_iter_count(from);
|
|
size_t read = 0;
|
|
ssize_t ret;
|
|
|
|
/*
|
|
* In this function, we disable page faults when we're holding the
|
|
* inode glock while doing I/O. If a page fault occurs, we indicate
|
|
* that the inode glock may be dropped, fault in the pages manually,
|
|
* and retry.
|
|
*/
|
|
|
|
if (inode == sdp->sd_rindex) {
|
|
statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
|
|
if (!statfs_gh)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
|
|
retry:
|
|
ret = gfs2_glock_nq(gh);
|
|
if (ret)
|
|
goto out_uninit;
|
|
retry_under_glock:
|
|
if (inode == sdp->sd_rindex) {
|
|
struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
|
|
|
|
ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
|
|
GL_NOCACHE, statfs_gh);
|
|
if (ret)
|
|
goto out_unlock;
|
|
}
|
|
|
|
current->backing_dev_info = inode_to_bdi(inode);
|
|
pagefault_disable();
|
|
ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
|
|
pagefault_enable();
|
|
current->backing_dev_info = NULL;
|
|
if (ret > 0) {
|
|
iocb->ki_pos += ret;
|
|
read += ret;
|
|
}
|
|
|
|
if (inode == sdp->sd_rindex)
|
|
gfs2_glock_dq_uninit(statfs_gh);
|
|
|
|
from->count = orig_count - read;
|
|
if (should_fault_in_pages(ret, from, &prev_count, &window_size)) {
|
|
size_t leftover;
|
|
|
|
gfs2_holder_allow_demote(gh);
|
|
leftover = fault_in_iov_iter_readable(from, window_size);
|
|
gfs2_holder_disallow_demote(gh);
|
|
if (leftover != window_size) {
|
|
from->count = min(from->count, window_size - leftover);
|
|
if (!gfs2_holder_queued(gh)) {
|
|
if (read)
|
|
goto out_uninit;
|
|
goto retry;
|
|
}
|
|
goto retry_under_glock;
|
|
}
|
|
}
|
|
out_unlock:
|
|
if (gfs2_holder_queued(gh))
|
|
gfs2_glock_dq(gh);
|
|
out_uninit:
|
|
gfs2_holder_uninit(gh);
|
|
if (statfs_gh)
|
|
kfree(statfs_gh);
|
|
return read ? read : ret;
|
|
}
|
|
|
|
/**
|
|
* gfs2_file_write_iter - Perform a write to a file
|
|
* @iocb: The io context
|
|
* @from: The data to write
|
|
*
|
|
* We have to do a lock/unlock here to refresh the inode size for
|
|
* O_APPEND writes, otherwise we can land up writing at the wrong
|
|
* offset. There is still a race, but provided the app is using its
|
|
* own file locking, this will make O_APPEND work as expected.
|
|
*
|
|
*/
|
|
|
|
static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
struct gfs2_holder gh;
|
|
ssize_t ret;
|
|
|
|
gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
|
|
|
|
if (iocb->ki_flags & IOCB_APPEND) {
|
|
ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
|
|
if (ret)
|
|
return ret;
|
|
gfs2_glock_dq_uninit(&gh);
|
|
}
|
|
|
|
inode_lock(inode);
|
|
ret = generic_write_checks(iocb, from);
|
|
if (ret <= 0)
|
|
goto out_unlock;
|
|
|
|
ret = file_remove_privs(file);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = file_update_time(file);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
if (iocb->ki_flags & IOCB_DIRECT) {
|
|
struct address_space *mapping = file->f_mapping;
|
|
ssize_t buffered, ret2;
|
|
|
|
ret = gfs2_file_direct_write(iocb, from, &gh);
|
|
if (ret < 0 || !iov_iter_count(from))
|
|
goto out_unlock;
|
|
|
|
iocb->ki_flags |= IOCB_DSYNC;
|
|
buffered = gfs2_file_buffered_write(iocb, from, &gh);
|
|
if (unlikely(buffered <= 0)) {
|
|
if (!ret)
|
|
ret = buffered;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* We need to ensure that the page cache pages are written to
|
|
* disk and invalidated to preserve the expected O_DIRECT
|
|
* semantics. If the writeback or invalidate fails, only report
|
|
* the direct I/O range as we don't know if the buffered pages
|
|
* made it to disk.
|
|
*/
|
|
ret2 = generic_write_sync(iocb, buffered);
|
|
invalidate_mapping_pages(mapping,
|
|
(iocb->ki_pos - buffered) >> PAGE_SHIFT,
|
|
(iocb->ki_pos - 1) >> PAGE_SHIFT);
|
|
if (!ret || ret2 > 0)
|
|
ret += ret2;
|
|
} else {
|
|
ret = gfs2_file_buffered_write(iocb, from, &gh);
|
|
if (likely(ret > 0))
|
|
ret = generic_write_sync(iocb, ret);
|
|
}
|
|
|
|
out_unlock:
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
|
|
int mode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
loff_t end = offset + len;
|
|
struct buffer_head *dibh;
|
|
int error;
|
|
|
|
error = gfs2_meta_inode_buffer(ip, &dibh);
|
|
if (unlikely(error))
|
|
return error;
|
|
|
|
gfs2_trans_add_meta(ip->i_gl, dibh);
|
|
|
|
if (gfs2_is_stuffed(ip)) {
|
|
error = gfs2_unstuff_dinode(ip);
|
|
if (unlikely(error))
|
|
goto out;
|
|
}
|
|
|
|
while (offset < end) {
|
|
struct iomap iomap = { };
|
|
|
|
error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
|
|
if (error)
|
|
goto out;
|
|
offset = iomap.offset + iomap.length;
|
|
if (!(iomap.flags & IOMAP_F_NEW))
|
|
continue;
|
|
error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
|
|
iomap.length >> inode->i_blkbits,
|
|
GFP_NOFS);
|
|
if (error) {
|
|
fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
brelse(dibh);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
|
|
* blocks, determine how many bytes can be written.
|
|
* @ip: The inode in question.
|
|
* @len: Max cap of bytes. What we return in *len must be <= this.
|
|
* @data_blocks: Compute and return the number of data blocks needed
|
|
* @ind_blocks: Compute and return the number of indirect blocks needed
|
|
* @max_blocks: The total blocks available to work with.
|
|
*
|
|
* Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
|
|
*/
|
|
static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
|
|
unsigned int *data_blocks, unsigned int *ind_blocks,
|
|
unsigned int max_blocks)
|
|
{
|
|
loff_t max = *len;
|
|
const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
|
|
unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
|
|
|
|
for (tmp = max_data; tmp > sdp->sd_diptrs;) {
|
|
tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
|
|
max_data -= tmp;
|
|
}
|
|
|
|
*data_blocks = max_data;
|
|
*ind_blocks = max_blocks - max_data;
|
|
*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
|
|
if (*len > max) {
|
|
*len = max;
|
|
gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
|
|
}
|
|
}
|
|
|
|
static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct gfs2_sbd *sdp = GFS2_SB(inode);
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
struct gfs2_alloc_parms ap = { .aflags = 0, };
|
|
unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
|
|
loff_t bytes, max_bytes, max_blks;
|
|
int error;
|
|
const loff_t pos = offset;
|
|
const loff_t count = len;
|
|
loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
|
|
loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
|
|
loff_t max_chunk_size = UINT_MAX & bsize_mask;
|
|
|
|
next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
|
|
|
|
offset &= bsize_mask;
|
|
|
|
len = next - offset;
|
|
bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
|
|
if (!bytes)
|
|
bytes = UINT_MAX;
|
|
bytes &= bsize_mask;
|
|
if (bytes == 0)
|
|
bytes = sdp->sd_sb.sb_bsize;
|
|
|
|
gfs2_size_hint(file, offset, len);
|
|
|
|
gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
|
|
ap.min_target = data_blocks + ind_blocks;
|
|
|
|
while (len > 0) {
|
|
if (len < bytes)
|
|
bytes = len;
|
|
if (!gfs2_write_alloc_required(ip, offset, bytes)) {
|
|
len -= bytes;
|
|
offset += bytes;
|
|
continue;
|
|
}
|
|
|
|
/* We need to determine how many bytes we can actually
|
|
* fallocate without exceeding quota or going over the
|
|
* end of the fs. We start off optimistically by assuming
|
|
* we can write max_bytes */
|
|
max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
|
|
|
|
/* Since max_bytes is most likely a theoretical max, we
|
|
* calculate a more realistic 'bytes' to serve as a good
|
|
* starting point for the number of bytes we may be able
|
|
* to write */
|
|
gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
|
|
ap.target = data_blocks + ind_blocks;
|
|
|
|
error = gfs2_quota_lock_check(ip, &ap);
|
|
if (error)
|
|
return error;
|
|
/* ap.allowed tells us how many blocks quota will allow
|
|
* us to write. Check if this reduces max_blks */
|
|
max_blks = UINT_MAX;
|
|
if (ap.allowed)
|
|
max_blks = ap.allowed;
|
|
|
|
error = gfs2_inplace_reserve(ip, &ap);
|
|
if (error)
|
|
goto out_qunlock;
|
|
|
|
/* check if the selected rgrp limits our max_blks further */
|
|
if (ip->i_res.rs_reserved < max_blks)
|
|
max_blks = ip->i_res.rs_reserved;
|
|
|
|
/* Almost done. Calculate bytes that can be written using
|
|
* max_blks. We also recompute max_bytes, data_blocks and
|
|
* ind_blocks */
|
|
calc_max_reserv(ip, &max_bytes, &data_blocks,
|
|
&ind_blocks, max_blks);
|
|
|
|
rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
|
|
RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
|
|
if (gfs2_is_jdata(ip))
|
|
rblocks += data_blocks ? data_blocks : 1;
|
|
|
|
error = gfs2_trans_begin(sdp, rblocks,
|
|
PAGE_SIZE >> inode->i_blkbits);
|
|
if (error)
|
|
goto out_trans_fail;
|
|
|
|
error = fallocate_chunk(inode, offset, max_bytes, mode);
|
|
gfs2_trans_end(sdp);
|
|
|
|
if (error)
|
|
goto out_trans_fail;
|
|
|
|
len -= max_bytes;
|
|
offset += max_bytes;
|
|
gfs2_inplace_release(ip);
|
|
gfs2_quota_unlock(ip);
|
|
}
|
|
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
|
|
i_size_write(inode, pos + count);
|
|
file_update_time(file);
|
|
mark_inode_dirty(inode);
|
|
|
|
if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
|
|
return vfs_fsync_range(file, pos, pos + count - 1,
|
|
(file->f_flags & __O_SYNC) ? 0 : 1);
|
|
return 0;
|
|
|
|
out_trans_fail:
|
|
gfs2_inplace_release(ip);
|
|
out_qunlock:
|
|
gfs2_quota_unlock(ip);
|
|
return error;
|
|
}
|
|
|
|
static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct gfs2_sbd *sdp = GFS2_SB(inode);
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
struct gfs2_holder gh;
|
|
int ret;
|
|
|
|
if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
|
|
return -EOPNOTSUPP;
|
|
/* fallocate is needed by gfs2_grow to reserve space in the rindex */
|
|
if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
|
|
return -EOPNOTSUPP;
|
|
|
|
inode_lock(inode);
|
|
|
|
gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
|
|
ret = gfs2_glock_nq(&gh);
|
|
if (ret)
|
|
goto out_uninit;
|
|
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
|
(offset + len) > inode->i_size) {
|
|
ret = inode_newsize_ok(inode, offset + len);
|
|
if (ret)
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = get_write_access(inode);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
if (mode & FALLOC_FL_PUNCH_HOLE) {
|
|
ret = __gfs2_punch_hole(file, offset, len);
|
|
} else {
|
|
ret = __gfs2_fallocate(file, mode, offset, len);
|
|
if (ret)
|
|
gfs2_rs_deltree(&ip->i_res);
|
|
}
|
|
|
|
put_write_access(inode);
|
|
out_unlock:
|
|
gfs2_glock_dq(&gh);
|
|
out_uninit:
|
|
gfs2_holder_uninit(&gh);
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
|
|
struct file *out, loff_t *ppos,
|
|
size_t len, unsigned int flags)
|
|
{
|
|
ssize_t ret;
|
|
|
|
gfs2_size_hint(out, *ppos, len);
|
|
|
|
ret = iter_file_splice_write(pipe, out, ppos, len, flags);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_GFS2_FS_LOCKING_DLM
|
|
|
|
/**
|
|
* gfs2_lock - acquire/release a posix lock on a file
|
|
* @file: the file pointer
|
|
* @cmd: either modify or retrieve lock state, possibly wait
|
|
* @fl: type and range of lock
|
|
*
|
|
* Returns: errno
|
|
*/
|
|
|
|
static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
|
|
{
|
|
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
|
|
struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
|
|
struct lm_lockstruct *ls = &sdp->sd_lockstruct;
|
|
|
|
if (!(fl->fl_flags & FL_POSIX))
|
|
return -ENOLCK;
|
|
if (cmd == F_CANCELLK) {
|
|
/* Hack: */
|
|
cmd = F_SETLK;
|
|
fl->fl_type = F_UNLCK;
|
|
}
|
|
if (unlikely(gfs2_withdrawn(sdp))) {
|
|
if (fl->fl_type == F_UNLCK)
|
|
locks_lock_file_wait(file, fl);
|
|
return -EIO;
|
|
}
|
|
if (IS_GETLK(cmd))
|
|
return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
|
|
else if (fl->fl_type == F_UNLCK)
|
|
return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
|
|
else
|
|
return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
|
|
}
|
|
|
|
static int do_flock(struct file *file, int cmd, struct file_lock *fl)
|
|
{
|
|
struct gfs2_file *fp = file->private_data;
|
|
struct gfs2_holder *fl_gh = &fp->f_fl_gh;
|
|
struct gfs2_inode *ip = GFS2_I(file_inode(file));
|
|
struct gfs2_glock *gl;
|
|
unsigned int state;
|
|
u16 flags;
|
|
int error = 0;
|
|
int sleeptime;
|
|
|
|
state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
|
|
flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
|
|
|
|
mutex_lock(&fp->f_fl_mutex);
|
|
|
|
if (gfs2_holder_initialized(fl_gh)) {
|
|
struct file_lock request;
|
|
if (fl_gh->gh_state == state)
|
|
goto out;
|
|
locks_init_lock(&request);
|
|
request.fl_type = F_UNLCK;
|
|
request.fl_flags = FL_FLOCK;
|
|
locks_lock_file_wait(file, &request);
|
|
gfs2_glock_dq(fl_gh);
|
|
gfs2_holder_reinit(state, flags, fl_gh);
|
|
} else {
|
|
error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
|
|
&gfs2_flock_glops, CREATE, &gl);
|
|
if (error)
|
|
goto out;
|
|
gfs2_holder_init(gl, state, flags, fl_gh);
|
|
gfs2_glock_put(gl);
|
|
}
|
|
for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
|
|
error = gfs2_glock_nq(fl_gh);
|
|
if (error != GLR_TRYFAILED)
|
|
break;
|
|
fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
|
|
fl_gh->gh_error = 0;
|
|
msleep(sleeptime);
|
|
}
|
|
if (error) {
|
|
gfs2_holder_uninit(fl_gh);
|
|
if (error == GLR_TRYFAILED)
|
|
error = -EAGAIN;
|
|
} else {
|
|
error = locks_lock_file_wait(file, fl);
|
|
gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&fp->f_fl_mutex);
|
|
return error;
|
|
}
|
|
|
|
static void do_unflock(struct file *file, struct file_lock *fl)
|
|
{
|
|
struct gfs2_file *fp = file->private_data;
|
|
struct gfs2_holder *fl_gh = &fp->f_fl_gh;
|
|
|
|
mutex_lock(&fp->f_fl_mutex);
|
|
locks_lock_file_wait(file, fl);
|
|
if (gfs2_holder_initialized(fl_gh)) {
|
|
gfs2_glock_dq(fl_gh);
|
|
gfs2_holder_uninit(fl_gh);
|
|
}
|
|
mutex_unlock(&fp->f_fl_mutex);
|
|
}
|
|
|
|
/**
|
|
* gfs2_flock - acquire/release a flock lock on a file
|
|
* @file: the file pointer
|
|
* @cmd: either modify or retrieve lock state, possibly wait
|
|
* @fl: type and range of lock
|
|
*
|
|
* Returns: errno
|
|
*/
|
|
|
|
static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
|
|
{
|
|
if (!(fl->fl_flags & FL_FLOCK))
|
|
return -ENOLCK;
|
|
|
|
if (fl->fl_type == F_UNLCK) {
|
|
do_unflock(file, fl);
|
|
return 0;
|
|
} else {
|
|
return do_flock(file, cmd, fl);
|
|
}
|
|
}
|
|
|
|
const struct file_operations gfs2_file_fops = {
|
|
.llseek = gfs2_llseek,
|
|
.read_iter = gfs2_file_read_iter,
|
|
.write_iter = gfs2_file_write_iter,
|
|
.iopoll = iocb_bio_iopoll,
|
|
.unlocked_ioctl = gfs2_ioctl,
|
|
.compat_ioctl = gfs2_compat_ioctl,
|
|
.mmap = gfs2_mmap,
|
|
.open = gfs2_open,
|
|
.release = gfs2_release,
|
|
.fsync = gfs2_fsync,
|
|
.lock = gfs2_lock,
|
|
.flock = gfs2_flock,
|
|
.splice_read = generic_file_splice_read,
|
|
.splice_write = gfs2_file_splice_write,
|
|
.setlease = simple_nosetlease,
|
|
.fallocate = gfs2_fallocate,
|
|
};
|
|
|
|
const struct file_operations gfs2_dir_fops = {
|
|
.iterate_shared = gfs2_readdir,
|
|
.unlocked_ioctl = gfs2_ioctl,
|
|
.compat_ioctl = gfs2_compat_ioctl,
|
|
.open = gfs2_open,
|
|
.release = gfs2_release,
|
|
.fsync = gfs2_fsync,
|
|
.lock = gfs2_lock,
|
|
.flock = gfs2_flock,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
|
|
|
|
const struct file_operations gfs2_file_fops_nolock = {
|
|
.llseek = gfs2_llseek,
|
|
.read_iter = gfs2_file_read_iter,
|
|
.write_iter = gfs2_file_write_iter,
|
|
.iopoll = iocb_bio_iopoll,
|
|
.unlocked_ioctl = gfs2_ioctl,
|
|
.compat_ioctl = gfs2_compat_ioctl,
|
|
.mmap = gfs2_mmap,
|
|
.open = gfs2_open,
|
|
.release = gfs2_release,
|
|
.fsync = gfs2_fsync,
|
|
.splice_read = generic_file_splice_read,
|
|
.splice_write = gfs2_file_splice_write,
|
|
.setlease = generic_setlease,
|
|
.fallocate = gfs2_fallocate,
|
|
};
|
|
|
|
const struct file_operations gfs2_dir_fops_nolock = {
|
|
.iterate_shared = gfs2_readdir,
|
|
.unlocked_ioctl = gfs2_ioctl,
|
|
.compat_ioctl = gfs2_compat_ioctl,
|
|
.open = gfs2_open,
|
|
.release = gfs2_release,
|
|
.fsync = gfs2_fsync,
|
|
.llseek = default_llseek,
|
|
};
|
|
|