Add benchmark to measure overhead of uprobes and uretprobes. Also have a baseline (no uprobe attached) benchmark. On my dev machine, baseline benchmark can trigger 130M user_target() invocations. When uprobe is attached, this falls to just 700K. With uretprobe, we get down to 520K: $ sudo ./bench trig-uprobe-base -a Summary: hits 131.289 ± 2.872M/s # UPROBE $ sudo ./bench -a trig-uprobe-without-nop Summary: hits 0.729 ± 0.007M/s $ sudo ./bench -a trig-uprobe-with-nop Summary: hits 1.798 ± 0.017M/s # URETPROBE $ sudo ./bench -a trig-uretprobe-without-nop Summary: hits 0.508 ± 0.012M/s $ sudo ./bench -a trig-uretprobe-with-nop Summary: hits 0.883 ± 0.008M/s So there is almost 2.5x performance difference between probing nop vs non-nop instruction for entry uprobe. And 1.7x difference for uretprobe. This means that non-nop uprobe overhead is around 1.4 microseconds for uprobe and 2 microseconds for non-nop uretprobe. For nop variants, uprobe and uretprobe overhead is down to 0.556 and 1.13 microseconds, respectively. For comparison, just doing a very low-overhead syscall (with no BPF programs attached anywhere) gives: $ sudo ./bench trig-base -a Summary: hits 4.830 ± 0.036M/s So uprobes are about 2.67x slower than pure context switch. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20211116013041.4072571-1-andrii@kernel.org
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.6%
Assembly
1%
Shell
0.5%
Python
0.3%
Makefile
0.3%