linux/fs/bcachefs/replicas.c
Kent Overstreet ded54580bd bcachefs: Check for duplicate device ptrs in bch2_bkey_ptrs_invalid()
This is something we clearly should be checking for, but weren't -
oops.

Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:50 -04:00

1078 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "buckets.h"
#include "journal.h"
#include "replicas.h"
#include "super-io.h"
static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *,
struct bch_replicas_cpu *);
/* Replicas tracking - in memory: */
static void verify_replicas_entry(struct bch_replicas_entry *e)
{
#ifdef CONFIG_BCACHEFS_DEBUG
unsigned i;
BUG_ON(e->data_type >= BCH_DATA_NR);
BUG_ON(!e->nr_devs);
BUG_ON(e->nr_required > 1 &&
e->nr_required >= e->nr_devs);
for (i = 0; i + 1 < e->nr_devs; i++)
BUG_ON(e->devs[i] >= e->devs[i + 1]);
#endif
}
static void replicas_entry_sort(struct bch_replicas_entry *e)
{
bubble_sort(e->devs, e->nr_devs, u8_cmp);
}
static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r)
{
eytzinger0_sort(r->entries, r->nr, r->entry_size, memcmp, NULL);
}
void bch2_replicas_entry_to_text(struct printbuf *out,
struct bch_replicas_entry *e)
{
unsigned i;
pr_buf(out, "%s: %u/%u [",
bch2_data_types[e->data_type],
e->nr_required,
e->nr_devs);
for (i = 0; i < e->nr_devs; i++)
pr_buf(out, i ? " %u" : "%u", e->devs[i]);
pr_buf(out, "]");
}
void bch2_cpu_replicas_to_text(struct printbuf *out,
struct bch_replicas_cpu *r)
{
struct bch_replicas_entry *e;
bool first = true;
for_each_cpu_replicas_entry(r, e) {
if (!first)
pr_buf(out, " ");
first = false;
bch2_replicas_entry_to_text(out, e);
}
}
static void extent_to_replicas(struct bkey_s_c k,
struct bch_replicas_entry *r)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
r->nr_required = 1;
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
if (p.ptr.cached)
continue;
if (!p.has_ec)
r->devs[r->nr_devs++] = p.ptr.dev;
else
r->nr_required = 0;
}
}
static void stripe_to_replicas(struct bkey_s_c k,
struct bch_replicas_entry *r)
{
struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
const struct bch_extent_ptr *ptr;
r->nr_required = s.v->nr_blocks - s.v->nr_redundant;
for (ptr = s.v->ptrs;
ptr < s.v->ptrs + s.v->nr_blocks;
ptr++)
r->devs[r->nr_devs++] = ptr->dev;
}
void bch2_bkey_to_replicas(struct bch_replicas_entry *e,
struct bkey_s_c k)
{
e->nr_devs = 0;
switch (k.k->type) {
case KEY_TYPE_btree_ptr:
case KEY_TYPE_btree_ptr_v2:
e->data_type = BCH_DATA_btree;
extent_to_replicas(k, e);
break;
case KEY_TYPE_extent:
case KEY_TYPE_reflink_v:
e->data_type = BCH_DATA_user;
extent_to_replicas(k, e);
break;
case KEY_TYPE_stripe:
e->data_type = BCH_DATA_parity;
stripe_to_replicas(k, e);
break;
}
replicas_entry_sort(e);
}
void bch2_devlist_to_replicas(struct bch_replicas_entry *e,
enum bch_data_type data_type,
struct bch_devs_list devs)
{
unsigned i;
BUG_ON(!data_type ||
data_type == BCH_DATA_sb ||
data_type >= BCH_DATA_NR);
e->data_type = data_type;
e->nr_devs = 0;
e->nr_required = 1;
for (i = 0; i < devs.nr; i++)
e->devs[e->nr_devs++] = devs.devs[i];
replicas_entry_sort(e);
}
static struct bch_replicas_cpu
cpu_replicas_add_entry(struct bch_replicas_cpu *old,
struct bch_replicas_entry *new_entry)
{
unsigned i;
struct bch_replicas_cpu new = {
.nr = old->nr + 1,
.entry_size = max_t(unsigned, old->entry_size,
replicas_entry_bytes(new_entry)),
};
BUG_ON(!new_entry->data_type);
verify_replicas_entry(new_entry);
new.entries = kcalloc(new.nr, new.entry_size, GFP_NOIO);
if (!new.entries)
return new;
for (i = 0; i < old->nr; i++)
memcpy(cpu_replicas_entry(&new, i),
cpu_replicas_entry(old, i),
old->entry_size);
memcpy(cpu_replicas_entry(&new, old->nr),
new_entry,
replicas_entry_bytes(new_entry));
bch2_cpu_replicas_sort(&new);
return new;
}
static inline int __replicas_entry_idx(struct bch_replicas_cpu *r,
struct bch_replicas_entry *search)
{
int idx, entry_size = replicas_entry_bytes(search);
if (unlikely(entry_size > r->entry_size))
return -1;
verify_replicas_entry(search);
#define entry_cmp(_l, _r, size) memcmp(_l, _r, entry_size)
idx = eytzinger0_find(r->entries, r->nr, r->entry_size,
entry_cmp, search);
#undef entry_cmp
return idx < r->nr ? idx : -1;
}
int bch2_replicas_entry_idx(struct bch_fs *c,
struct bch_replicas_entry *search)
{
replicas_entry_sort(search);
return __replicas_entry_idx(&c->replicas, search);
}
static bool __replicas_has_entry(struct bch_replicas_cpu *r,
struct bch_replicas_entry *search)
{
return __replicas_entry_idx(r, search) >= 0;
}
bool bch2_replicas_marked(struct bch_fs *c,
struct bch_replicas_entry *search)
{
bool marked;
if (!search->nr_devs)
return true;
verify_replicas_entry(search);
percpu_down_read(&c->mark_lock);
marked = __replicas_has_entry(&c->replicas, search) &&
(likely((!c->replicas_gc.entries)) ||
__replicas_has_entry(&c->replicas_gc, search));
percpu_up_read(&c->mark_lock);
return marked;
}
static void __replicas_table_update(struct bch_fs_usage *dst,
struct bch_replicas_cpu *dst_r,
struct bch_fs_usage *src,
struct bch_replicas_cpu *src_r)
{
int src_idx, dst_idx;
*dst = *src;
for (src_idx = 0; src_idx < src_r->nr; src_idx++) {
if (!src->replicas[src_idx])
continue;
dst_idx = __replicas_entry_idx(dst_r,
cpu_replicas_entry(src_r, src_idx));
BUG_ON(dst_idx < 0);
dst->replicas[dst_idx] = src->replicas[src_idx];
}
}
static void __replicas_table_update_pcpu(struct bch_fs_usage __percpu *dst_p,
struct bch_replicas_cpu *dst_r,
struct bch_fs_usage __percpu *src_p,
struct bch_replicas_cpu *src_r)
{
unsigned src_nr = sizeof(struct bch_fs_usage) / sizeof(u64) + src_r->nr;
struct bch_fs_usage *dst, *src = (void *)
bch2_acc_percpu_u64s((void *) src_p, src_nr);
preempt_disable();
dst = this_cpu_ptr(dst_p);
preempt_enable();
__replicas_table_update(dst, dst_r, src, src_r);
}
/*
* Resize filesystem accounting:
*/
static int replicas_table_update(struct bch_fs *c,
struct bch_replicas_cpu *new_r)
{
struct bch_fs_usage __percpu *new_usage[JOURNAL_BUF_NR];
struct bch_fs_usage_online *new_scratch = NULL;
struct bch_fs_usage __percpu *new_gc = NULL;
struct bch_fs_usage *new_base = NULL;
unsigned i, bytes = sizeof(struct bch_fs_usage) +
sizeof(u64) * new_r->nr;
unsigned scratch_bytes = sizeof(struct bch_fs_usage_online) +
sizeof(u64) * new_r->nr;
int ret = 0;
memset(new_usage, 0, sizeof(new_usage));
for (i = 0; i < ARRAY_SIZE(new_usage); i++)
if (!(new_usage[i] = __alloc_percpu_gfp(bytes,
sizeof(u64), GFP_NOIO)))
goto err;
memset(new_usage, 0, sizeof(new_usage));
for (i = 0; i < ARRAY_SIZE(new_usage); i++)
if (!(new_usage[i] = __alloc_percpu_gfp(bytes,
sizeof(u64), GFP_NOIO)))
goto err;
if (!(new_base = kzalloc(bytes, GFP_NOIO)) ||
!(new_scratch = kmalloc(scratch_bytes, GFP_NOIO)) ||
(c->usage_gc &&
!(new_gc = __alloc_percpu_gfp(bytes, sizeof(u64), GFP_NOIO))))
goto err;
for (i = 0; i < ARRAY_SIZE(new_usage); i++)
if (c->usage[i])
__replicas_table_update_pcpu(new_usage[i], new_r,
c->usage[i], &c->replicas);
if (c->usage_base)
__replicas_table_update(new_base, new_r,
c->usage_base, &c->replicas);
if (c->usage_gc)
__replicas_table_update_pcpu(new_gc, new_r,
c->usage_gc, &c->replicas);
for (i = 0; i < ARRAY_SIZE(new_usage); i++)
swap(c->usage[i], new_usage[i]);
swap(c->usage_base, new_base);
swap(c->usage_scratch, new_scratch);
swap(c->usage_gc, new_gc);
swap(c->replicas, *new_r);
out:
free_percpu(new_gc);
kfree(new_scratch);
free_percpu(new_usage[1]);
free_percpu(new_usage[0]);
kfree(new_base);
return ret;
err:
bch_err(c, "error updating replicas table: memory allocation failure");
ret = -ENOMEM;
goto out;
}
static unsigned reserve_journal_replicas(struct bch_fs *c,
struct bch_replicas_cpu *r)
{
struct bch_replicas_entry *e;
unsigned journal_res_u64s = 0;
/* nr_inodes: */
journal_res_u64s +=
DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64));
/* key_version: */
journal_res_u64s +=
DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64));
/* persistent_reserved: */
journal_res_u64s +=
DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)) *
BCH_REPLICAS_MAX;
for_each_cpu_replicas_entry(r, e)
journal_res_u64s +=
DIV_ROUND_UP(sizeof(struct jset_entry_data_usage) +
e->nr_devs, sizeof(u64));
return journal_res_u64s;
}
noinline
static int bch2_mark_replicas_slowpath(struct bch_fs *c,
struct bch_replicas_entry *new_entry)
{
struct bch_replicas_cpu new_r, new_gc;
int ret = 0;
verify_replicas_entry(new_entry);
memset(&new_r, 0, sizeof(new_r));
memset(&new_gc, 0, sizeof(new_gc));
mutex_lock(&c->sb_lock);
if (c->replicas_gc.entries &&
!__replicas_has_entry(&c->replicas_gc, new_entry)) {
new_gc = cpu_replicas_add_entry(&c->replicas_gc, new_entry);
if (!new_gc.entries)
goto err;
}
if (!__replicas_has_entry(&c->replicas, new_entry)) {
new_r = cpu_replicas_add_entry(&c->replicas, new_entry);
if (!new_r.entries)
goto err;
ret = bch2_cpu_replicas_to_sb_replicas(c, &new_r);
if (ret)
goto err;
bch2_journal_entry_res_resize(&c->journal,
&c->replicas_journal_res,
reserve_journal_replicas(c, &new_r));
}
if (!new_r.entries &&
!new_gc.entries)
goto out;
/* allocations done, now commit: */
if (new_r.entries)
bch2_write_super(c);
/* don't update in memory replicas until changes are persistent */
percpu_down_write(&c->mark_lock);
if (new_r.entries)
ret = replicas_table_update(c, &new_r);
if (new_gc.entries)
swap(new_gc, c->replicas_gc);
percpu_up_write(&c->mark_lock);
out:
mutex_unlock(&c->sb_lock);
kfree(new_r.entries);
kfree(new_gc.entries);
return ret;
err:
bch_err(c, "error adding replicas entry: memory allocation failure");
ret = -ENOMEM;
goto out;
}
static int __bch2_mark_replicas(struct bch_fs *c,
struct bch_replicas_entry *r,
bool check)
{
return likely(bch2_replicas_marked(c, r)) ? 0
: check ? -1
: bch2_mark_replicas_slowpath(c, r);
}
int bch2_mark_replicas(struct bch_fs *c, struct bch_replicas_entry *r)
{
return __bch2_mark_replicas(c, r, false);
}
static int __bch2_mark_bkey_replicas(struct bch_fs *c, struct bkey_s_c k,
bool check)
{
struct bch_replicas_padded search;
struct bch_devs_list cached = bch2_bkey_cached_devs(k);
unsigned i;
int ret;
for (i = 0; i < cached.nr; i++) {
bch2_replicas_entry_cached(&search.e, cached.devs[i]);
ret = __bch2_mark_replicas(c, &search.e, check);
if (ret)
return ret;
}
bch2_bkey_to_replicas(&search.e, k);
ret = __bch2_mark_replicas(c, &search.e, check);
if (ret)
return ret;
if (search.e.data_type == BCH_DATA_parity) {
search.e.data_type = BCH_DATA_cached;
ret = __bch2_mark_replicas(c, &search.e, check);
if (ret)
return ret;
search.e.data_type = BCH_DATA_user;
ret = __bch2_mark_replicas(c, &search.e, check);
if (ret)
return ret;
}
return 0;
}
bool bch2_bkey_replicas_marked(struct bch_fs *c,
struct bkey_s_c k)
{
return __bch2_mark_bkey_replicas(c, k, true) == 0;
}
int bch2_mark_bkey_replicas(struct bch_fs *c, struct bkey_s_c k)
{
return __bch2_mark_bkey_replicas(c, k, false);
}
int bch2_replicas_gc_end(struct bch_fs *c, int ret)
{
unsigned i;
lockdep_assert_held(&c->replicas_gc_lock);
mutex_lock(&c->sb_lock);
percpu_down_write(&c->mark_lock);
/*
* this is kind of crappy; the replicas gc mechanism needs to be ripped
* out
*/
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
struct bch_replicas_cpu n;
if (!__replicas_has_entry(&c->replicas_gc, e) &&
bch2_fs_usage_read_one(c, &c->usage_base->replicas[i])) {
n = cpu_replicas_add_entry(&c->replicas_gc, e);
if (!n.entries) {
ret = -ENOSPC;
goto err;
}
swap(n, c->replicas_gc);
kfree(n.entries);
}
}
if (bch2_cpu_replicas_to_sb_replicas(c, &c->replicas_gc)) {
ret = -ENOSPC;
goto err;
}
ret = replicas_table_update(c, &c->replicas_gc);
err:
kfree(c->replicas_gc.entries);
c->replicas_gc.entries = NULL;
percpu_up_write(&c->mark_lock);
if (!ret)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return ret;
}
int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask)
{
struct bch_replicas_entry *e;
unsigned i = 0;
lockdep_assert_held(&c->replicas_gc_lock);
mutex_lock(&c->sb_lock);
BUG_ON(c->replicas_gc.entries);
c->replicas_gc.nr = 0;
c->replicas_gc.entry_size = 0;
for_each_cpu_replicas_entry(&c->replicas, e)
if (!((1 << e->data_type) & typemask)) {
c->replicas_gc.nr++;
c->replicas_gc.entry_size =
max_t(unsigned, c->replicas_gc.entry_size,
replicas_entry_bytes(e));
}
c->replicas_gc.entries = kcalloc(c->replicas_gc.nr,
c->replicas_gc.entry_size,
GFP_NOIO);
if (!c->replicas_gc.entries) {
mutex_unlock(&c->sb_lock);
bch_err(c, "error allocating c->replicas_gc");
return -ENOMEM;
}
for_each_cpu_replicas_entry(&c->replicas, e)
if (!((1 << e->data_type) & typemask))
memcpy(cpu_replicas_entry(&c->replicas_gc, i++),
e, c->replicas_gc.entry_size);
bch2_cpu_replicas_sort(&c->replicas_gc);
mutex_unlock(&c->sb_lock);
return 0;
}
int bch2_replicas_gc2(struct bch_fs *c)
{
struct bch_replicas_cpu new = { 0 };
unsigned i, nr;
int ret = 0;
bch2_journal_meta(&c->journal);
retry:
nr = READ_ONCE(c->replicas.nr);
new.entry_size = READ_ONCE(c->replicas.entry_size);
new.entries = kcalloc(nr, new.entry_size, GFP_KERNEL);
if (!new.entries) {
bch_err(c, "error allocating c->replicas_gc");
return -ENOMEM;
}
mutex_lock(&c->sb_lock);
percpu_down_write(&c->mark_lock);
if (nr != c->replicas.nr ||
new.entry_size != c->replicas.entry_size) {
percpu_up_write(&c->mark_lock);
mutex_unlock(&c->sb_lock);
kfree(new.entries);
goto retry;
}
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
if (e->data_type == BCH_DATA_journal ||
bch2_fs_usage_read_one(c, &c->usage_base->replicas[i]))
memcpy(cpu_replicas_entry(&new, new.nr++),
e, new.entry_size);
}
bch2_cpu_replicas_sort(&new);
if (bch2_cpu_replicas_to_sb_replicas(c, &new)) {
ret = -ENOSPC;
goto err;
}
ret = replicas_table_update(c, &new);
err:
kfree(new.entries);
percpu_up_write(&c->mark_lock);
if (!ret)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return ret;
}
int bch2_replicas_set_usage(struct bch_fs *c,
struct bch_replicas_entry *r,
u64 sectors)
{
int ret, idx = bch2_replicas_entry_idx(c, r);
if (idx < 0) {
struct bch_replicas_cpu n;
n = cpu_replicas_add_entry(&c->replicas, r);
if (!n.entries)
return -ENOMEM;
ret = replicas_table_update(c, &n);
if (ret)
return ret;
kfree(n.entries);
idx = bch2_replicas_entry_idx(c, r);
BUG_ON(ret < 0);
}
c->usage_base->replicas[idx] = sectors;
return 0;
}
/* Replicas tracking - superblock: */
static int
__bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r,
struct bch_replicas_cpu *cpu_r)
{
struct bch_replicas_entry *e, *dst;
unsigned nr = 0, entry_size = 0, idx = 0;
for_each_replicas_entry(sb_r, e) {
entry_size = max_t(unsigned, entry_size,
replicas_entry_bytes(e));
nr++;
}
cpu_r->entries = kcalloc(nr, entry_size, GFP_NOIO);
if (!cpu_r->entries)
return -ENOMEM;
cpu_r->nr = nr;
cpu_r->entry_size = entry_size;
for_each_replicas_entry(sb_r, e) {
dst = cpu_replicas_entry(cpu_r, idx++);
memcpy(dst, e, replicas_entry_bytes(e));
replicas_entry_sort(dst);
}
return 0;
}
static int
__bch2_sb_replicas_v0_to_cpu_replicas(struct bch_sb_field_replicas_v0 *sb_r,
struct bch_replicas_cpu *cpu_r)
{
struct bch_replicas_entry_v0 *e;
unsigned nr = 0, entry_size = 0, idx = 0;
for_each_replicas_entry(sb_r, e) {
entry_size = max_t(unsigned, entry_size,
replicas_entry_bytes(e));
nr++;
}
entry_size += sizeof(struct bch_replicas_entry) -
sizeof(struct bch_replicas_entry_v0);
cpu_r->entries = kcalloc(nr, entry_size, GFP_NOIO);
if (!cpu_r->entries)
return -ENOMEM;
cpu_r->nr = nr;
cpu_r->entry_size = entry_size;
for_each_replicas_entry(sb_r, e) {
struct bch_replicas_entry *dst =
cpu_replicas_entry(cpu_r, idx++);
dst->data_type = e->data_type;
dst->nr_devs = e->nr_devs;
dst->nr_required = 1;
memcpy(dst->devs, e->devs, e->nr_devs);
replicas_entry_sort(dst);
}
return 0;
}
int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c)
{
struct bch_sb_field_replicas *sb_v1;
struct bch_sb_field_replicas_v0 *sb_v0;
struct bch_replicas_cpu new_r = { 0, 0, NULL };
int ret = 0;
if ((sb_v1 = bch2_sb_get_replicas(c->disk_sb.sb)))
ret = __bch2_sb_replicas_to_cpu_replicas(sb_v1, &new_r);
else if ((sb_v0 = bch2_sb_get_replicas_v0(c->disk_sb.sb)))
ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_v0, &new_r);
if (ret)
return -ENOMEM;
bch2_cpu_replicas_sort(&new_r);
percpu_down_write(&c->mark_lock);
ret = replicas_table_update(c, &new_r);
percpu_up_write(&c->mark_lock);
kfree(new_r.entries);
return 0;
}
static int bch2_cpu_replicas_to_sb_replicas_v0(struct bch_fs *c,
struct bch_replicas_cpu *r)
{
struct bch_sb_field_replicas_v0 *sb_r;
struct bch_replicas_entry_v0 *dst;
struct bch_replicas_entry *src;
size_t bytes;
bytes = sizeof(struct bch_sb_field_replicas);
for_each_cpu_replicas_entry(r, src)
bytes += replicas_entry_bytes(src) - 1;
sb_r = bch2_sb_resize_replicas_v0(&c->disk_sb,
DIV_ROUND_UP(bytes, sizeof(u64)));
if (!sb_r)
return -ENOSPC;
bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas);
sb_r = bch2_sb_get_replicas_v0(c->disk_sb.sb);
memset(&sb_r->entries, 0,
vstruct_end(&sb_r->field) -
(void *) &sb_r->entries);
dst = sb_r->entries;
for_each_cpu_replicas_entry(r, src) {
dst->data_type = src->data_type;
dst->nr_devs = src->nr_devs;
memcpy(dst->devs, src->devs, src->nr_devs);
dst = replicas_entry_next(dst);
BUG_ON((void *) dst > vstruct_end(&sb_r->field));
}
return 0;
}
static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c,
struct bch_replicas_cpu *r)
{
struct bch_sb_field_replicas *sb_r;
struct bch_replicas_entry *dst, *src;
bool need_v1 = false;
size_t bytes;
bytes = sizeof(struct bch_sb_field_replicas);
for_each_cpu_replicas_entry(r, src) {
bytes += replicas_entry_bytes(src);
if (src->nr_required != 1)
need_v1 = true;
}
if (!need_v1)
return bch2_cpu_replicas_to_sb_replicas_v0(c, r);
sb_r = bch2_sb_resize_replicas(&c->disk_sb,
DIV_ROUND_UP(bytes, sizeof(u64)));
if (!sb_r)
return -ENOSPC;
bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas_v0);
sb_r = bch2_sb_get_replicas(c->disk_sb.sb);
memset(&sb_r->entries, 0,
vstruct_end(&sb_r->field) -
(void *) &sb_r->entries);
dst = sb_r->entries;
for_each_cpu_replicas_entry(r, src) {
memcpy(dst, src, replicas_entry_bytes(src));
dst = replicas_entry_next(dst);
BUG_ON((void *) dst > vstruct_end(&sb_r->field));
}
return 0;
}
static const char *check_dup_replicas_entries(struct bch_replicas_cpu *cpu_r)
{
unsigned i;
sort_cmp_size(cpu_r->entries,
cpu_r->nr,
cpu_r->entry_size,
memcmp, NULL);
for (i = 0; i + 1 < cpu_r->nr; i++) {
struct bch_replicas_entry *l =
cpu_replicas_entry(cpu_r, i);
struct bch_replicas_entry *r =
cpu_replicas_entry(cpu_r, i + 1);
BUG_ON(memcmp(l, r, cpu_r->entry_size) > 0);
if (!memcmp(l, r, cpu_r->entry_size))
return "duplicate replicas entry";
}
return NULL;
}
static const char *bch2_sb_validate_replicas(struct bch_sb *sb, struct bch_sb_field *f)
{
struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas);
struct bch_sb_field_members *mi = bch2_sb_get_members(sb);
struct bch_replicas_cpu cpu_r = { .entries = NULL };
struct bch_replicas_entry *e;
const char *err;
unsigned i;
for_each_replicas_entry(sb_r, e) {
err = "invalid replicas entry: invalid data type";
if (e->data_type >= BCH_DATA_NR)
goto err;
err = "invalid replicas entry: no devices";
if (!e->nr_devs)
goto err;
err = "invalid replicas entry: bad nr_required";
if (e->nr_required > 1 &&
e->nr_required >= e->nr_devs)
goto err;
err = "invalid replicas entry: invalid device";
for (i = 0; i < e->nr_devs; i++)
if (!bch2_dev_exists(sb, mi, e->devs[i]))
goto err;
}
err = "cannot allocate memory";
if (__bch2_sb_replicas_to_cpu_replicas(sb_r, &cpu_r))
goto err;
err = check_dup_replicas_entries(&cpu_r);
err:
kfree(cpu_r.entries);
return err;
}
static void bch2_sb_replicas_to_text(struct printbuf *out,
struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_replicas *r = field_to_type(f, replicas);
struct bch_replicas_entry *e;
bool first = true;
for_each_replicas_entry(r, e) {
if (!first)
pr_buf(out, " ");
first = false;
bch2_replicas_entry_to_text(out, e);
}
}
const struct bch_sb_field_ops bch_sb_field_ops_replicas = {
.validate = bch2_sb_validate_replicas,
.to_text = bch2_sb_replicas_to_text,
};
static const char *bch2_sb_validate_replicas_v0(struct bch_sb *sb, struct bch_sb_field *f)
{
struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0);
struct bch_sb_field_members *mi = bch2_sb_get_members(sb);
struct bch_replicas_cpu cpu_r = { .entries = NULL };
struct bch_replicas_entry_v0 *e;
const char *err;
unsigned i;
for_each_replicas_entry_v0(sb_r, e) {
err = "invalid replicas entry: invalid data type";
if (e->data_type >= BCH_DATA_NR)
goto err;
err = "invalid replicas entry: no devices";
if (!e->nr_devs)
goto err;
err = "invalid replicas entry: invalid device";
for (i = 0; i < e->nr_devs; i++)
if (!bch2_dev_exists(sb, mi, e->devs[i]))
goto err;
}
err = "cannot allocate memory";
if (__bch2_sb_replicas_v0_to_cpu_replicas(sb_r, &cpu_r))
goto err;
err = check_dup_replicas_entries(&cpu_r);
err:
kfree(cpu_r.entries);
return err;
}
const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0 = {
.validate = bch2_sb_validate_replicas_v0,
};
/* Query replicas: */
struct replicas_status __bch2_replicas_status(struct bch_fs *c,
struct bch_devs_mask online_devs)
{
struct bch_sb_field_members *mi;
struct bch_replicas_entry *e;
unsigned i, nr_online, nr_offline;
struct replicas_status ret;
memset(&ret, 0, sizeof(ret));
for (i = 0; i < ARRAY_SIZE(ret.replicas); i++)
ret.replicas[i].redundancy = INT_MAX;
mi = bch2_sb_get_members(c->disk_sb.sb);
percpu_down_read(&c->mark_lock);
for_each_cpu_replicas_entry(&c->replicas, e) {
if (e->data_type >= ARRAY_SIZE(ret.replicas))
panic("e %p data_type %u\n", e, e->data_type);
nr_online = nr_offline = 0;
for (i = 0; i < e->nr_devs; i++) {
BUG_ON(!bch2_dev_exists(c->disk_sb.sb, mi,
e->devs[i]));
if (test_bit(e->devs[i], online_devs.d))
nr_online++;
else
nr_offline++;
}
ret.replicas[e->data_type].redundancy =
min(ret.replicas[e->data_type].redundancy,
(int) nr_online - (int) e->nr_required);
ret.replicas[e->data_type].nr_offline =
max(ret.replicas[e->data_type].nr_offline,
nr_offline);
}
percpu_up_read(&c->mark_lock);
for (i = 0; i < ARRAY_SIZE(ret.replicas); i++)
if (ret.replicas[i].redundancy == INT_MAX)
ret.replicas[i].redundancy = 0;
return ret;
}
struct replicas_status bch2_replicas_status(struct bch_fs *c)
{
return __bch2_replicas_status(c, bch2_online_devs(c));
}
static bool have_enough_devs(struct replicas_status s,
enum bch_data_type type,
bool force_if_degraded,
bool force_if_lost)
{
return (!s.replicas[type].nr_offline || force_if_degraded) &&
(s.replicas[type].redundancy >= 0 || force_if_lost);
}
bool bch2_have_enough_devs(struct replicas_status s, unsigned flags)
{
return (have_enough_devs(s, BCH_DATA_journal,
flags & BCH_FORCE_IF_METADATA_DEGRADED,
flags & BCH_FORCE_IF_METADATA_LOST) &&
have_enough_devs(s, BCH_DATA_btree,
flags & BCH_FORCE_IF_METADATA_DEGRADED,
flags & BCH_FORCE_IF_METADATA_LOST) &&
have_enough_devs(s, BCH_DATA_user,
flags & BCH_FORCE_IF_DATA_DEGRADED,
flags & BCH_FORCE_IF_DATA_LOST));
}
int bch2_replicas_online(struct bch_fs *c, bool meta)
{
struct replicas_status s = bch2_replicas_status(c);
return (meta
? min(s.replicas[BCH_DATA_journal].redundancy,
s.replicas[BCH_DATA_btree].redundancy)
: s.replicas[BCH_DATA_user].redundancy) + 1;
}
unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_replicas_entry *e;
unsigned i, ret = 0;
percpu_down_read(&c->mark_lock);
for_each_cpu_replicas_entry(&c->replicas, e)
for (i = 0; i < e->nr_devs; i++)
if (e->devs[i] == ca->dev_idx)
ret |= 1 << e->data_type;
percpu_up_read(&c->mark_lock);
return ret;
}
int bch2_fs_replicas_init(struct bch_fs *c)
{
c->journal.entry_u64s_reserved +=
reserve_journal_replicas(c, &c->replicas);
return replicas_table_update(c, &c->replicas);
}