IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The i_mutex lock and flush_completed_IO() added by commit 2581fdc810
in ext4_evict_inode() causes lockdep complaining about potential
deadlock in several places. In most/all of these LOCKDEP complaints
it looks like it's a false positive, since many of the potential
circular locking cases can't take place by the time the
ext4_evict_inode() is called; but since at the very least it may mask
real problems, we need to address this.
This change removes the flush_completed_IO() and i_mutex lock in
ext4_evict_inode(). Instead, we take a different approach to resolve
the software lockup that commit 2581fdc810 intends to fix. Rather
than having ext4-dio-unwritten thread wait for grabing the i_mutex
lock of an inode, we use mutex_trylock() instead, and simply requeue
the work item if we fail to grab the inode's i_mutex lock.
This should speed up work queue processing in general and also
prevents the following deadlock scenario: During page fault,
shrink_icache_memory is called that in turn evicts another inode B.
Inode B has some pending io_end work so it calls ext4_ioend_wait()
that waits for inode B's i_ioend_count to become zero. However, inode
B's ioend work was queued behind some of inode A's ioend work on the
same cpu's ext4-dio-unwritten workqueue. As the ext4-dio-unwritten
thread on that cpu is processing inode A's ioend work, it tries to
grab inode A's i_mutex lock. Since the i_mutex lock of inode A is
still hold before the page fault happened, we enter a deadlock.
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>