linux/drivers/usb/gadget/mv_udc_core.c
Yong Zhang b5dd18d874 USB: irq: Remove IRQF_DISABLED
This flag is a NOOP and can be removed now.

Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-09-18 01:39:36 -07:00

2155 lines
50 KiB
C

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <linux/pm.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <asm/system.h>
#include <asm/unaligned.h>
#include "mv_udc.h"
#define DRIVER_DESC "Marvell PXA USB Device Controller driver"
#define DRIVER_VERSION "8 Nov 2010"
#define ep_dir(ep) (((ep)->ep_num == 0) ? \
((ep)->udc->ep0_dir) : ((ep)->direction))
/* timeout value -- usec */
#define RESET_TIMEOUT 10000
#define FLUSH_TIMEOUT 10000
#define EPSTATUS_TIMEOUT 10000
#define PRIME_TIMEOUT 10000
#define READSAFE_TIMEOUT 1000
#define DTD_TIMEOUT 1000
#define LOOPS_USEC_SHIFT 4
#define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
#define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
static const char driver_name[] = "mv_udc";
static const char driver_desc[] = DRIVER_DESC;
/* controller device global variable */
static struct mv_udc *the_controller;
int mv_usb_otgsc;
static void nuke(struct mv_ep *ep, int status);
/* for endpoint 0 operations */
static const struct usb_endpoint_descriptor mv_ep0_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = EP0_MAX_PKT_SIZE,
};
static void ep0_reset(struct mv_udc *udc)
{
struct mv_ep *ep;
u32 epctrlx;
int i = 0;
/* ep0 in and out */
for (i = 0; i < 2; i++) {
ep = &udc->eps[i];
ep->udc = udc;
/* ep0 dQH */
ep->dqh = &udc->ep_dqh[i];
/* configure ep0 endpoint capabilities in dQH */
ep->dqh->max_packet_length =
(EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
| EP_QUEUE_HEAD_IOS;
epctrlx = readl(&udc->op_regs->epctrlx[0]);
if (i) { /* TX */
epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
| (USB_ENDPOINT_XFER_CONTROL
<< EPCTRL_TX_EP_TYPE_SHIFT);
} else { /* RX */
epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
| (USB_ENDPOINT_XFER_CONTROL
<< EPCTRL_RX_EP_TYPE_SHIFT);
}
writel(epctrlx, &udc->op_regs->epctrlx[0]);
}
}
/* protocol ep0 stall, will automatically be cleared on new transaction */
static void ep0_stall(struct mv_udc *udc)
{
u32 epctrlx;
/* set TX and RX to stall */
epctrlx = readl(&udc->op_regs->epctrlx[0]);
epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
writel(epctrlx, &udc->op_regs->epctrlx[0]);
/* update ep0 state */
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = EP_DIR_OUT;
}
static int process_ep_req(struct mv_udc *udc, int index,
struct mv_req *curr_req)
{
struct mv_dtd *curr_dtd;
struct mv_dqh *curr_dqh;
int td_complete, actual, remaining_length;
int i, direction;
int retval = 0;
u32 errors;
curr_dqh = &udc->ep_dqh[index];
direction = index % 2;
curr_dtd = curr_req->head;
td_complete = 0;
actual = curr_req->req.length;
for (i = 0; i < curr_req->dtd_count; i++) {
if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
udc->eps[index].name);
return 1;
}
errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
if (!errors) {
remaining_length +=
(curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
>> DTD_LENGTH_BIT_POS;
actual -= remaining_length;
} else {
dev_info(&udc->dev->dev,
"complete_tr error: ep=%d %s: error = 0x%x\n",
index >> 1, direction ? "SEND" : "RECV",
errors);
if (errors & DTD_STATUS_HALTED) {
/* Clear the errors and Halt condition */
curr_dqh->size_ioc_int_sts &= ~errors;
retval = -EPIPE;
} else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
retval = -EPROTO;
} else if (errors & DTD_STATUS_TRANSACTION_ERR) {
retval = -EILSEQ;
}
}
if (i != curr_req->dtd_count - 1)
curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
}
if (retval)
return retval;
curr_req->req.actual = actual;
return 0;
}
/*
* done() - retire a request; caller blocked irqs
* @status : request status to be set, only works when
* request is still in progress.
*/
static void done(struct mv_ep *ep, struct mv_req *req, int status)
{
struct mv_udc *udc = NULL;
unsigned char stopped = ep->stopped;
struct mv_dtd *curr_td, *next_td;
int j;
udc = (struct mv_udc *)ep->udc;
/* Removed the req from fsl_ep->queue */
list_del_init(&req->queue);
/* req.status should be set as -EINPROGRESS in ep_queue() */
if (req->req.status == -EINPROGRESS)
req->req.status = status;
else
status = req->req.status;
/* Free dtd for the request */
next_td = req->head;
for (j = 0; j < req->dtd_count; j++) {
curr_td = next_td;
if (j != req->dtd_count - 1)
next_td = curr_td->next_dtd_virt;
dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
}
if (req->mapped) {
dma_unmap_single(ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
((ep_dir(ep) == EP_DIR_IN) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE));
req->req.dma = DMA_ADDR_INVALID;
req->mapped = 0;
} else
dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
((ep_dir(ep) == EP_DIR_IN) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE));
if (status && (status != -ESHUTDOWN))
dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
ep->stopped = 1;
spin_unlock(&ep->udc->lock);
/*
* complete() is from gadget layer,
* eg fsg->bulk_in_complete()
*/
if (req->req.complete)
req->req.complete(&ep->ep, &req->req);
spin_lock(&ep->udc->lock);
ep->stopped = stopped;
}
static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
{
u32 tmp, epstatus, bit_pos, direction;
struct mv_udc *udc;
struct mv_dqh *dqh;
unsigned int loops;
int readsafe, retval = 0;
udc = ep->udc;
direction = ep_dir(ep);
dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
/* check if the pipe is empty */
if (!(list_empty(&ep->queue))) {
struct mv_req *lastreq;
lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
lastreq->tail->dtd_next =
req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
if (readl(&udc->op_regs->epprime) & bit_pos) {
loops = LOOPS(PRIME_TIMEOUT);
while (readl(&udc->op_regs->epprime) & bit_pos) {
if (loops == 0) {
retval = -ETIME;
goto done;
}
udelay(LOOPS_USEC);
loops--;
}
if (readl(&udc->op_regs->epstatus) & bit_pos)
goto done;
}
readsafe = 0;
loops = LOOPS(READSAFE_TIMEOUT);
while (readsafe == 0) {
if (loops == 0) {
retval = -ETIME;
goto done;
}
/* start with setting the semaphores */
tmp = readl(&udc->op_regs->usbcmd);
tmp |= USBCMD_ATDTW_TRIPWIRE_SET;
writel(tmp, &udc->op_regs->usbcmd);
/* read the endpoint status */
epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
/*
* Reread the ATDTW semaphore bit to check if it is
* cleared. When hardware see a hazard, it will clear
* the bit or else we remain set to 1 and we can
* proceed with priming of endpoint if not already
* primed.
*/
if (readl(&udc->op_regs->usbcmd)
& USBCMD_ATDTW_TRIPWIRE_SET) {
readsafe = 1;
}
loops--;
udelay(LOOPS_USEC);
}
/* Clear the semaphore */
tmp = readl(&udc->op_regs->usbcmd);
tmp &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
writel(tmp, &udc->op_regs->usbcmd);
/* If endpoint is not active, we activate it now. */
if (!epstatus) {
if (direction == EP_DIR_IN) {
struct mv_dtd *curr_dtd = dma_to_virt(
&udc->dev->dev, dqh->curr_dtd_ptr);
loops = LOOPS(DTD_TIMEOUT);
while (curr_dtd->size_ioc_sts
& DTD_STATUS_ACTIVE) {
if (loops == 0) {
retval = -ETIME;
goto done;
}
loops--;
udelay(LOOPS_USEC);
}
}
/* No other transfers on the queue */
/* Write dQH next pointer and terminate bit to 0 */
dqh->next_dtd_ptr = req->head->td_dma
& EP_QUEUE_HEAD_NEXT_POINTER_MASK;
dqh->size_ioc_int_sts = 0;
/*
* Ensure that updates to the QH will
* occur before priming.
*/
wmb();
/* Prime the Endpoint */
writel(bit_pos, &udc->op_regs->epprime);
}
} else {
/* Write dQH next pointer and terminate bit to 0 */
dqh->next_dtd_ptr = req->head->td_dma
& EP_QUEUE_HEAD_NEXT_POINTER_MASK;;
dqh->size_ioc_int_sts = 0;
/* Ensure that updates to the QH will occur before priming. */
wmb();
/* Prime the Endpoint */
writel(bit_pos, &udc->op_regs->epprime);
if (direction == EP_DIR_IN) {
/* FIXME add status check after prime the IN ep */
int prime_again;
u32 curr_dtd_ptr = dqh->curr_dtd_ptr;
loops = LOOPS(DTD_TIMEOUT);
prime_again = 0;
while ((curr_dtd_ptr != req->head->td_dma)) {
curr_dtd_ptr = dqh->curr_dtd_ptr;
if (loops == 0) {
dev_err(&udc->dev->dev,
"failed to prime %s\n",
ep->name);
retval = -ETIME;
goto done;
}
loops--;
udelay(LOOPS_USEC);
if (loops == (LOOPS(DTD_TIMEOUT) >> 2)) {
if (prime_again)
goto done;
dev_info(&udc->dev->dev,
"prime again\n");
writel(bit_pos,
&udc->op_regs->epprime);
prime_again = 1;
}
}
}
}
done:
return retval;;
}
static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
dma_addr_t *dma, int *is_last)
{
u32 temp;
struct mv_dtd *dtd;
struct mv_udc *udc;
/* how big will this transfer be? */
*length = min(req->req.length - req->req.actual,
(unsigned)EP_MAX_LENGTH_TRANSFER);
udc = req->ep->udc;
/*
* Be careful that no _GFP_HIGHMEM is set,
* or we can not use dma_to_virt
*/
dtd = dma_pool_alloc(udc->dtd_pool, GFP_KERNEL, dma);
if (dtd == NULL)
return dtd;
dtd->td_dma = *dma;
/* initialize buffer page pointers */
temp = (u32)(req->req.dma + req->req.actual);
dtd->buff_ptr0 = cpu_to_le32(temp);
temp &= ~0xFFF;
dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
req->req.actual += *length;
/* zlp is needed if req->req.zero is set */
if (req->req.zero) {
if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
*is_last = 1;
else
*is_last = 0;
} else if (req->req.length == req->req.actual)
*is_last = 1;
else
*is_last = 0;
/* Fill in the transfer size; set active bit */
temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
/* Enable interrupt for the last dtd of a request */
if (*is_last && !req->req.no_interrupt)
temp |= DTD_IOC;
dtd->size_ioc_sts = temp;
mb();
return dtd;
}
/* generate dTD linked list for a request */
static int req_to_dtd(struct mv_req *req)
{
unsigned count;
int is_last, is_first = 1;
struct mv_dtd *dtd, *last_dtd = NULL;
struct mv_udc *udc;
dma_addr_t dma;
udc = req->ep->udc;
do {
dtd = build_dtd(req, &count, &dma, &is_last);
if (dtd == NULL)
return -ENOMEM;
if (is_first) {
is_first = 0;
req->head = dtd;
} else {
last_dtd->dtd_next = dma;
last_dtd->next_dtd_virt = dtd;
}
last_dtd = dtd;
req->dtd_count++;
} while (!is_last);
/* set terminate bit to 1 for the last dTD */
dtd->dtd_next = DTD_NEXT_TERMINATE;
req->tail = dtd;
return 0;
}
static int mv_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct mv_udc *udc;
struct mv_ep *ep;
struct mv_dqh *dqh;
u16 max = 0;
u32 bit_pos, epctrlx, direction;
unsigned char zlt = 0, ios = 0, mult = 0;
ep = container_of(_ep, struct mv_ep, ep);
udc = ep->udc;
if (!_ep || !desc || ep->desc
|| desc->bDescriptorType != USB_DT_ENDPOINT)
return -EINVAL;
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
direction = ep_dir(ep);
max = usb_endpoint_maxp(desc);
/*
* disable HW zero length termination select
* driver handles zero length packet through req->req.zero
*/
zlt = 1;
/* Get the endpoint queue head address */
dqh = (struct mv_dqh *)ep->dqh;
bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
/* Check if the Endpoint is Primed */
if ((readl(&udc->op_regs->epprime) & bit_pos)
|| (readl(&udc->op_regs->epstatus) & bit_pos)) {
dev_info(&udc->dev->dev,
"ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
" ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
(unsigned)ep->ep_num, direction ? "SEND" : "RECV",
(unsigned)readl(&udc->op_regs->epprime),
(unsigned)readl(&udc->op_regs->epstatus),
(unsigned)bit_pos);
goto en_done;
}
/* Set the max packet length, interrupt on Setup and Mult fields */
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_BULK:
zlt = 1;
mult = 0;
break;
case USB_ENDPOINT_XFER_CONTROL:
ios = 1;
case USB_ENDPOINT_XFER_INT:
mult = 0;
break;
case USB_ENDPOINT_XFER_ISOC:
/* Calculate transactions needed for high bandwidth iso */
mult = (unsigned char)(1 + ((max >> 11) & 0x03));
max = max & 0x8ff; /* bit 0~10 */
/* 3 transactions at most */
if (mult > 3)
goto en_done;
break;
default:
goto en_done;
}
dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
| (mult << EP_QUEUE_HEAD_MULT_POS)
| (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
| (ios ? EP_QUEUE_HEAD_IOS : 0);
dqh->next_dtd_ptr = 1;
dqh->size_ioc_int_sts = 0;
ep->ep.maxpacket = max;
ep->desc = desc;
ep->stopped = 0;
/* Enable the endpoint for Rx or Tx and set the endpoint type */
epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
if (direction == EP_DIR_IN) {
epctrlx &= ~EPCTRL_TX_ALL_MASK;
epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
| ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
<< EPCTRL_TX_EP_TYPE_SHIFT);
} else {
epctrlx &= ~EPCTRL_RX_ALL_MASK;
epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
| ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
<< EPCTRL_RX_EP_TYPE_SHIFT);
}
writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
/*
* Implement Guideline (GL# USB-7) The unused endpoint type must
* be programmed to bulk.
*/
epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
epctrlx |= ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
<< EPCTRL_RX_EP_TYPE_SHIFT);
writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
}
epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
epctrlx |= ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
<< EPCTRL_TX_EP_TYPE_SHIFT);
writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
}
return 0;
en_done:
return -EINVAL;
}
static int mv_ep_disable(struct usb_ep *_ep)
{
struct mv_udc *udc;
struct mv_ep *ep;
struct mv_dqh *dqh;
u32 bit_pos, epctrlx, direction;
ep = container_of(_ep, struct mv_ep, ep);
if ((_ep == NULL) || !ep->desc)
return -EINVAL;
udc = ep->udc;
/* Get the endpoint queue head address */
dqh = ep->dqh;
direction = ep_dir(ep);
bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
/* Reset the max packet length and the interrupt on Setup */
dqh->max_packet_length = 0;
/* Disable the endpoint for Rx or Tx and reset the endpoint type */
epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
epctrlx &= ~((direction == EP_DIR_IN)
? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
: (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
/* nuke all pending requests (does flush) */
nuke(ep, -ESHUTDOWN);
ep->desc = NULL;
ep->stopped = 1;
return 0;
}
static struct usb_request *
mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct mv_req *req = NULL;
req = kzalloc(sizeof *req, gfp_flags);
if (!req)
return NULL;
req->req.dma = DMA_ADDR_INVALID;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct mv_req *req = NULL;
req = container_of(_req, struct mv_req, req);
if (_req)
kfree(req);
}
static void mv_ep_fifo_flush(struct usb_ep *_ep)
{
struct mv_udc *udc;
u32 bit_pos, direction;
struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
unsigned int loops;
udc = ep->udc;
direction = ep_dir(ep);
bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
/*
* Flushing will halt the pipe
* Write 1 to the Flush register
*/
writel(bit_pos, &udc->op_regs->epflush);
/* Wait until flushing completed */
loops = LOOPS(FLUSH_TIMEOUT);
while (readl(&udc->op_regs->epflush) & bit_pos) {
/*
* ENDPTFLUSH bit should be cleared to indicate this
* operation is complete
*/
if (loops == 0) {
dev_err(&udc->dev->dev,
"TIMEOUT for ENDPTFLUSH=0x%x, bit_pos=0x%x\n",
(unsigned)readl(&udc->op_regs->epflush),
(unsigned)bit_pos);
return;
}
loops--;
udelay(LOOPS_USEC);
}
loops = LOOPS(EPSTATUS_TIMEOUT);
while (readl(&udc->op_regs->epstatus) & bit_pos) {
unsigned int inter_loops;
if (loops == 0) {
dev_err(&udc->dev->dev,
"TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
(unsigned)readl(&udc->op_regs->epstatus),
(unsigned)bit_pos);
return;
}
/* Write 1 to the Flush register */
writel(bit_pos, &udc->op_regs->epflush);
/* Wait until flushing completed */
inter_loops = LOOPS(FLUSH_TIMEOUT);
while (readl(&udc->op_regs->epflush) & bit_pos) {
/*
* ENDPTFLUSH bit should be cleared to indicate this
* operation is complete
*/
if (inter_loops == 0) {
dev_err(&udc->dev->dev,
"TIMEOUT for ENDPTFLUSH=0x%x,"
"bit_pos=0x%x\n",
(unsigned)readl(&udc->op_regs->epflush),
(unsigned)bit_pos);
return;
}
inter_loops--;
udelay(LOOPS_USEC);
}
loops--;
}
}
/* queues (submits) an I/O request to an endpoint */
static int
mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
struct mv_req *req = container_of(_req, struct mv_req, req);
struct mv_udc *udc = ep->udc;
unsigned long flags;
/* catch various bogus parameters */
if (!_req || !req->req.complete || !req->req.buf
|| !list_empty(&req->queue)) {
dev_err(&udc->dev->dev, "%s, bad params", __func__);
return -EINVAL;
}
if (unlikely(!_ep || !ep->desc)) {
dev_err(&udc->dev->dev, "%s, bad ep", __func__);
return -EINVAL;
}
if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
if (req->req.length > ep->ep.maxpacket)
return -EMSGSIZE;
}
udc = ep->udc;
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
req->ep = ep;
/* map virtual address to hardware */
if (req->req.dma == DMA_ADDR_INVALID) {
req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
req->req.buf,
req->req.length, ep_dir(ep)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->mapped = 1;
} else {
dma_sync_single_for_device(ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
ep_dir(ep)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->mapped = 0;
}
req->req.status = -EINPROGRESS;
req->req.actual = 0;
req->dtd_count = 0;
spin_lock_irqsave(&udc->lock, flags);
/* build dtds and push them to device queue */
if (!req_to_dtd(req)) {
int retval;
retval = queue_dtd(ep, req);
if (retval) {
spin_unlock_irqrestore(&udc->lock, flags);
return retval;
}
} else {
spin_unlock_irqrestore(&udc->lock, flags);
return -ENOMEM;
}
/* Update ep0 state */
if (ep->ep_num == 0)
udc->ep0_state = DATA_STATE_XMIT;
/* irq handler advances the queue */
if (req != NULL)
list_add_tail(&req->queue, &ep->queue);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/* dequeues (cancels, unlinks) an I/O request from an endpoint */
static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
struct mv_req *req;
struct mv_udc *udc = ep->udc;
unsigned long flags;
int stopped, ret = 0;
u32 epctrlx;
if (!_ep || !_req)
return -EINVAL;
spin_lock_irqsave(&ep->udc->lock, flags);
stopped = ep->stopped;
/* Stop the ep before we deal with the queue */
ep->stopped = 1;
epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
if (ep_dir(ep) == EP_DIR_IN)
epctrlx &= ~EPCTRL_TX_ENABLE;
else
epctrlx &= ~EPCTRL_RX_ENABLE;
writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
ret = -EINVAL;
goto out;
}
/* The request is in progress, or completed but not dequeued */
if (ep->queue.next == &req->queue) {
_req->status = -ECONNRESET;
mv_ep_fifo_flush(_ep); /* flush current transfer */
/* The request isn't the last request in this ep queue */
if (req->queue.next != &ep->queue) {
struct mv_dqh *qh;
struct mv_req *next_req;
qh = ep->dqh;
next_req = list_entry(req->queue.next, struct mv_req,
queue);
/* Point the QH to the first TD of next request */
writel((u32) next_req->head, &qh->curr_dtd_ptr);
} else {
struct mv_dqh *qh;
qh = ep->dqh;
qh->next_dtd_ptr = 1;
qh->size_ioc_int_sts = 0;
}
/* The request hasn't been processed, patch up the TD chain */
} else {
struct mv_req *prev_req;
prev_req = list_entry(req->queue.prev, struct mv_req, queue);
writel(readl(&req->tail->dtd_next),
&prev_req->tail->dtd_next);
}
done(ep, req, -ECONNRESET);
/* Enable EP */
out:
epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
if (ep_dir(ep) == EP_DIR_IN)
epctrlx |= EPCTRL_TX_ENABLE;
else
epctrlx |= EPCTRL_RX_ENABLE;
writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
ep->stopped = stopped;
spin_unlock_irqrestore(&ep->udc->lock, flags);
return ret;
}
static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
{
u32 epctrlx;
epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
if (stall) {
if (direction == EP_DIR_IN)
epctrlx |= EPCTRL_TX_EP_STALL;
else
epctrlx |= EPCTRL_RX_EP_STALL;
} else {
if (direction == EP_DIR_IN) {
epctrlx &= ~EPCTRL_TX_EP_STALL;
epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
} else {
epctrlx &= ~EPCTRL_RX_EP_STALL;
epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
}
}
writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
}
static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
{
u32 epctrlx;
epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
if (direction == EP_DIR_OUT)
return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
else
return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
}
static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
{
struct mv_ep *ep;
unsigned long flags = 0;
int status = 0;
struct mv_udc *udc;
ep = container_of(_ep, struct mv_ep, ep);
udc = ep->udc;
if (!_ep || !ep->desc) {
status = -EINVAL;
goto out;
}
if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
status = -EOPNOTSUPP;
goto out;
}
/*
* Attempt to halt IN ep will fail if any transfer requests
* are still queue
*/
if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
status = -EAGAIN;
goto out;
}
spin_lock_irqsave(&ep->udc->lock, flags);
ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
if (halt && wedge)
ep->wedge = 1;
else if (!halt)
ep->wedge = 0;
spin_unlock_irqrestore(&ep->udc->lock, flags);
if (ep->ep_num == 0) {
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = EP_DIR_OUT;
}
out:
return status;
}
static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
{
return mv_ep_set_halt_wedge(_ep, halt, 0);
}
static int mv_ep_set_wedge(struct usb_ep *_ep)
{
return mv_ep_set_halt_wedge(_ep, 1, 1);
}
static struct usb_ep_ops mv_ep_ops = {
.enable = mv_ep_enable,
.disable = mv_ep_disable,
.alloc_request = mv_alloc_request,
.free_request = mv_free_request,
.queue = mv_ep_queue,
.dequeue = mv_ep_dequeue,
.set_wedge = mv_ep_set_wedge,
.set_halt = mv_ep_set_halt,
.fifo_flush = mv_ep_fifo_flush, /* flush fifo */
};
static void udc_stop(struct mv_udc *udc)
{
u32 tmp;
/* Disable interrupts */
tmp = readl(&udc->op_regs->usbintr);
tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
writel(tmp, &udc->op_regs->usbintr);
/* Reset the Run the bit in the command register to stop VUSB */
tmp = readl(&udc->op_regs->usbcmd);
tmp &= ~USBCMD_RUN_STOP;
writel(tmp, &udc->op_regs->usbcmd);
}
static void udc_start(struct mv_udc *udc)
{
u32 usbintr;
usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
| USBINTR_PORT_CHANGE_DETECT_EN
| USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
/* Enable interrupts */
writel(usbintr, &udc->op_regs->usbintr);
/* Set the Run bit in the command register */
writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
}
static int udc_reset(struct mv_udc *udc)
{
unsigned int loops;
u32 tmp, portsc;
/* Stop the controller */
tmp = readl(&udc->op_regs->usbcmd);
tmp &= ~USBCMD_RUN_STOP;
writel(tmp, &udc->op_regs->usbcmd);
/* Reset the controller to get default values */
writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
/* wait for reset to complete */
loops = LOOPS(RESET_TIMEOUT);
while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
if (loops == 0) {
dev_err(&udc->dev->dev,
"Wait for RESET completed TIMEOUT\n");
return -ETIMEDOUT;
}
loops--;
udelay(LOOPS_USEC);
}
/* set controller to device mode */
tmp = readl(&udc->op_regs->usbmode);
tmp |= USBMODE_CTRL_MODE_DEVICE;
/* turn setup lockout off, require setup tripwire in usbcmd */
tmp |= USBMODE_SETUP_LOCK_OFF | USBMODE_STREAM_DISABLE;
writel(tmp, &udc->op_regs->usbmode);
writel(0x0, &udc->op_regs->epsetupstat);
/* Configure the Endpoint List Address */
writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
&udc->op_regs->eplistaddr);
portsc = readl(&udc->op_regs->portsc[0]);
if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
if (udc->force_fs)
portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
else
portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
writel(portsc, &udc->op_regs->portsc[0]);
tmp = readl(&udc->op_regs->epctrlx[0]);
tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
writel(tmp, &udc->op_regs->epctrlx[0]);
return 0;
}
static int mv_udc_get_frame(struct usb_gadget *gadget)
{
struct mv_udc *udc;
u16 retval;
if (!gadget)
return -ENODEV;
udc = container_of(gadget, struct mv_udc, gadget);
retval = readl(udc->op_regs->frindex) & USB_FRINDEX_MASKS;
return retval;
}
/* Tries to wake up the host connected to this gadget */
static int mv_udc_wakeup(struct usb_gadget *gadget)
{
struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
u32 portsc;
/* Remote wakeup feature not enabled by host */
if (!udc->remote_wakeup)
return -ENOTSUPP;
portsc = readl(&udc->op_regs->portsc);
/* not suspended? */
if (!(portsc & PORTSCX_PORT_SUSPEND))
return 0;
/* trigger force resume */
portsc |= PORTSCX_PORT_FORCE_RESUME;
writel(portsc, &udc->op_regs->portsc[0]);
return 0;
}
static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
{
struct mv_udc *udc;
unsigned long flags;
udc = container_of(gadget, struct mv_udc, gadget);
spin_lock_irqsave(&udc->lock, flags);
udc->softconnect = (is_on != 0);
if (udc->driver && udc->softconnect)
udc_start(udc);
else
udc_stop(udc);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int mv_udc_start(struct usb_gadget_driver *driver,
int (*bind)(struct usb_gadget *));
static int mv_udc_stop(struct usb_gadget_driver *driver);
/* device controller usb_gadget_ops structure */
static const struct usb_gadget_ops mv_ops = {
/* returns the current frame number */
.get_frame = mv_udc_get_frame,
/* tries to wake up the host connected to this gadget */
.wakeup = mv_udc_wakeup,
/* D+ pullup, software-controlled connect/disconnect to USB host */
.pullup = mv_udc_pullup,
.start = mv_udc_start,
.stop = mv_udc_stop,
};
static void mv_udc_testmode(struct mv_udc *udc, u16 index, bool enter)
{
dev_info(&udc->dev->dev, "Test Mode is not support yet\n");
}
static int eps_init(struct mv_udc *udc)
{
struct mv_ep *ep;
char name[14];
int i;
/* initialize ep0 */
ep = &udc->eps[0];
ep->udc = udc;
strncpy(ep->name, "ep0", sizeof(ep->name));
ep->ep.name = ep->name;
ep->ep.ops = &mv_ep_ops;
ep->wedge = 0;
ep->stopped = 0;
ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
ep->ep_num = 0;
ep->desc = &mv_ep0_desc;
INIT_LIST_HEAD(&ep->queue);
ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
/* initialize other endpoints */
for (i = 2; i < udc->max_eps * 2; i++) {
ep = &udc->eps[i];
if (i % 2) {
snprintf(name, sizeof(name), "ep%din", i / 2);
ep->direction = EP_DIR_IN;
} else {
snprintf(name, sizeof(name), "ep%dout", i / 2);
ep->direction = EP_DIR_OUT;
}
ep->udc = udc;
strncpy(ep->name, name, sizeof(ep->name));
ep->ep.name = ep->name;
ep->ep.ops = &mv_ep_ops;
ep->stopped = 0;
ep->ep.maxpacket = (unsigned short) ~0;
ep->ep_num = i / 2;
INIT_LIST_HEAD(&ep->queue);
list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
ep->dqh = &udc->ep_dqh[i];
}
return 0;
}
/* delete all endpoint requests, called with spinlock held */
static void nuke(struct mv_ep *ep, int status)
{
/* called with spinlock held */
ep->stopped = 1;
/* endpoint fifo flush */
mv_ep_fifo_flush(&ep->ep);
while (!list_empty(&ep->queue)) {
struct mv_req *req = NULL;
req = list_entry(ep->queue.next, struct mv_req, queue);
done(ep, req, status);
}
}
/* stop all USB activities */
static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
{
struct mv_ep *ep;
nuke(&udc->eps[0], -ESHUTDOWN);
list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
nuke(ep, -ESHUTDOWN);
}
/* report disconnect; the driver is already quiesced */
if (driver) {
spin_unlock(&udc->lock);
driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
}
}
static int mv_udc_start(struct usb_gadget_driver *driver,
int (*bind)(struct usb_gadget *))
{
struct mv_udc *udc = the_controller;
int retval = 0;
unsigned long flags;
if (!udc)
return -ENODEV;
if (udc->driver)
return -EBUSY;
spin_lock_irqsave(&udc->lock, flags);
/* hook up the driver ... */
driver->driver.bus = NULL;
udc->driver = driver;
udc->gadget.dev.driver = &driver->driver;
udc->usb_state = USB_STATE_ATTACHED;
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = USB_DIR_OUT;
spin_unlock_irqrestore(&udc->lock, flags);
retval = bind(&udc->gadget);
if (retval) {
dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
driver->driver.name, retval);
udc->driver = NULL;
udc->gadget.dev.driver = NULL;
return retval;
}
udc_reset(udc);
ep0_reset(udc);
udc_start(udc);
return 0;
}
static int mv_udc_stop(struct usb_gadget_driver *driver)
{
struct mv_udc *udc = the_controller;
unsigned long flags;
if (!udc)
return -ENODEV;
udc_stop(udc);
spin_lock_irqsave(&udc->lock, flags);
/* stop all usb activities */
udc->gadget.speed = USB_SPEED_UNKNOWN;
stop_activity(udc, driver);
spin_unlock_irqrestore(&udc->lock, flags);
/* unbind gadget driver */
driver->unbind(&udc->gadget);
udc->gadget.dev.driver = NULL;
udc->driver = NULL;
return 0;
}
static int
udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
{
int retval = 0;
struct mv_req *req;
struct mv_ep *ep;
ep = &udc->eps[0];
udc->ep0_dir = direction;
req = udc->status_req;
/* fill in the reqest structure */
if (empty == false) {
*((u16 *) req->req.buf) = cpu_to_le16(status);
req->req.length = 2;
} else
req->req.length = 0;
req->ep = ep;
req->req.status = -EINPROGRESS;
req->req.actual = 0;
req->req.complete = NULL;
req->dtd_count = 0;
/* prime the data phase */
if (!req_to_dtd(req))
retval = queue_dtd(ep, req);
else{ /* no mem */
retval = -ENOMEM;
goto out;
}
if (retval) {
dev_err(&udc->dev->dev, "response error on GET_STATUS request\n");
goto out;
}
list_add_tail(&req->queue, &ep->queue);
return 0;
out:
return retval;
}
static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
{
udc->dev_addr = (u8)setup->wValue;
/* update usb state */
udc->usb_state = USB_STATE_ADDRESS;
if (udc_prime_status(udc, EP_DIR_IN, 0, true))
ep0_stall(udc);
}
static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
struct usb_ctrlrequest *setup)
{
u16 status;
int retval;
if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
!= (USB_DIR_IN | USB_TYPE_STANDARD))
return;
if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
status = 1 << USB_DEVICE_SELF_POWERED;
status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
} else if ((setup->bRequestType & USB_RECIP_MASK)
== USB_RECIP_INTERFACE) {
/* get interface status */
status = 0;
} else if ((setup->bRequestType & USB_RECIP_MASK)
== USB_RECIP_ENDPOINT) {
u8 ep_num, direction;
ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
? EP_DIR_IN : EP_DIR_OUT;
status = ep_is_stall(udc, ep_num, direction)
<< USB_ENDPOINT_HALT;
}
retval = udc_prime_status(udc, EP_DIR_IN, status, false);
if (retval)
ep0_stall(udc);
}
static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
{
u8 ep_num;
u8 direction;
struct mv_ep *ep;
if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
== ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
switch (setup->wValue) {
case USB_DEVICE_REMOTE_WAKEUP:
udc->remote_wakeup = 0;
break;
case USB_DEVICE_TEST_MODE:
mv_udc_testmode(udc, 0, false);
break;
default:
goto out;
}
} else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
== ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
switch (setup->wValue) {
case USB_ENDPOINT_HALT:
ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
? EP_DIR_IN : EP_DIR_OUT;
if (setup->wValue != 0 || setup->wLength != 0
|| ep_num > udc->max_eps)
goto out;
ep = &udc->eps[ep_num * 2 + direction];
if (ep->wedge == 1)
break;
spin_unlock(&udc->lock);
ep_set_stall(udc, ep_num, direction, 0);
spin_lock(&udc->lock);
break;
default:
goto out;
}
} else
goto out;
if (udc_prime_status(udc, EP_DIR_IN, 0, true))
ep0_stall(udc);
else
udc->ep0_state = DATA_STATE_XMIT;
out:
return;
}
static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
{
u8 ep_num;
u8 direction;
if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
== ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
switch (setup->wValue) {
case USB_DEVICE_REMOTE_WAKEUP:
udc->remote_wakeup = 1;
break;
case USB_DEVICE_TEST_MODE:
if (setup->wIndex & 0xFF
&& udc->gadget.speed != USB_SPEED_HIGH)
goto out;
if (udc->usb_state == USB_STATE_CONFIGURED
|| udc->usb_state == USB_STATE_ADDRESS
|| udc->usb_state == USB_STATE_DEFAULT)
mv_udc_testmode(udc,
setup->wIndex & 0xFF00, true);
else
goto out;
break;
default:
goto out;
}
} else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
== ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
switch (setup->wValue) {
case USB_ENDPOINT_HALT:
ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
? EP_DIR_IN : EP_DIR_OUT;
if (setup->wValue != 0 || setup->wLength != 0
|| ep_num > udc->max_eps)
goto out;
spin_unlock(&udc->lock);
ep_set_stall(udc, ep_num, direction, 1);
spin_lock(&udc->lock);
break;
default:
goto out;
}
} else
goto out;
if (udc_prime_status(udc, EP_DIR_IN, 0, true))
ep0_stall(udc);
out:
return;
}
static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
struct usb_ctrlrequest *setup)
{
bool delegate = false;
nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
setup->bRequestType, setup->bRequest,
setup->wValue, setup->wIndex, setup->wLength);
/* We process some stardard setup requests here */
if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
switch (setup->bRequest) {
case USB_REQ_GET_STATUS:
ch9getstatus(udc, ep_num, setup);
break;
case USB_REQ_SET_ADDRESS:
ch9setaddress(udc, setup);
break;
case USB_REQ_CLEAR_FEATURE:
ch9clearfeature(udc, setup);
break;
case USB_REQ_SET_FEATURE:
ch9setfeature(udc, setup);
break;
default:
delegate = true;
}
} else
delegate = true;
/* delegate USB standard requests to the gadget driver */
if (delegate == true) {
/* USB requests handled by gadget */
if (setup->wLength) {
/* DATA phase from gadget, STATUS phase from udc */
udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
? EP_DIR_IN : EP_DIR_OUT;
spin_unlock(&udc->lock);
if (udc->driver->setup(&udc->gadget,
&udc->local_setup_buff) < 0)
ep0_stall(udc);
spin_lock(&udc->lock);
udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
? DATA_STATE_XMIT : DATA_STATE_RECV;
} else {
/* no DATA phase, IN STATUS phase from gadget */
udc->ep0_dir = EP_DIR_IN;
spin_unlock(&udc->lock);
if (udc->driver->setup(&udc->gadget,
&udc->local_setup_buff) < 0)
ep0_stall(udc);
spin_lock(&udc->lock);
udc->ep0_state = WAIT_FOR_OUT_STATUS;
}
}
}
/* complete DATA or STATUS phase of ep0 prime status phase if needed */
static void ep0_req_complete(struct mv_udc *udc,
struct mv_ep *ep0, struct mv_req *req)
{
u32 new_addr;
if (udc->usb_state == USB_STATE_ADDRESS) {
/* set the new address */
new_addr = (u32)udc->dev_addr;
writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
&udc->op_regs->deviceaddr);
}
done(ep0, req, 0);
switch (udc->ep0_state) {
case DATA_STATE_XMIT:
/* receive status phase */
if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
ep0_stall(udc);
break;
case DATA_STATE_RECV:
/* send status phase */
if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
ep0_stall(udc);
break;
case WAIT_FOR_OUT_STATUS:
udc->ep0_state = WAIT_FOR_SETUP;
break;
case WAIT_FOR_SETUP:
dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
break;
default:
ep0_stall(udc);
break;
}
}
static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
{
u32 temp;
struct mv_dqh *dqh;
dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
/* Clear bit in ENDPTSETUPSTAT */
temp = readl(&udc->op_regs->epsetupstat);
writel(temp | (1 << ep_num), &udc->op_regs->epsetupstat);
/* while a hazard exists when setup package arrives */
do {
/* Set Setup Tripwire */
temp = readl(&udc->op_regs->usbcmd);
writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
/* Copy the setup packet to local buffer */
memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
} while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
/* Clear Setup Tripwire */
temp = readl(&udc->op_regs->usbcmd);
writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
}
static void irq_process_tr_complete(struct mv_udc *udc)
{
u32 tmp, bit_pos;
int i, ep_num = 0, direction = 0;
struct mv_ep *curr_ep;
struct mv_req *curr_req, *temp_req;
int status;
/*
* We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
* because the setup packets are to be read ASAP
*/
/* Process all Setup packet received interrupts */
tmp = readl(&udc->op_regs->epsetupstat);
if (tmp) {
for (i = 0; i < udc->max_eps; i++) {
if (tmp & (1 << i)) {
get_setup_data(udc, i,
(u8 *)(&udc->local_setup_buff));
handle_setup_packet(udc, i,
&udc->local_setup_buff);
}
}
}
/* Don't clear the endpoint setup status register here.
* It is cleared as a setup packet is read out of the buffer
*/
/* Process non-setup transaction complete interrupts */
tmp = readl(&udc->op_regs->epcomplete);
if (!tmp)
return;
writel(tmp, &udc->op_regs->epcomplete);
for (i = 0; i < udc->max_eps * 2; i++) {
ep_num = i >> 1;
direction = i % 2;
bit_pos = 1 << (ep_num + 16 * direction);
if (!(bit_pos & tmp))
continue;
if (i == 1)
curr_ep = &udc->eps[0];
else
curr_ep = &udc->eps[i];
/* process the req queue until an uncomplete request */
list_for_each_entry_safe(curr_req, temp_req,
&curr_ep->queue, queue) {
status = process_ep_req(udc, i, curr_req);
if (status)
break;
/* write back status to req */
curr_req->req.status = status;
/* ep0 request completion */
if (ep_num == 0) {
ep0_req_complete(udc, curr_ep, curr_req);
break;
} else {
done(curr_ep, curr_req, status);
}
}
}
}
void irq_process_reset(struct mv_udc *udc)
{
u32 tmp;
unsigned int loops;
udc->ep0_dir = EP_DIR_OUT;
udc->ep0_state = WAIT_FOR_SETUP;
udc->remote_wakeup = 0; /* default to 0 on reset */
/* The address bits are past bit 25-31. Set the address */
tmp = readl(&udc->op_regs->deviceaddr);
tmp &= ~(USB_DEVICE_ADDRESS_MASK);
writel(tmp, &udc->op_regs->deviceaddr);
/* Clear all the setup token semaphores */
tmp = readl(&udc->op_regs->epsetupstat);
writel(tmp, &udc->op_regs->epsetupstat);
/* Clear all the endpoint complete status bits */
tmp = readl(&udc->op_regs->epcomplete);
writel(tmp, &udc->op_regs->epcomplete);
/* wait until all endptprime bits cleared */
loops = LOOPS(PRIME_TIMEOUT);
while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
if (loops == 0) {
dev_err(&udc->dev->dev,
"Timeout for ENDPTPRIME = 0x%x\n",
readl(&udc->op_regs->epprime));
break;
}
loops--;
udelay(LOOPS_USEC);
}
/* Write 1s to the Flush register */
writel((u32)~0, &udc->op_regs->epflush);
if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
dev_info(&udc->dev->dev, "usb bus reset\n");
udc->usb_state = USB_STATE_DEFAULT;
/* reset all the queues, stop all USB activities */
stop_activity(udc, udc->driver);
} else {
dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
readl(&udc->op_regs->portsc));
/*
* re-initialize
* controller reset
*/
udc_reset(udc);
/* reset all the queues, stop all USB activities */
stop_activity(udc, udc->driver);
/* reset ep0 dQH and endptctrl */
ep0_reset(udc);
/* enable interrupt and set controller to run state */
udc_start(udc);
udc->usb_state = USB_STATE_ATTACHED;
}
}
static void handle_bus_resume(struct mv_udc *udc)
{
udc->usb_state = udc->resume_state;
udc->resume_state = 0;
/* report resume to the driver */
if (udc->driver) {
if (udc->driver->resume) {
spin_unlock(&udc->lock);
udc->driver->resume(&udc->gadget);
spin_lock(&udc->lock);
}
}
}
static void irq_process_suspend(struct mv_udc *udc)
{
udc->resume_state = udc->usb_state;
udc->usb_state = USB_STATE_SUSPENDED;
if (udc->driver->suspend) {
spin_unlock(&udc->lock);
udc->driver->suspend(&udc->gadget);
spin_lock(&udc->lock);
}
}
static void irq_process_port_change(struct mv_udc *udc)
{
u32 portsc;
portsc = readl(&udc->op_regs->portsc[0]);
if (!(portsc & PORTSCX_PORT_RESET)) {
/* Get the speed */
u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
switch (speed) {
case PORTSCX_PORT_SPEED_HIGH:
udc->gadget.speed = USB_SPEED_HIGH;
break;
case PORTSCX_PORT_SPEED_FULL:
udc->gadget.speed = USB_SPEED_FULL;
break;
case PORTSCX_PORT_SPEED_LOW:
udc->gadget.speed = USB_SPEED_LOW;
break;
default:
udc->gadget.speed = USB_SPEED_UNKNOWN;
break;
}
}
if (portsc & PORTSCX_PORT_SUSPEND) {
udc->resume_state = udc->usb_state;
udc->usb_state = USB_STATE_SUSPENDED;
if (udc->driver->suspend) {
spin_unlock(&udc->lock);
udc->driver->suspend(&udc->gadget);
spin_lock(&udc->lock);
}
}
if (!(portsc & PORTSCX_PORT_SUSPEND)
&& udc->usb_state == USB_STATE_SUSPENDED) {
handle_bus_resume(udc);
}
if (!udc->resume_state)
udc->usb_state = USB_STATE_DEFAULT;
}
static void irq_process_error(struct mv_udc *udc)
{
/* Increment the error count */
udc->errors++;
}
static irqreturn_t mv_udc_irq(int irq, void *dev)
{
struct mv_udc *udc = (struct mv_udc *)dev;
u32 status, intr;
spin_lock(&udc->lock);
status = readl(&udc->op_regs->usbsts);
intr = readl(&udc->op_regs->usbintr);
status &= intr;
if (status == 0) {
spin_unlock(&udc->lock);
return IRQ_NONE;
}
/* Clear all the interrupts occurred */
writel(status, &udc->op_regs->usbsts);
if (status & USBSTS_ERR)
irq_process_error(udc);
if (status & USBSTS_RESET)
irq_process_reset(udc);
if (status & USBSTS_PORT_CHANGE)
irq_process_port_change(udc);
if (status & USBSTS_INT)
irq_process_tr_complete(udc);
if (status & USBSTS_SUSPEND)
irq_process_suspend(udc);
spin_unlock(&udc->lock);
return IRQ_HANDLED;
}
/* release device structure */
static void gadget_release(struct device *_dev)
{
struct mv_udc *udc = the_controller;
complete(udc->done);
kfree(udc);
}
static int mv_udc_remove(struct platform_device *dev)
{
struct mv_udc *udc = the_controller;
DECLARE_COMPLETION(done);
usb_del_gadget_udc(&udc->gadget);
udc->done = &done;
/* free memory allocated in probe */
if (udc->dtd_pool)
dma_pool_destroy(udc->dtd_pool);
if (udc->ep_dqh)
dma_free_coherent(&dev->dev, udc->ep_dqh_size,
udc->ep_dqh, udc->ep_dqh_dma);
kfree(udc->eps);
if (udc->irq)
free_irq(udc->irq, &dev->dev);
if (udc->cap_regs)
iounmap(udc->cap_regs);
udc->cap_regs = NULL;
if (udc->phy_regs)
iounmap((void *)udc->phy_regs);
udc->phy_regs = 0;
if (udc->status_req) {
kfree(udc->status_req->req.buf);
kfree(udc->status_req);
}
device_unregister(&udc->gadget.dev);
/* free dev, wait for the release() finished */
wait_for_completion(&done);
the_controller = NULL;
return 0;
}
int mv_udc_probe(struct platform_device *dev)
{
struct mv_udc *udc;
int retval = 0;
struct resource *r;
size_t size;
udc = kzalloc(sizeof *udc, GFP_KERNEL);
if (udc == NULL) {
dev_err(&dev->dev, "failed to allocate memory for udc\n");
retval = -ENOMEM;
goto error;
}
spin_lock_init(&udc->lock);
udc->dev = dev;
udc->clk = clk_get(&dev->dev, "U2OCLK");
if (IS_ERR(udc->clk)) {
retval = PTR_ERR(udc->clk);
goto error;
}
r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "u2o");
if (r == NULL) {
dev_err(&dev->dev, "no I/O memory resource defined\n");
retval = -ENODEV;
goto error;
}
udc->cap_regs = (struct mv_cap_regs __iomem *)
ioremap(r->start, resource_size(r));
if (udc->cap_regs == NULL) {
dev_err(&dev->dev, "failed to map I/O memory\n");
retval = -EBUSY;
goto error;
}
r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "u2ophy");
if (r == NULL) {
dev_err(&dev->dev, "no phy I/O memory resource defined\n");
retval = -ENODEV;
goto error;
}
udc->phy_regs = (unsigned int)ioremap(r->start, resource_size(r));
if (udc->phy_regs == 0) {
dev_err(&dev->dev, "failed to map phy I/O memory\n");
retval = -EBUSY;
goto error;
}
/* we will acces controller register, so enable the clk */
clk_enable(udc->clk);
retval = mv_udc_phy_init(udc->phy_regs);
if (retval) {
dev_err(&dev->dev, "phy initialization error %d\n", retval);
goto error;
}
udc->op_regs = (struct mv_op_regs __iomem *)((u32)udc->cap_regs
+ (readl(&udc->cap_regs->caplength_hciversion)
& CAPLENGTH_MASK));
udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
size = udc->max_eps * sizeof(struct mv_dqh) *2;
size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
&udc->ep_dqh_dma, GFP_KERNEL);
if (udc->ep_dqh == NULL) {
dev_err(&dev->dev, "allocate dQH memory failed\n");
retval = -ENOMEM;
goto error;
}
udc->ep_dqh_size = size;
/* create dTD dma_pool resource */
udc->dtd_pool = dma_pool_create("mv_dtd",
&dev->dev,
sizeof(struct mv_dtd),
DTD_ALIGNMENT,
DMA_BOUNDARY);
if (!udc->dtd_pool) {
retval = -ENOMEM;
goto error;
}
size = udc->max_eps * sizeof(struct mv_ep) *2;
udc->eps = kzalloc(size, GFP_KERNEL);
if (udc->eps == NULL) {
dev_err(&dev->dev, "allocate ep memory failed\n");
retval = -ENOMEM;
goto error;
}
/* initialize ep0 status request structure */
udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
if (!udc->status_req) {
dev_err(&dev->dev, "allocate status_req memory failed\n");
retval = -ENOMEM;
goto error;
}
INIT_LIST_HEAD(&udc->status_req->queue);
/* allocate a small amount of memory to get valid address */
udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
udc->status_req->req.dma = virt_to_phys(udc->status_req->req.buf);
udc->resume_state = USB_STATE_NOTATTACHED;
udc->usb_state = USB_STATE_POWERED;
udc->ep0_dir = EP_DIR_OUT;
udc->remote_wakeup = 0;
r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
if (r == NULL) {
dev_err(&dev->dev, "no IRQ resource defined\n");
retval = -ENODEV;
goto error;
}
udc->irq = r->start;
if (request_irq(udc->irq, mv_udc_irq,
IRQF_SHARED, driver_name, udc)) {
dev_err(&dev->dev, "Request irq %d for UDC failed\n",
udc->irq);
retval = -ENODEV;
goto error;
}
/* initialize gadget structure */
udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
udc->gadget.is_dualspeed = 1; /* support dual speed */
/* the "gadget" abstracts/virtualizes the controller */
dev_set_name(&udc->gadget.dev, "gadget");
udc->gadget.dev.parent = &dev->dev;
udc->gadget.dev.dma_mask = dev->dev.dma_mask;
udc->gadget.dev.release = gadget_release;
udc->gadget.name = driver_name; /* gadget name */
retval = device_register(&udc->gadget.dev);
if (retval)
goto error;
eps_init(udc);
the_controller = udc;
retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
if (!retval)
return retval;
error:
if (udc)
mv_udc_remove(udc->dev);
return retval;
}
#ifdef CONFIG_PM
static int mv_udc_suspend(struct device *_dev)
{
struct mv_udc *udc = the_controller;
udc_stop(udc);
return 0;
}
static int mv_udc_resume(struct device *_dev)
{
struct mv_udc *udc = the_controller;
int retval;
retval = mv_udc_phy_init(udc->phy_regs);
if (retval) {
dev_err(_dev, "phy initialization error %d\n", retval);
return retval;
}
udc_reset(udc);
ep0_reset(udc);
udc_start(udc);
return 0;
}
static const struct dev_pm_ops mv_udc_pm_ops = {
.suspend = mv_udc_suspend,
.resume = mv_udc_resume,
};
#endif
static struct platform_driver udc_driver = {
.probe = mv_udc_probe,
.remove = __exit_p(mv_udc_remove),
.driver = {
.owner = THIS_MODULE,
.name = "pxa-u2o",
#ifdef CONFIG_PM
.pm = &mv_udc_pm_ops,
#endif
},
};
MODULE_ALIAS("platform:pxa-u2o");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL");
static int __init init(void)
{
return platform_driver_register(&udc_driver);
}
module_init(init);
static void __exit cleanup(void)
{
platform_driver_unregister(&udc_driver);
}
module_exit(cleanup);