1c6fdbd8f2
Initially forked from drivers/md/bcache, bcachefs is a new copy-on-write filesystem with every feature you could possibly want. Website: https://bcachefs.org Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1850 lines
46 KiB
C
1850 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Code for working with individual keys, and sorted sets of keys with in a
|
|
* btree node
|
|
*
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "btree_cache.h"
|
|
#include "bset.h"
|
|
#include "eytzinger.h"
|
|
#include "trace.h"
|
|
#include "util.h"
|
|
|
|
#include <asm/unaligned.h>
|
|
#include <linux/console.h>
|
|
#include <linux/random.h>
|
|
#include <linux/prefetch.h>
|
|
|
|
struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
|
|
{
|
|
struct bset_tree *t;
|
|
|
|
for_each_bset(b, t)
|
|
if (k >= btree_bkey_first(b, t) &&
|
|
k < btree_bkey_last(b, t))
|
|
return t;
|
|
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* There are never duplicate live keys in the btree - but including keys that
|
|
* have been flagged as deleted (and will be cleaned up later) we _will_ see
|
|
* duplicates.
|
|
*
|
|
* Thus the sort order is: usual key comparison first, but for keys that compare
|
|
* equal the deleted key(s) come first, and the (at most one) live version comes
|
|
* last.
|
|
*
|
|
* The main reason for this is insertion: to handle overwrites, we first iterate
|
|
* over keys that compare equal to our insert key, and then insert immediately
|
|
* prior to the first key greater than the key we're inserting - our insert
|
|
* position will be after all keys that compare equal to our insert key, which
|
|
* by the time we actually do the insert will all be deleted.
|
|
*/
|
|
|
|
void bch2_dump_bset(struct btree *b, struct bset *i, unsigned set)
|
|
{
|
|
struct bkey_packed *_k, *_n;
|
|
struct bkey k, n;
|
|
char buf[120];
|
|
|
|
if (!i->u64s)
|
|
return;
|
|
|
|
for (_k = i->start, k = bkey_unpack_key(b, _k);
|
|
_k < vstruct_last(i);
|
|
_k = _n, k = n) {
|
|
_n = bkey_next(_k);
|
|
|
|
bch2_bkey_to_text(buf, sizeof(buf), &k);
|
|
printk(KERN_ERR "block %u key %zi/%u: %s\n", set,
|
|
_k->_data - i->_data, i->u64s, buf);
|
|
|
|
if (_n == vstruct_last(i))
|
|
continue;
|
|
|
|
n = bkey_unpack_key(b, _n);
|
|
|
|
if (bkey_cmp(bkey_start_pos(&n), k.p) < 0) {
|
|
printk(KERN_ERR "Key skipped backwards\n");
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Weird check for duplicate non extent keys: extents are
|
|
* deleted iff they have 0 size, so if it has zero size and it's
|
|
* not deleted these aren't extents:
|
|
*/
|
|
if (((!k.size && !bkey_deleted(&k)) ||
|
|
(!n.size && !bkey_deleted(&n))) &&
|
|
!bkey_deleted(&k) &&
|
|
!bkey_cmp(n.p, k.p))
|
|
printk(KERN_ERR "Duplicate keys\n");
|
|
}
|
|
}
|
|
|
|
void bch2_dump_btree_node(struct btree *b)
|
|
{
|
|
struct bset_tree *t;
|
|
|
|
console_lock();
|
|
for_each_bset(b, t)
|
|
bch2_dump_bset(b, bset(b, t), t - b->set);
|
|
console_unlock();
|
|
}
|
|
|
|
void bch2_dump_btree_node_iter(struct btree *b,
|
|
struct btree_node_iter *iter)
|
|
{
|
|
struct btree_node_iter_set *set;
|
|
|
|
printk(KERN_ERR "btree node iter with %u sets:\n", b->nsets);
|
|
|
|
btree_node_iter_for_each(iter, set) {
|
|
struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
|
|
struct bset_tree *t = bch2_bkey_to_bset(b, k);
|
|
struct bkey uk = bkey_unpack_key(b, k);
|
|
char buf[100];
|
|
|
|
bch2_bkey_to_text(buf, sizeof(buf), &uk);
|
|
printk(KERN_ERR "set %zu key %zi/%u: %s\n", t - b->set,
|
|
k->_data - bset(b, t)->_data, bset(b, t)->u64s, buf);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
|
|
static bool keys_out_of_order(struct btree *b,
|
|
const struct bkey_packed *prev,
|
|
const struct bkey_packed *next,
|
|
bool is_extents)
|
|
{
|
|
struct bkey nextu = bkey_unpack_key(b, next);
|
|
|
|
return bkey_cmp_left_packed_byval(b, prev, bkey_start_pos(&nextu)) > 0 ||
|
|
((is_extents
|
|
? !bkey_deleted(next)
|
|
: !bkey_deleted(prev)) &&
|
|
!bkey_cmp_packed(b, prev, next));
|
|
}
|
|
|
|
void __bch2_verify_btree_nr_keys(struct btree *b)
|
|
{
|
|
struct bset_tree *t;
|
|
struct bkey_packed *k;
|
|
struct btree_nr_keys nr = { 0 };
|
|
|
|
for_each_bset(b, t)
|
|
for (k = btree_bkey_first(b, t);
|
|
k != btree_bkey_last(b, t);
|
|
k = bkey_next(k))
|
|
if (!bkey_whiteout(k))
|
|
btree_keys_account_key_add(&nr, t - b->set, k);
|
|
|
|
BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
|
|
}
|
|
|
|
static void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
|
|
struct btree *b,
|
|
struct bkey_packed *k)
|
|
{
|
|
const struct bkey_packed *n = bch2_btree_node_iter_peek_all(iter, b);
|
|
|
|
bkey_unpack_key(b, k);
|
|
|
|
if (n &&
|
|
keys_out_of_order(b, k, n, iter->is_extents)) {
|
|
struct bkey ku = bkey_unpack_key(b, k);
|
|
struct bkey nu = bkey_unpack_key(b, n);
|
|
char buf1[80], buf2[80];
|
|
|
|
bch2_dump_btree_node(b);
|
|
bch2_bkey_to_text(buf1, sizeof(buf1), &ku);
|
|
bch2_bkey_to_text(buf2, sizeof(buf2), &nu);
|
|
panic("out of order/overlapping:\n%s\n%s\n", buf1, buf2);
|
|
}
|
|
}
|
|
|
|
void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
|
|
struct btree *b)
|
|
{
|
|
struct btree_node_iter_set *set, *prev = NULL;
|
|
struct bset_tree *t;
|
|
struct bkey_packed *k, *first;
|
|
|
|
if (bch2_btree_node_iter_end(iter))
|
|
return;
|
|
|
|
btree_node_iter_for_each(iter, set) {
|
|
k = __btree_node_offset_to_key(b, set->k);
|
|
t = bch2_bkey_to_bset(b, k);
|
|
|
|
BUG_ON(__btree_node_offset_to_key(b, set->end) !=
|
|
btree_bkey_last(b, t));
|
|
|
|
BUG_ON(prev &&
|
|
btree_node_iter_cmp(iter, b, *prev, *set) > 0);
|
|
|
|
prev = set;
|
|
}
|
|
|
|
first = __btree_node_offset_to_key(b, iter->data[0].k);
|
|
|
|
for_each_bset(b, t)
|
|
if (bch2_btree_node_iter_bset_pos(iter, b, t) ==
|
|
btree_bkey_last(b, t) &&
|
|
(k = bch2_bkey_prev_all(b, t, btree_bkey_last(b, t))))
|
|
BUG_ON(__btree_node_iter_cmp(iter->is_extents, b,
|
|
k, first) > 0);
|
|
}
|
|
|
|
void bch2_verify_key_order(struct btree *b,
|
|
struct btree_node_iter *iter,
|
|
struct bkey_packed *where)
|
|
{
|
|
struct bset_tree *t = bch2_bkey_to_bset(b, where);
|
|
struct bkey_packed *k, *prev;
|
|
struct bkey uk, uw = bkey_unpack_key(b, where);
|
|
|
|
k = bch2_bkey_prev_all(b, t, where);
|
|
if (k &&
|
|
keys_out_of_order(b, k, where, iter->is_extents)) {
|
|
char buf1[100], buf2[100];
|
|
|
|
bch2_dump_btree_node(b);
|
|
uk = bkey_unpack_key(b, k);
|
|
bch2_bkey_to_text(buf1, sizeof(buf1), &uk);
|
|
bch2_bkey_to_text(buf2, sizeof(buf2), &uw);
|
|
panic("out of order with prev:\n%s\n%s\n",
|
|
buf1, buf2);
|
|
}
|
|
|
|
k = bkey_next(where);
|
|
BUG_ON(k != btree_bkey_last(b, t) &&
|
|
keys_out_of_order(b, where, k, iter->is_extents));
|
|
|
|
for_each_bset(b, t) {
|
|
if (where >= btree_bkey_first(b, t) ||
|
|
where < btree_bkey_last(b, t))
|
|
continue;
|
|
|
|
k = bch2_btree_node_iter_bset_pos(iter, b, t);
|
|
|
|
if (k == btree_bkey_last(b, t))
|
|
k = bch2_bkey_prev_all(b, t, k);
|
|
|
|
while (bkey_cmp_left_packed_byval(b, k, bkey_start_pos(&uw)) > 0 &&
|
|
(prev = bch2_bkey_prev_all(b, t, k)))
|
|
k = prev;
|
|
|
|
for (;
|
|
k != btree_bkey_last(b, t);
|
|
k = bkey_next(k)) {
|
|
uk = bkey_unpack_key(b, k);
|
|
|
|
if (iter->is_extents) {
|
|
BUG_ON(!(bkey_cmp(uw.p, bkey_start_pos(&uk)) <= 0 ||
|
|
bkey_cmp(uk.p, bkey_start_pos(&uw)) <= 0));
|
|
} else {
|
|
BUG_ON(!bkey_cmp(uw.p, uk.p) &&
|
|
!bkey_deleted(&uk));
|
|
}
|
|
|
|
if (bkey_cmp(uw.p, bkey_start_pos(&uk)) <= 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
|
|
struct btree *b,
|
|
struct bkey_packed *k) {}
|
|
|
|
#endif
|
|
|
|
/* Auxiliary search trees */
|
|
|
|
#define BFLOAT_FAILED_UNPACKED (U8_MAX - 0)
|
|
#define BFLOAT_FAILED_PREV (U8_MAX - 1)
|
|
#define BFLOAT_FAILED_OVERFLOW (U8_MAX - 2)
|
|
#define BFLOAT_FAILED (U8_MAX - 2)
|
|
|
|
#define KEY_WORDS BITS_TO_LONGS(1 << BKEY_EXPONENT_BITS)
|
|
|
|
struct bkey_float {
|
|
u8 exponent;
|
|
u8 key_offset;
|
|
union {
|
|
u32 mantissa32;
|
|
struct {
|
|
u16 mantissa16;
|
|
u16 _pad;
|
|
};
|
|
};
|
|
} __packed;
|
|
|
|
#define BFLOAT_32BIT_NR 32U
|
|
|
|
static unsigned bkey_float_byte_offset(unsigned idx)
|
|
{
|
|
int d = (idx - BFLOAT_32BIT_NR) << 1;
|
|
|
|
d &= ~(d >> 31);
|
|
|
|
return idx * 6 - d;
|
|
}
|
|
|
|
struct ro_aux_tree {
|
|
struct bkey_float _d[0];
|
|
};
|
|
|
|
struct rw_aux_tree {
|
|
u16 offset;
|
|
struct bpos k;
|
|
};
|
|
|
|
/*
|
|
* BSET_CACHELINE was originally intended to match the hardware cacheline size -
|
|
* it used to be 64, but I realized the lookup code would touch slightly less
|
|
* memory if it was 128.
|
|
*
|
|
* It definites the number of bytes (in struct bset) per struct bkey_float in
|
|
* the auxiliar search tree - when we're done searching the bset_float tree we
|
|
* have this many bytes left that we do a linear search over.
|
|
*
|
|
* Since (after level 5) every level of the bset_tree is on a new cacheline,
|
|
* we're touching one fewer cacheline in the bset tree in exchange for one more
|
|
* cacheline in the linear search - but the linear search might stop before it
|
|
* gets to the second cacheline.
|
|
*/
|
|
|
|
#define BSET_CACHELINE 128
|
|
|
|
/* Space required for the btree node keys */
|
|
static inline size_t btree_keys_bytes(struct btree *b)
|
|
{
|
|
return PAGE_SIZE << b->page_order;
|
|
}
|
|
|
|
static inline size_t btree_keys_cachelines(struct btree *b)
|
|
{
|
|
return btree_keys_bytes(b) / BSET_CACHELINE;
|
|
}
|
|
|
|
static inline size_t btree_aux_data_bytes(struct btree *b)
|
|
{
|
|
return btree_keys_cachelines(b) * 8;
|
|
}
|
|
|
|
static inline size_t btree_aux_data_u64s(struct btree *b)
|
|
{
|
|
return btree_aux_data_bytes(b) / sizeof(u64);
|
|
}
|
|
|
|
static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
|
|
{
|
|
BUG_ON(t->aux_data_offset == U16_MAX);
|
|
|
|
switch (bset_aux_tree_type(t)) {
|
|
case BSET_NO_AUX_TREE:
|
|
return t->aux_data_offset;
|
|
case BSET_RO_AUX_TREE:
|
|
return t->aux_data_offset +
|
|
DIV_ROUND_UP(bkey_float_byte_offset(t->size) +
|
|
sizeof(u8) * t->size, 8);
|
|
case BSET_RW_AUX_TREE:
|
|
return t->aux_data_offset +
|
|
DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static unsigned bset_aux_tree_buf_start(const struct btree *b,
|
|
const struct bset_tree *t)
|
|
{
|
|
return t == b->set
|
|
? DIV_ROUND_UP(b->unpack_fn_len, 8)
|
|
: bset_aux_tree_buf_end(t - 1);
|
|
}
|
|
|
|
static void *__aux_tree_base(const struct btree *b,
|
|
const struct bset_tree *t)
|
|
{
|
|
return b->aux_data + t->aux_data_offset * 8;
|
|
}
|
|
|
|
static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
|
|
const struct bset_tree *t)
|
|
{
|
|
EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
|
|
|
|
return __aux_tree_base(b, t);
|
|
}
|
|
|
|
static u8 *ro_aux_tree_prev(const struct btree *b,
|
|
const struct bset_tree *t)
|
|
{
|
|
EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
|
|
|
|
return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size);
|
|
}
|
|
|
|
static struct bkey_float *bkey_float_get(struct ro_aux_tree *b,
|
|
unsigned idx)
|
|
{
|
|
return (void *) b + bkey_float_byte_offset(idx);
|
|
}
|
|
|
|
static struct bkey_float *bkey_float(const struct btree *b,
|
|
const struct bset_tree *t,
|
|
unsigned idx)
|
|
{
|
|
return bkey_float_get(ro_aux_tree_base(b, t), idx);
|
|
}
|
|
|
|
static void bset_aux_tree_verify(struct btree *b)
|
|
{
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
struct bset_tree *t;
|
|
|
|
for_each_bset(b, t) {
|
|
if (t->aux_data_offset == U16_MAX)
|
|
continue;
|
|
|
|
BUG_ON(t != b->set &&
|
|
t[-1].aux_data_offset == U16_MAX);
|
|
|
|
BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
|
|
BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
|
|
BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Memory allocation */
|
|
|
|
void bch2_btree_keys_free(struct btree *b)
|
|
{
|
|
kvfree(b->aux_data);
|
|
b->aux_data = NULL;
|
|
}
|
|
|
|
int bch2_btree_keys_alloc(struct btree *b, unsigned page_order, gfp_t gfp)
|
|
{
|
|
b->page_order = page_order;
|
|
b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
|
|
if (!b->aux_data)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_btree_keys_init(struct btree *b, bool *expensive_debug_checks)
|
|
{
|
|
unsigned i;
|
|
|
|
b->nsets = 0;
|
|
memset(&b->nr, 0, sizeof(b->nr));
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
b->expensive_debug_checks = expensive_debug_checks;
|
|
#endif
|
|
for (i = 0; i < MAX_BSETS; i++)
|
|
b->set[i].data_offset = U16_MAX;
|
|
|
|
bch2_bset_set_no_aux_tree(b, b->set);
|
|
}
|
|
|
|
/* Binary tree stuff for auxiliary search trees */
|
|
|
|
/*
|
|
* Cacheline/offset <-> bkey pointer arithmetic:
|
|
*
|
|
* t->tree is a binary search tree in an array; each node corresponds to a key
|
|
* in one cacheline in t->set (BSET_CACHELINE bytes).
|
|
*
|
|
* This means we don't have to store the full index of the key that a node in
|
|
* the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
|
|
* then bkey_float->m gives us the offset within that cacheline, in units of 8
|
|
* bytes.
|
|
*
|
|
* cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
|
|
* make this work.
|
|
*
|
|
* To construct the bfloat for an arbitrary key we need to know what the key
|
|
* immediately preceding it is: we have to check if the two keys differ in the
|
|
* bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
|
|
* of the previous key so we can walk backwards to it from t->tree[j]'s key.
|
|
*/
|
|
|
|
static inline void *bset_cacheline(const struct btree *b,
|
|
const struct bset_tree *t,
|
|
unsigned cacheline)
|
|
{
|
|
return (void *) round_down((unsigned long) btree_bkey_first(b, t),
|
|
L1_CACHE_BYTES) +
|
|
cacheline * BSET_CACHELINE;
|
|
}
|
|
|
|
static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
|
|
const struct bset_tree *t,
|
|
unsigned cacheline,
|
|
unsigned offset)
|
|
{
|
|
return bset_cacheline(b, t, cacheline) + offset * 8;
|
|
}
|
|
|
|
static unsigned bkey_to_cacheline(const struct btree *b,
|
|
const struct bset_tree *t,
|
|
const struct bkey_packed *k)
|
|
{
|
|
return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
|
|
}
|
|
|
|
static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
|
|
const struct bset_tree *t,
|
|
unsigned cacheline,
|
|
const struct bkey_packed *k)
|
|
{
|
|
return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
|
|
}
|
|
|
|
static unsigned bkey_to_cacheline_offset(const struct btree *b,
|
|
const struct bset_tree *t,
|
|
unsigned cacheline,
|
|
const struct bkey_packed *k)
|
|
{
|
|
size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
|
|
|
|
EBUG_ON(m > U8_MAX);
|
|
return m;
|
|
}
|
|
|
|
static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
|
|
const struct bset_tree *t,
|
|
unsigned j)
|
|
{
|
|
return cacheline_to_bkey(b, t,
|
|
__eytzinger1_to_inorder(j, t->size, t->extra),
|
|
bkey_float(b, t, j)->key_offset);
|
|
}
|
|
|
|
static struct bkey_packed *tree_to_prev_bkey(const struct btree *b,
|
|
const struct bset_tree *t,
|
|
unsigned j)
|
|
{
|
|
unsigned prev_u64s = ro_aux_tree_prev(b, t)[j];
|
|
|
|
return (void *) (tree_to_bkey(b, t, j)->_data - prev_u64s);
|
|
}
|
|
|
|
static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
|
|
const struct bset_tree *t)
|
|
{
|
|
EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
|
|
|
|
return __aux_tree_base(b, t);
|
|
}
|
|
|
|
/*
|
|
* For the write set - the one we're currently inserting keys into - we don't
|
|
* maintain a full search tree, we just keep a simple lookup table in t->prev.
|
|
*/
|
|
static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
|
|
struct bset_tree *t,
|
|
unsigned j)
|
|
{
|
|
return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
|
|
}
|
|
|
|
static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
|
|
unsigned j, struct bkey_packed *k)
|
|
{
|
|
EBUG_ON(k >= btree_bkey_last(b, t));
|
|
|
|
rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
|
|
.offset = __btree_node_key_to_offset(b, k),
|
|
.k = bkey_unpack_pos(b, k),
|
|
};
|
|
}
|
|
|
|
static void bch2_bset_verify_rw_aux_tree(struct btree *b,
|
|
struct bset_tree *t)
|
|
{
|
|
struct bkey_packed *k = btree_bkey_first(b, t);
|
|
unsigned j = 0;
|
|
|
|
if (!btree_keys_expensive_checks(b))
|
|
return;
|
|
|
|
BUG_ON(bset_has_ro_aux_tree(t));
|
|
|
|
if (!bset_has_rw_aux_tree(t))
|
|
return;
|
|
|
|
BUG_ON(t->size < 1);
|
|
BUG_ON(rw_aux_to_bkey(b, t, j) != k);
|
|
|
|
goto start;
|
|
while (1) {
|
|
if (rw_aux_to_bkey(b, t, j) == k) {
|
|
BUG_ON(bkey_cmp(rw_aux_tree(b, t)[j].k,
|
|
bkey_unpack_pos(b, k)));
|
|
start:
|
|
if (++j == t->size)
|
|
break;
|
|
|
|
BUG_ON(rw_aux_tree(b, t)[j].offset <=
|
|
rw_aux_tree(b, t)[j - 1].offset);
|
|
}
|
|
|
|
k = bkey_next(k);
|
|
BUG_ON(k >= btree_bkey_last(b, t));
|
|
}
|
|
}
|
|
|
|
/* returns idx of first entry >= offset: */
|
|
static unsigned rw_aux_tree_bsearch(struct btree *b,
|
|
struct bset_tree *t,
|
|
unsigned offset)
|
|
{
|
|
unsigned l = 0, r = t->size;
|
|
|
|
EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
|
|
|
|
while (l < r) {
|
|
unsigned m = (l + r) >> 1;
|
|
|
|
if (rw_aux_tree(b, t)[m].offset < offset)
|
|
l = m + 1;
|
|
else
|
|
r = m;
|
|
}
|
|
|
|
EBUG_ON(l < t->size &&
|
|
rw_aux_tree(b, t)[l].offset < offset);
|
|
EBUG_ON(l &&
|
|
rw_aux_tree(b, t)[l - 1].offset >= offset);
|
|
|
|
EBUG_ON(l > r);
|
|
EBUG_ON(l > t->size);
|
|
|
|
return l;
|
|
}
|
|
|
|
static inline unsigned bfloat_mantissa(const struct bkey_float *f,
|
|
unsigned idx)
|
|
{
|
|
return idx < BFLOAT_32BIT_NR ? f->mantissa32 : f->mantissa16;
|
|
}
|
|
|
|
static inline void bfloat_mantissa_set(struct bkey_float *f,
|
|
unsigned idx, unsigned mantissa)
|
|
{
|
|
if (idx < BFLOAT_32BIT_NR)
|
|
f->mantissa32 = mantissa;
|
|
else
|
|
f->mantissa16 = mantissa;
|
|
}
|
|
|
|
static inline unsigned bkey_mantissa(const struct bkey_packed *k,
|
|
const struct bkey_float *f,
|
|
unsigned idx)
|
|
{
|
|
u64 v;
|
|
|
|
EBUG_ON(!bkey_packed(k));
|
|
|
|
v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
|
|
|
|
/*
|
|
* In little endian, we're shifting off low bits (and then the bits we
|
|
* want are at the low end), in big endian we're shifting off high bits
|
|
* (and then the bits we want are at the high end, so we shift them
|
|
* back down):
|
|
*/
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
v >>= f->exponent & 7;
|
|
#else
|
|
v >>= 64 - (f->exponent & 7) - (idx < BFLOAT_32BIT_NR ? 32 : 16);
|
|
#endif
|
|
return idx < BFLOAT_32BIT_NR ? (u32) v : (u16) v;
|
|
}
|
|
|
|
static void make_bfloat(struct btree *b, struct bset_tree *t,
|
|
unsigned j,
|
|
struct bkey_packed *min_key,
|
|
struct bkey_packed *max_key)
|
|
{
|
|
struct bkey_float *f = bkey_float(b, t, j);
|
|
struct bkey_packed *m = tree_to_bkey(b, t, j);
|
|
struct bkey_packed *p = tree_to_prev_bkey(b, t, j);
|
|
struct bkey_packed *l, *r;
|
|
unsigned bits = j < BFLOAT_32BIT_NR ? 32 : 16;
|
|
unsigned mantissa;
|
|
int shift, exponent, high_bit;
|
|
|
|
EBUG_ON(bkey_next(p) != m);
|
|
|
|
if (is_power_of_2(j)) {
|
|
l = min_key;
|
|
|
|
if (!l->u64s) {
|
|
if (!bkey_pack_pos(l, b->data->min_key, b)) {
|
|
struct bkey_i tmp;
|
|
|
|
bkey_init(&tmp.k);
|
|
tmp.k.p = b->data->min_key;
|
|
bkey_copy(l, &tmp);
|
|
}
|
|
}
|
|
} else {
|
|
l = tree_to_prev_bkey(b, t, j >> ffs(j));
|
|
|
|
EBUG_ON(m < l);
|
|
}
|
|
|
|
if (is_power_of_2(j + 1)) {
|
|
r = max_key;
|
|
|
|
if (!r->u64s) {
|
|
if (!bkey_pack_pos(r, t->max_key, b)) {
|
|
struct bkey_i tmp;
|
|
|
|
bkey_init(&tmp.k);
|
|
tmp.k.p = t->max_key;
|
|
bkey_copy(r, &tmp);
|
|
}
|
|
}
|
|
} else {
|
|
r = tree_to_bkey(b, t, j >> (ffz(j) + 1));
|
|
|
|
EBUG_ON(m > r);
|
|
}
|
|
|
|
/*
|
|
* for failed bfloats, the lookup code falls back to comparing against
|
|
* the original key.
|
|
*/
|
|
|
|
if (!bkey_packed(l) || !bkey_packed(r) ||
|
|
!bkey_packed(p) || !bkey_packed(m) ||
|
|
!b->nr_key_bits) {
|
|
f->exponent = BFLOAT_FAILED_UNPACKED;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The greatest differing bit of l and r is the first bit we must
|
|
* include in the bfloat mantissa we're creating in order to do
|
|
* comparisons - that bit always becomes the high bit of
|
|
* bfloat->mantissa, and thus the exponent we're calculating here is
|
|
* the position of what will become the low bit in bfloat->mantissa:
|
|
*
|
|
* Note that this may be negative - we may be running off the low end
|
|
* of the key: we handle this later:
|
|
*/
|
|
high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
|
|
min_t(unsigned, bits, b->nr_key_bits) - 1);
|
|
exponent = high_bit - (bits - 1);
|
|
|
|
/*
|
|
* Then we calculate the actual shift value, from the start of the key
|
|
* (k->_data), to get the key bits starting at exponent:
|
|
*/
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
|
|
|
|
EBUG_ON(shift + bits > b->format.key_u64s * 64);
|
|
#else
|
|
shift = high_bit_offset +
|
|
b->nr_key_bits -
|
|
exponent -
|
|
bits;
|
|
|
|
EBUG_ON(shift < KEY_PACKED_BITS_START);
|
|
#endif
|
|
EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
|
|
|
|
f->exponent = shift;
|
|
mantissa = bkey_mantissa(m, f, j);
|
|
|
|
/*
|
|
* If we've got garbage bits, set them to all 1s - it's legal for the
|
|
* bfloat to compare larger than the original key, but not smaller:
|
|
*/
|
|
if (exponent < 0)
|
|
mantissa |= ~(~0U << -exponent);
|
|
|
|
bfloat_mantissa_set(f, j, mantissa);
|
|
|
|
/*
|
|
* The bfloat must be able to tell its key apart from the previous key -
|
|
* if its key and the previous key don't differ in the required bits,
|
|
* flag as failed - unless the keys are actually equal, in which case
|
|
* we aren't required to return a specific one:
|
|
*/
|
|
if (exponent > 0 &&
|
|
bfloat_mantissa(f, j) == bkey_mantissa(p, f, j) &&
|
|
bkey_cmp_packed(b, p, m)) {
|
|
f->exponent = BFLOAT_FAILED_PREV;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* f->mantissa must compare >= the original key - for transitivity with
|
|
* the comparison in bset_search_tree. If we're dropping set bits,
|
|
* increment it:
|
|
*/
|
|
if (exponent > (int) bch2_bkey_ffs(b, m)) {
|
|
if (j < BFLOAT_32BIT_NR
|
|
? f->mantissa32 == U32_MAX
|
|
: f->mantissa16 == U16_MAX)
|
|
f->exponent = BFLOAT_FAILED_OVERFLOW;
|
|
|
|
if (j < BFLOAT_32BIT_NR)
|
|
f->mantissa32++;
|
|
else
|
|
f->mantissa16++;
|
|
}
|
|
}
|
|
|
|
/* bytes remaining - only valid for last bset: */
|
|
static unsigned __bset_tree_capacity(struct btree *b, struct bset_tree *t)
|
|
{
|
|
bset_aux_tree_verify(b);
|
|
|
|
return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
|
|
}
|
|
|
|
static unsigned bset_ro_tree_capacity(struct btree *b, struct bset_tree *t)
|
|
{
|
|
unsigned bytes = __bset_tree_capacity(b, t);
|
|
|
|
if (bytes < 7 * BFLOAT_32BIT_NR)
|
|
return bytes / 7;
|
|
|
|
bytes -= 7 * BFLOAT_32BIT_NR;
|
|
|
|
return BFLOAT_32BIT_NR + bytes / 5;
|
|
}
|
|
|
|
static unsigned bset_rw_tree_capacity(struct btree *b, struct bset_tree *t)
|
|
{
|
|
return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
|
|
}
|
|
|
|
static void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
|
|
{
|
|
struct bkey_packed *k;
|
|
|
|
t->size = 1;
|
|
t->extra = BSET_RW_AUX_TREE_VAL;
|
|
rw_aux_tree(b, t)[0].offset =
|
|
__btree_node_key_to_offset(b, btree_bkey_first(b, t));
|
|
|
|
for (k = btree_bkey_first(b, t);
|
|
k != btree_bkey_last(b, t);
|
|
k = bkey_next(k)) {
|
|
if (t->size == bset_rw_tree_capacity(b, t))
|
|
break;
|
|
|
|
if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
|
|
L1_CACHE_BYTES)
|
|
rw_aux_tree_set(b, t, t->size++, k);
|
|
}
|
|
}
|
|
|
|
static void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
|
|
{
|
|
struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t);
|
|
struct bkey_packed min_key, max_key;
|
|
unsigned j, cacheline = 1;
|
|
|
|
/* signal to make_bfloat() that they're uninitialized: */
|
|
min_key.u64s = max_key.u64s = 0;
|
|
|
|
t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
|
|
bset_ro_tree_capacity(b, t));
|
|
retry:
|
|
if (t->size < 2) {
|
|
t->size = 0;
|
|
t->extra = BSET_NO_AUX_TREE_VAL;
|
|
return;
|
|
}
|
|
|
|
t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
|
|
|
|
/* First we figure out where the first key in each cacheline is */
|
|
eytzinger1_for_each(j, t->size) {
|
|
while (bkey_to_cacheline(b, t, k) < cacheline)
|
|
prev = k, k = bkey_next(k);
|
|
|
|
if (k >= btree_bkey_last(b, t)) {
|
|
/* XXX: this path sucks */
|
|
t->size--;
|
|
goto retry;
|
|
}
|
|
|
|
ro_aux_tree_prev(b, t)[j] = prev->u64s;
|
|
bkey_float(b, t, j)->key_offset =
|
|
bkey_to_cacheline_offset(b, t, cacheline++, k);
|
|
|
|
EBUG_ON(tree_to_prev_bkey(b, t, j) != prev);
|
|
EBUG_ON(tree_to_bkey(b, t, j) != k);
|
|
}
|
|
|
|
while (bkey_next(k) != btree_bkey_last(b, t))
|
|
k = bkey_next(k);
|
|
|
|
t->max_key = bkey_unpack_pos(b, k);
|
|
|
|
/* Then we build the tree */
|
|
eytzinger1_for_each(j, t->size)
|
|
make_bfloat(b, t, j, &min_key, &max_key);
|
|
}
|
|
|
|
static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
|
|
{
|
|
struct bset_tree *i;
|
|
|
|
for (i = b->set; i != t; i++)
|
|
BUG_ON(bset_has_rw_aux_tree(i));
|
|
|
|
bch2_bset_set_no_aux_tree(b, t);
|
|
|
|
/* round up to next cacheline: */
|
|
t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
|
|
SMP_CACHE_BYTES / sizeof(u64));
|
|
|
|
bset_aux_tree_verify(b);
|
|
}
|
|
|
|
void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
|
|
bool writeable)
|
|
{
|
|
if (writeable
|
|
? bset_has_rw_aux_tree(t)
|
|
: bset_has_ro_aux_tree(t))
|
|
return;
|
|
|
|
bset_alloc_tree(b, t);
|
|
|
|
if (!__bset_tree_capacity(b, t))
|
|
return;
|
|
|
|
if (writeable)
|
|
__build_rw_aux_tree(b, t);
|
|
else
|
|
__build_ro_aux_tree(b, t);
|
|
|
|
bset_aux_tree_verify(b);
|
|
}
|
|
|
|
void bch2_bset_init_first(struct btree *b, struct bset *i)
|
|
{
|
|
struct bset_tree *t;
|
|
|
|
BUG_ON(b->nsets);
|
|
|
|
memset(i, 0, sizeof(*i));
|
|
get_random_bytes(&i->seq, sizeof(i->seq));
|
|
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
|
|
|
|
t = &b->set[b->nsets++];
|
|
set_btree_bset(b, t, i);
|
|
}
|
|
|
|
void bch2_bset_init_next(struct bch_fs *c, struct btree *b,
|
|
struct btree_node_entry *bne)
|
|
{
|
|
struct bset *i = &bne->keys;
|
|
struct bset_tree *t;
|
|
|
|
BUG_ON(bset_byte_offset(b, bne) >= btree_bytes(c));
|
|
BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
|
|
BUG_ON(b->nsets >= MAX_BSETS);
|
|
|
|
memset(i, 0, sizeof(*i));
|
|
i->seq = btree_bset_first(b)->seq;
|
|
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
|
|
|
|
t = &b->set[b->nsets++];
|
|
set_btree_bset(b, t, i);
|
|
}
|
|
|
|
/*
|
|
* find _some_ key in the same bset as @k that precedes @k - not necessarily the
|
|
* immediate predecessor:
|
|
*/
|
|
static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
|
|
struct bkey_packed *k)
|
|
{
|
|
struct bkey_packed *p;
|
|
unsigned offset;
|
|
int j;
|
|
|
|
EBUG_ON(k < btree_bkey_first(b, t) ||
|
|
k > btree_bkey_last(b, t));
|
|
|
|
if (k == btree_bkey_first(b, t))
|
|
return NULL;
|
|
|
|
switch (bset_aux_tree_type(t)) {
|
|
case BSET_NO_AUX_TREE:
|
|
p = btree_bkey_first(b, t);
|
|
break;
|
|
case BSET_RO_AUX_TREE:
|
|
j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
|
|
|
|
do {
|
|
p = j ? tree_to_bkey(b, t,
|
|
__inorder_to_eytzinger1(j--,
|
|
t->size, t->extra))
|
|
: btree_bkey_first(b, t);
|
|
} while (p >= k);
|
|
break;
|
|
case BSET_RW_AUX_TREE:
|
|
offset = __btree_node_key_to_offset(b, k);
|
|
j = rw_aux_tree_bsearch(b, t, offset);
|
|
p = j ? rw_aux_to_bkey(b, t, j - 1)
|
|
: btree_bkey_first(b, t);
|
|
break;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
|
|
struct bset_tree *t,
|
|
struct bkey_packed *k,
|
|
unsigned min_key_type)
|
|
{
|
|
struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
|
|
|
|
while ((p = __bkey_prev(b, t, k)) && !ret) {
|
|
for (i = p; i != k; i = bkey_next(i))
|
|
if (i->type >= min_key_type)
|
|
ret = i;
|
|
|
|
k = p;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) {
|
|
BUG_ON(ret >= orig_k);
|
|
|
|
for (i = ret ? bkey_next(ret) : btree_bkey_first(b, t);
|
|
i != orig_k;
|
|
i = bkey_next(i))
|
|
BUG_ON(i->type >= min_key_type);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Insert */
|
|
|
|
static void rw_aux_tree_fix_invalidated_key(struct btree *b,
|
|
struct bset_tree *t,
|
|
struct bkey_packed *k)
|
|
{
|
|
unsigned offset = __btree_node_key_to_offset(b, k);
|
|
unsigned j = rw_aux_tree_bsearch(b, t, offset);
|
|
|
|
if (j < t->size &&
|
|
rw_aux_tree(b, t)[j].offset == offset)
|
|
rw_aux_tree_set(b, t, j, k);
|
|
|
|
bch2_bset_verify_rw_aux_tree(b, t);
|
|
}
|
|
|
|
static void ro_aux_tree_fix_invalidated_key(struct btree *b,
|
|
struct bset_tree *t,
|
|
struct bkey_packed *k)
|
|
{
|
|
struct bkey_packed min_key, max_key;
|
|
unsigned inorder, j;
|
|
|
|
EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
|
|
|
|
/* signal to make_bfloat() that they're uninitialized: */
|
|
min_key.u64s = max_key.u64s = 0;
|
|
|
|
if (bkey_next(k) == btree_bkey_last(b, t)) {
|
|
t->max_key = bkey_unpack_pos(b, k);
|
|
|
|
for (j = 1; j < t->size; j = j * 2 + 1)
|
|
make_bfloat(b, t, j, &min_key, &max_key);
|
|
}
|
|
|
|
inorder = bkey_to_cacheline(b, t, k);
|
|
|
|
if (inorder &&
|
|
inorder < t->size) {
|
|
j = __inorder_to_eytzinger1(inorder, t->size, t->extra);
|
|
|
|
if (k == tree_to_bkey(b, t, j)) {
|
|
/* Fix the node this key corresponds to */
|
|
make_bfloat(b, t, j, &min_key, &max_key);
|
|
|
|
/* Children for which this key is the right boundary */
|
|
for (j = eytzinger1_left_child(j);
|
|
j < t->size;
|
|
j = eytzinger1_right_child(j))
|
|
make_bfloat(b, t, j, &min_key, &max_key);
|
|
}
|
|
}
|
|
|
|
if (inorder + 1 < t->size) {
|
|
j = __inorder_to_eytzinger1(inorder + 1, t->size, t->extra);
|
|
|
|
if (k == tree_to_prev_bkey(b, t, j)) {
|
|
make_bfloat(b, t, j, &min_key, &max_key);
|
|
|
|
/* Children for which this key is the left boundary */
|
|
for (j = eytzinger1_right_child(j);
|
|
j < t->size;
|
|
j = eytzinger1_left_child(j))
|
|
make_bfloat(b, t, j, &min_key, &max_key);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bch2_bset_fix_invalidated_key() - given an existing key @k that has been
|
|
* modified, fix any auxiliary search tree by remaking all the nodes in the
|
|
* auxiliary search tree that @k corresponds to
|
|
*/
|
|
void bch2_bset_fix_invalidated_key(struct btree *b, struct bset_tree *t,
|
|
struct bkey_packed *k)
|
|
{
|
|
switch (bset_aux_tree_type(t)) {
|
|
case BSET_NO_AUX_TREE:
|
|
break;
|
|
case BSET_RO_AUX_TREE:
|
|
ro_aux_tree_fix_invalidated_key(b, t, k);
|
|
break;
|
|
case BSET_RW_AUX_TREE:
|
|
rw_aux_tree_fix_invalidated_key(b, t, k);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void bch2_bset_fix_lookup_table(struct btree *b,
|
|
struct bset_tree *t,
|
|
struct bkey_packed *_where,
|
|
unsigned clobber_u64s,
|
|
unsigned new_u64s)
|
|
{
|
|
int shift = new_u64s - clobber_u64s;
|
|
unsigned l, j, where = __btree_node_key_to_offset(b, _where);
|
|
|
|
EBUG_ON(bset_has_ro_aux_tree(t));
|
|
|
|
if (!bset_has_rw_aux_tree(t))
|
|
return;
|
|
|
|
l = rw_aux_tree_bsearch(b, t, where);
|
|
|
|
/* l is first >= than @where */
|
|
|
|
EBUG_ON(l < t->size && rw_aux_tree(b, t)[l].offset < where);
|
|
EBUG_ON(l && rw_aux_tree(b, t)[l - 1].offset >= where);
|
|
|
|
if (!l) /* never delete first entry */
|
|
l++;
|
|
else if (l < t->size &&
|
|
where < t->end_offset &&
|
|
rw_aux_tree(b, t)[l].offset == where)
|
|
rw_aux_tree_set(b, t, l++, _where);
|
|
|
|
/* l now > where */
|
|
|
|
for (j = l;
|
|
j < t->size &&
|
|
rw_aux_tree(b, t)[j].offset < where + clobber_u64s;
|
|
j++)
|
|
;
|
|
|
|
if (j < t->size &&
|
|
rw_aux_tree(b, t)[j].offset + shift ==
|
|
rw_aux_tree(b, t)[l - 1].offset)
|
|
j++;
|
|
|
|
memmove(&rw_aux_tree(b, t)[l],
|
|
&rw_aux_tree(b, t)[j],
|
|
(void *) &rw_aux_tree(b, t)[t->size] -
|
|
(void *) &rw_aux_tree(b, t)[j]);
|
|
t->size -= j - l;
|
|
|
|
for (j = l; j < t->size; j++)
|
|
rw_aux_tree(b, t)[j].offset += shift;
|
|
|
|
EBUG_ON(l < t->size &&
|
|
rw_aux_tree(b, t)[l].offset ==
|
|
rw_aux_tree(b, t)[l - 1].offset);
|
|
|
|
if (t->size < bset_rw_tree_capacity(b, t) &&
|
|
(l < t->size
|
|
? rw_aux_tree(b, t)[l].offset
|
|
: t->end_offset) -
|
|
rw_aux_tree(b, t)[l - 1].offset >
|
|
L1_CACHE_BYTES / sizeof(u64)) {
|
|
struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1);
|
|
struct bkey_packed *end = l < t->size
|
|
? rw_aux_to_bkey(b, t, l)
|
|
: btree_bkey_last(b, t);
|
|
struct bkey_packed *k = start;
|
|
|
|
while (1) {
|
|
k = bkey_next(k);
|
|
if (k == end)
|
|
break;
|
|
|
|
if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
|
|
memmove(&rw_aux_tree(b, t)[l + 1],
|
|
&rw_aux_tree(b, t)[l],
|
|
(void *) &rw_aux_tree(b, t)[t->size] -
|
|
(void *) &rw_aux_tree(b, t)[l]);
|
|
t->size++;
|
|
rw_aux_tree_set(b, t, l, k);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bch2_bset_verify_rw_aux_tree(b, t);
|
|
bset_aux_tree_verify(b);
|
|
}
|
|
|
|
void bch2_bset_insert(struct btree *b,
|
|
struct btree_node_iter *iter,
|
|
struct bkey_packed *where,
|
|
struct bkey_i *insert,
|
|
unsigned clobber_u64s)
|
|
{
|
|
struct bkey_format *f = &b->format;
|
|
struct bset_tree *t = bset_tree_last(b);
|
|
struct bkey_packed packed, *src = bkey_to_packed(insert);
|
|
|
|
bch2_bset_verify_rw_aux_tree(b, t);
|
|
|
|
if (bch2_bkey_pack_key(&packed, &insert->k, f))
|
|
src = &packed;
|
|
|
|
if (!bkey_whiteout(&insert->k))
|
|
btree_keys_account_key_add(&b->nr, t - b->set, src);
|
|
|
|
if (src->u64s != clobber_u64s) {
|
|
u64 *src_p = where->_data + clobber_u64s;
|
|
u64 *dst_p = where->_data + src->u64s;
|
|
|
|
EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
|
|
(int) clobber_u64s - src->u64s);
|
|
|
|
memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
|
|
le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
|
|
set_btree_bset_end(b, t);
|
|
}
|
|
|
|
memcpy_u64s(where, src,
|
|
bkeyp_key_u64s(f, src));
|
|
memcpy_u64s(bkeyp_val(f, where), &insert->v,
|
|
bkeyp_val_u64s(f, src));
|
|
|
|
bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
|
|
|
|
bch2_verify_key_order(b, iter, where);
|
|
bch2_verify_btree_nr_keys(b);
|
|
}
|
|
|
|
void bch2_bset_delete(struct btree *b,
|
|
struct bkey_packed *where,
|
|
unsigned clobber_u64s)
|
|
{
|
|
struct bset_tree *t = bset_tree_last(b);
|
|
u64 *src_p = where->_data + clobber_u64s;
|
|
u64 *dst_p = where->_data;
|
|
|
|
bch2_bset_verify_rw_aux_tree(b, t);
|
|
|
|
EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
|
|
|
|
memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
|
|
le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
|
|
set_btree_bset_end(b, t);
|
|
|
|
bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
|
|
}
|
|
|
|
/* Lookup */
|
|
|
|
__flatten
|
|
static struct bkey_packed *bset_search_write_set(const struct btree *b,
|
|
struct bset_tree *t,
|
|
struct bpos search,
|
|
const struct bkey_packed *packed_search)
|
|
{
|
|
unsigned l = 0, r = t->size;
|
|
|
|
while (l + 1 != r) {
|
|
unsigned m = (l + r) >> 1;
|
|
|
|
if (bkey_cmp(rw_aux_tree(b, t)[m].k, search) < 0)
|
|
l = m;
|
|
else
|
|
r = m;
|
|
}
|
|
|
|
return rw_aux_to_bkey(b, t, l);
|
|
}
|
|
|
|
noinline
|
|
static int bset_search_tree_slowpath(const struct btree *b,
|
|
struct bset_tree *t, struct bpos *search,
|
|
const struct bkey_packed *packed_search,
|
|
unsigned n)
|
|
{
|
|
return bkey_cmp_p_or_unp(b, tree_to_bkey(b, t, n),
|
|
packed_search, search) < 0;
|
|
}
|
|
|
|
__flatten
|
|
static struct bkey_packed *bset_search_tree(const struct btree *b,
|
|
struct bset_tree *t,
|
|
struct bpos search,
|
|
const struct bkey_packed *packed_search)
|
|
{
|
|
struct ro_aux_tree *base = ro_aux_tree_base(b, t);
|
|
struct bkey_float *f = bkey_float_get(base, 1);
|
|
void *p;
|
|
unsigned inorder, n = 1;
|
|
|
|
while (1) {
|
|
if (likely(n << 4 < t->size)) {
|
|
p = bkey_float_get(base, n << 4);
|
|
prefetch(p);
|
|
} else if (n << 3 < t->size) {
|
|
inorder = __eytzinger1_to_inorder(n, t->size, t->extra);
|
|
p = bset_cacheline(b, t, inorder);
|
|
#ifdef CONFIG_X86_64
|
|
asm(".intel_syntax noprefix;"
|
|
"prefetcht0 [%0 - 127 + 64 * 0];"
|
|
"prefetcht0 [%0 - 127 + 64 * 1];"
|
|
"prefetcht0 [%0 - 127 + 64 * 2];"
|
|
"prefetcht0 [%0 - 127 + 64 * 3];"
|
|
".att_syntax prefix;"
|
|
:
|
|
: "r" (p + 127));
|
|
#else
|
|
prefetch(p + L1_CACHE_BYTES * 0);
|
|
prefetch(p + L1_CACHE_BYTES * 1);
|
|
prefetch(p + L1_CACHE_BYTES * 2);
|
|
prefetch(p + L1_CACHE_BYTES * 3);
|
|
#endif
|
|
} else if (n >= t->size)
|
|
break;
|
|
|
|
f = bkey_float_get(base, n);
|
|
|
|
if (packed_search &&
|
|
likely(f->exponent < BFLOAT_FAILED))
|
|
n = n * 2 + (bfloat_mantissa(f, n) <
|
|
bkey_mantissa(packed_search, f, n));
|
|
else
|
|
n = n * 2 + bset_search_tree_slowpath(b, t,
|
|
&search, packed_search, n);
|
|
} while (n < t->size);
|
|
|
|
inorder = __eytzinger1_to_inorder(n >> 1, t->size, t->extra);
|
|
|
|
/*
|
|
* n would have been the node we recursed to - the low bit tells us if
|
|
* we recursed left or recursed right.
|
|
*/
|
|
if (n & 1) {
|
|
return cacheline_to_bkey(b, t, inorder, f->key_offset);
|
|
} else {
|
|
if (--inorder) {
|
|
n = eytzinger1_prev(n >> 1, t->size);
|
|
f = bkey_float_get(base, n);
|
|
return cacheline_to_bkey(b, t, inorder, f->key_offset);
|
|
} else
|
|
return btree_bkey_first(b, t);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the first key greater than or equal to @search
|
|
*/
|
|
__always_inline __flatten
|
|
static struct bkey_packed *bch2_bset_search(struct btree *b,
|
|
struct bset_tree *t,
|
|
struct bpos search,
|
|
struct bkey_packed *packed_search,
|
|
const struct bkey_packed *lossy_packed_search,
|
|
bool strictly_greater)
|
|
{
|
|
struct bkey_packed *m;
|
|
|
|
/*
|
|
* First, we search for a cacheline, then lastly we do a linear search
|
|
* within that cacheline.
|
|
*
|
|
* To search for the cacheline, there's three different possibilities:
|
|
* * The set is too small to have a search tree, so we just do a linear
|
|
* search over the whole set.
|
|
* * The set is the one we're currently inserting into; keeping a full
|
|
* auxiliary search tree up to date would be too expensive, so we
|
|
* use a much simpler lookup table to do a binary search -
|
|
* bset_search_write_set().
|
|
* * Or we use the auxiliary search tree we constructed earlier -
|
|
* bset_search_tree()
|
|
*/
|
|
|
|
switch (bset_aux_tree_type(t)) {
|
|
case BSET_NO_AUX_TREE:
|
|
m = btree_bkey_first(b, t);
|
|
break;
|
|
case BSET_RW_AUX_TREE:
|
|
m = bset_search_write_set(b, t, search, lossy_packed_search);
|
|
break;
|
|
case BSET_RO_AUX_TREE:
|
|
/*
|
|
* Each node in the auxiliary search tree covers a certain range
|
|
* of bits, and keys above and below the set it covers might
|
|
* differ outside those bits - so we have to special case the
|
|
* start and end - handle that here:
|
|
*/
|
|
|
|
if (bkey_cmp(search, t->max_key) > 0)
|
|
return btree_bkey_last(b, t);
|
|
|
|
m = bset_search_tree(b, t, search, lossy_packed_search);
|
|
break;
|
|
}
|
|
|
|
if (lossy_packed_search)
|
|
while (m != btree_bkey_last(b, t) &&
|
|
!btree_iter_pos_cmp_p_or_unp(b, search, lossy_packed_search,
|
|
m, strictly_greater))
|
|
m = bkey_next(m);
|
|
|
|
if (!packed_search)
|
|
while (m != btree_bkey_last(b, t) &&
|
|
!btree_iter_pos_cmp_packed(b, &search, m, strictly_greater))
|
|
m = bkey_next(m);
|
|
|
|
if (btree_keys_expensive_checks(b)) {
|
|
struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
|
|
|
|
BUG_ON(prev &&
|
|
btree_iter_pos_cmp_p_or_unp(b, search, packed_search,
|
|
prev, strictly_greater));
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
/* Btree node iterator */
|
|
|
|
void bch2_btree_node_iter_push(struct btree_node_iter *iter,
|
|
struct btree *b,
|
|
const struct bkey_packed *k,
|
|
const struct bkey_packed *end)
|
|
{
|
|
__bch2_btree_node_iter_push(iter, b, k, end);
|
|
bch2_btree_node_iter_sort(iter, b);
|
|
}
|
|
|
|
noinline __flatten __attribute__((cold))
|
|
static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
|
|
struct btree *b, struct bpos search,
|
|
bool strictly_greater, bool is_extents)
|
|
{
|
|
struct bset_tree *t;
|
|
|
|
trace_bkey_pack_pos_fail(&search);
|
|
|
|
for_each_bset(b, t)
|
|
__bch2_btree_node_iter_push(iter, b,
|
|
bch2_bset_search(b, t, search, NULL, NULL,
|
|
strictly_greater),
|
|
btree_bkey_last(b, t));
|
|
|
|
bch2_btree_node_iter_sort(iter, b);
|
|
}
|
|
|
|
/**
|
|
* bch_btree_node_iter_init - initialize a btree node iterator, starting from a
|
|
* given position
|
|
*
|
|
* Main entry point to the lookup code for individual btree nodes:
|
|
*
|
|
* NOTE:
|
|
*
|
|
* When you don't filter out deleted keys, btree nodes _do_ contain duplicate
|
|
* keys. This doesn't matter for most code, but it does matter for lookups.
|
|
*
|
|
* Some adjacent keys with a string of equal keys:
|
|
* i j k k k k l m
|
|
*
|
|
* If you search for k, the lookup code isn't guaranteed to return you any
|
|
* specific k. The lookup code is conceptually doing a binary search and
|
|
* iterating backwards is very expensive so if the pivot happens to land at the
|
|
* last k that's what you'll get.
|
|
*
|
|
* This works out ok, but it's something to be aware of:
|
|
*
|
|
* - For non extents, we guarantee that the live key comes last - see
|
|
* btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
|
|
* see will only be deleted keys you don't care about.
|
|
*
|
|
* - For extents, deleted keys sort last (see the comment at the top of this
|
|
* file). But when you're searching for extents, you actually want the first
|
|
* key strictly greater than your search key - an extent that compares equal
|
|
* to the search key is going to have 0 sectors after the search key.
|
|
*
|
|
* But this does mean that we can't just search for
|
|
* bkey_successor(start_of_range) to get the first extent that overlaps with
|
|
* the range we want - if we're unlucky and there's an extent that ends
|
|
* exactly where we searched, then there could be a deleted key at the same
|
|
* position and we'd get that when we search instead of the preceding extent
|
|
* we needed.
|
|
*
|
|
* So we've got to search for start_of_range, then after the lookup iterate
|
|
* past any extents that compare equal to the position we searched for.
|
|
*/
|
|
void bch2_btree_node_iter_init(struct btree_node_iter *iter,
|
|
struct btree *b, struct bpos search,
|
|
bool strictly_greater, bool is_extents)
|
|
{
|
|
struct bset_tree *t;
|
|
struct bkey_packed p, *packed_search = NULL;
|
|
|
|
EBUG_ON(bkey_cmp(search, b->data->min_key) < 0);
|
|
bset_aux_tree_verify(b);
|
|
|
|
__bch2_btree_node_iter_init(iter, is_extents);
|
|
|
|
switch (bch2_bkey_pack_pos_lossy(&p, search, b)) {
|
|
case BKEY_PACK_POS_EXACT:
|
|
packed_search = &p;
|
|
break;
|
|
case BKEY_PACK_POS_SMALLER:
|
|
packed_search = NULL;
|
|
break;
|
|
case BKEY_PACK_POS_FAIL:
|
|
btree_node_iter_init_pack_failed(iter, b, search,
|
|
strictly_greater, is_extents);
|
|
return;
|
|
}
|
|
|
|
for_each_bset(b, t)
|
|
__bch2_btree_node_iter_push(iter, b,
|
|
bch2_bset_search(b, t, search,
|
|
packed_search, &p,
|
|
strictly_greater),
|
|
btree_bkey_last(b, t));
|
|
|
|
bch2_btree_node_iter_sort(iter, b);
|
|
}
|
|
|
|
void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
|
|
struct btree *b,
|
|
bool is_extents)
|
|
{
|
|
struct bset_tree *t;
|
|
|
|
__bch2_btree_node_iter_init(iter, is_extents);
|
|
|
|
for_each_bset(b, t)
|
|
__bch2_btree_node_iter_push(iter, b,
|
|
btree_bkey_first(b, t),
|
|
btree_bkey_last(b, t));
|
|
bch2_btree_node_iter_sort(iter, b);
|
|
}
|
|
|
|
struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
|
|
struct btree *b,
|
|
struct bset_tree *t)
|
|
{
|
|
struct btree_node_iter_set *set;
|
|
|
|
btree_node_iter_for_each(iter, set)
|
|
if (set->end == t->end_offset)
|
|
return __btree_node_offset_to_key(b, set->k);
|
|
|
|
return btree_bkey_last(b, t);
|
|
}
|
|
|
|
static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
|
|
struct btree *b,
|
|
unsigned first)
|
|
{
|
|
bool ret;
|
|
|
|
if ((ret = (btree_node_iter_cmp(iter, b,
|
|
iter->data[first],
|
|
iter->data[first + 1]) > 0)))
|
|
swap(iter->data[first], iter->data[first + 1]);
|
|
return ret;
|
|
}
|
|
|
|
void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
|
|
struct btree *b)
|
|
{
|
|
/* unrolled bubble sort: */
|
|
|
|
if (!__btree_node_iter_set_end(iter, 2)) {
|
|
btree_node_iter_sort_two(iter, b, 0);
|
|
btree_node_iter_sort_two(iter, b, 1);
|
|
}
|
|
|
|
if (!__btree_node_iter_set_end(iter, 1))
|
|
btree_node_iter_sort_two(iter, b, 0);
|
|
}
|
|
|
|
void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
|
|
struct btree_node_iter_set *set)
|
|
{
|
|
struct btree_node_iter_set *last =
|
|
iter->data + ARRAY_SIZE(iter->data) - 1;
|
|
|
|
memmove(&set[0], &set[1], (void *) last - (void *) set);
|
|
*last = (struct btree_node_iter_set) { 0, 0 };
|
|
}
|
|
|
|
static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
|
|
struct btree *b)
|
|
{
|
|
iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
|
|
|
|
EBUG_ON(iter->data->k > iter->data->end);
|
|
|
|
if (unlikely(__btree_node_iter_set_end(iter, 0))) {
|
|
bch2_btree_node_iter_set_drop(iter, iter->data);
|
|
return;
|
|
}
|
|
|
|
if (__btree_node_iter_set_end(iter, 1))
|
|
return;
|
|
|
|
if (!btree_node_iter_sort_two(iter, b, 0))
|
|
return;
|
|
|
|
if (__btree_node_iter_set_end(iter, 2))
|
|
return;
|
|
|
|
btree_node_iter_sort_two(iter, b, 1);
|
|
}
|
|
|
|
/**
|
|
* bch_btree_node_iter_advance - advance @iter by one key
|
|
*
|
|
* Doesn't do debugchecks - for cases where (insert_fixup_extent()) a bset might
|
|
* momentarily have out of order extents.
|
|
*/
|
|
void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
|
|
struct btree *b)
|
|
{
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
struct bkey_packed *k = bch2_btree_node_iter_peek_all(iter, b);
|
|
|
|
__bch2_btree_node_iter_advance(iter, b);
|
|
bch2_btree_node_iter_next_check(iter, b, k);
|
|
#else
|
|
__bch2_btree_node_iter_advance(iter, b);
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
|
|
{
|
|
unsigned n = ARRAY_SIZE(iter->data);
|
|
|
|
while (n && __btree_node_iter_set_end(iter, n - 1))
|
|
--n;
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Expensive:
|
|
*/
|
|
struct bkey_packed *bch2_btree_node_iter_prev_filter(struct btree_node_iter *iter,
|
|
struct btree *b,
|
|
unsigned min_key_type)
|
|
{
|
|
struct bkey_packed *k, *prev = NULL;
|
|
struct bkey_packed *orig_pos = bch2_btree_node_iter_peek_all(iter, b);
|
|
struct btree_node_iter_set *set;
|
|
struct bset_tree *t;
|
|
unsigned end;
|
|
|
|
bch2_btree_node_iter_verify(iter, b);
|
|
|
|
for_each_bset(b, t) {
|
|
k = bch2_bkey_prev_filter(b, t,
|
|
bch2_btree_node_iter_bset_pos(iter, b, t),
|
|
min_key_type);
|
|
if (k &&
|
|
(!prev || __btree_node_iter_cmp(iter->is_extents, b,
|
|
k, prev) > 0)) {
|
|
prev = k;
|
|
end = t->end_offset;
|
|
}
|
|
}
|
|
|
|
if (!prev)
|
|
goto out;
|
|
|
|
/*
|
|
* We're manually memmoving instead of just calling sort() to ensure the
|
|
* prev we picked ends up in slot 0 - sort won't necessarily put it
|
|
* there because of duplicate deleted keys:
|
|
*/
|
|
btree_node_iter_for_each(iter, set)
|
|
if (set->end == end)
|
|
goto found;
|
|
|
|
BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
|
|
found:
|
|
BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
|
|
|
|
memmove(&iter->data[1],
|
|
&iter->data[0],
|
|
(void *) set - (void *) &iter->data[0]);
|
|
|
|
iter->data[0].k = __btree_node_key_to_offset(b, prev);
|
|
iter->data[0].end = end;
|
|
out:
|
|
if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) {
|
|
struct btree_node_iter iter2 = *iter;
|
|
|
|
if (prev)
|
|
bch2_btree_node_iter_advance(&iter2, b);
|
|
|
|
while ((k = bch2_btree_node_iter_peek_all(&iter2, b)) != orig_pos) {
|
|
BUG_ON(k->type >= min_key_type);
|
|
bch2_btree_node_iter_advance(&iter2, b);
|
|
}
|
|
}
|
|
|
|
return prev;
|
|
}
|
|
|
|
struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
|
|
struct btree *b,
|
|
struct bkey *u)
|
|
{
|
|
struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
|
|
|
|
return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
|
|
}
|
|
|
|
/* Mergesort */
|
|
|
|
void bch2_btree_keys_stats(struct btree *b, struct bset_stats *stats)
|
|
{
|
|
struct bset_tree *t;
|
|
|
|
for_each_bset(b, t) {
|
|
enum bset_aux_tree_type type = bset_aux_tree_type(t);
|
|
size_t j;
|
|
|
|
stats->sets[type].nr++;
|
|
stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
|
|
sizeof(u64);
|
|
|
|
if (bset_has_ro_aux_tree(t)) {
|
|
stats->floats += t->size - 1;
|
|
|
|
for (j = 1; j < t->size; j++)
|
|
switch (bkey_float(b, t, j)->exponent) {
|
|
case BFLOAT_FAILED_UNPACKED:
|
|
stats->failed_unpacked++;
|
|
break;
|
|
case BFLOAT_FAILED_PREV:
|
|
stats->failed_prev++;
|
|
break;
|
|
case BFLOAT_FAILED_OVERFLOW:
|
|
stats->failed_overflow++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int bch2_bkey_print_bfloat(struct btree *b, struct bkey_packed *k,
|
|
char *buf, size_t size)
|
|
{
|
|
struct bset_tree *t = bch2_bkey_to_bset(b, k);
|
|
struct bkey_packed *l, *r, *p;
|
|
struct bkey uk, up;
|
|
char buf1[200], buf2[200];
|
|
unsigned j;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
if (!bset_has_ro_aux_tree(t))
|
|
goto out;
|
|
|
|
j = __inorder_to_eytzinger1(bkey_to_cacheline(b, t, k), t->size, t->extra);
|
|
if (j &&
|
|
j < t->size &&
|
|
k == tree_to_bkey(b, t, j))
|
|
switch (bkey_float(b, t, j)->exponent) {
|
|
case BFLOAT_FAILED_UNPACKED:
|
|
uk = bkey_unpack_key(b, k);
|
|
return scnprintf(buf, size,
|
|
" failed unpacked at depth %u\n"
|
|
"\t%llu:%llu\n",
|
|
ilog2(j),
|
|
uk.p.inode, uk.p.offset);
|
|
case BFLOAT_FAILED_PREV:
|
|
p = tree_to_prev_bkey(b, t, j);
|
|
l = is_power_of_2(j)
|
|
? btree_bkey_first(b, t)
|
|
: tree_to_prev_bkey(b, t, j >> ffs(j));
|
|
r = is_power_of_2(j + 1)
|
|
? bch2_bkey_prev_all(b, t, btree_bkey_last(b, t))
|
|
: tree_to_bkey(b, t, j >> (ffz(j) + 1));
|
|
|
|
up = bkey_unpack_key(b, p);
|
|
uk = bkey_unpack_key(b, k);
|
|
bch2_to_binary(buf1, high_word(&b->format, p), b->nr_key_bits);
|
|
bch2_to_binary(buf2, high_word(&b->format, k), b->nr_key_bits);
|
|
|
|
return scnprintf(buf, size,
|
|
" failed prev at depth %u\n"
|
|
"\tkey starts at bit %u but first differing bit at %u\n"
|
|
"\t%llu:%llu\n"
|
|
"\t%llu:%llu\n"
|
|
"\t%s\n"
|
|
"\t%s\n",
|
|
ilog2(j),
|
|
bch2_bkey_greatest_differing_bit(b, l, r),
|
|
bch2_bkey_greatest_differing_bit(b, p, k),
|
|
uk.p.inode, uk.p.offset,
|
|
up.p.inode, up.p.offset,
|
|
buf1, buf2);
|
|
case BFLOAT_FAILED_OVERFLOW:
|
|
uk = bkey_unpack_key(b, k);
|
|
return scnprintf(buf, size,
|
|
" failed overflow at depth %u\n"
|
|
"\t%llu:%llu\n",
|
|
ilog2(j),
|
|
uk.p.inode, uk.p.offset);
|
|
}
|
|
out:
|
|
*buf = '\0';
|
|
return 0;
|
|
}
|