linux/drivers/gpu/drm/msm/msm_gpu_devfreq.c
Douglas Anderson 6694482a70 drm/msm: Avoid unclocked GMU register access in 6xx gpu_busy
From testing on sc7180-trogdor devices, reading the GMU registers
needs the GMU clocks to be enabled. Those clocks get turned on in
a6xx_gmu_resume(). Confusingly enough, that function is called as a
result of the runtime_pm of the GPU "struct device", not the GMU
"struct device". Unfortunately the current a6xx_gpu_busy() grabs a
reference to the GMU's "struct device".

The fact that we were grabbing the wrong reference was easily seen to
cause crashes that happen if we change the GPU's pm_runtime usage to
not use autosuspend. It's also believed to cause some long tail GPU
crashes even with autosuspend.

We could look at changing it so that we do pm_runtime_get_if_in_use()
on the GPU's "struct device", but then we run into a different
problem. pm_runtime_get_if_in_use() will return 0 for the GPU's
"struct device" the whole time when we're in the "autosuspend
delay". That is, when we drop the last reference to the GPU but we're
waiting a period before actually suspending then we'll think the GPU
is off. One reason that's bad is that if the GPU didn't actually turn
off then the cycle counter doesn't lose state and that throws off all
of our calculations.

Let's change the code to keep track of the suspend state of
devfreq. msm_devfreq_suspend() is always called before we actually
suspend the GPU and msm_devfreq_resume() after we resume it. This
means we can use the suspended state to know if we're powered or not.

NOTE: one might wonder when exactly our status function is called when
devfreq is supposed to be disabled. The stack crawl I captured was:
  msm_devfreq_get_dev_status
  devfreq_simple_ondemand_func
  devfreq_update_target
  qos_notifier_call
  qos_max_notifier_call
  blocking_notifier_call_chain
  pm_qos_update_target
  freq_qos_apply
  apply_constraint
  __dev_pm_qos_update_request
  dev_pm_qos_update_request
  msm_devfreq_idle_work

Fixes: eadf79286a4b ("drm/msm: Check for powered down HW in the devfreq callbacks")
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Rob Clark <robdclark@gmail.com>
Patchwork: https://patchwork.freedesktop.org/patch/489124/
Link: https://lore.kernel.org/r/20220610124639.v4.1.Ie846c5352bc307ee4248d7cab998ab3016b85d06@changeid
Signed-off-by: Rob Clark <robdclark@chromium.org>
2022-07-06 08:38:06 -07:00

376 lines
9.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#include "msm_gpu.h"
#include "msm_gpu_trace.h"
#include <linux/devfreq.h>
#include <linux/devfreq_cooling.h>
#include <linux/math64.h>
#include <linux/units.h>
/*
* Power Management:
*/
static int msm_devfreq_target(struct device *dev, unsigned long *freq,
u32 flags)
{
struct msm_gpu *gpu = dev_to_gpu(dev);
struct msm_gpu_devfreq *df = &gpu->devfreq;
struct dev_pm_opp *opp;
/*
* Note that devfreq_recommended_opp() can modify the freq
* to something that actually is in the opp table:
*/
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp))
return PTR_ERR(opp);
trace_msm_gpu_freq_change(dev_pm_opp_get_freq(opp));
if (gpu->funcs->gpu_set_freq) {
mutex_lock(&df->lock);
gpu->funcs->gpu_set_freq(gpu, opp, df->suspended);
mutex_unlock(&df->lock);
} else {
clk_set_rate(gpu->core_clk, *freq);
}
dev_pm_opp_put(opp);
return 0;
}
static unsigned long get_freq(struct msm_gpu *gpu)
{
if (gpu->funcs->gpu_get_freq)
return gpu->funcs->gpu_get_freq(gpu);
return clk_get_rate(gpu->core_clk);
}
static void get_raw_dev_status(struct msm_gpu *gpu,
struct devfreq_dev_status *status)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
u64 busy_cycles, busy_time;
unsigned long sample_rate;
ktime_t time;
mutex_lock(&df->lock);
status->current_frequency = get_freq(gpu);
time = ktime_get();
status->total_time = ktime_us_delta(time, df->time);
df->time = time;
if (df->suspended) {
mutex_unlock(&df->lock);
status->busy_time = 0;
return;
}
busy_cycles = gpu->funcs->gpu_busy(gpu, &sample_rate);
busy_time = busy_cycles - df->busy_cycles;
df->busy_cycles = busy_cycles;
mutex_unlock(&df->lock);
busy_time *= USEC_PER_SEC;
busy_time = div64_ul(busy_time, sample_rate);
if (WARN_ON(busy_time > ~0LU))
busy_time = ~0LU;
status->busy_time = busy_time;
}
static void update_average_dev_status(struct msm_gpu *gpu,
const struct devfreq_dev_status *raw)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
const u32 polling_ms = df->devfreq->profile->polling_ms;
const u32 max_history_ms = polling_ms * 11 / 10;
struct devfreq_dev_status *avg = &df->average_status;
u64 avg_freq;
/* simple_ondemand governor interacts poorly with gpu->clamp_to_idle.
* When we enforce the constraint on idle, it calls get_dev_status
* which would normally reset the stats. When we remove the
* constraint on active, it calls get_dev_status again where busy_time
* would be 0.
*
* To remedy this, we always return the average load over the past
* polling_ms.
*/
/* raw is longer than polling_ms or avg has no history */
if (div_u64(raw->total_time, USEC_PER_MSEC) >= polling_ms ||
!avg->total_time) {
*avg = *raw;
return;
}
/* Truncate the oldest history first.
*
* Because we keep the history with a single devfreq_dev_status,
* rather than a list of devfreq_dev_status, we have to assume freq
* and load are the same over avg->total_time. We can scale down
* avg->busy_time and avg->total_time by the same factor to drop
* history.
*/
if (div_u64(avg->total_time + raw->total_time, USEC_PER_MSEC) >=
max_history_ms) {
const u32 new_total_time = polling_ms * USEC_PER_MSEC -
raw->total_time;
avg->busy_time = div_u64(
mul_u32_u32(avg->busy_time, new_total_time),
avg->total_time);
avg->total_time = new_total_time;
}
/* compute the average freq over avg->total_time + raw->total_time */
avg_freq = mul_u32_u32(avg->current_frequency, avg->total_time);
avg_freq += mul_u32_u32(raw->current_frequency, raw->total_time);
do_div(avg_freq, avg->total_time + raw->total_time);
avg->current_frequency = avg_freq;
avg->busy_time += raw->busy_time;
avg->total_time += raw->total_time;
}
static int msm_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *status)
{
struct msm_gpu *gpu = dev_to_gpu(dev);
struct devfreq_dev_status raw;
get_raw_dev_status(gpu, &raw);
update_average_dev_status(gpu, &raw);
*status = gpu->devfreq.average_status;
return 0;
}
static int msm_devfreq_get_cur_freq(struct device *dev, unsigned long *freq)
{
*freq = get_freq(dev_to_gpu(dev));
return 0;
}
static struct devfreq_dev_profile msm_devfreq_profile = {
.timer = DEVFREQ_TIMER_DELAYED,
.polling_ms = 50,
.target = msm_devfreq_target,
.get_dev_status = msm_devfreq_get_dev_status,
.get_cur_freq = msm_devfreq_get_cur_freq,
};
static void msm_devfreq_boost_work(struct kthread_work *work);
static void msm_devfreq_idle_work(struct kthread_work *work);
static bool has_devfreq(struct msm_gpu *gpu)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
return !!df->devfreq;
}
void msm_devfreq_init(struct msm_gpu *gpu)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
/* We need target support to do devfreq */
if (!gpu->funcs->gpu_busy)
return;
mutex_init(&df->lock);
dev_pm_qos_add_request(&gpu->pdev->dev, &df->idle_freq,
DEV_PM_QOS_MAX_FREQUENCY,
PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
dev_pm_qos_add_request(&gpu->pdev->dev, &df->boost_freq,
DEV_PM_QOS_MIN_FREQUENCY, 0);
msm_devfreq_profile.initial_freq = gpu->fast_rate;
/*
* Don't set the freq_table or max_state and let devfreq build the table
* from OPP
* After a deferred probe, these may have be left to non-zero values,
* so set them back to zero before creating the devfreq device
*/
msm_devfreq_profile.freq_table = NULL;
msm_devfreq_profile.max_state = 0;
df->devfreq = devm_devfreq_add_device(&gpu->pdev->dev,
&msm_devfreq_profile, DEVFREQ_GOV_SIMPLE_ONDEMAND,
NULL);
if (IS_ERR(df->devfreq)) {
DRM_DEV_ERROR(&gpu->pdev->dev, "Couldn't initialize GPU devfreq\n");
df->devfreq = NULL;
return;
}
devfreq_suspend_device(df->devfreq);
gpu->cooling = of_devfreq_cooling_register(gpu->pdev->dev.of_node, df->devfreq);
if (IS_ERR(gpu->cooling)) {
DRM_DEV_ERROR(&gpu->pdev->dev,
"Couldn't register GPU cooling device\n");
gpu->cooling = NULL;
}
msm_hrtimer_work_init(&df->boost_work, gpu->worker, msm_devfreq_boost_work,
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
msm_hrtimer_work_init(&df->idle_work, gpu->worker, msm_devfreq_idle_work,
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
}
static void cancel_idle_work(struct msm_gpu_devfreq *df)
{
hrtimer_cancel(&df->idle_work.timer);
kthread_cancel_work_sync(&df->idle_work.work);
}
static void cancel_boost_work(struct msm_gpu_devfreq *df)
{
hrtimer_cancel(&df->boost_work.timer);
kthread_cancel_work_sync(&df->boost_work.work);
}
void msm_devfreq_cleanup(struct msm_gpu *gpu)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
if (!has_devfreq(gpu))
return;
devfreq_cooling_unregister(gpu->cooling);
dev_pm_qos_remove_request(&df->boost_freq);
dev_pm_qos_remove_request(&df->idle_freq);
}
void msm_devfreq_resume(struct msm_gpu *gpu)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
unsigned long sample_rate;
if (!has_devfreq(gpu))
return;
mutex_lock(&df->lock);
df->busy_cycles = gpu->funcs->gpu_busy(gpu, &sample_rate);
df->time = ktime_get();
df->suspended = false;
mutex_unlock(&df->lock);
devfreq_resume_device(df->devfreq);
}
void msm_devfreq_suspend(struct msm_gpu *gpu)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
if (!has_devfreq(gpu))
return;
mutex_lock(&df->lock);
df->suspended = true;
mutex_unlock(&df->lock);
devfreq_suspend_device(df->devfreq);
cancel_idle_work(df);
cancel_boost_work(df);
}
static void msm_devfreq_boost_work(struct kthread_work *work)
{
struct msm_gpu_devfreq *df = container_of(work,
struct msm_gpu_devfreq, boost_work.work);
dev_pm_qos_update_request(&df->boost_freq, 0);
}
void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
uint64_t freq;
if (!has_devfreq(gpu))
return;
freq = get_freq(gpu);
freq *= factor;
/*
* A nice little trap is that PM QoS operates in terms of KHz,
* while devfreq operates in terms of Hz:
*/
do_div(freq, HZ_PER_KHZ);
dev_pm_qos_update_request(&df->boost_freq, freq);
msm_hrtimer_queue_work(&df->boost_work,
ms_to_ktime(msm_devfreq_profile.polling_ms),
HRTIMER_MODE_REL);
}
void msm_devfreq_active(struct msm_gpu *gpu)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
unsigned int idle_time;
if (!has_devfreq(gpu))
return;
/*
* Cancel any pending transition to idle frequency:
*/
cancel_idle_work(df);
idle_time = ktime_to_ms(ktime_sub(ktime_get(), df->idle_time));
/*
* If we've been idle for a significant fraction of a polling
* interval, then we won't meet the threshold of busyness for
* the governor to ramp up the freq.. so give some boost
*/
if (idle_time > msm_devfreq_profile.polling_ms) {
msm_devfreq_boost(gpu, 2);
}
dev_pm_qos_update_request(&df->idle_freq,
PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
}
static void msm_devfreq_idle_work(struct kthread_work *work)
{
struct msm_gpu_devfreq *df = container_of(work,
struct msm_gpu_devfreq, idle_work.work);
struct msm_gpu *gpu = container_of(df, struct msm_gpu, devfreq);
df->idle_time = ktime_get();
if (gpu->clamp_to_idle)
dev_pm_qos_update_request(&df->idle_freq, 0);
}
void msm_devfreq_idle(struct msm_gpu *gpu)
{
struct msm_gpu_devfreq *df = &gpu->devfreq;
if (!has_devfreq(gpu))
return;
msm_hrtimer_queue_work(&df->idle_work, ms_to_ktime(1),
HRTIMER_MODE_REL);
}