linux/arch/powerpc/kvm/book3s_64_mmu_host.c
Paul Mackerras d78bca7296 KVM: PPC: Book3S PR: Use mmu_notifier_retry() in kvmppc_mmu_map_page()
When the MM code is invalidating a range of pages, it calls the KVM
kvm_mmu_notifier_invalidate_range_start() notifier function, which calls
kvm_unmap_hva_range(), which arranges to flush all the existing host
HPTEs for guest pages.  However, the Linux PTEs for the range being
flushed are still valid at that point.  We are not supposed to establish
any new references to pages in the range until the ...range_end()
notifier gets called.  The PPC-specific KVM code doesn't get any
explicit notification of that; instead, we are supposed to use
mmu_notifier_retry() to test whether we are or have been inside a
range flush notifier pair while we have been getting a page and
instantiating a host HPTE for the page.

This therefore adds a call to mmu_notifier_retry inside
kvmppc_mmu_map_page().  This call is inside a region locked with
kvm->mmu_lock, which is the same lock that is called by the KVM
MMU notifier functions, thus ensuring that no new notification can
proceed while we are in the locked region.  Inside this region we
also create the host HPTE and link the corresponding hpte_cache
structure into the lists used to find it later.  We cannot allocate
the hpte_cache structure inside this locked region because that can
lead to deadlock, so we allocate it outside the region and free it
if we end up not using it.

This also moves the updates of vcpu3s->hpte_cache_count inside the
regions locked with vcpu3s->mmu_lock, and does the increment in
kvmppc_mmu_hpte_cache_map() when the pte is added to the cache
rather than when it is allocated, in order that the hpte_cache_count
is accurate.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:49:35 +02:00

402 lines
10 KiB
C

/*
* Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/kvm_host.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/machdep.h>
#include <asm/mmu_context.h>
#include <asm/hw_irq.h>
#include "trace.h"
#define PTE_SIZE 12
void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
{
ppc_md.hpte_invalidate(pte->slot, pte->host_vpn,
pte->pagesize, pte->pagesize, MMU_SEGSIZE_256M,
false);
}
/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
* a hash, so we don't waste cycles on looping */
static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
{
return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
}
static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
{
struct kvmppc_sid_map *map;
u16 sid_map_mask;
if (vcpu->arch.shared->msr & MSR_PR)
gvsid |= VSID_PR;
sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
map = &to_book3s(vcpu)->sid_map[sid_map_mask];
if (map->valid && (map->guest_vsid == gvsid)) {
trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
return map;
}
map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
if (map->valid && (map->guest_vsid == gvsid)) {
trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
return map;
}
trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
return NULL;
}
int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte,
bool iswrite)
{
unsigned long vpn;
pfn_t hpaddr;
ulong hash, hpteg;
u64 vsid;
int ret;
int rflags = 0x192;
int vflags = 0;
int attempt = 0;
struct kvmppc_sid_map *map;
int r = 0;
int hpsize = MMU_PAGE_4K;
bool writable;
unsigned long mmu_seq;
struct kvm *kvm = vcpu->kvm;
struct hpte_cache *cpte;
/* used to check for invalidations in progress */
mmu_seq = kvm->mmu_notifier_seq;
smp_rmb();
/* Get host physical address for gpa */
hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT,
iswrite, &writable);
if (is_error_noslot_pfn(hpaddr)) {
printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr);
r = -EINVAL;
goto out;
}
hpaddr <<= PAGE_SHIFT;
/* and write the mapping ea -> hpa into the pt */
vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
map = find_sid_vsid(vcpu, vsid);
if (!map) {
ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
WARN_ON(ret < 0);
map = find_sid_vsid(vcpu, vsid);
}
if (!map) {
printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
vsid, orig_pte->eaddr);
WARN_ON(true);
r = -EINVAL;
goto out;
}
vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M);
if (!orig_pte->may_write || !writable)
rflags |= HPTE_R_PP;
else
mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
if (!orig_pte->may_execute)
rflags |= HPTE_R_N;
else
kvmppc_mmu_flush_icache(hpaddr >> PAGE_SHIFT);
/*
* Use 64K pages if possible; otherwise, on 64K page kernels,
* we need to transfer 4 more bits from guest real to host real addr.
*/
if (vsid & VSID_64K)
hpsize = MMU_PAGE_64K;
else
hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M);
cpte = kvmppc_mmu_hpte_cache_next(vcpu);
spin_lock(&kvm->mmu_lock);
if (!cpte || mmu_notifier_retry(kvm, mmu_seq)) {
r = -EAGAIN;
goto out_unlock;
}
map_again:
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
/* In case we tried normal mapping already, let's nuke old entries */
if (attempt > 1)
if (ppc_md.hpte_remove(hpteg) < 0) {
r = -1;
goto out_unlock;
}
ret = ppc_md.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags,
hpsize, hpsize, MMU_SEGSIZE_256M);
if (ret < 0) {
/* If we couldn't map a primary PTE, try a secondary */
hash = ~hash;
vflags ^= HPTE_V_SECONDARY;
attempt++;
goto map_again;
} else {
trace_kvm_book3s_64_mmu_map(rflags, hpteg,
vpn, hpaddr, orig_pte);
/* The ppc_md code may give us a secondary entry even though we
asked for a primary. Fix up. */
if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
hash = ~hash;
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
}
cpte->slot = hpteg + (ret & 7);
cpte->host_vpn = vpn;
cpte->pte = *orig_pte;
cpte->pfn = hpaddr >> PAGE_SHIFT;
cpte->pagesize = hpsize;
kvmppc_mmu_hpte_cache_map(vcpu, cpte);
cpte = NULL;
}
out_unlock:
spin_unlock(&kvm->mmu_lock);
kvm_release_pfn_clean(hpaddr >> PAGE_SHIFT);
if (cpte)
kvmppc_mmu_hpte_cache_free(cpte);
out:
return r;
}
void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
u64 mask = 0xfffffffffULL;
u64 vsid;
vcpu->arch.mmu.esid_to_vsid(vcpu, pte->eaddr >> SID_SHIFT, &vsid);
if (vsid & VSID_64K)
mask = 0xffffffff0ULL;
kvmppc_mmu_pte_vflush(vcpu, pte->vpage, mask);
}
static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
{
struct kvmppc_sid_map *map;
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
u16 sid_map_mask;
static int backwards_map = 0;
if (vcpu->arch.shared->msr & MSR_PR)
gvsid |= VSID_PR;
/* We might get collisions that trap in preceding order, so let's
map them differently */
sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
if (backwards_map)
sid_map_mask = SID_MAP_MASK - sid_map_mask;
map = &to_book3s(vcpu)->sid_map[sid_map_mask];
/* Make sure we're taking the other map next time */
backwards_map = !backwards_map;
/* Uh-oh ... out of mappings. Let's flush! */
if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) {
vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first;
memset(vcpu_book3s->sid_map, 0,
sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
kvmppc_mmu_pte_flush(vcpu, 0, 0);
kvmppc_mmu_flush_segments(vcpu);
}
map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, 256M);
map->guest_vsid = gvsid;
map->valid = true;
trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
return map;
}
static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
{
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
int i;
int max_slb_size = 64;
int found_inval = -1;
int r;
if (!svcpu->slb_max)
svcpu->slb_max = 1;
/* Are we overwriting? */
for (i = 1; i < svcpu->slb_max; i++) {
if (!(svcpu->slb[i].esid & SLB_ESID_V))
found_inval = i;
else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
r = i;
goto out;
}
}
/* Found a spare entry that was invalidated before */
if (found_inval > 0) {
r = found_inval;
goto out;
}
/* No spare invalid entry, so create one */
if (mmu_slb_size < 64)
max_slb_size = mmu_slb_size;
/* Overflowing -> purge */
if ((svcpu->slb_max) == max_slb_size)
kvmppc_mmu_flush_segments(vcpu);
r = svcpu->slb_max;
svcpu->slb_max++;
out:
svcpu_put(svcpu);
return r;
}
int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
{
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
u64 esid = eaddr >> SID_SHIFT;
u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
u64 slb_vsid = SLB_VSID_USER;
u64 gvsid;
int slb_index;
struct kvmppc_sid_map *map;
int r = 0;
slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
/* Invalidate an entry */
svcpu->slb[slb_index].esid = 0;
r = -ENOENT;
goto out;
}
map = find_sid_vsid(vcpu, gvsid);
if (!map)
map = create_sid_map(vcpu, gvsid);
map->guest_esid = esid;
slb_vsid |= (map->host_vsid << 12);
slb_vsid &= ~SLB_VSID_KP;
slb_esid |= slb_index;
#ifdef CONFIG_PPC_64K_PAGES
/* Set host segment base page size to 64K if possible */
if (gvsid & VSID_64K)
slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp;
#endif
svcpu->slb[slb_index].esid = slb_esid;
svcpu->slb[slb_index].vsid = slb_vsid;
trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
out:
svcpu_put(svcpu);
return r;
}
void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size)
{
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
ulong seg_mask = -seg_size;
int i;
for (i = 1; i < svcpu->slb_max; i++) {
if ((svcpu->slb[i].esid & SLB_ESID_V) &&
(svcpu->slb[i].esid & seg_mask) == ea) {
/* Invalidate this entry */
svcpu->slb[i].esid = 0;
}
}
svcpu_put(svcpu);
}
void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
{
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
svcpu->slb_max = 1;
svcpu->slb[0].esid = 0;
svcpu_put(svcpu);
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
kvmppc_mmu_hpte_destroy(vcpu);
__destroy_context(to_book3s(vcpu)->context_id[0]);
}
int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int err;
err = __init_new_context();
if (err < 0)
return -1;
vcpu3s->context_id[0] = err;
vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1)
<< ESID_BITS) - 1;
vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS;
vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
kvmppc_mmu_hpte_init(vcpu);
return 0;
}