linux/arch/x86/mm/mem_encrypt.c
Tom Lendacky d7b417fa08 x86/mm: Add DMA support for SEV memory encryption
DMA access to encrypted memory cannot be performed when SEV is active.
In order for DMA to properly work when SEV is active, the SWIOTLB bounce
buffers must be used.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>C
Tested-by: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20171020143059.3291-12-brijesh.singh@amd.com
2017-11-07 15:35:58 +01:00

708 lines
20 KiB
C

/*
* AMD Memory Encryption Support
*
* Copyright (C) 2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DISABLE_BRANCH_PROFILING
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/swiotlb.h>
#include <linux/mem_encrypt.h>
#include <asm/tlbflush.h>
#include <asm/fixmap.h>
#include <asm/setup.h>
#include <asm/bootparam.h>
#include <asm/set_memory.h>
#include <asm/cacheflush.h>
#include <asm/sections.h>
#include <asm/processor-flags.h>
#include <asm/msr.h>
#include <asm/cmdline.h>
static char sme_cmdline_arg[] __initdata = "mem_encrypt";
static char sme_cmdline_on[] __initdata = "on";
static char sme_cmdline_off[] __initdata = "off";
/*
* Since SME related variables are set early in the boot process they must
* reside in the .data section so as not to be zeroed out when the .bss
* section is later cleared.
*/
u64 sme_me_mask __section(.data) = 0;
EXPORT_SYMBOL_GPL(sme_me_mask);
static bool sev_enabled __section(.data);
/* Buffer used for early in-place encryption by BSP, no locking needed */
static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
/*
* This routine does not change the underlying encryption setting of the
* page(s) that map this memory. It assumes that eventually the memory is
* meant to be accessed as either encrypted or decrypted but the contents
* are currently not in the desired state.
*
* This routine follows the steps outlined in the AMD64 Architecture
* Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
*/
static void __init __sme_early_enc_dec(resource_size_t paddr,
unsigned long size, bool enc)
{
void *src, *dst;
size_t len;
if (!sme_me_mask)
return;
local_flush_tlb();
wbinvd();
/*
* There are limited number of early mapping slots, so map (at most)
* one page at time.
*/
while (size) {
len = min_t(size_t, sizeof(sme_early_buffer), size);
/*
* Create mappings for the current and desired format of
* the memory. Use a write-protected mapping for the source.
*/
src = enc ? early_memremap_decrypted_wp(paddr, len) :
early_memremap_encrypted_wp(paddr, len);
dst = enc ? early_memremap_encrypted(paddr, len) :
early_memremap_decrypted(paddr, len);
/*
* If a mapping can't be obtained to perform the operation,
* then eventual access of that area in the desired mode
* will cause a crash.
*/
BUG_ON(!src || !dst);
/*
* Use a temporary buffer, of cache-line multiple size, to
* avoid data corruption as documented in the APM.
*/
memcpy(sme_early_buffer, src, len);
memcpy(dst, sme_early_buffer, len);
early_memunmap(dst, len);
early_memunmap(src, len);
paddr += len;
size -= len;
}
}
void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
{
__sme_early_enc_dec(paddr, size, true);
}
void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
{
__sme_early_enc_dec(paddr, size, false);
}
static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
bool map)
{
unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
pmdval_t pmd_flags, pmd;
/* Use early_pmd_flags but remove the encryption mask */
pmd_flags = __sme_clr(early_pmd_flags);
do {
pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
__early_make_pgtable((unsigned long)vaddr, pmd);
vaddr += PMD_SIZE;
paddr += PMD_SIZE;
size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
} while (size);
__native_flush_tlb();
}
void __init sme_unmap_bootdata(char *real_mode_data)
{
struct boot_params *boot_data;
unsigned long cmdline_paddr;
if (!sme_active())
return;
/* Get the command line address before unmapping the real_mode_data */
boot_data = (struct boot_params *)real_mode_data;
cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
if (!cmdline_paddr)
return;
__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
}
void __init sme_map_bootdata(char *real_mode_data)
{
struct boot_params *boot_data;
unsigned long cmdline_paddr;
if (!sme_active())
return;
__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
/* Get the command line address after mapping the real_mode_data */
boot_data = (struct boot_params *)real_mode_data;
cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
if (!cmdline_paddr)
return;
__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
}
void __init sme_early_init(void)
{
unsigned int i;
if (!sme_me_mask)
return;
early_pmd_flags = __sme_set(early_pmd_flags);
__supported_pte_mask = __sme_set(__supported_pte_mask);
/* Update the protection map with memory encryption mask */
for (i = 0; i < ARRAY_SIZE(protection_map); i++)
protection_map[i] = pgprot_encrypted(protection_map[i]);
if (sev_active())
swiotlb_force = SWIOTLB_FORCE;
}
static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs)
{
unsigned long dma_mask;
unsigned int order;
struct page *page;
void *vaddr = NULL;
dma_mask = dma_alloc_coherent_mask(dev, gfp);
order = get_order(size);
/*
* Memory will be memset to zero after marking decrypted, so don't
* bother clearing it before.
*/
gfp &= ~__GFP_ZERO;
page = alloc_pages_node(dev_to_node(dev), gfp, order);
if (page) {
dma_addr_t addr;
/*
* Since we will be clearing the encryption bit, check the
* mask with it already cleared.
*/
addr = __sme_clr(phys_to_dma(dev, page_to_phys(page)));
if ((addr + size) > dma_mask) {
__free_pages(page, get_order(size));
} else {
vaddr = page_address(page);
*dma_handle = addr;
}
}
if (!vaddr)
vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
if (!vaddr)
return NULL;
/* Clear the SME encryption bit for DMA use if not swiotlb area */
if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) {
set_memory_decrypted((unsigned long)vaddr, 1 << order);
memset(vaddr, 0, PAGE_SIZE << order);
*dma_handle = __sme_clr(*dma_handle);
}
return vaddr;
}
static void sev_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
{
/* Set the SME encryption bit for re-use if not swiotlb area */
if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle)))
set_memory_encrypted((unsigned long)vaddr,
1 << get_order(size));
swiotlb_free_coherent(dev, size, vaddr, dma_handle);
}
/*
* SME and SEV are very similar but they are not the same, so there are
* times that the kernel will need to distinguish between SME and SEV. The
* sme_active() and sev_active() functions are used for this. When a
* distinction isn't needed, the mem_encrypt_active() function can be used.
*
* The trampoline code is a good example for this requirement. Before
* paging is activated, SME will access all memory as decrypted, but SEV
* will access all memory as encrypted. So, when APs are being brought
* up under SME the trampoline area cannot be encrypted, whereas under SEV
* the trampoline area must be encrypted.
*/
bool sme_active(void)
{
return sme_me_mask && !sev_enabled;
}
EXPORT_SYMBOL_GPL(sme_active);
bool sev_active(void)
{
return sme_me_mask && sev_enabled;
}
EXPORT_SYMBOL_GPL(sev_active);
static const struct dma_map_ops sev_dma_ops = {
.alloc = sev_alloc,
.free = sev_free,
.map_page = swiotlb_map_page,
.unmap_page = swiotlb_unmap_page,
.map_sg = swiotlb_map_sg_attrs,
.unmap_sg = swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = swiotlb_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = swiotlb_sync_sg_for_device,
.mapping_error = swiotlb_dma_mapping_error,
};
/* Architecture __weak replacement functions */
void __init mem_encrypt_init(void)
{
if (!sme_me_mask)
return;
/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
swiotlb_update_mem_attributes();
/*
* With SEV, DMA operations cannot use encryption. New DMA ops
* are required in order to mark the DMA areas as decrypted or
* to use bounce buffers.
*/
if (sev_active())
dma_ops = &sev_dma_ops;
pr_info("AMD Secure Memory Encryption (SME) active\n");
}
void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
{
WARN(PAGE_ALIGN(size) != size,
"size is not page-aligned (%#lx)\n", size);
/* Make the SWIOTLB buffer area decrypted */
set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
}
static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start,
unsigned long end)
{
unsigned long pgd_start, pgd_end, pgd_size;
pgd_t *pgd_p;
pgd_start = start & PGDIR_MASK;
pgd_end = end & PGDIR_MASK;
pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1);
pgd_size *= sizeof(pgd_t);
pgd_p = pgd_base + pgd_index(start);
memset(pgd_p, 0, pgd_size);
}
#define PGD_FLAGS _KERNPG_TABLE_NOENC
#define P4D_FLAGS _KERNPG_TABLE_NOENC
#define PUD_FLAGS _KERNPG_TABLE_NOENC
#define PMD_FLAGS (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area,
unsigned long vaddr, pmdval_t pmd_val)
{
pgd_t *pgd_p;
p4d_t *p4d_p;
pud_t *pud_p;
pmd_t *pmd_p;
pgd_p = pgd_base + pgd_index(vaddr);
if (native_pgd_val(*pgd_p)) {
if (IS_ENABLED(CONFIG_X86_5LEVEL))
p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
else
pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
} else {
pgd_t pgd;
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
p4d_p = pgtable_area;
memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
} else {
pud_p = pgtable_area;
memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
}
native_set_pgd(pgd_p, pgd);
}
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
p4d_p += p4d_index(vaddr);
if (native_p4d_val(*p4d_p)) {
pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
} else {
p4d_t p4d;
pud_p = pgtable_area;
memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
native_set_p4d(p4d_p, p4d);
}
}
pud_p += pud_index(vaddr);
if (native_pud_val(*pud_p)) {
if (native_pud_val(*pud_p) & _PAGE_PSE)
goto out;
pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
} else {
pud_t pud;
pmd_p = pgtable_area;
memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
native_set_pud(pud_p, pud);
}
pmd_p += pmd_index(vaddr);
if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
native_set_pmd(pmd_p, native_make_pmd(pmd_val));
out:
return pgtable_area;
}
static unsigned long __init sme_pgtable_calc(unsigned long len)
{
unsigned long p4d_size, pud_size, pmd_size;
unsigned long total;
/*
* Perform a relatively simplistic calculation of the pagetable
* entries that are needed. That mappings will be covered by 2MB
* PMD entries so we can conservatively calculate the required
* number of P4D, PUD and PMD structures needed to perform the
* mappings. Incrementing the count for each covers the case where
* the addresses cross entries.
*/
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
} else {
p4d_size = 0;
pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
}
pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
total = p4d_size + pud_size + pmd_size;
/*
* Now calculate the added pagetable structures needed to populate
* the new pagetables.
*/
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
} else {
p4d_size = 0;
pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
}
pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
total += p4d_size + pud_size + pmd_size;
return total;
}
void __init sme_encrypt_kernel(void)
{
unsigned long workarea_start, workarea_end, workarea_len;
unsigned long execute_start, execute_end, execute_len;
unsigned long kernel_start, kernel_end, kernel_len;
unsigned long pgtable_area_len;
unsigned long paddr, pmd_flags;
unsigned long decrypted_base;
void *pgtable_area;
pgd_t *pgd;
if (!sme_active())
return;
/*
* Prepare for encrypting the kernel by building new pagetables with
* the necessary attributes needed to encrypt the kernel in place.
*
* One range of virtual addresses will map the memory occupied
* by the kernel as encrypted.
*
* Another range of virtual addresses will map the memory occupied
* by the kernel as decrypted and write-protected.
*
* The use of write-protect attribute will prevent any of the
* memory from being cached.
*/
/* Physical addresses gives us the identity mapped virtual addresses */
kernel_start = __pa_symbol(_text);
kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
kernel_len = kernel_end - kernel_start;
/* Set the encryption workarea to be immediately after the kernel */
workarea_start = kernel_end;
/*
* Calculate required number of workarea bytes needed:
* executable encryption area size:
* stack page (PAGE_SIZE)
* encryption routine page (PAGE_SIZE)
* intermediate copy buffer (PMD_PAGE_SIZE)
* pagetable structures for the encryption of the kernel
* pagetable structures for workarea (in case not currently mapped)
*/
execute_start = workarea_start;
execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
execute_len = execute_end - execute_start;
/*
* One PGD for both encrypted and decrypted mappings and a set of
* PUDs and PMDs for each of the encrypted and decrypted mappings.
*/
pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
/* PUDs and PMDs needed in the current pagetables for the workarea */
pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
/*
* The total workarea includes the executable encryption area and
* the pagetable area.
*/
workarea_len = execute_len + pgtable_area_len;
workarea_end = workarea_start + workarea_len;
/*
* Set the address to the start of where newly created pagetable
* structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
* structures are created when the workarea is added to the current
* pagetables and when the new encrypted and decrypted kernel
* mappings are populated.
*/
pgtable_area = (void *)execute_end;
/*
* Make sure the current pagetable structure has entries for
* addressing the workarea.
*/
pgd = (pgd_t *)native_read_cr3_pa();
paddr = workarea_start;
while (paddr < workarea_end) {
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
paddr,
paddr + PMD_FLAGS);
paddr += PMD_PAGE_SIZE;
}
/* Flush the TLB - no globals so cr3 is enough */
native_write_cr3(__native_read_cr3());
/*
* A new pagetable structure is being built to allow for the kernel
* to be encrypted. It starts with an empty PGD that will then be
* populated with new PUDs and PMDs as the encrypted and decrypted
* kernel mappings are created.
*/
pgd = pgtable_area;
memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD);
pgtable_area += sizeof(*pgd) * PTRS_PER_PGD;
/* Add encrypted kernel (identity) mappings */
pmd_flags = PMD_FLAGS | _PAGE_ENC;
paddr = kernel_start;
while (paddr < kernel_end) {
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
paddr,
paddr + pmd_flags);
paddr += PMD_PAGE_SIZE;
}
/*
* A different PGD index/entry must be used to get different
* pagetable entries for the decrypted mapping. Choose the next
* PGD index and convert it to a virtual address to be used as
* the base of the mapping.
*/
decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
decrypted_base <<= PGDIR_SHIFT;
/* Add decrypted, write-protected kernel (non-identity) mappings */
pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT);
paddr = kernel_start;
while (paddr < kernel_end) {
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
paddr + decrypted_base,
paddr + pmd_flags);
paddr += PMD_PAGE_SIZE;
}
/* Add decrypted workarea mappings to both kernel mappings */
paddr = workarea_start;
while (paddr < workarea_end) {
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
paddr,
paddr + PMD_FLAGS);
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
paddr + decrypted_base,
paddr + PMD_FLAGS);
paddr += PMD_PAGE_SIZE;
}
/* Perform the encryption */
sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
kernel_len, workarea_start, (unsigned long)pgd);
/*
* At this point we are running encrypted. Remove the mappings for
* the decrypted areas - all that is needed for this is to remove
* the PGD entry/entries.
*/
sme_clear_pgd(pgd, kernel_start + decrypted_base,
kernel_end + decrypted_base);
sme_clear_pgd(pgd, workarea_start + decrypted_base,
workarea_end + decrypted_base);
/* Flush the TLB - no globals so cr3 is enough */
native_write_cr3(__native_read_cr3());
}
void __init __nostackprotector sme_enable(struct boot_params *bp)
{
const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
unsigned int eax, ebx, ecx, edx;
bool active_by_default;
unsigned long me_mask;
char buffer[16];
u64 msr;
/* Check for the SME support leaf */
eax = 0x80000000;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (eax < 0x8000001f)
return;
/*
* Check for the SME feature:
* CPUID Fn8000_001F[EAX] - Bit 0
* Secure Memory Encryption support
* CPUID Fn8000_001F[EBX] - Bits 5:0
* Pagetable bit position used to indicate encryption
*/
eax = 0x8000001f;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (!(eax & 1))
return;
me_mask = 1UL << (ebx & 0x3f);
/* Check if SME is enabled */
msr = __rdmsr(MSR_K8_SYSCFG);
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
return;
/*
* Fixups have not been applied to phys_base yet and we're running
* identity mapped, so we must obtain the address to the SME command
* line argument data using rip-relative addressing.
*/
asm ("lea sme_cmdline_arg(%%rip), %0"
: "=r" (cmdline_arg)
: "p" (sme_cmdline_arg));
asm ("lea sme_cmdline_on(%%rip), %0"
: "=r" (cmdline_on)
: "p" (sme_cmdline_on));
asm ("lea sme_cmdline_off(%%rip), %0"
: "=r" (cmdline_off)
: "p" (sme_cmdline_off));
if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
active_by_default = true;
else
active_by_default = false;
cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
((u64)bp->ext_cmd_line_ptr << 32));
cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
sme_me_mask = me_mask;
else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
sme_me_mask = 0;
else
sme_me_mask = active_by_default ? me_mask : 0;
}