Kumar Gala d7b41b1fdf powerpc/pci: clean up direct access to sysdata by iseries platform
We shouldn't directly access sysdata to get the device node.  We should
be calling pci_device_to_OF_node().

Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-05-21 15:44:26 +10:00

920 lines
22 KiB
C

/*
* Copyright (C) 2001 Allan Trautman, IBM Corporation
* Copyright (C) 2005,2007 Stephen Rothwell, IBM Corp
*
* iSeries specific routines for PCI.
*
* Based on code from pci.c and iSeries_pci.c 32bit
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#undef DEBUG
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/of.h>
#include <asm/types.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/pci-bridge.h>
#include <asm/iommu.h>
#include <asm/abs_addr.h>
#include <asm/firmware.h>
#include <asm/iseries/hv_types.h>
#include <asm/iseries/hv_call_xm.h>
#include <asm/iseries/mf.h>
#include <asm/iseries/iommu.h>
#include <asm/ppc-pci.h>
#include "irq.h"
#include "pci.h"
#include "call_pci.h"
#define PCI_RETRY_MAX 3
static int limit_pci_retries = 1; /* Set Retry Error on. */
/*
* Table defines
* Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space.
*/
#define IOMM_TABLE_MAX_ENTRIES 1024
#define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL
#define BASE_IO_MEMORY 0xE000000000000000UL
#define END_IO_MEMORY 0xEFFFFFFFFFFFFFFFUL
static unsigned long max_io_memory = BASE_IO_MEMORY;
static long current_iomm_table_entry;
/*
* Lookup Tables.
*/
static struct device_node *iomm_table[IOMM_TABLE_MAX_ENTRIES];
static u64 ds_addr_table[IOMM_TABLE_MAX_ENTRIES];
static DEFINE_SPINLOCK(iomm_table_lock);
/*
* Generate a Direct Select Address for the Hypervisor
*/
static inline u64 iseries_ds_addr(struct device_node *node)
{
struct pci_dn *pdn = PCI_DN(node);
const u32 *sbp = of_get_property(node, "linux,subbus", NULL);
return ((u64)pdn->busno << 48) + ((u64)(sbp ? *sbp : 0) << 40)
+ ((u64)0x10 << 32);
}
/*
* Size of Bus VPD data
*/
#define BUS_VPDSIZE 1024
/*
* Bus Vpd Tags
*/
#define VPD_END_OF_AREA 0x79
#define VPD_ID_STRING 0x82
#define VPD_VENDOR_AREA 0x84
/*
* Mfg Area Tags
*/
#define VPD_FRU_FRAME_ID 0x4649 /* "FI" */
#define VPD_SLOT_MAP_FORMAT 0x4D46 /* "MF" */
#define VPD_SLOT_MAP 0x534D /* "SM" */
/*
* Structures of the areas
*/
struct mfg_vpd_area {
u16 tag;
u8 length;
u8 data1;
u8 data2;
};
#define MFG_ENTRY_SIZE 3
struct slot_map {
u8 agent;
u8 secondary_agent;
u8 phb;
char card_location[3];
char parms[8];
char reserved[2];
};
#define SLOT_ENTRY_SIZE 16
/*
* Parse the Slot Area
*/
static void __init iseries_parse_slot_area(struct slot_map *map, int len,
HvAgentId agent, u8 *phb, char card[4])
{
/*
* Parse Slot label until we find the one requested
*/
while (len > 0) {
if (map->agent == agent) {
/*
* If Phb wasn't found, grab the entry first one found.
*/
if (*phb == 0xff)
*phb = map->phb;
/* Found it, extract the data. */
if (map->phb == *phb) {
memcpy(card, &map->card_location, 3);
card[3] = 0;
break;
}
}
/* Point to the next Slot */
map = (struct slot_map *)((char *)map + SLOT_ENTRY_SIZE);
len -= SLOT_ENTRY_SIZE;
}
}
/*
* Parse the Mfg Area
*/
static void __init iseries_parse_mfg_area(struct mfg_vpd_area *area, int len,
HvAgentId agent, u8 *phb, u8 *frame, char card[4])
{
u16 slot_map_fmt = 0;
/* Parse Mfg Data */
while (len > 0) {
int mfg_tag_len = area->length;
/* Frame ID (FI 4649020310 ) */
if (area->tag == VPD_FRU_FRAME_ID)
*frame = area->data1;
/* Slot Map Format (MF 4D46020004 ) */
else if (area->tag == VPD_SLOT_MAP_FORMAT)
slot_map_fmt = (area->data1 * 256)
+ area->data2;
/* Slot Map (SM 534D90 */
else if (area->tag == VPD_SLOT_MAP) {
struct slot_map *slot_map;
if (slot_map_fmt == 0x1004)
slot_map = (struct slot_map *)((char *)area
+ MFG_ENTRY_SIZE + 1);
else
slot_map = (struct slot_map *)((char *)area
+ MFG_ENTRY_SIZE);
iseries_parse_slot_area(slot_map, mfg_tag_len,
agent, phb, card);
}
/*
* Point to the next Mfg Area
* Use defined size, sizeof give wrong answer
*/
area = (struct mfg_vpd_area *)((char *)area + mfg_tag_len
+ MFG_ENTRY_SIZE);
len -= (mfg_tag_len + MFG_ENTRY_SIZE);
}
}
/*
* Look for "BUS".. Data is not Null terminated.
* PHBID of 0xFF indicates PHB was not found in VPD Data.
*/
static u8 __init iseries_parse_phbid(u8 *area, int len)
{
while (len > 0) {
if ((*area == 'B') && (*(area + 1) == 'U')
&& (*(area + 2) == 'S')) {
area += 3;
while (*area == ' ')
area++;
return *area & 0x0F;
}
area++;
len--;
}
return 0xff;
}
/*
* Parse out the VPD Areas
*/
static void __init iseries_parse_vpd(u8 *data, int data_len,
HvAgentId agent, u8 *frame, char card[4])
{
u8 phb = 0xff;
while (data_len > 0) {
int len;
u8 tag = *data;
if (tag == VPD_END_OF_AREA)
break;
len = *(data + 1) + (*(data + 2) * 256);
data += 3;
data_len -= 3;
if (tag == VPD_ID_STRING)
phb = iseries_parse_phbid(data, len);
else if (tag == VPD_VENDOR_AREA)
iseries_parse_mfg_area((struct mfg_vpd_area *)data, len,
agent, &phb, frame, card);
/* Point to next Area. */
data += len;
data_len -= len;
}
}
static int __init iseries_get_location_code(u16 bus, HvAgentId agent,
u8 *frame, char card[4])
{
int status = 0;
int bus_vpd_len = 0;
u8 *bus_vpd = kmalloc(BUS_VPDSIZE, GFP_KERNEL);
if (bus_vpd == NULL) {
printk("PCI: Bus VPD Buffer allocation failure.\n");
return 0;
}
bus_vpd_len = HvCallPci_getBusVpd(bus, iseries_hv_addr(bus_vpd),
BUS_VPDSIZE);
if (bus_vpd_len == 0) {
printk("PCI: Bus VPD Buffer zero length.\n");
goto out_free;
}
/* printk("PCI: bus_vpd: %p, %d\n",bus_vpd, bus_vpd_len); */
/* Make sure this is what I think it is */
if (*bus_vpd != VPD_ID_STRING) {
printk("PCI: Bus VPD Buffer missing starting tag.\n");
goto out_free;
}
iseries_parse_vpd(bus_vpd, bus_vpd_len, agent, frame, card);
status = 1;
out_free:
kfree(bus_vpd);
return status;
}
/*
* Prints the device information.
* - Pass in pci_dev* pointer to the device.
* - Pass in the device count
*
* Format:
* PCI: Bus 0, Device 26, Vendor 0x12AE Frame 1, Card C10 Ethernet
* controller
*/
static void __init iseries_device_information(struct pci_dev *pdev,
u16 bus, HvSubBusNumber subbus)
{
u8 frame = 0;
char card[4];
HvAgentId agent;
agent = ISERIES_PCI_AGENTID(ISERIES_GET_DEVICE_FROM_SUBBUS(subbus),
ISERIES_GET_FUNCTION_FROM_SUBBUS(subbus));
if (iseries_get_location_code(bus, agent, &frame, card)) {
printk(KERN_INFO "PCI: %s, Vendor %04X Frame%3d, "
"Card %4s 0x%04X\n", pci_name(pdev), pdev->vendor,
frame, card, (int)(pdev->class >> 8));
}
}
/*
* iomm_table_allocate_entry
*
* Adds pci_dev entry in address translation table
*
* - Allocates the number of entries required in table base on BAR
* size.
* - Allocates starting at BASE_IO_MEMORY and increases.
* - The size is round up to be a multiple of entry size.
* - CurrentIndex is incremented to keep track of the last entry.
* - Builds the resource entry for allocated BARs.
*/
static void __init iomm_table_allocate_entry(struct pci_dev *dev, int bar_num)
{
struct resource *bar_res = &dev->resource[bar_num];
long bar_size = pci_resource_len(dev, bar_num);
struct device_node *dn = pci_device_to_OF_node(dev);
/*
* No space to allocate, quick exit, skip Allocation.
*/
if (bar_size == 0)
return;
/*
* Set Resource values.
*/
spin_lock(&iomm_table_lock);
bar_res->start = BASE_IO_MEMORY +
IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
bar_res->end = bar_res->start + bar_size - 1;
/*
* Allocate the number of table entries needed for BAR.
*/
while (bar_size > 0 ) {
iomm_table[current_iomm_table_entry] = dn;
ds_addr_table[current_iomm_table_entry] =
iseries_ds_addr(dn) | (bar_num << 24);
bar_size -= IOMM_TABLE_ENTRY_SIZE;
++current_iomm_table_entry;
}
max_io_memory = BASE_IO_MEMORY +
IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
spin_unlock(&iomm_table_lock);
}
/*
* allocate_device_bars
*
* - Allocates ALL pci_dev BAR's and updates the resources with the
* BAR value. BARS with zero length will have the resources
* The HvCallPci_getBarParms is used to get the size of the BAR
* space. It calls iomm_table_allocate_entry to allocate
* each entry.
* - Loops through The Bar resources(0 - 5) including the ROM
* is resource(6).
*/
static void __init allocate_device_bars(struct pci_dev *dev)
{
int bar_num;
for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num)
iomm_table_allocate_entry(dev, bar_num);
}
/*
* Log error information to system console.
* Filter out the device not there errors.
* PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx
* PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx
* PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx
*/
static void pci_log_error(char *error, int bus, int subbus,
int agent, int hv_res)
{
if (hv_res == 0x0302)
return;
printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X",
error, bus, subbus, agent, hv_res);
}
/*
* Look down the chain to find the matching Device Device
*/
static struct device_node *find_device_node(int bus, int devfn)
{
struct device_node *node;
for (node = NULL; (node = of_find_all_nodes(node)); ) {
struct pci_dn *pdn = PCI_DN(node);
if (pdn && (bus == pdn->busno) && (devfn == pdn->devfn))
return node;
}
return NULL;
}
/*
* iSeries_pcibios_fixup_resources
*
* Fixes up all resources for devices
*/
void __init iSeries_pcibios_fixup_resources(struct pci_dev *pdev)
{
const u32 *agent;
const u32 *sub_bus;
unsigned char bus = pdev->bus->number;
struct device_node *node;
int i;
node = pci_device_to_OF_node(pdev);
pr_debug("PCI: iSeries %s, pdev %p, node %p\n",
pci_name(pdev), pdev, node);
if (!node) {
printk("PCI: %s disabled, device tree entry not found !\n",
pci_name(pdev));
for (i = 0; i <= PCI_ROM_RESOURCE; i++)
pdev->resource[i].flags = 0;
return;
}
sub_bus = of_get_property(node, "linux,subbus", NULL);
agent = of_get_property(node, "linux,agent-id", NULL);
if (agent && sub_bus) {
u8 irq = iSeries_allocate_IRQ(bus, 0, *sub_bus);
int err;
err = HvCallXm_connectBusUnit(bus, *sub_bus, *agent, irq);
if (err)
pci_log_error("Connect Bus Unit",
bus, *sub_bus, *agent, err);
else {
err = HvCallPci_configStore8(bus, *sub_bus,
*agent, PCI_INTERRUPT_LINE, irq);
if (err)
pci_log_error("PciCfgStore Irq Failed!",
bus, *sub_bus, *agent, err);
else
pdev->irq = irq;
}
}
allocate_device_bars(pdev);
iseries_device_information(pdev, bus, *sub_bus);
}
/*
* iSeries_pci_final_fixup(void)
*/
void __init iSeries_pci_final_fixup(void)
{
/* Fix up at the device node and pci_dev relationship */
mf_display_src(0xC9000100);
iSeries_activate_IRQs();
mf_display_src(0xC9000200);
}
/*
* Config space read and write functions.
* For now at least, we look for the device node for the bus and devfn
* that we are asked to access. It may be possible to translate the devfn
* to a subbus and deviceid more directly.
*/
static u64 hv_cfg_read_func[4] = {
HvCallPciConfigLoad8, HvCallPciConfigLoad16,
HvCallPciConfigLoad32, HvCallPciConfigLoad32
};
static u64 hv_cfg_write_func[4] = {
HvCallPciConfigStore8, HvCallPciConfigStore16,
HvCallPciConfigStore32, HvCallPciConfigStore32
};
/*
* Read PCI config space
*/
static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,
int offset, int size, u32 *val)
{
struct device_node *node = find_device_node(bus->number, devfn);
u64 fn;
struct HvCallPci_LoadReturn ret;
if (node == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset > 255) {
*val = ~0;
return PCIBIOS_BAD_REGISTER_NUMBER;
}
fn = hv_cfg_read_func[(size - 1) & 3];
HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0);
if (ret.rc != 0) {
*val = ~0;
return PCIBIOS_DEVICE_NOT_FOUND; /* or something */
}
*val = ret.value;
return 0;
}
/*
* Write PCI config space
*/
static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,
int offset, int size, u32 val)
{
struct device_node *node = find_device_node(bus->number, devfn);
u64 fn;
u64 ret;
if (node == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset > 255)
return PCIBIOS_BAD_REGISTER_NUMBER;
fn = hv_cfg_write_func[(size - 1) & 3];
ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0);
if (ret != 0)
return PCIBIOS_DEVICE_NOT_FOUND;
return 0;
}
static struct pci_ops iSeries_pci_ops = {
.read = iSeries_pci_read_config,
.write = iSeries_pci_write_config
};
/*
* Check Return Code
* -> On Failure, print and log information.
* Increment Retry Count, if exceeds max, panic partition.
*
* PCI: Device 23.90 ReadL I/O Error( 0): 0x1234
* PCI: Device 23.90 ReadL Retry( 1)
* PCI: Device 23.90 ReadL Retry Successful(1)
*/
static int check_return_code(char *type, struct device_node *dn,
int *retry, u64 ret)
{
if (ret != 0) {
struct pci_dn *pdn = PCI_DN(dn);
(*retry)++;
printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n",
type, pdn->busno, pdn->devfn,
*retry, (int)ret);
/*
* Bump the retry and check for retry count exceeded.
* If, Exceeded, panic the system.
*/
if (((*retry) > PCI_RETRY_MAX) &&
(limit_pci_retries > 0)) {
mf_display_src(0xB6000103);
panic_timeout = 0;
panic("PCI: Hardware I/O Error, SRC B6000103, "
"Automatic Reboot Disabled.\n");
}
return -1; /* Retry Try */
}
return 0;
}
/*
* Translate the I/O Address into a device node, bar, and bar offset.
* Note: Make sure the passed variable end up on the stack to avoid
* the exposure of being device global.
*/
static inline struct device_node *xlate_iomm_address(
const volatile void __iomem *addr,
u64 *dsaptr, u64 *bar_offset, const char *func)
{
unsigned long orig_addr;
unsigned long base_addr;
unsigned long ind;
struct device_node *dn;
orig_addr = (unsigned long __force)addr;
if ((orig_addr < BASE_IO_MEMORY) || (orig_addr >= max_io_memory)) {
static unsigned long last_jiffies;
static int num_printed;
if (time_after(jiffies, last_jiffies + 60 * HZ)) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR
"iSeries_%s: invalid access at IO address %p\n",
func, addr);
return NULL;
}
base_addr = orig_addr - BASE_IO_MEMORY;
ind = base_addr / IOMM_TABLE_ENTRY_SIZE;
dn = iomm_table[ind];
if (dn != NULL) {
*dsaptr = ds_addr_table[ind];
*bar_offset = base_addr % IOMM_TABLE_ENTRY_SIZE;
} else
panic("PCI: Invalid PCI IO address detected!\n");
return dn;
}
/*
* Read MM I/O Instructions for the iSeries
* On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
* else, data is returned in Big Endian format.
*/
static u8 iseries_readb(const volatile void __iomem *addr)
{
u64 bar_offset;
u64 dsa;
int retry = 0;
struct HvCallPci_LoadReturn ret;
struct device_node *dn =
xlate_iomm_address(addr, &dsa, &bar_offset, "read_byte");
if (dn == NULL)
return 0xff;
do {
HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, bar_offset, 0);
} while (check_return_code("RDB", dn, &retry, ret.rc) != 0);
return ret.value;
}
static u16 iseries_readw_be(const volatile void __iomem *addr)
{
u64 bar_offset;
u64 dsa;
int retry = 0;
struct HvCallPci_LoadReturn ret;
struct device_node *dn =
xlate_iomm_address(addr, &dsa, &bar_offset, "read_word");
if (dn == NULL)
return 0xffff;
do {
HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,
bar_offset, 0);
} while (check_return_code("RDW", dn, &retry, ret.rc) != 0);
return ret.value;
}
static u32 iseries_readl_be(const volatile void __iomem *addr)
{
u64 bar_offset;
u64 dsa;
int retry = 0;
struct HvCallPci_LoadReturn ret;
struct device_node *dn =
xlate_iomm_address(addr, &dsa, &bar_offset, "read_long");
if (dn == NULL)
return 0xffffffff;
do {
HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,
bar_offset, 0);
} while (check_return_code("RDL", dn, &retry, ret.rc) != 0);
return ret.value;
}
/*
* Write MM I/O Instructions for the iSeries
*
*/
static void iseries_writeb(u8 data, volatile void __iomem *addr)
{
u64 bar_offset;
u64 dsa;
int retry = 0;
u64 rc;
struct device_node *dn =
xlate_iomm_address(addr, &dsa, &bar_offset, "write_byte");
if (dn == NULL)
return;
do {
rc = HvCall4(HvCallPciBarStore8, dsa, bar_offset, data, 0);
} while (check_return_code("WWB", dn, &retry, rc) != 0);
}
static void iseries_writew_be(u16 data, volatile void __iomem *addr)
{
u64 bar_offset;
u64 dsa;
int retry = 0;
u64 rc;
struct device_node *dn =
xlate_iomm_address(addr, &dsa, &bar_offset, "write_word");
if (dn == NULL)
return;
do {
rc = HvCall4(HvCallPciBarStore16, dsa, bar_offset, data, 0);
} while (check_return_code("WWW", dn, &retry, rc) != 0);
}
static void iseries_writel_be(u32 data, volatile void __iomem *addr)
{
u64 bar_offset;
u64 dsa;
int retry = 0;
u64 rc;
struct device_node *dn =
xlate_iomm_address(addr, &dsa, &bar_offset, "write_long");
if (dn == NULL)
return;
do {
rc = HvCall4(HvCallPciBarStore32, dsa, bar_offset, data, 0);
} while (check_return_code("WWL", dn, &retry, rc) != 0);
}
static u16 iseries_readw(const volatile void __iomem *addr)
{
return le16_to_cpu(iseries_readw_be(addr));
}
static u32 iseries_readl(const volatile void __iomem *addr)
{
return le32_to_cpu(iseries_readl_be(addr));
}
static void iseries_writew(u16 data, volatile void __iomem *addr)
{
iseries_writew_be(cpu_to_le16(data), addr);
}
static void iseries_writel(u32 data, volatile void __iomem *addr)
{
iseries_writel(cpu_to_le32(data), addr);
}
static void iseries_readsb(const volatile void __iomem *addr, void *buf,
unsigned long count)
{
u8 *dst = buf;
while(count-- > 0)
*(dst++) = iseries_readb(addr);
}
static void iseries_readsw(const volatile void __iomem *addr, void *buf,
unsigned long count)
{
u16 *dst = buf;
while(count-- > 0)
*(dst++) = iseries_readw_be(addr);
}
static void iseries_readsl(const volatile void __iomem *addr, void *buf,
unsigned long count)
{
u32 *dst = buf;
while(count-- > 0)
*(dst++) = iseries_readl_be(addr);
}
static void iseries_writesb(volatile void __iomem *addr, const void *buf,
unsigned long count)
{
const u8 *src = buf;
while(count-- > 0)
iseries_writeb(*(src++), addr);
}
static void iseries_writesw(volatile void __iomem *addr, const void *buf,
unsigned long count)
{
const u16 *src = buf;
while(count-- > 0)
iseries_writew_be(*(src++), addr);
}
static void iseries_writesl(volatile void __iomem *addr, const void *buf,
unsigned long count)
{
const u32 *src = buf;
while(count-- > 0)
iseries_writel_be(*(src++), addr);
}
static void iseries_memset_io(volatile void __iomem *addr, int c,
unsigned long n)
{
volatile char __iomem *d = addr;
while (n-- > 0)
iseries_writeb(c, d++);
}
static void iseries_memcpy_fromio(void *dest, const volatile void __iomem *src,
unsigned long n)
{
char *d = dest;
const volatile char __iomem *s = src;
while (n-- > 0)
*d++ = iseries_readb(s++);
}
static void iseries_memcpy_toio(volatile void __iomem *dest, const void *src,
unsigned long n)
{
const char *s = src;
volatile char __iomem *d = dest;
while (n-- > 0)
iseries_writeb(*s++, d++);
}
/* We only set MMIO ops. The default PIO ops will be default
* to the MMIO ops + pci_io_base which is 0 on iSeries as
* expected so both should work.
*
* Note that we don't implement the readq/writeq versions as
* I don't know of an HV call for doing so. Thus, the default
* operation will be used instead, which will fault a the value
* return by iSeries for MMIO addresses always hits a non mapped
* area. This is as good as the BUG() we used to have there.
*/
static struct ppc_pci_io __initdata iseries_pci_io = {
.readb = iseries_readb,
.readw = iseries_readw,
.readl = iseries_readl,
.readw_be = iseries_readw_be,
.readl_be = iseries_readl_be,
.writeb = iseries_writeb,
.writew = iseries_writew,
.writel = iseries_writel,
.writew_be = iseries_writew_be,
.writel_be = iseries_writel_be,
.readsb = iseries_readsb,
.readsw = iseries_readsw,
.readsl = iseries_readsl,
.writesb = iseries_writesb,
.writesw = iseries_writesw,
.writesl = iseries_writesl,
.memset_io = iseries_memset_io,
.memcpy_fromio = iseries_memcpy_fromio,
.memcpy_toio = iseries_memcpy_toio,
};
/*
* iSeries_pcibios_init
*
* Description:
* This function checks for all possible system PCI host bridges that connect
* PCI buses. The system hypervisor is queried as to the guest partition
* ownership status. A pci_controller is built for any bus which is partially
* owned or fully owned by this guest partition.
*/
void __init iSeries_pcibios_init(void)
{
struct pci_controller *phb;
struct device_node *root = of_find_node_by_path("/");
struct device_node *node = NULL;
/* Install IO hooks */
ppc_pci_io = iseries_pci_io;
pci_probe_only = 1;
/* iSeries has no IO space in the common sense, it needs to set
* the IO base to 0
*/
pci_io_base = 0;
if (root == NULL) {
printk(KERN_CRIT "iSeries_pcibios_init: can't find root "
"of device tree\n");
return;
}
while ((node = of_get_next_child(root, node)) != NULL) {
HvBusNumber bus;
const u32 *busp;
if ((node->type == NULL) || (strcmp(node->type, "pci") != 0))
continue;
busp = of_get_property(node, "bus-range", NULL);
if (busp == NULL)
continue;
bus = *busp;
printk("bus %d appears to exist\n", bus);
phb = pcibios_alloc_controller(node);
if (phb == NULL)
continue;
/* All legacy iSeries PHBs are in domain zero */
phb->global_number = 0;
phb->first_busno = bus;
phb->last_busno = bus;
phb->ops = &iSeries_pci_ops;
phb->io_base_virt = (void __iomem *)_IO_BASE;
phb->io_resource.flags = IORESOURCE_IO;
phb->io_resource.start = BASE_IO_MEMORY;
phb->io_resource.end = END_IO_MEMORY;
phb->io_resource.name = "iSeries PCI IO";
phb->mem_resources[0].flags = IORESOURCE_MEM;
phb->mem_resources[0].start = BASE_IO_MEMORY;
phb->mem_resources[0].end = END_IO_MEMORY;
phb->mem_resources[0].name = "Series PCI MEM";
}
of_node_put(root);
pci_devs_phb_init();
}