6f3189f38a
This commit marks kfuncs as such inside the .BTF_ids section. The upshot of these annotations is that we'll be able to automatically generate kfunc prototypes for downstream users. The process is as follows: 1. In source, use BTF_KFUNCS_START/END macro pair to mark kfuncs 2. During build, pahole injects into BTF a "bpf_kfunc" BTF_DECL_TAG for each function inside BTF_KFUNCS sets 3. At runtime, vmlinux or module BTF is made available in sysfs 4. At runtime, bpftool (or similar) can look at provided BTF and generate appropriate prototypes for functions with "bpf_kfunc" tag To ensure future kfunc are similarly tagged, we now also return error inside kfunc registration for untagged kfuncs. For vmlinux kfuncs, we also WARN(), as initcall machinery does not handle errors. Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Acked-by: Benjamin Tissoires <bentiss@kernel.org> Link: https://lore.kernel.org/r/e55150ceecbf0a5d961e608941165c0bee7bc943.1706491398.git.dxu@dxuuu.xyz Signed-off-by: Alexei Starovoitov <ast@kernel.org>
558 lines
16 KiB
C
558 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* TCP CUBIC: Binary Increase Congestion control for TCP v2.3
|
|
* Home page:
|
|
* http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
|
|
* This is from the implementation of CUBIC TCP in
|
|
* Sangtae Ha, Injong Rhee and Lisong Xu,
|
|
* "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
|
|
* in ACM SIGOPS Operating System Review, July 2008.
|
|
* Available from:
|
|
* http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
|
|
*
|
|
* CUBIC integrates a new slow start algorithm, called HyStart.
|
|
* The details of HyStart are presented in
|
|
* Sangtae Ha and Injong Rhee,
|
|
* "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
|
|
* Available from:
|
|
* http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
|
|
*
|
|
* All testing results are available from:
|
|
* http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
|
|
*
|
|
* Unless CUBIC is enabled and congestion window is large
|
|
* this behaves the same as the original Reno.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/btf.h>
|
|
#include <linux/btf_ids.h>
|
|
#include <linux/module.h>
|
|
#include <linux/math64.h>
|
|
#include <net/tcp.h>
|
|
|
|
#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
|
|
* max_cwnd = snd_cwnd * beta
|
|
*/
|
|
#define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
|
|
|
|
/* Two methods of hybrid slow start */
|
|
#define HYSTART_ACK_TRAIN 0x1
|
|
#define HYSTART_DELAY 0x2
|
|
|
|
/* Number of delay samples for detecting the increase of delay */
|
|
#define HYSTART_MIN_SAMPLES 8
|
|
#define HYSTART_DELAY_MIN (4000U) /* 4 ms */
|
|
#define HYSTART_DELAY_MAX (16000U) /* 16 ms */
|
|
#define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
|
|
|
|
static int fast_convergence __read_mostly = 1;
|
|
static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
|
|
static int initial_ssthresh __read_mostly;
|
|
static int bic_scale __read_mostly = 41;
|
|
static int tcp_friendliness __read_mostly = 1;
|
|
|
|
static int hystart __read_mostly = 1;
|
|
static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
|
|
static int hystart_low_window __read_mostly = 16;
|
|
static int hystart_ack_delta_us __read_mostly = 2000;
|
|
|
|
static u32 cube_rtt_scale __read_mostly;
|
|
static u32 beta_scale __read_mostly;
|
|
static u64 cube_factor __read_mostly;
|
|
|
|
/* Note parameters that are used for precomputing scale factors are read-only */
|
|
module_param(fast_convergence, int, 0644);
|
|
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
|
|
module_param(beta, int, 0644);
|
|
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
|
|
module_param(initial_ssthresh, int, 0644);
|
|
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
|
|
module_param(bic_scale, int, 0444);
|
|
MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
|
|
module_param(tcp_friendliness, int, 0644);
|
|
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
|
|
module_param(hystart, int, 0644);
|
|
MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
|
|
module_param(hystart_detect, int, 0644);
|
|
MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms"
|
|
" 1: packet-train 2: delay 3: both packet-train and delay");
|
|
module_param(hystart_low_window, int, 0644);
|
|
MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
|
|
module_param(hystart_ack_delta_us, int, 0644);
|
|
MODULE_PARM_DESC(hystart_ack_delta_us, "spacing between ack's indicating train (usecs)");
|
|
|
|
/* BIC TCP Parameters */
|
|
struct bictcp {
|
|
u32 cnt; /* increase cwnd by 1 after ACKs */
|
|
u32 last_max_cwnd; /* last maximum snd_cwnd */
|
|
u32 last_cwnd; /* the last snd_cwnd */
|
|
u32 last_time; /* time when updated last_cwnd */
|
|
u32 bic_origin_point;/* origin point of bic function */
|
|
u32 bic_K; /* time to origin point
|
|
from the beginning of the current epoch */
|
|
u32 delay_min; /* min delay (usec) */
|
|
u32 epoch_start; /* beginning of an epoch */
|
|
u32 ack_cnt; /* number of acks */
|
|
u32 tcp_cwnd; /* estimated tcp cwnd */
|
|
u16 unused;
|
|
u8 sample_cnt; /* number of samples to decide curr_rtt */
|
|
u8 found; /* the exit point is found? */
|
|
u32 round_start; /* beginning of each round */
|
|
u32 end_seq; /* end_seq of the round */
|
|
u32 last_ack; /* last time when the ACK spacing is close */
|
|
u32 curr_rtt; /* the minimum rtt of current round */
|
|
};
|
|
|
|
static inline void bictcp_reset(struct bictcp *ca)
|
|
{
|
|
memset(ca, 0, offsetof(struct bictcp, unused));
|
|
ca->found = 0;
|
|
}
|
|
|
|
static inline u32 bictcp_clock_us(const struct sock *sk)
|
|
{
|
|
return tcp_sk(sk)->tcp_mstamp;
|
|
}
|
|
|
|
static inline void bictcp_hystart_reset(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bictcp *ca = inet_csk_ca(sk);
|
|
|
|
ca->round_start = ca->last_ack = bictcp_clock_us(sk);
|
|
ca->end_seq = tp->snd_nxt;
|
|
ca->curr_rtt = ~0U;
|
|
ca->sample_cnt = 0;
|
|
}
|
|
|
|
__bpf_kfunc static void cubictcp_init(struct sock *sk)
|
|
{
|
|
struct bictcp *ca = inet_csk_ca(sk);
|
|
|
|
bictcp_reset(ca);
|
|
|
|
if (hystart)
|
|
bictcp_hystart_reset(sk);
|
|
|
|
if (!hystart && initial_ssthresh)
|
|
tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
|
|
}
|
|
|
|
__bpf_kfunc static void cubictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
|
|
{
|
|
if (event == CA_EVENT_TX_START) {
|
|
struct bictcp *ca = inet_csk_ca(sk);
|
|
u32 now = tcp_jiffies32;
|
|
s32 delta;
|
|
|
|
delta = now - tcp_sk(sk)->lsndtime;
|
|
|
|
/* We were application limited (idle) for a while.
|
|
* Shift epoch_start to keep cwnd growth to cubic curve.
|
|
*/
|
|
if (ca->epoch_start && delta > 0) {
|
|
ca->epoch_start += delta;
|
|
if (after(ca->epoch_start, now))
|
|
ca->epoch_start = now;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* calculate the cubic root of x using a table lookup followed by one
|
|
* Newton-Raphson iteration.
|
|
* Avg err ~= 0.195%
|
|
*/
|
|
static u32 cubic_root(u64 a)
|
|
{
|
|
u32 x, b, shift;
|
|
/*
|
|
* cbrt(x) MSB values for x MSB values in [0..63].
|
|
* Precomputed then refined by hand - Willy Tarreau
|
|
*
|
|
* For x in [0..63],
|
|
* v = cbrt(x << 18) - 1
|
|
* cbrt(x) = (v[x] + 10) >> 6
|
|
*/
|
|
static const u8 v[] = {
|
|
/* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
|
|
/* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
|
|
/* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
|
|
/* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
|
|
/* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
|
|
/* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
|
|
/* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
|
|
/* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
|
|
};
|
|
|
|
b = fls64(a);
|
|
if (b < 7) {
|
|
/* a in [0..63] */
|
|
return ((u32)v[(u32)a] + 35) >> 6;
|
|
}
|
|
|
|
b = ((b * 84) >> 8) - 1;
|
|
shift = (a >> (b * 3));
|
|
|
|
x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
|
|
|
|
/*
|
|
* Newton-Raphson iteration
|
|
* 2
|
|
* x = ( 2 * x + a / x ) / 3
|
|
* k+1 k k
|
|
*/
|
|
x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
|
|
x = ((x * 341) >> 10);
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* Compute congestion window to use.
|
|
*/
|
|
static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked)
|
|
{
|
|
u32 delta, bic_target, max_cnt;
|
|
u64 offs, t;
|
|
|
|
ca->ack_cnt += acked; /* count the number of ACKed packets */
|
|
|
|
if (ca->last_cwnd == cwnd &&
|
|
(s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32)
|
|
return;
|
|
|
|
/* The CUBIC function can update ca->cnt at most once per jiffy.
|
|
* On all cwnd reduction events, ca->epoch_start is set to 0,
|
|
* which will force a recalculation of ca->cnt.
|
|
*/
|
|
if (ca->epoch_start && tcp_jiffies32 == ca->last_time)
|
|
goto tcp_friendliness;
|
|
|
|
ca->last_cwnd = cwnd;
|
|
ca->last_time = tcp_jiffies32;
|
|
|
|
if (ca->epoch_start == 0) {
|
|
ca->epoch_start = tcp_jiffies32; /* record beginning */
|
|
ca->ack_cnt = acked; /* start counting */
|
|
ca->tcp_cwnd = cwnd; /* syn with cubic */
|
|
|
|
if (ca->last_max_cwnd <= cwnd) {
|
|
ca->bic_K = 0;
|
|
ca->bic_origin_point = cwnd;
|
|
} else {
|
|
/* Compute new K based on
|
|
* (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
|
|
*/
|
|
ca->bic_K = cubic_root(cube_factor
|
|
* (ca->last_max_cwnd - cwnd));
|
|
ca->bic_origin_point = ca->last_max_cwnd;
|
|
}
|
|
}
|
|
|
|
/* cubic function - calc*/
|
|
/* calculate c * time^3 / rtt,
|
|
* while considering overflow in calculation of time^3
|
|
* (so time^3 is done by using 64 bit)
|
|
* and without the support of division of 64bit numbers
|
|
* (so all divisions are done by using 32 bit)
|
|
* also NOTE the unit of those veriables
|
|
* time = (t - K) / 2^bictcp_HZ
|
|
* c = bic_scale >> 10
|
|
* rtt = (srtt >> 3) / HZ
|
|
* !!! The following code does not have overflow problems,
|
|
* if the cwnd < 1 million packets !!!
|
|
*/
|
|
|
|
t = (s32)(tcp_jiffies32 - ca->epoch_start);
|
|
t += usecs_to_jiffies(ca->delay_min);
|
|
/* change the unit from HZ to bictcp_HZ */
|
|
t <<= BICTCP_HZ;
|
|
do_div(t, HZ);
|
|
|
|
if (t < ca->bic_K) /* t - K */
|
|
offs = ca->bic_K - t;
|
|
else
|
|
offs = t - ca->bic_K;
|
|
|
|
/* c/rtt * (t-K)^3 */
|
|
delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
|
|
if (t < ca->bic_K) /* below origin*/
|
|
bic_target = ca->bic_origin_point - delta;
|
|
else /* above origin*/
|
|
bic_target = ca->bic_origin_point + delta;
|
|
|
|
/* cubic function - calc bictcp_cnt*/
|
|
if (bic_target > cwnd) {
|
|
ca->cnt = cwnd / (bic_target - cwnd);
|
|
} else {
|
|
ca->cnt = 100 * cwnd; /* very small increment*/
|
|
}
|
|
|
|
/*
|
|
* The initial growth of cubic function may be too conservative
|
|
* when the available bandwidth is still unknown.
|
|
*/
|
|
if (ca->last_max_cwnd == 0 && ca->cnt > 20)
|
|
ca->cnt = 20; /* increase cwnd 5% per RTT */
|
|
|
|
tcp_friendliness:
|
|
/* TCP Friendly */
|
|
if (tcp_friendliness) {
|
|
u32 scale = beta_scale;
|
|
|
|
delta = (cwnd * scale) >> 3;
|
|
while (ca->ack_cnt > delta) { /* update tcp cwnd */
|
|
ca->ack_cnt -= delta;
|
|
ca->tcp_cwnd++;
|
|
}
|
|
|
|
if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */
|
|
delta = ca->tcp_cwnd - cwnd;
|
|
max_cnt = cwnd / delta;
|
|
if (ca->cnt > max_cnt)
|
|
ca->cnt = max_cnt;
|
|
}
|
|
}
|
|
|
|
/* The maximum rate of cwnd increase CUBIC allows is 1 packet per
|
|
* 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
|
|
*/
|
|
ca->cnt = max(ca->cnt, 2U);
|
|
}
|
|
|
|
__bpf_kfunc static void cubictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bictcp *ca = inet_csk_ca(sk);
|
|
|
|
if (!tcp_is_cwnd_limited(sk))
|
|
return;
|
|
|
|
if (tcp_in_slow_start(tp)) {
|
|
acked = tcp_slow_start(tp, acked);
|
|
if (!acked)
|
|
return;
|
|
}
|
|
bictcp_update(ca, tcp_snd_cwnd(tp), acked);
|
|
tcp_cong_avoid_ai(tp, ca->cnt, acked);
|
|
}
|
|
|
|
__bpf_kfunc static u32 cubictcp_recalc_ssthresh(struct sock *sk)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bictcp *ca = inet_csk_ca(sk);
|
|
|
|
ca->epoch_start = 0; /* end of epoch */
|
|
|
|
/* Wmax and fast convergence */
|
|
if (tcp_snd_cwnd(tp) < ca->last_max_cwnd && fast_convergence)
|
|
ca->last_max_cwnd = (tcp_snd_cwnd(tp) * (BICTCP_BETA_SCALE + beta))
|
|
/ (2 * BICTCP_BETA_SCALE);
|
|
else
|
|
ca->last_max_cwnd = tcp_snd_cwnd(tp);
|
|
|
|
return max((tcp_snd_cwnd(tp) * beta) / BICTCP_BETA_SCALE, 2U);
|
|
}
|
|
|
|
__bpf_kfunc static void cubictcp_state(struct sock *sk, u8 new_state)
|
|
{
|
|
if (new_state == TCP_CA_Loss) {
|
|
bictcp_reset(inet_csk_ca(sk));
|
|
bictcp_hystart_reset(sk);
|
|
}
|
|
}
|
|
|
|
/* Account for TSO/GRO delays.
|
|
* Otherwise short RTT flows could get too small ssthresh, since during
|
|
* slow start we begin with small TSO packets and ca->delay_min would
|
|
* not account for long aggregation delay when TSO packets get bigger.
|
|
* Ideally even with a very small RTT we would like to have at least one
|
|
* TSO packet being sent and received by GRO, and another one in qdisc layer.
|
|
* We apply another 100% factor because @rate is doubled at this point.
|
|
* We cap the cushion to 1ms.
|
|
*/
|
|
static u32 hystart_ack_delay(const struct sock *sk)
|
|
{
|
|
unsigned long rate;
|
|
|
|
rate = READ_ONCE(sk->sk_pacing_rate);
|
|
if (!rate)
|
|
return 0;
|
|
return min_t(u64, USEC_PER_MSEC,
|
|
div64_ul((u64)sk->sk_gso_max_size * 4 * USEC_PER_SEC, rate));
|
|
}
|
|
|
|
static void hystart_update(struct sock *sk, u32 delay)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bictcp *ca = inet_csk_ca(sk);
|
|
u32 threshold;
|
|
|
|
if (after(tp->snd_una, ca->end_seq))
|
|
bictcp_hystart_reset(sk);
|
|
|
|
if (hystart_detect & HYSTART_ACK_TRAIN) {
|
|
u32 now = bictcp_clock_us(sk);
|
|
|
|
/* first detection parameter - ack-train detection */
|
|
if ((s32)(now - ca->last_ack) <= hystart_ack_delta_us) {
|
|
ca->last_ack = now;
|
|
|
|
threshold = ca->delay_min + hystart_ack_delay(sk);
|
|
|
|
/* Hystart ack train triggers if we get ack past
|
|
* ca->delay_min/2.
|
|
* Pacing might have delayed packets up to RTT/2
|
|
* during slow start.
|
|
*/
|
|
if (sk->sk_pacing_status == SK_PACING_NONE)
|
|
threshold >>= 1;
|
|
|
|
if ((s32)(now - ca->round_start) > threshold) {
|
|
ca->found = 1;
|
|
pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n",
|
|
now - ca->round_start, threshold,
|
|
ca->delay_min, hystart_ack_delay(sk), tcp_snd_cwnd(tp));
|
|
NET_INC_STATS(sock_net(sk),
|
|
LINUX_MIB_TCPHYSTARTTRAINDETECT);
|
|
NET_ADD_STATS(sock_net(sk),
|
|
LINUX_MIB_TCPHYSTARTTRAINCWND,
|
|
tcp_snd_cwnd(tp));
|
|
tp->snd_ssthresh = tcp_snd_cwnd(tp);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hystart_detect & HYSTART_DELAY) {
|
|
/* obtain the minimum delay of more than sampling packets */
|
|
if (ca->curr_rtt > delay)
|
|
ca->curr_rtt = delay;
|
|
if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
|
|
ca->sample_cnt++;
|
|
} else {
|
|
if (ca->curr_rtt > ca->delay_min +
|
|
HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
|
|
ca->found = 1;
|
|
NET_INC_STATS(sock_net(sk),
|
|
LINUX_MIB_TCPHYSTARTDELAYDETECT);
|
|
NET_ADD_STATS(sock_net(sk),
|
|
LINUX_MIB_TCPHYSTARTDELAYCWND,
|
|
tcp_snd_cwnd(tp));
|
|
tp->snd_ssthresh = tcp_snd_cwnd(tp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
__bpf_kfunc static void cubictcp_acked(struct sock *sk, const struct ack_sample *sample)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bictcp *ca = inet_csk_ca(sk);
|
|
u32 delay;
|
|
|
|
/* Some calls are for duplicates without timetamps */
|
|
if (sample->rtt_us < 0)
|
|
return;
|
|
|
|
/* Discard delay samples right after fast recovery */
|
|
if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ)
|
|
return;
|
|
|
|
delay = sample->rtt_us;
|
|
if (delay == 0)
|
|
delay = 1;
|
|
|
|
/* first time call or link delay decreases */
|
|
if (ca->delay_min == 0 || ca->delay_min > delay)
|
|
ca->delay_min = delay;
|
|
|
|
/* hystart triggers when cwnd is larger than some threshold */
|
|
if (!ca->found && tcp_in_slow_start(tp) && hystart &&
|
|
tcp_snd_cwnd(tp) >= hystart_low_window)
|
|
hystart_update(sk, delay);
|
|
}
|
|
|
|
static struct tcp_congestion_ops cubictcp __read_mostly = {
|
|
.init = cubictcp_init,
|
|
.ssthresh = cubictcp_recalc_ssthresh,
|
|
.cong_avoid = cubictcp_cong_avoid,
|
|
.set_state = cubictcp_state,
|
|
.undo_cwnd = tcp_reno_undo_cwnd,
|
|
.cwnd_event = cubictcp_cwnd_event,
|
|
.pkts_acked = cubictcp_acked,
|
|
.owner = THIS_MODULE,
|
|
.name = "cubic",
|
|
};
|
|
|
|
BTF_KFUNCS_START(tcp_cubic_check_kfunc_ids)
|
|
#ifdef CONFIG_X86
|
|
#ifdef CONFIG_DYNAMIC_FTRACE
|
|
BTF_ID_FLAGS(func, cubictcp_init)
|
|
BTF_ID_FLAGS(func, cubictcp_recalc_ssthresh)
|
|
BTF_ID_FLAGS(func, cubictcp_cong_avoid)
|
|
BTF_ID_FLAGS(func, cubictcp_state)
|
|
BTF_ID_FLAGS(func, cubictcp_cwnd_event)
|
|
BTF_ID_FLAGS(func, cubictcp_acked)
|
|
#endif
|
|
#endif
|
|
BTF_KFUNCS_END(tcp_cubic_check_kfunc_ids)
|
|
|
|
static const struct btf_kfunc_id_set tcp_cubic_kfunc_set = {
|
|
.owner = THIS_MODULE,
|
|
.set = &tcp_cubic_check_kfunc_ids,
|
|
};
|
|
|
|
static int __init cubictcp_register(void)
|
|
{
|
|
int ret;
|
|
|
|
BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
|
|
|
|
/* Precompute a bunch of the scaling factors that are used per-packet
|
|
* based on SRTT of 100ms
|
|
*/
|
|
|
|
beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
|
|
/ (BICTCP_BETA_SCALE - beta);
|
|
|
|
cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
|
|
|
|
/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
|
|
* so K = cubic_root( (wmax-cwnd)*rtt/c )
|
|
* the unit of K is bictcp_HZ=2^10, not HZ
|
|
*
|
|
* c = bic_scale >> 10
|
|
* rtt = 100ms
|
|
*
|
|
* the following code has been designed and tested for
|
|
* cwnd < 1 million packets
|
|
* RTT < 100 seconds
|
|
* HZ < 1,000,00 (corresponding to 10 nano-second)
|
|
*/
|
|
|
|
/* 1/c * 2^2*bictcp_HZ * srtt */
|
|
cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
|
|
|
|
/* divide by bic_scale and by constant Srtt (100ms) */
|
|
do_div(cube_factor, bic_scale * 10);
|
|
|
|
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_cubic_kfunc_set);
|
|
if (ret < 0)
|
|
return ret;
|
|
return tcp_register_congestion_control(&cubictcp);
|
|
}
|
|
|
|
static void __exit cubictcp_unregister(void)
|
|
{
|
|
tcp_unregister_congestion_control(&cubictcp);
|
|
}
|
|
|
|
module_init(cubictcp_register);
|
|
module_exit(cubictcp_unregister);
|
|
|
|
MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("CUBIC TCP");
|
|
MODULE_VERSION("2.3");
|