It turns out that xtensa has a really odd configuration situation: you can do a no-MMU config, but still have the page fault code enabled. Which doesn't sound all that sensible, but it turns out that xtensa can have protection faults even without the MMU, and we have this: config PFAULT bool "Handle protection faults" if EXPERT && !MMU default y help Handle protection faults. MMU configurations must enable it. noMMU configurations may disable it if used memory map never generates protection faults or faults are always fatal. If unsure, say Y. which completely violated my expectations of the page fault handling. End result: Guenter reports that the xtensa no-MMU builds all fail with arch/xtensa/mm/fault.c: In function ‘do_page_fault’: arch/xtensa/mm/fault.c:133:8: error: implicit declaration of function ‘lock_mm_and_find_vma’ because I never exposed the new lock_mm_and_find_vma() function for the no-MMU case. Doing so is simple enough, and fixes the problem. Reported-and-tested-by: Guenter Roeck <linux@roeck-us.net> Fixes: a050ba1e7422 ("mm/fault: convert remaining simple cases to lock_mm_and_find_vma()") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.6%
Assembly
1%
Shell
0.5%
Python
0.3%
Makefile
0.3%