linux/drivers/crypto/hisilicon/qm.c
Linus Torvalds 556eb8b791 Driver core changes for 6.4-rc1
Here is the large set of driver core changes for 6.4-rc1.
 
 Once again, a busy development cycle, with lots of changes happening in
 the driver core in the quest to be able to move "struct bus" and "struct
 class" into read-only memory, a task now complete with these changes.
 
 This will make the future rust interactions with the driver core more
 "provably correct" as well as providing more obvious lifetime rules for
 all busses and classes in the kernel.
 
 The changes required for this did touch many individual classes and
 busses as many callbacks were changed to take const * parameters
 instead.  All of these changes have been submitted to the various
 subsystem maintainers, giving them plenty of time to review, and most of
 them actually did so.
 
 Other than those changes, included in here are a small set of other
 things:
   - kobject logging improvements
   - cacheinfo improvements and updates
   - obligatory fw_devlink updates and fixes
   - documentation updates
   - device property cleanups and const * changes
   - firwmare loader dependency fixes.
 
 All of these have been in linux-next for a while with no reported
 problems.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 
 iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp7Sw8cZ3JlZ0Brcm9h
 aC5jb20ACgkQMUfUDdst+ykitQCfamUHpxGcKOAGuLXMotXNakTEsxgAoIquENm5
 LEGadNS38k5fs+73UaxV
 =7K4B
 -----END PGP SIGNATURE-----

Merge tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull driver core updates from Greg KH:
 "Here is the large set of driver core changes for 6.4-rc1.

  Once again, a busy development cycle, with lots of changes happening
  in the driver core in the quest to be able to move "struct bus" and
  "struct class" into read-only memory, a task now complete with these
  changes.

  This will make the future rust interactions with the driver core more
  "provably correct" as well as providing more obvious lifetime rules
  for all busses and classes in the kernel.

  The changes required for this did touch many individual classes and
  busses as many callbacks were changed to take const * parameters
  instead. All of these changes have been submitted to the various
  subsystem maintainers, giving them plenty of time to review, and most
  of them actually did so.

  Other than those changes, included in here are a small set of other
  things:

   - kobject logging improvements

   - cacheinfo improvements and updates

   - obligatory fw_devlink updates and fixes

   - documentation updates

   - device property cleanups and const * changes

   - firwmare loader dependency fixes.

  All of these have been in linux-next for a while with no reported
  problems"

* tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits)
  device property: make device_property functions take const device *
  driver core: update comments in device_rename()
  driver core: Don't require dynamic_debug for initcall_debug probe timing
  firmware_loader: rework crypto dependencies
  firmware_loader: Strip off \n from customized path
  zram: fix up permission for the hot_add sysfs file
  cacheinfo: Add use_arch[|_cache]_info field/function
  arch_topology: Remove early cacheinfo error message if -ENOENT
  cacheinfo: Check cache properties are present in DT
  cacheinfo: Check sib_leaf in cache_leaves_are_shared()
  cacheinfo: Allow early level detection when DT/ACPI info is missing/broken
  cacheinfo: Add arm64 early level initializer implementation
  cacheinfo: Add arch specific early level initializer
  tty: make tty_class a static const structure
  driver core: class: remove struct class_interface * from callbacks
  driver core: class: mark the struct class in struct class_interface constant
  driver core: class: make class_register() take a const *
  driver core: class: mark class_release() as taking a const *
  driver core: remove incorrect comment for device_create*
  MIPS: vpe-cmp: remove module owner pointer from struct class usage.
  ...
2023-04-27 11:53:57 -07:00

5609 lines
131 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */
#include <asm/page.h>
#include <linux/acpi.h>
#include <linux/bitmap.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/io.h>
#include <linux/irqreturn.h>
#include <linux/log2.h>
#include <linux/pm_runtime.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/uacce.h>
#include <linux/uaccess.h>
#include <uapi/misc/uacce/hisi_qm.h>
#include <linux/hisi_acc_qm.h>
#include "qm_common.h"
/* eq/aeq irq enable */
#define QM_VF_AEQ_INT_SOURCE 0x0
#define QM_VF_AEQ_INT_MASK 0x4
#define QM_VF_EQ_INT_SOURCE 0x8
#define QM_VF_EQ_INT_MASK 0xc
#define QM_IRQ_VECTOR_MASK GENMASK(15, 0)
#define QM_IRQ_TYPE_MASK GENMASK(15, 0)
#define QM_IRQ_TYPE_SHIFT 16
#define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0)
/* mailbox */
#define QM_MB_PING_ALL_VFS 0xffff
#define QM_MB_CMD_DATA_SHIFT 32
#define QM_MB_CMD_DATA_MASK GENMASK(31, 0)
#define QM_MB_STATUS_MASK GENMASK(12, 9)
/* sqc shift */
#define QM_SQ_HOP_NUM_SHIFT 0
#define QM_SQ_PAGE_SIZE_SHIFT 4
#define QM_SQ_BUF_SIZE_SHIFT 8
#define QM_SQ_SQE_SIZE_SHIFT 12
#define QM_SQ_PRIORITY_SHIFT 0
#define QM_SQ_ORDERS_SHIFT 4
#define QM_SQ_TYPE_SHIFT 8
#define QM_QC_PASID_ENABLE 0x1
#define QM_QC_PASID_ENABLE_SHIFT 7
#define QM_SQ_TYPE_MASK GENMASK(3, 0)
#define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
/* cqc shift */
#define QM_CQ_HOP_NUM_SHIFT 0
#define QM_CQ_PAGE_SIZE_SHIFT 4
#define QM_CQ_BUF_SIZE_SHIFT 8
#define QM_CQ_CQE_SIZE_SHIFT 12
#define QM_CQ_PHASE_SHIFT 0
#define QM_CQ_FLAG_SHIFT 1
#define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1)
#define QM_QC_CQE_SIZE 4
#define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
/* eqc shift */
#define QM_EQE_AEQE_SIZE (2UL << 12)
#define QM_EQC_PHASE_SHIFT 16
#define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
#define QM_EQE_CQN_MASK GENMASK(15, 0)
#define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
#define QM_AEQE_TYPE_SHIFT 17
#define QM_AEQE_CQN_MASK GENMASK(15, 0)
#define QM_CQ_OVERFLOW 0
#define QM_EQ_OVERFLOW 1
#define QM_CQE_ERROR 2
#define QM_XQ_DEPTH_SHIFT 16
#define QM_XQ_DEPTH_MASK GENMASK(15, 0)
#define QM_DOORBELL_CMD_SQ 0
#define QM_DOORBELL_CMD_CQ 1
#define QM_DOORBELL_CMD_EQ 2
#define QM_DOORBELL_CMD_AEQ 3
#define QM_DOORBELL_BASE_V1 0x340
#define QM_DB_CMD_SHIFT_V1 16
#define QM_DB_INDEX_SHIFT_V1 32
#define QM_DB_PRIORITY_SHIFT_V1 48
#define QM_PAGE_SIZE 0x0034
#define QM_QP_DB_INTERVAL 0x10000
#define QM_MEM_START_INIT 0x100040
#define QM_MEM_INIT_DONE 0x100044
#define QM_VFT_CFG_RDY 0x10006c
#define QM_VFT_CFG_OP_WR 0x100058
#define QM_VFT_CFG_TYPE 0x10005c
#define QM_VFT_CFG 0x100060
#define QM_VFT_CFG_OP_ENABLE 0x100054
#define QM_PM_CTRL 0x100148
#define QM_IDLE_DISABLE BIT(9)
#define QM_VFT_CFG_DATA_L 0x100064
#define QM_VFT_CFG_DATA_H 0x100068
#define QM_SQC_VFT_BUF_SIZE (7ULL << 8)
#define QM_SQC_VFT_SQC_SIZE (5ULL << 12)
#define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16)
#define QM_SQC_VFT_START_SQN_SHIFT 28
#define QM_SQC_VFT_VALID (1ULL << 44)
#define QM_SQC_VFT_SQN_SHIFT 45
#define QM_CQC_VFT_BUF_SIZE (7ULL << 8)
#define QM_CQC_VFT_SQC_SIZE (5ULL << 12)
#define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16)
#define QM_CQC_VFT_VALID (1ULL << 28)
#define QM_SQC_VFT_BASE_SHIFT_V2 28
#define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0)
#define QM_SQC_VFT_NUM_SHIFT_V2 45
#define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0)
#define QM_ABNORMAL_INT_SOURCE 0x100000
#define QM_ABNORMAL_INT_MASK 0x100004
#define QM_ABNORMAL_INT_MASK_VALUE 0x7fff
#define QM_ABNORMAL_INT_STATUS 0x100008
#define QM_ABNORMAL_INT_SET 0x10000c
#define QM_ABNORMAL_INF00 0x100010
#define QM_FIFO_OVERFLOW_TYPE 0xc0
#define QM_FIFO_OVERFLOW_TYPE_SHIFT 6
#define QM_FIFO_OVERFLOW_VF 0x3f
#define QM_ABNORMAL_INF01 0x100014
#define QM_DB_TIMEOUT_TYPE 0xc0
#define QM_DB_TIMEOUT_TYPE_SHIFT 6
#define QM_DB_TIMEOUT_VF 0x3f
#define QM_RAS_CE_ENABLE 0x1000ec
#define QM_RAS_FE_ENABLE 0x1000f0
#define QM_RAS_NFE_ENABLE 0x1000f4
#define QM_RAS_CE_THRESHOLD 0x1000f8
#define QM_RAS_CE_TIMES_PER_IRQ 1
#define QM_OOO_SHUTDOWN_SEL 0x1040f8
#define QM_ECC_MBIT BIT(2)
#define QM_DB_TIMEOUT BIT(10)
#define QM_OF_FIFO_OF BIT(11)
#define QM_RESET_WAIT_TIMEOUT 400
#define QM_PEH_VENDOR_ID 0x1000d8
#define ACC_VENDOR_ID_VALUE 0x5a5a
#define QM_PEH_DFX_INFO0 0x1000fc
#define QM_PEH_DFX_INFO1 0x100100
#define QM_PEH_DFX_MASK (BIT(0) | BIT(2))
#define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16)
#define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3
#define ACC_PEH_MSI_DISABLE GENMASK(31, 0)
#define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1
#define ACC_MASTER_TRANS_RETURN_RW 3
#define ACC_MASTER_TRANS_RETURN 0x300150
#define ACC_MASTER_GLOBAL_CTRL 0x300000
#define ACC_AM_CFG_PORT_WR_EN 0x30001c
#define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT
#define ACC_AM_ROB_ECC_INT_STS 0x300104
#define ACC_ROB_ECC_ERR_MULTPL BIT(1)
#define QM_MSI_CAP_ENABLE BIT(16)
/* interfunction communication */
#define QM_IFC_READY_STATUS 0x100128
#define QM_IFC_INT_SET_P 0x100130
#define QM_IFC_INT_CFG 0x100134
#define QM_IFC_INT_SOURCE_P 0x100138
#define QM_IFC_INT_SOURCE_V 0x0020
#define QM_IFC_INT_MASK 0x0024
#define QM_IFC_INT_STATUS 0x0028
#define QM_IFC_INT_SET_V 0x002C
#define QM_IFC_SEND_ALL_VFS GENMASK(6, 0)
#define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0)
#define QM_IFC_INT_SOURCE_MASK BIT(0)
#define QM_IFC_INT_DISABLE BIT(0)
#define QM_IFC_INT_STATUS_MASK BIT(0)
#define QM_IFC_INT_SET_MASK BIT(0)
#define QM_WAIT_DST_ACK 10
#define QM_MAX_PF_WAIT_COUNT 10
#define QM_MAX_VF_WAIT_COUNT 40
#define QM_VF_RESET_WAIT_US 20000
#define QM_VF_RESET_WAIT_CNT 3000
#define QM_VF_RESET_WAIT_TIMEOUT_US \
(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
#define POLL_PERIOD 10
#define POLL_TIMEOUT 1000
#define WAIT_PERIOD_US_MAX 200
#define WAIT_PERIOD_US_MIN 100
#define MAX_WAIT_COUNTS 1000
#define QM_CACHE_WB_START 0x204
#define QM_CACHE_WB_DONE 0x208
#define QM_FUNC_CAPS_REG 0x3100
#define QM_CAPBILITY_VERSION GENMASK(7, 0)
#define PCI_BAR_2 2
#define PCI_BAR_4 4
#define QMC_ALIGN(sz) ALIGN(sz, 32)
#define QM_DBG_READ_LEN 256
#define QM_PCI_COMMAND_INVALID ~0
#define QM_RESET_STOP_TX_OFFSET 1
#define QM_RESET_STOP_RX_OFFSET 2
#define WAIT_PERIOD 20
#define REMOVE_WAIT_DELAY 10
#define QM_DRIVER_REMOVING 0
#define QM_RST_SCHED 1
#define QM_QOS_PARAM_NUM 2
#define QM_QOS_MAX_VAL 1000
#define QM_QOS_RATE 100
#define QM_QOS_EXPAND_RATE 1000
#define QM_SHAPER_CIR_B_MASK GENMASK(7, 0)
#define QM_SHAPER_CIR_U_MASK GENMASK(10, 8)
#define QM_SHAPER_CIR_S_MASK GENMASK(14, 11)
#define QM_SHAPER_FACTOR_CIR_U_SHIFT 8
#define QM_SHAPER_FACTOR_CIR_S_SHIFT 11
#define QM_SHAPER_FACTOR_CBS_B_SHIFT 15
#define QM_SHAPER_FACTOR_CBS_S_SHIFT 19
#define QM_SHAPER_CBS_B 1
#define QM_SHAPER_VFT_OFFSET 6
#define QM_QOS_MIN_ERROR_RATE 5
#define QM_SHAPER_MIN_CBS_S 8
#define QM_QOS_TICK 0x300U
#define QM_QOS_DIVISOR_CLK 0x1f40U
#define QM_QOS_MAX_CIR_B 200
#define QM_QOS_MIN_CIR_B 100
#define QM_QOS_MAX_CIR_U 6
#define QM_AUTOSUSPEND_DELAY 3000
#define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
#define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
#define QM_MK_SQC_W13(priority, orders, alg_type) \
(((priority) << QM_SQ_PRIORITY_SHIFT) | \
((orders) << QM_SQ_ORDERS_SHIFT) | \
(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
#define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
#define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
#define INIT_QC_COMMON(qc, base, pasid) do { \
(qc)->head = 0; \
(qc)->tail = 0; \
(qc)->base_l = cpu_to_le32(lower_32_bits(base)); \
(qc)->base_h = cpu_to_le32(upper_32_bits(base)); \
(qc)->dw3 = 0; \
(qc)->w8 = 0; \
(qc)->rsvd0 = 0; \
(qc)->pasid = cpu_to_le16(pasid); \
(qc)->w11 = 0; \
(qc)->rsvd1 = 0; \
} while (0)
enum vft_type {
SQC_VFT = 0,
CQC_VFT,
SHAPER_VFT,
};
enum acc_err_result {
ACC_ERR_NONE,
ACC_ERR_NEED_RESET,
ACC_ERR_RECOVERED,
};
enum qm_alg_type {
ALG_TYPE_0,
ALG_TYPE_1,
};
enum qm_mb_cmd {
QM_PF_FLR_PREPARE = 0x01,
QM_PF_SRST_PREPARE,
QM_PF_RESET_DONE,
QM_VF_PREPARE_DONE,
QM_VF_PREPARE_FAIL,
QM_VF_START_DONE,
QM_VF_START_FAIL,
QM_PF_SET_QOS,
QM_VF_GET_QOS,
};
enum qm_basic_type {
QM_TOTAL_QP_NUM_CAP = 0x0,
QM_FUNC_MAX_QP_CAP,
QM_XEQ_DEPTH_CAP,
QM_QP_DEPTH_CAP,
QM_EQ_IRQ_TYPE_CAP,
QM_AEQ_IRQ_TYPE_CAP,
QM_ABN_IRQ_TYPE_CAP,
QM_PF2VF_IRQ_TYPE_CAP,
QM_PF_IRQ_NUM_CAP,
QM_VF_IRQ_NUM_CAP,
};
static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
{QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0},
{QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1},
{QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1},
{QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
};
static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
};
static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
};
static const struct hisi_qm_cap_info qm_basic_info[] = {
{QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400},
{QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400},
{QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800},
{QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
{QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000},
{QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001},
{QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003},
{QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002},
{QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4},
{QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3},
};
struct qm_mailbox {
__le16 w0;
__le16 queue_num;
__le32 base_l;
__le32 base_h;
__le32 rsvd;
};
struct qm_doorbell {
__le16 queue_num;
__le16 cmd;
__le16 index;
__le16 priority;
};
struct hisi_qm_resource {
struct hisi_qm *qm;
int distance;
struct list_head list;
};
/**
* struct qm_hw_err - Structure describing the device errors
* @list: hardware error list
* @timestamp: timestamp when the error occurred
*/
struct qm_hw_err {
struct list_head list;
unsigned long long timestamp;
};
struct hisi_qm_hw_ops {
int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
void (*qm_db)(struct hisi_qm *qm, u16 qn,
u8 cmd, u16 index, u8 priority);
int (*debug_init)(struct hisi_qm *qm);
void (*hw_error_init)(struct hisi_qm *qm);
void (*hw_error_uninit)(struct hisi_qm *qm);
enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
int (*set_msi)(struct hisi_qm *qm, bool set);
};
struct hisi_qm_hw_error {
u32 int_msk;
const char *msg;
};
static const struct hisi_qm_hw_error qm_hw_error[] = {
{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
{ /* sentinel */ }
};
static const char * const qm_db_timeout[] = {
"sq", "cq", "eq", "aeq",
};
static const char * const qm_fifo_overflow[] = {
"cq", "eq", "aeq",
};
static const char * const qp_s[] = {
"none", "init", "start", "stop", "close",
};
struct qm_typical_qos_table {
u32 start;
u32 end;
u32 val;
};
/* the qos step is 100 */
static struct qm_typical_qos_table shaper_cir_s[] = {
{100, 100, 4},
{200, 200, 3},
{300, 500, 2},
{600, 1000, 1},
{1100, 100000, 0},
};
static struct qm_typical_qos_table shaper_cbs_s[] = {
{100, 200, 9},
{300, 500, 11},
{600, 1000, 12},
{1100, 10000, 16},
{10100, 25000, 17},
{25100, 50000, 18},
{50100, 100000, 19}
};
static void qm_irqs_unregister(struct hisi_qm *qm);
static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
{
enum qm_state curr = atomic_read(&qm->status.flags);
bool avail = false;
switch (curr) {
case QM_INIT:
if (new == QM_START || new == QM_CLOSE)
avail = true;
break;
case QM_START:
if (new == QM_STOP)
avail = true;
break;
case QM_STOP:
if (new == QM_CLOSE || new == QM_START)
avail = true;
break;
default:
break;
}
dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
qm_s[curr], qm_s[new]);
if (!avail)
dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
qm_s[curr], qm_s[new]);
return avail;
}
static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
enum qp_state new)
{
enum qm_state qm_curr = atomic_read(&qm->status.flags);
enum qp_state qp_curr = 0;
bool avail = false;
if (qp)
qp_curr = atomic_read(&qp->qp_status.flags);
switch (new) {
case QP_INIT:
if (qm_curr == QM_START || qm_curr == QM_INIT)
avail = true;
break;
case QP_START:
if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
(qm_curr == QM_START && qp_curr == QP_STOP))
avail = true;
break;
case QP_STOP:
if ((qm_curr == QM_START && qp_curr == QP_START) ||
(qp_curr == QP_INIT))
avail = true;
break;
case QP_CLOSE:
if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
(qm_curr == QM_START && qp_curr == QP_STOP) ||
(qm_curr == QM_STOP && qp_curr == QP_STOP) ||
(qm_curr == QM_STOP && qp_curr == QP_INIT))
avail = true;
break;
default:
break;
}
dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
if (!avail)
dev_warn(&qm->pdev->dev,
"Can not change qp state from %s to %s in QM %s\n",
qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
return avail;
}
static u32 qm_get_hw_error_status(struct hisi_qm *qm)
{
return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
}
static u32 qm_get_dev_err_status(struct hisi_qm *qm)
{
return qm->err_ini->get_dev_hw_err_status(qm);
}
/* Check if the error causes the master ooo block */
static bool qm_check_dev_error(struct hisi_qm *qm)
{
u32 val, dev_val;
if (qm->fun_type == QM_HW_VF)
return false;
val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
return val || dev_val;
}
static int qm_wait_reset_finish(struct hisi_qm *qm)
{
int delay = 0;
/* All reset requests need to be queued for processing */
while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
msleep(++delay);
if (delay > QM_RESET_WAIT_TIMEOUT)
return -EBUSY;
}
return 0;
}
static int qm_reset_prepare_ready(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
/*
* PF and VF on host doesnot support resetting at the
* same time on Kunpeng920.
*/
if (qm->ver < QM_HW_V3)
return qm_wait_reset_finish(pf_qm);
return qm_wait_reset_finish(qm);
}
static void qm_reset_bit_clear(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
if (qm->ver < QM_HW_V3)
clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
clear_bit(QM_RESETTING, &qm->misc_ctl);
}
static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
u64 base, u16 queue, bool op)
{
mailbox->w0 = cpu_to_le16((cmd) |
((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
(0x1 << QM_MB_BUSY_SHIFT));
mailbox->queue_num = cpu_to_le16(queue);
mailbox->base_l = cpu_to_le32(lower_32_bits(base));
mailbox->base_h = cpu_to_le32(upper_32_bits(base));
mailbox->rsvd = 0;
}
/* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
{
u32 val;
return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
val, !((val >> QM_MB_BUSY_SHIFT) &
0x1), POLL_PERIOD, POLL_TIMEOUT);
}
EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
/* 128 bit should be written to hardware at one time to trigger a mailbox */
static void qm_mb_write(struct hisi_qm *qm, const void *src)
{
void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
unsigned long tmp0 = 0, tmp1 = 0;
if (!IS_ENABLED(CONFIG_ARM64)) {
memcpy_toio(fun_base, src, 16);
dma_wmb();
return;
}
asm volatile("ldp %0, %1, %3\n"
"stp %0, %1, %2\n"
"dmb oshst\n"
: "=&r" (tmp0),
"=&r" (tmp1),
"+Q" (*((char __iomem *)fun_base))
: "Q" (*((char *)src))
: "memory");
}
static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
{
int ret;
u32 val;
if (unlikely(hisi_qm_wait_mb_ready(qm))) {
dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
ret = -EBUSY;
goto mb_busy;
}
qm_mb_write(qm, mailbox);
if (unlikely(hisi_qm_wait_mb_ready(qm))) {
dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
ret = -ETIMEDOUT;
goto mb_busy;
}
val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
if (val & QM_MB_STATUS_MASK) {
dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
ret = -EIO;
goto mb_busy;
}
return 0;
mb_busy:
atomic64_inc(&qm->debug.dfx.mb_err_cnt);
return ret;
}
int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
bool op)
{
struct qm_mailbox mailbox;
int ret;
dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
queue, cmd, (unsigned long long)dma_addr);
qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
mutex_lock(&qm->mailbox_lock);
ret = qm_mb_nolock(qm, &mailbox);
mutex_unlock(&qm->mailbox_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_mb);
static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
{
u64 doorbell;
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
((u64)index << QM_DB_INDEX_SHIFT_V1) |
((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
}
static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
{
void __iomem *io_base = qm->io_base;
u16 randata = 0;
u64 doorbell;
if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
io_base = qm->db_io_base + (u64)qn * qm->db_interval +
QM_DOORBELL_SQ_CQ_BASE_V2;
else
io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
((u64)randata << QM_DB_RAND_SHIFT_V2) |
((u64)index << QM_DB_INDEX_SHIFT_V2) |
((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
writeq(doorbell, io_base);
}
static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
{
dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
qn, cmd, index);
qm->ops->qm_db(qm, qn, cmd, index, priority);
}
static void qm_disable_clock_gate(struct hisi_qm *qm)
{
u32 val;
/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
if (qm->ver < QM_HW_V3)
return;
val = readl(qm->io_base + QM_PM_CTRL);
val |= QM_IDLE_DISABLE;
writel(val, qm->io_base + QM_PM_CTRL);
}
static int qm_dev_mem_reset(struct hisi_qm *qm)
{
u32 val;
writel(0x1, qm->io_base + QM_MEM_START_INIT);
return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
}
/**
* hisi_qm_get_hw_info() - Get device information.
* @qm: The qm which want to get information.
* @info_table: Array for storing device information.
* @index: Index in info_table.
* @is_read: Whether read from reg, 0: not support read from reg.
*
* This function returns device information the caller needs.
*/
u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
const struct hisi_qm_cap_info *info_table,
u32 index, bool is_read)
{
u32 val;
switch (qm->ver) {
case QM_HW_V1:
return info_table[index].v1_val;
case QM_HW_V2:
return info_table[index].v2_val;
default:
if (!is_read)
return info_table[index].v3_val;
val = readl(qm->io_base + info_table[index].offset);
return (val >> info_table[index].shift) & info_table[index].mask;
}
}
EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
u16 *high_bits, enum qm_basic_type type)
{
u32 depth;
depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
*low_bits = depth & QM_XQ_DEPTH_MASK;
*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
}
static u32 qm_get_irq_num(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_PF)
return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
}
static int qm_pm_get_sync(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret;
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
return 0;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "failed to get_sync(%d).\n", ret);
return ret;
}
return 0;
}
static void qm_pm_put_sync(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
return;
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
}
static void qm_cq_head_update(struct hisi_qp *qp)
{
if (qp->qp_status.cq_head == qp->cq_depth - 1) {
qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
qp->qp_status.cq_head = 0;
} else {
qp->qp_status.cq_head++;
}
}
static void qm_poll_req_cb(struct hisi_qp *qp)
{
struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
struct hisi_qm *qm = qp->qm;
while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
dma_rmb();
qp->req_cb(qp, qp->sqe + qm->sqe_size *
le16_to_cpu(cqe->sq_head));
qm_cq_head_update(qp);
cqe = qp->cqe + qp->qp_status.cq_head;
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
qp->qp_status.cq_head, 0);
atomic_dec(&qp->qp_status.used);
}
/* set c_flag */
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
}
static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data)
{
struct hisi_qm *qm = poll_data->qm;
struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
u16 eq_depth = qm->eq_depth;
int eqe_num = 0;
u16 cqn;
while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
poll_data->qp_finish_id[eqe_num] = cqn;
eqe_num++;
if (qm->status.eq_head == eq_depth - 1) {
qm->status.eqc_phase = !qm->status.eqc_phase;
eqe = qm->eqe;
qm->status.eq_head = 0;
} else {
eqe++;
qm->status.eq_head++;
}
if (eqe_num == (eq_depth >> 1) - 1)
break;
}
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
return eqe_num;
}
static void qm_work_process(struct work_struct *work)
{
struct hisi_qm_poll_data *poll_data =
container_of(work, struct hisi_qm_poll_data, work);
struct hisi_qm *qm = poll_data->qm;
struct hisi_qp *qp;
int eqe_num, i;
/* Get qp id of completed tasks and re-enable the interrupt. */
eqe_num = qm_get_complete_eqe_num(poll_data);
for (i = eqe_num - 1; i >= 0; i--) {
qp = &qm->qp_array[poll_data->qp_finish_id[i]];
if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
continue;
if (qp->event_cb) {
qp->event_cb(qp);
continue;
}
if (likely(qp->req_cb))
qm_poll_req_cb(qp);
}
}
static bool do_qm_eq_irq(struct hisi_qm *qm)
{
struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
struct hisi_qm_poll_data *poll_data;
u16 cqn;
if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
return false;
if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
poll_data = &qm->poll_data[cqn];
queue_work(qm->wq, &poll_data->work);
return true;
}
return false;
}
static irqreturn_t qm_eq_irq(int irq, void *data)
{
struct hisi_qm *qm = data;
bool ret;
ret = do_qm_eq_irq(qm);
if (ret)
return IRQ_HANDLED;
atomic64_inc(&qm->debug.dfx.err_irq_cnt);
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
return IRQ_NONE;
}
static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
{
struct hisi_qm *qm = data;
u32 val;
val = readl(qm->io_base + QM_IFC_INT_STATUS);
val &= QM_IFC_INT_STATUS_MASK;
if (!val)
return IRQ_NONE;
schedule_work(&qm->cmd_process);
return IRQ_HANDLED;
}
static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
{
u32 *addr;
if (qp->is_in_kernel)
return;
addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
*addr = 1;
/* make sure setup is completed */
smp_wmb();
}
static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
{
struct hisi_qp *qp = &qm->qp_array[qp_id];
qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
hisi_qm_stop_qp(qp);
qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
}
static void qm_reset_function(struct hisi_qm *qm)
{
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
struct device *dev = &qm->pdev->dev;
int ret;
if (qm_check_dev_error(pf_qm))
return;
ret = qm_reset_prepare_ready(qm);
if (ret) {
dev_err(dev, "reset function not ready\n");
return;
}
ret = hisi_qm_stop(qm, QM_FLR);
if (ret) {
dev_err(dev, "failed to stop qm when reset function\n");
goto clear_bit;
}
ret = hisi_qm_start(qm);
if (ret)
dev_err(dev, "failed to start qm when reset function\n");
clear_bit:
qm_reset_bit_clear(qm);
}
static irqreturn_t qm_aeq_thread(int irq, void *data)
{
struct hisi_qm *qm = data;
struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
u16 aeq_depth = qm->aeq_depth;
u32 type, qp_id;
while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
switch (type) {
case QM_EQ_OVERFLOW:
dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
qm_reset_function(qm);
return IRQ_HANDLED;
case QM_CQ_OVERFLOW:
dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
qp_id);
fallthrough;
case QM_CQE_ERROR:
qm_disable_qp(qm, qp_id);
break;
default:
dev_err(&qm->pdev->dev, "unknown error type %u\n",
type);
break;
}
if (qm->status.aeq_head == aeq_depth - 1) {
qm->status.aeqc_phase = !qm->status.aeqc_phase;
aeqe = qm->aeqe;
qm->status.aeq_head = 0;
} else {
aeqe++;
qm->status.aeq_head++;
}
}
qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
return IRQ_HANDLED;
}
static irqreturn_t qm_aeq_irq(int irq, void *data)
{
struct hisi_qm *qm = data;
atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
return IRQ_NONE;
return IRQ_WAKE_THREAD;
}
static void qm_init_qp_status(struct hisi_qp *qp)
{
struct hisi_qp_status *qp_status = &qp->qp_status;
qp_status->sq_tail = 0;
qp_status->cq_head = 0;
qp_status->cqc_phase = true;
atomic_set(&qp_status->used, 0);
}
static void qm_init_prefetch(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
u32 page_type = 0x0;
if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
return;
switch (PAGE_SIZE) {
case SZ_4K:
page_type = 0x0;
break;
case SZ_16K:
page_type = 0x1;
break;
case SZ_64K:
page_type = 0x2;
break;
default:
dev_err(dev, "system page size is not support: %lu, default set to 4KB",
PAGE_SIZE);
}
writel(page_type, qm->io_base + QM_PAGE_SIZE);
}
/*
* acc_shaper_para_calc() Get the IR value by the qos formula, the return value
* is the expected qos calculated.
* the formula:
* IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
*
* IR_b * (2 ^ IR_u) * 8000
* IR(Mbps) = -------------------------
* Tick * (2 ^ IR_s)
*/
static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
{
return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
(QM_QOS_TICK * (1 << cir_s));
}
static u32 acc_shaper_calc_cbs_s(u32 ir)
{
int table_size = ARRAY_SIZE(shaper_cbs_s);
int i;
for (i = 0; i < table_size; i++) {
if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
return shaper_cbs_s[i].val;
}
return QM_SHAPER_MIN_CBS_S;
}
static u32 acc_shaper_calc_cir_s(u32 ir)
{
int table_size = ARRAY_SIZE(shaper_cir_s);
int i;
for (i = 0; i < table_size; i++) {
if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
return shaper_cir_s[i].val;
}
return 0;
}
static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
{
u32 cir_b, cir_u, cir_s, ir_calc;
u32 error_rate;
factor->cbs_s = acc_shaper_calc_cbs_s(ir);
cir_s = acc_shaper_calc_cir_s(ir);
for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
factor->cir_b = cir_b;
factor->cir_u = cir_u;
factor->cir_s = cir_s;
return 0;
}
}
}
return -EINVAL;
}
static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
u32 number, struct qm_shaper_factor *factor)
{
u64 tmp = 0;
if (number > 0) {
switch (type) {
case SQC_VFT:
if (qm->ver == QM_HW_V1) {
tmp = QM_SQC_VFT_BUF_SIZE |
QM_SQC_VFT_SQC_SIZE |
QM_SQC_VFT_INDEX_NUMBER |
QM_SQC_VFT_VALID |
(u64)base << QM_SQC_VFT_START_SQN_SHIFT;
} else {
tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
QM_SQC_VFT_VALID |
(u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
}
break;
case CQC_VFT:
if (qm->ver == QM_HW_V1) {
tmp = QM_CQC_VFT_BUF_SIZE |
QM_CQC_VFT_SQC_SIZE |
QM_CQC_VFT_INDEX_NUMBER |
QM_CQC_VFT_VALID;
} else {
tmp = QM_CQC_VFT_VALID;
}
break;
case SHAPER_VFT:
if (factor) {
tmp = factor->cir_b |
(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
}
break;
}
}
writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
}
static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
u32 fun_num, u32 base, u32 number)
{
struct qm_shaper_factor *factor = NULL;
unsigned int val;
int ret;
if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
factor = &qm->factor[fun_num];
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
if (ret)
return ret;
writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
writel(type, qm->io_base + QM_VFT_CFG_TYPE);
if (type == SHAPER_VFT)
fun_num |= base << QM_SHAPER_VFT_OFFSET;
writel(fun_num, qm->io_base + QM_VFT_CFG);
qm_vft_data_cfg(qm, type, base, number, factor);
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
}
static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
{
u32 qos = qm->factor[fun_num].func_qos;
int ret, i;
ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
if (ret) {
dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
return ret;
}
writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
/* The base number of queue reuse for different alg type */
ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
if (ret)
return ret;
}
return 0;
}
/* The config should be conducted after qm_dev_mem_reset() */
static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
u32 number)
{
int ret, i;
for (i = SQC_VFT; i <= CQC_VFT; i++) {
ret = qm_set_vft_common(qm, i, fun_num, base, number);
if (ret)
return ret;
}
/* init default shaper qos val */
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
ret = qm_shaper_init_vft(qm, fun_num);
if (ret)
goto back_sqc_cqc;
}
return 0;
back_sqc_cqc:
for (i = SQC_VFT; i <= CQC_VFT; i++)
qm_set_vft_common(qm, i, fun_num, 0, 0);
return ret;
}
static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
{
u64 sqc_vft;
int ret;
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
if (ret)
return ret;
sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
*number = (QM_SQC_VFT_NUM_MASK_V2 &
(sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
return 0;
}
void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
dma_addr_t *dma_addr)
{
struct device *dev = &qm->pdev->dev;
void *ctx_addr;
ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
if (!ctx_addr)
return ERR_PTR(-ENOMEM);
*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, *dma_addr)) {
dev_err(dev, "DMA mapping error!\n");
kfree(ctx_addr);
return ERR_PTR(-ENOMEM);
}
return ctx_addr;
}
void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
const void *ctx_addr, dma_addr_t *dma_addr)
{
struct device *dev = &qm->pdev->dev;
dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
kfree(ctx_addr);
}
static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
{
return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
}
static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
{
return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
}
static void qm_hw_error_init_v1(struct hisi_qm *qm)
{
writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_hw_error_cfg(struct hisi_qm *qm)
{
struct hisi_qm_err_info *err_info = &qm->err_info;
qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
/* clear QM hw residual error source */
writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
/* configure error type */
writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
}
static void qm_hw_error_init_v2(struct hisi_qm *qm)
{
u32 irq_unmask;
qm_hw_error_cfg(qm);
irq_unmask = ~qm->error_mask;
irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
{
u32 irq_mask = qm->error_mask;
irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_hw_error_init_v3(struct hisi_qm *qm)
{
u32 irq_unmask;
qm_hw_error_cfg(qm);
/* enable close master ooo when hardware error happened */
writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
irq_unmask = ~qm->error_mask;
irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
{
u32 irq_mask = qm->error_mask;
irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
/* disable close master ooo when hardware error happened */
writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
}
static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
{
const struct hisi_qm_hw_error *err;
struct device *dev = &qm->pdev->dev;
u32 reg_val, type, vf_num;
int i;
for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
err = &qm_hw_error[i];
if (!(err->int_msk & error_status))
continue;
dev_err(dev, "%s [error status=0x%x] found\n",
err->msg, err->int_msk);
if (err->int_msk & QM_DB_TIMEOUT) {
reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
QM_DB_TIMEOUT_TYPE_SHIFT;
vf_num = reg_val & QM_DB_TIMEOUT_VF;
dev_err(dev, "qm %s doorbell timeout in function %u\n",
qm_db_timeout[type], vf_num);
} else if (err->int_msk & QM_OF_FIFO_OF) {
reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
QM_FIFO_OVERFLOW_TYPE_SHIFT;
vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
if (type < ARRAY_SIZE(qm_fifo_overflow))
dev_err(dev, "qm %s fifo overflow in function %u\n",
qm_fifo_overflow[type], vf_num);
else
dev_err(dev, "unknown error type\n");
}
}
}
static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
{
u32 error_status, tmp;
/* read err sts */
tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
error_status = qm->error_mask & tmp;
if (error_status) {
if (error_status & QM_ECC_MBIT)
qm->err_status.is_qm_ecc_mbit = true;
qm_log_hw_error(qm, error_status);
if (error_status & qm->err_info.qm_reset_mask)
return ACC_ERR_NEED_RESET;
writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
}
return ACC_ERR_RECOVERED;
}
static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
{
struct qm_mailbox mailbox;
int ret;
qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
mutex_lock(&qm->mailbox_lock);
ret = qm_mb_nolock(qm, &mailbox);
if (ret)
goto err_unlock;
*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
err_unlock:
mutex_unlock(&qm->mailbox_lock);
return ret;
}
static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
{
u32 val;
if (qm->fun_type == QM_HW_PF)
writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
val |= QM_IFC_INT_SOURCE_MASK;
writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
}
static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
{
struct device *dev = &qm->pdev->dev;
u32 cmd;
u64 msg;
int ret;
ret = qm_get_mb_cmd(qm, &msg, vf_id);
if (ret) {
dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
return;
}
cmd = msg & QM_MB_CMD_DATA_MASK;
switch (cmd) {
case QM_VF_PREPARE_FAIL:
dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
break;
case QM_VF_START_FAIL:
dev_err(dev, "failed to start VF(%u)!\n", vf_id);
break;
case QM_VF_PREPARE_DONE:
case QM_VF_START_DONE:
break;
default:
dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
break;
}
}
static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
u32 vfs_num = qm->vfs_num;
int cnt = 0;
int ret = 0;
u64 val;
u32 i;
if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
return 0;
while (true) {
val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
/* All VFs send command to PF, break */
if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
break;
if (++cnt > QM_MAX_PF_WAIT_COUNT) {
ret = -EBUSY;
break;
}
msleep(QM_WAIT_DST_ACK);
}
/* PF check VFs msg */
for (i = 1; i <= vfs_num; i++) {
if (val & BIT(i))
qm_handle_vf_msg(qm, i);
else
dev_err(dev, "VF(%u) not ping PF!\n", i);
}
/* PF clear interrupt to ack VFs */
qm_clear_cmd_interrupt(qm, val);
return ret;
}
static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
{
u32 val;
val = readl(qm->io_base + QM_IFC_INT_CFG);
val &= ~QM_IFC_SEND_ALL_VFS;
val |= fun_num;
writel(val, qm->io_base + QM_IFC_INT_CFG);
val = readl(qm->io_base + QM_IFC_INT_SET_P);
val |= QM_IFC_INT_SET_MASK;
writel(val, qm->io_base + QM_IFC_INT_SET_P);
}
static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
{
u32 val;
val = readl(qm->io_base + QM_IFC_INT_SET_V);
val |= QM_IFC_INT_SET_MASK;
writel(val, qm->io_base + QM_IFC_INT_SET_V);
}
static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
{
struct device *dev = &qm->pdev->dev;
struct qm_mailbox mailbox;
int cnt = 0;
u64 val;
int ret;
qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
mutex_lock(&qm->mailbox_lock);
ret = qm_mb_nolock(qm, &mailbox);
if (ret) {
dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
goto err_unlock;
}
qm_trigger_vf_interrupt(qm, fun_num);
while (true) {
msleep(QM_WAIT_DST_ACK);
val = readq(qm->io_base + QM_IFC_READY_STATUS);
/* if VF respond, PF notifies VF successfully. */
if (!(val & BIT(fun_num)))
goto err_unlock;
if (++cnt > QM_MAX_PF_WAIT_COUNT) {
dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
ret = -ETIMEDOUT;
break;
}
}
err_unlock:
mutex_unlock(&qm->mailbox_lock);
return ret;
}
static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
{
struct device *dev = &qm->pdev->dev;
u32 vfs_num = qm->vfs_num;
struct qm_mailbox mailbox;
u64 val = 0;
int cnt = 0;
int ret;
u32 i;
qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
mutex_lock(&qm->mailbox_lock);
/* PF sends command to all VFs by mailbox */
ret = qm_mb_nolock(qm, &mailbox);
if (ret) {
dev_err(dev, "failed to send command to VFs!\n");
mutex_unlock(&qm->mailbox_lock);
return ret;
}
qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
while (true) {
msleep(QM_WAIT_DST_ACK);
val = readq(qm->io_base + QM_IFC_READY_STATUS);
/* If all VFs acked, PF notifies VFs successfully. */
if (!(val & GENMASK(vfs_num, 1))) {
mutex_unlock(&qm->mailbox_lock);
return 0;
}
if (++cnt > QM_MAX_PF_WAIT_COUNT)
break;
}
mutex_unlock(&qm->mailbox_lock);
/* Check which vf respond timeout. */
for (i = 1; i <= vfs_num; i++) {
if (val & BIT(i))
dev_err(dev, "failed to get response from VF(%u)!\n", i);
}
return -ETIMEDOUT;
}
static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
{
struct qm_mailbox mailbox;
int cnt = 0;
u32 val;
int ret;
qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
mutex_lock(&qm->mailbox_lock);
ret = qm_mb_nolock(qm, &mailbox);
if (ret) {
dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
goto unlock;
}
qm_trigger_pf_interrupt(qm);
/* Waiting for PF response */
while (true) {
msleep(QM_WAIT_DST_ACK);
val = readl(qm->io_base + QM_IFC_INT_SET_V);
if (!(val & QM_IFC_INT_STATUS_MASK))
break;
if (++cnt > QM_MAX_VF_WAIT_COUNT) {
ret = -ETIMEDOUT;
break;
}
}
unlock:
mutex_unlock(&qm->mailbox_lock);
return ret;
}
static int qm_stop_qp(struct hisi_qp *qp)
{
return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
}
static int qm_set_msi(struct hisi_qm *qm, bool set)
{
struct pci_dev *pdev = qm->pdev;
if (set) {
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
0);
} else {
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
ACC_PEH_MSI_DISABLE);
if (qm->err_status.is_qm_ecc_mbit ||
qm->err_status.is_dev_ecc_mbit)
return 0;
mdelay(1);
if (readl(qm->io_base + QM_PEH_DFX_INFO0))
return -EFAULT;
}
return 0;
}
static void qm_wait_msi_finish(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 cmd = ~0;
int cnt = 0;
u32 val;
int ret;
while (true) {
pci_read_config_dword(pdev, pdev->msi_cap +
PCI_MSI_PENDING_64, &cmd);
if (!cmd)
break;
if (++cnt > MAX_WAIT_COUNTS) {
pci_warn(pdev, "failed to empty MSI PENDING!\n");
break;
}
udelay(1);
}
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
val, !(val & QM_PEH_DFX_MASK),
POLL_PERIOD, POLL_TIMEOUT);
if (ret)
pci_warn(pdev, "failed to empty PEH MSI!\n");
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
val, !(val & QM_PEH_MSI_FINISH_MASK),
POLL_PERIOD, POLL_TIMEOUT);
if (ret)
pci_warn(pdev, "failed to finish MSI operation!\n");
}
static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
{
struct pci_dev *pdev = qm->pdev;
int ret = -ETIMEDOUT;
u32 cmd, i;
pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
if (set)
cmd |= QM_MSI_CAP_ENABLE;
else
cmd &= ~QM_MSI_CAP_ENABLE;
pci_write_config_dword(pdev, pdev->msi_cap, cmd);
if (set) {
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
if (cmd & QM_MSI_CAP_ENABLE)
return 0;
udelay(1);
}
} else {
udelay(WAIT_PERIOD_US_MIN);
qm_wait_msi_finish(qm);
ret = 0;
}
return ret;
}
static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
.qm_db = qm_db_v1,
.hw_error_init = qm_hw_error_init_v1,
.set_msi = qm_set_msi,
};
static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
.get_vft = qm_get_vft_v2,
.qm_db = qm_db_v2,
.hw_error_init = qm_hw_error_init_v2,
.hw_error_uninit = qm_hw_error_uninit_v2,
.hw_error_handle = qm_hw_error_handle_v2,
.set_msi = qm_set_msi,
};
static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
.get_vft = qm_get_vft_v2,
.qm_db = qm_db_v2,
.hw_error_init = qm_hw_error_init_v3,
.hw_error_uninit = qm_hw_error_uninit_v3,
.hw_error_handle = qm_hw_error_handle_v2,
.set_msi = qm_set_msi_v3,
};
static void *qm_get_avail_sqe(struct hisi_qp *qp)
{
struct hisi_qp_status *qp_status = &qp->qp_status;
u16 sq_tail = qp_status->sq_tail;
if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
return NULL;
return qp->sqe + sq_tail * qp->qm->sqe_size;
}
static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
{
u64 *addr;
/* Use last 64 bits of DUS to reset status. */
addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
*addr = 0;
}
static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
{
struct device *dev = &qm->pdev->dev;
struct hisi_qp *qp;
int qp_id;
if (!qm_qp_avail_state(qm, NULL, QP_INIT))
return ERR_PTR(-EPERM);
if (qm->qp_in_used == qm->qp_num) {
dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
qm->qp_num);
atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
return ERR_PTR(-EBUSY);
}
qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
if (qp_id < 0) {
dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
qm->qp_num);
atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
return ERR_PTR(-EBUSY);
}
qp = &qm->qp_array[qp_id];
hisi_qm_unset_hw_reset(qp);
memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
qp->event_cb = NULL;
qp->req_cb = NULL;
qp->qp_id = qp_id;
qp->alg_type = alg_type;
qp->is_in_kernel = true;
qm->qp_in_used++;
atomic_set(&qp->qp_status.flags, QP_INIT);
return qp;
}
/**
* hisi_qm_create_qp() - Create a queue pair from qm.
* @qm: The qm we create a qp from.
* @alg_type: Accelerator specific algorithm type in sqc.
*
* Return created qp, negative error code if failed.
*/
static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
{
struct hisi_qp *qp;
int ret;
ret = qm_pm_get_sync(qm);
if (ret)
return ERR_PTR(ret);
down_write(&qm->qps_lock);
qp = qm_create_qp_nolock(qm, alg_type);
up_write(&qm->qps_lock);
if (IS_ERR(qp))
qm_pm_put_sync(qm);
return qp;
}
/**
* hisi_qm_release_qp() - Release a qp back to its qm.
* @qp: The qp we want to release.
*
* This function releases the resource of a qp.
*/
static void hisi_qm_release_qp(struct hisi_qp *qp)
{
struct hisi_qm *qm = qp->qm;
down_write(&qm->qps_lock);
if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
up_write(&qm->qps_lock);
return;
}
qm->qp_in_used--;
idr_remove(&qm->qp_idr, qp->qp_id);
up_write(&qm->qps_lock);
qm_pm_put_sync(qm);
}
static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
{
struct hisi_qm *qm = qp->qm;
struct device *dev = &qm->pdev->dev;
enum qm_hw_ver ver = qm->ver;
struct qm_sqc *sqc;
dma_addr_t sqc_dma;
int ret;
sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
if (!sqc)
return -ENOMEM;
INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
if (ver == QM_HW_V1) {
sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
} else {
sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
sqc->w8 = 0; /* rand_qc */
}
sqc->cq_num = cpu_to_le16(qp_id);
sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
QM_QC_PASID_ENABLE_SHIFT);
sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, sqc_dma)) {
kfree(sqc);
return -ENOMEM;
}
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
kfree(sqc);
return ret;
}
static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
{
struct hisi_qm *qm = qp->qm;
struct device *dev = &qm->pdev->dev;
enum qm_hw_ver ver = qm->ver;
struct qm_cqc *cqc;
dma_addr_t cqc_dma;
int ret;
cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
if (!cqc)
return -ENOMEM;
INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
if (ver == QM_HW_V1) {
cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
QM_QC_CQE_SIZE));
cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
} else {
cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
cqc->w8 = 0; /* rand_qc */
}
cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, cqc_dma)) {
kfree(cqc);
return -ENOMEM;
}
ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
kfree(cqc);
return ret;
}
static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
{
int ret;
qm_init_qp_status(qp);
ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
if (ret)
return ret;
return qm_cq_ctx_cfg(qp, qp_id, pasid);
}
static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
{
struct hisi_qm *qm = qp->qm;
struct device *dev = &qm->pdev->dev;
int qp_id = qp->qp_id;
u32 pasid = arg;
int ret;
if (!qm_qp_avail_state(qm, qp, QP_START))
return -EPERM;
ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
if (ret)
return ret;
atomic_set(&qp->qp_status.flags, QP_START);
dev_dbg(dev, "queue %d started\n", qp_id);
return 0;
}
/**
* hisi_qm_start_qp() - Start a qp into running.
* @qp: The qp we want to start to run.
* @arg: Accelerator specific argument.
*
* After this function, qp can receive request from user. Return 0 if
* successful, negative error code if failed.
*/
int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
{
struct hisi_qm *qm = qp->qm;
int ret;
down_write(&qm->qps_lock);
ret = qm_start_qp_nolock(qp, arg);
up_write(&qm->qps_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
/**
* qp_stop_fail_cb() - call request cb.
* @qp: stopped failed qp.
*
* Callback function should be called whether task completed or not.
*/
static void qp_stop_fail_cb(struct hisi_qp *qp)
{
int qp_used = atomic_read(&qp->qp_status.used);
u16 cur_tail = qp->qp_status.sq_tail;
u16 sq_depth = qp->sq_depth;
u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
struct hisi_qm *qm = qp->qm;
u16 pos;
int i;
for (i = 0; i < qp_used; i++) {
pos = (i + cur_head) % sq_depth;
qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
atomic_dec(&qp->qp_status.used);
}
}
/**
* qm_drain_qp() - Drain a qp.
* @qp: The qp we want to drain.
*
* Determine whether the queue is cleared by judging the tail pointers of
* sq and cq.
*/
static int qm_drain_qp(struct hisi_qp *qp)
{
size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
struct hisi_qm *qm = qp->qm;
struct device *dev = &qm->pdev->dev;
struct qm_sqc *sqc;
struct qm_cqc *cqc;
dma_addr_t dma_addr;
int ret = 0, i = 0;
void *addr;
/* No need to judge if master OOO is blocked. */
if (qm_check_dev_error(qm))
return 0;
/* Kunpeng930 supports drain qp by device */
if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
ret = qm_stop_qp(qp);
if (ret)
dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
return ret;
}
addr = hisi_qm_ctx_alloc(qm, size, &dma_addr);
if (IS_ERR(addr)) {
dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
return -ENOMEM;
}
while (++i) {
ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
if (ret) {
dev_err_ratelimited(dev, "Failed to dump sqc!\n");
break;
}
sqc = addr;
ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
qp->qp_id);
if (ret) {
dev_err_ratelimited(dev, "Failed to dump cqc!\n");
break;
}
cqc = addr + sizeof(struct qm_sqc);
if ((sqc->tail == cqc->tail) &&
(QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
break;
if (i == MAX_WAIT_COUNTS) {
dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
ret = -EBUSY;
break;
}
usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
}
hisi_qm_ctx_free(qm, size, addr, &dma_addr);
return ret;
}
static int qm_stop_qp_nolock(struct hisi_qp *qp)
{
struct device *dev = &qp->qm->pdev->dev;
int ret;
/*
* It is allowed to stop and release qp when reset, If the qp is
* stopped when reset but still want to be released then, the
* is_resetting flag should be set negative so that this qp will not
* be restarted after reset.
*/
if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
qp->is_resetting = false;
return 0;
}
if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
return -EPERM;
atomic_set(&qp->qp_status.flags, QP_STOP);
ret = qm_drain_qp(qp);
if (ret)
dev_err(dev, "Failed to drain out data for stopping!\n");
flush_workqueue(qp->qm->wq);
if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
qp_stop_fail_cb(qp);
dev_dbg(dev, "stop queue %u!", qp->qp_id);
return 0;
}
/**
* hisi_qm_stop_qp() - Stop a qp in qm.
* @qp: The qp we want to stop.
*
* This function is reverse of hisi_qm_start_qp. Return 0 if successful.
*/
int hisi_qm_stop_qp(struct hisi_qp *qp)
{
int ret;
down_write(&qp->qm->qps_lock);
ret = qm_stop_qp_nolock(qp);
up_write(&qp->qm->qps_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
/**
* hisi_qp_send() - Queue up a task in the hardware queue.
* @qp: The qp in which to put the message.
* @msg: The message.
*
* This function will return -EBUSY if qp is currently full, and -EAGAIN
* if qp related qm is resetting.
*
* Note: This function may run with qm_irq_thread and ACC reset at same time.
* It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
* reset may happen, we have no lock here considering performance. This
* causes current qm_db sending fail or can not receive sended sqe. QM
* sync/async receive function should handle the error sqe. ACC reset
* done function should clear used sqe to 0.
*/
int hisi_qp_send(struct hisi_qp *qp, const void *msg)
{
struct hisi_qp_status *qp_status = &qp->qp_status;
u16 sq_tail = qp_status->sq_tail;
u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
void *sqe = qm_get_avail_sqe(qp);
if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
atomic_read(&qp->qm->status.flags) == QM_STOP ||
qp->is_resetting)) {
dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
return -EAGAIN;
}
if (!sqe)
return -EBUSY;
memcpy(sqe, msg, qp->qm->sqe_size);
qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
atomic_inc(&qp->qp_status.used);
qp_status->sq_tail = sq_tail_next;
return 0;
}
EXPORT_SYMBOL_GPL(hisi_qp_send);
static void hisi_qm_cache_wb(struct hisi_qm *qm)
{
unsigned int val;
if (qm->ver == QM_HW_V1)
return;
writel(0x1, qm->io_base + QM_CACHE_WB_START);
if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
val, val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT))
dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
}
static void qm_qp_event_notifier(struct hisi_qp *qp)
{
wake_up_interruptible(&qp->uacce_q->wait);
}
/* This function returns free number of qp in qm. */
static int hisi_qm_get_available_instances(struct uacce_device *uacce)
{
struct hisi_qm *qm = uacce->priv;
int ret;
down_read(&qm->qps_lock);
ret = qm->qp_num - qm->qp_in_used;
up_read(&qm->qps_lock);
return ret;
}
static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
{
int i;
for (i = 0; i < qm->qp_num; i++)
qm_set_qp_disable(&qm->qp_array[i], offset);
}
static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
unsigned long arg,
struct uacce_queue *q)
{
struct hisi_qm *qm = uacce->priv;
struct hisi_qp *qp;
u8 alg_type = 0;
qp = hisi_qm_create_qp(qm, alg_type);
if (IS_ERR(qp))
return PTR_ERR(qp);
q->priv = qp;
q->uacce = uacce;
qp->uacce_q = q;
qp->event_cb = qm_qp_event_notifier;
qp->pasid = arg;
qp->is_in_kernel = false;
return 0;
}
static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
{
struct hisi_qp *qp = q->priv;
hisi_qm_release_qp(qp);
}
/* map sq/cq/doorbell to user space */
static int hisi_qm_uacce_mmap(struct uacce_queue *q,
struct vm_area_struct *vma,
struct uacce_qfile_region *qfr)
{
struct hisi_qp *qp = q->priv;
struct hisi_qm *qm = qp->qm;
resource_size_t phys_base = qm->db_phys_base +
qp->qp_id * qm->db_interval;
size_t sz = vma->vm_end - vma->vm_start;
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
unsigned long vm_pgoff;
int ret;
switch (qfr->type) {
case UACCE_QFRT_MMIO:
if (qm->ver == QM_HW_V1) {
if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
return -EINVAL;
} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
return -EINVAL;
} else {
if (sz > qm->db_interval)
return -EINVAL;
}
vm_flags_set(vma, VM_IO);
return remap_pfn_range(vma, vma->vm_start,
phys_base >> PAGE_SHIFT,
sz, pgprot_noncached(vma->vm_page_prot));
case UACCE_QFRT_DUS:
if (sz != qp->qdma.size)
return -EINVAL;
/*
* dma_mmap_coherent() requires vm_pgoff as 0
* restore vm_pfoff to initial value for mmap()
*/
vm_pgoff = vma->vm_pgoff;
vma->vm_pgoff = 0;
ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
qp->qdma.dma, sz);
vma->vm_pgoff = vm_pgoff;
return ret;
default:
return -EINVAL;
}
}
static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
{
struct hisi_qp *qp = q->priv;
return hisi_qm_start_qp(qp, qp->pasid);
}
static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
{
hisi_qm_stop_qp(q->priv);
}
static int hisi_qm_is_q_updated(struct uacce_queue *q)
{
struct hisi_qp *qp = q->priv;
struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
int updated = 0;
while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
/* make sure to read data from memory */
dma_rmb();
qm_cq_head_update(qp);
cqe = qp->cqe + qp->qp_status.cq_head;
updated = 1;
}
return updated;
}
static void qm_set_sqctype(struct uacce_queue *q, u16 type)
{
struct hisi_qm *qm = q->uacce->priv;
struct hisi_qp *qp = q->priv;
down_write(&qm->qps_lock);
qp->alg_type = type;
up_write(&qm->qps_lock);
}
static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
unsigned long arg)
{
struct hisi_qp *qp = q->priv;
struct hisi_qp_info qp_info;
struct hisi_qp_ctx qp_ctx;
if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
if (copy_from_user(&qp_ctx, (void __user *)arg,
sizeof(struct hisi_qp_ctx)))
return -EFAULT;
if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
return -EINVAL;
qm_set_sqctype(q, qp_ctx.qc_type);
qp_ctx.id = qp->qp_id;
if (copy_to_user((void __user *)arg, &qp_ctx,
sizeof(struct hisi_qp_ctx)))
return -EFAULT;
return 0;
} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
if (copy_from_user(&qp_info, (void __user *)arg,
sizeof(struct hisi_qp_info)))
return -EFAULT;
qp_info.sqe_size = qp->qm->sqe_size;
qp_info.sq_depth = qp->sq_depth;
qp_info.cq_depth = qp->cq_depth;
if (copy_to_user((void __user *)arg, &qp_info,
sizeof(struct hisi_qp_info)))
return -EFAULT;
return 0;
}
return -EINVAL;
}
/**
* qm_hw_err_isolate() - Try to set the isolation status of the uacce device
* according to user's configuration of error threshold.
* @qm: the uacce device
*/
static int qm_hw_err_isolate(struct hisi_qm *qm)
{
struct qm_hw_err *err, *tmp, *hw_err;
struct qm_err_isolate *isolate;
u32 count = 0;
isolate = &qm->isolate_data;
#define SECONDS_PER_HOUR 3600
/* All the hw errs are processed by PF driver */
if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
return 0;
hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
if (!hw_err)
return -ENOMEM;
/*
* Time-stamp every slot AER error. Then check the AER error log when the
* next device AER error occurred. if the device slot AER error count exceeds
* the setting error threshold in one hour, the isolated state will be set
* to true. And the AER error logs that exceed one hour will be cleared.
*/
mutex_lock(&isolate->isolate_lock);
hw_err->timestamp = jiffies;
list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
if ((hw_err->timestamp - err->timestamp) / HZ >
SECONDS_PER_HOUR) {
list_del(&err->list);
kfree(err);
} else {
count++;
}
}
list_add(&hw_err->list, &isolate->qm_hw_errs);
mutex_unlock(&isolate->isolate_lock);
if (count >= isolate->err_threshold)
isolate->is_isolate = true;
return 0;
}
static void qm_hw_err_destroy(struct hisi_qm *qm)
{
struct qm_hw_err *err, *tmp;
mutex_lock(&qm->isolate_data.isolate_lock);
list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
list_del(&err->list);
kfree(err);
}
mutex_unlock(&qm->isolate_data.isolate_lock);
}
static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
{
struct hisi_qm *qm = uacce->priv;
struct hisi_qm *pf_qm;
if (uacce->is_vf)
pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
else
pf_qm = qm;
return pf_qm->isolate_data.is_isolate ?
UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
}
static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
{
struct hisi_qm *qm = uacce->priv;
/* Must be set by PF */
if (uacce->is_vf)
return -EPERM;
if (qm->isolate_data.is_isolate)
return -EPERM;
qm->isolate_data.err_threshold = num;
/* After the policy is updated, need to reset the hardware err list */
qm_hw_err_destroy(qm);
return 0;
}
static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
{
struct hisi_qm *qm = uacce->priv;
struct hisi_qm *pf_qm;
if (uacce->is_vf) {
pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
return pf_qm->isolate_data.err_threshold;
}
return qm->isolate_data.err_threshold;
}
static const struct uacce_ops uacce_qm_ops = {
.get_available_instances = hisi_qm_get_available_instances,
.get_queue = hisi_qm_uacce_get_queue,
.put_queue = hisi_qm_uacce_put_queue,
.start_queue = hisi_qm_uacce_start_queue,
.stop_queue = hisi_qm_uacce_stop_queue,
.mmap = hisi_qm_uacce_mmap,
.ioctl = hisi_qm_uacce_ioctl,
.is_q_updated = hisi_qm_is_q_updated,
.get_isolate_state = hisi_qm_get_isolate_state,
.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
};
static void qm_remove_uacce(struct hisi_qm *qm)
{
struct uacce_device *uacce = qm->uacce;
if (qm->use_sva) {
qm_hw_err_destroy(qm);
uacce_remove(uacce);
qm->uacce = NULL;
}
}
static int qm_alloc_uacce(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct uacce_device *uacce;
unsigned long mmio_page_nr;
unsigned long dus_page_nr;
u16 sq_depth, cq_depth;
struct uacce_interface interface = {
.flags = UACCE_DEV_SVA,
.ops = &uacce_qm_ops,
};
int ret;
ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
sizeof(interface.name));
if (ret < 0)
return -ENAMETOOLONG;
uacce = uacce_alloc(&pdev->dev, &interface);
if (IS_ERR(uacce))
return PTR_ERR(uacce);
if (uacce->flags & UACCE_DEV_SVA) {
qm->use_sva = true;
} else {
/* only consider sva case */
qm_remove_uacce(qm);
return -EINVAL;
}
uacce->is_vf = pdev->is_virtfn;
uacce->priv = qm;
if (qm->ver == QM_HW_V1)
uacce->api_ver = HISI_QM_API_VER_BASE;
else if (qm->ver == QM_HW_V2)
uacce->api_ver = HISI_QM_API_VER2_BASE;
else
uacce->api_ver = HISI_QM_API_VER3_BASE;
if (qm->ver == QM_HW_V1)
mmio_page_nr = QM_DOORBELL_PAGE_NR;
else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
mmio_page_nr = QM_DOORBELL_PAGE_NR +
QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
else
mmio_page_nr = qm->db_interval / PAGE_SIZE;
qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
/* Add one more page for device or qp status */
dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >>
PAGE_SHIFT;
uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr;
qm->uacce = uacce;
INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
mutex_init(&qm->isolate_data.isolate_lock);
return 0;
}
/**
* qm_frozen() - Try to froze QM to cut continuous queue request. If
* there is user on the QM, return failure without doing anything.
* @qm: The qm needed to be fronzen.
*
* This function frozes QM, then we can do SRIOV disabling.
*/
static int qm_frozen(struct hisi_qm *qm)
{
if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
return 0;
down_write(&qm->qps_lock);
if (!qm->qp_in_used) {
qm->qp_in_used = qm->qp_num;
up_write(&qm->qps_lock);
set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
return 0;
}
up_write(&qm->qps_lock);
return -EBUSY;
}
static int qm_try_frozen_vfs(struct pci_dev *pdev,
struct hisi_qm_list *qm_list)
{
struct hisi_qm *qm, *vf_qm;
struct pci_dev *dev;
int ret = 0;
if (!qm_list || !pdev)
return -EINVAL;
/* Try to frozen all the VFs as disable SRIOV */
mutex_lock(&qm_list->lock);
list_for_each_entry(qm, &qm_list->list, list) {
dev = qm->pdev;
if (dev == pdev)
continue;
if (pci_physfn(dev) == pdev) {
vf_qm = pci_get_drvdata(dev);
ret = qm_frozen(vf_qm);
if (ret)
goto frozen_fail;
}
}
frozen_fail:
mutex_unlock(&qm_list->lock);
return ret;
}
/**
* hisi_qm_wait_task_finish() - Wait until the task is finished
* when removing the driver.
* @qm: The qm needed to wait for the task to finish.
* @qm_list: The list of all available devices.
*/
void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
{
while (qm_frozen(qm) ||
((qm->fun_type == QM_HW_PF) &&
qm_try_frozen_vfs(qm->pdev, qm_list))) {
msleep(WAIT_PERIOD);
}
while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
test_bit(QM_RESETTING, &qm->misc_ctl))
msleep(WAIT_PERIOD);
udelay(REMOVE_WAIT_DELAY);
}
EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
{
struct device *dev = &qm->pdev->dev;
struct qm_dma *qdma;
int i;
for (i = num - 1; i >= 0; i--) {
qdma = &qm->qp_array[i].qdma;
dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
kfree(qm->poll_data[i].qp_finish_id);
}
kfree(qm->poll_data);
kfree(qm->qp_array);
}
static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
u16 sq_depth, u16 cq_depth)
{
struct device *dev = &qm->pdev->dev;
size_t off = qm->sqe_size * sq_depth;
struct hisi_qp *qp;
int ret = -ENOMEM;
qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
GFP_KERNEL);
if (!qm->poll_data[id].qp_finish_id)
return -ENOMEM;
qp = &qm->qp_array[id];
qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
GFP_KERNEL);
if (!qp->qdma.va)
goto err_free_qp_finish_id;
qp->sqe = qp->qdma.va;
qp->sqe_dma = qp->qdma.dma;
qp->cqe = qp->qdma.va + off;
qp->cqe_dma = qp->qdma.dma + off;
qp->qdma.size = dma_size;
qp->sq_depth = sq_depth;
qp->cq_depth = cq_depth;
qp->qm = qm;
qp->qp_id = id;
return 0;
err_free_qp_finish_id:
kfree(qm->poll_data[id].qp_finish_id);
return ret;
}
static void hisi_qm_pre_init(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
if (qm->ver == QM_HW_V1)
qm->ops = &qm_hw_ops_v1;
else if (qm->ver == QM_HW_V2)
qm->ops = &qm_hw_ops_v2;
else
qm->ops = &qm_hw_ops_v3;
pci_set_drvdata(pdev, qm);
mutex_init(&qm->mailbox_lock);
init_rwsem(&qm->qps_lock);
qm->qp_in_used = 0;
qm->misc_ctl = false;
if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
}
}
static void qm_cmd_uninit(struct hisi_qm *qm)
{
u32 val;
if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
return;
val = readl(qm->io_base + QM_IFC_INT_MASK);
val |= QM_IFC_INT_DISABLE;
writel(val, qm->io_base + QM_IFC_INT_MASK);
}
static void qm_cmd_init(struct hisi_qm *qm)
{
u32 val;
if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
return;
/* Clear communication interrupt source */
qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
/* Enable pf to vf communication reg. */
val = readl(qm->io_base + QM_IFC_INT_MASK);
val &= ~QM_IFC_INT_DISABLE;
writel(val, qm->io_base + QM_IFC_INT_MASK);
}
static void qm_put_pci_res(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
iounmap(qm->db_io_base);
iounmap(qm->io_base);
pci_release_mem_regions(pdev);
}
static void hisi_qm_pci_uninit(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
pci_free_irq_vectors(pdev);
qm_put_pci_res(qm);
pci_disable_device(pdev);
}
static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
{
if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
writel(state, qm->io_base + QM_VF_STATE);
}
static void hisi_qm_unint_work(struct hisi_qm *qm)
{
destroy_workqueue(qm->wq);
}
static void hisi_qm_memory_uninit(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
hisi_qp_memory_uninit(qm, qm->qp_num);
if (qm->qdma.va) {
hisi_qm_cache_wb(qm);
dma_free_coherent(dev, qm->qdma.size,
qm->qdma.va, qm->qdma.dma);
}
idr_destroy(&qm->qp_idr);
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
kfree(qm->factor);
}
/**
* hisi_qm_uninit() - Uninitialize qm.
* @qm: The qm needed uninit.
*
* This function uninits qm related device resources.
*/
void hisi_qm_uninit(struct hisi_qm *qm)
{
qm_cmd_uninit(qm);
hisi_qm_unint_work(qm);
down_write(&qm->qps_lock);
if (!qm_avail_state(qm, QM_CLOSE)) {
up_write(&qm->qps_lock);
return;
}
hisi_qm_memory_uninit(qm);
hisi_qm_set_state(qm, QM_NOT_READY);
up_write(&qm->qps_lock);
qm_irqs_unregister(qm);
hisi_qm_pci_uninit(qm);
if (qm->use_sva) {
uacce_remove(qm->uacce);
qm->uacce = NULL;
}
}
EXPORT_SYMBOL_GPL(hisi_qm_uninit);
/**
* hisi_qm_get_vft() - Get vft from a qm.
* @qm: The qm we want to get its vft.
* @base: The base number of queue in vft.
* @number: The number of queues in vft.
*
* We can allocate multiple queues to a qm by configuring virtual function
* table. We get related configures by this function. Normally, we call this
* function in VF driver to get the queue information.
*
* qm hw v1 does not support this interface.
*/
static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
{
if (!base || !number)
return -EINVAL;
if (!qm->ops->get_vft) {
dev_err(&qm->pdev->dev, "Don't support vft read!\n");
return -EINVAL;
}
return qm->ops->get_vft(qm, base, number);
}
/**
* hisi_qm_set_vft() - Set vft to a qm.
* @qm: The qm we want to set its vft.
* @fun_num: The function number.
* @base: The base number of queue in vft.
* @number: The number of queues in vft.
*
* This function is alway called in PF driver, it is used to assign queues
* among PF and VFs.
*
* Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
* Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
* (VF function number 0x2)
*/
static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
u32 number)
{
u32 max_q_num = qm->ctrl_qp_num;
if (base >= max_q_num || number > max_q_num ||
(base + number) > max_q_num)
return -EINVAL;
return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
}
static void qm_init_eq_aeq_status(struct hisi_qm *qm)
{
struct hisi_qm_status *status = &qm->status;
status->eq_head = 0;
status->aeq_head = 0;
status->eqc_phase = true;
status->aeqc_phase = true;
}
static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
{
/* Clear eq/aeq interrupt source */
qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
}
static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
{
writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
}
static int qm_eq_ctx_cfg(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
struct qm_eqc *eqc;
dma_addr_t eqc_dma;
int ret;
eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
if (!eqc)
return -ENOMEM;
eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
if (qm->ver == QM_HW_V1)
eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, eqc_dma)) {
kfree(eqc);
return -ENOMEM;
}
ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
kfree(eqc);
return ret;
}
static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
struct qm_aeqc *aeqc;
dma_addr_t aeqc_dma;
int ret;
aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
if (!aeqc)
return -ENOMEM;
aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, aeqc_dma)) {
kfree(aeqc);
return -ENOMEM;
}
ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
kfree(aeqc);
return ret;
}
static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret;
qm_init_eq_aeq_status(qm);
ret = qm_eq_ctx_cfg(qm);
if (ret) {
dev_err(dev, "Set eqc failed!\n");
return ret;
}
return qm_aeq_ctx_cfg(qm);
}
static int __hisi_qm_start(struct hisi_qm *qm)
{
int ret;
WARN_ON(!qm->qdma.va);
if (qm->fun_type == QM_HW_PF) {
ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
if (ret)
return ret;
}
ret = qm_eq_aeq_ctx_cfg(qm);
if (ret)
return ret;
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
if (ret)
return ret;
ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
if (ret)
return ret;
qm_init_prefetch(qm);
qm_enable_eq_aeq_interrupts(qm);
return 0;
}
/**
* hisi_qm_start() - start qm
* @qm: The qm to be started.
*
* This function starts a qm, then we can allocate qp from this qm.
*/
int hisi_qm_start(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret = 0;
down_write(&qm->qps_lock);
if (!qm_avail_state(qm, QM_START)) {
up_write(&qm->qps_lock);
return -EPERM;
}
dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
if (!qm->qp_num) {
dev_err(dev, "qp_num should not be 0\n");
ret = -EINVAL;
goto err_unlock;
}
ret = __hisi_qm_start(qm);
if (!ret)
atomic_set(&qm->status.flags, QM_START);
hisi_qm_set_state(qm, QM_READY);
err_unlock:
up_write(&qm->qps_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_start);
static int qm_restart(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
struct hisi_qp *qp;
int ret, i;
ret = hisi_qm_start(qm);
if (ret < 0)
return ret;
down_write(&qm->qps_lock);
for (i = 0; i < qm->qp_num; i++) {
qp = &qm->qp_array[i];
if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
qp->is_resetting == true) {
ret = qm_start_qp_nolock(qp, 0);
if (ret < 0) {
dev_err(dev, "Failed to start qp%d!\n", i);
up_write(&qm->qps_lock);
return ret;
}
qp->is_resetting = false;
}
}
up_write(&qm->qps_lock);
return 0;
}
/* Stop started qps in reset flow */
static int qm_stop_started_qp(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
struct hisi_qp *qp;
int i, ret;
for (i = 0; i < qm->qp_num; i++) {
qp = &qm->qp_array[i];
if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
qp->is_resetting = true;
ret = qm_stop_qp_nolock(qp);
if (ret < 0) {
dev_err(dev, "Failed to stop qp%d!\n", i);
return ret;
}
}
}
return 0;
}
/**
* qm_clear_queues() - Clear all queues memory in a qm.
* @qm: The qm in which the queues will be cleared.
*
* This function clears all queues memory in a qm. Reset of accelerator can
* use this to clear queues.
*/
static void qm_clear_queues(struct hisi_qm *qm)
{
struct hisi_qp *qp;
int i;
for (i = 0; i < qm->qp_num; i++) {
qp = &qm->qp_array[i];
if (qp->is_in_kernel && qp->is_resetting)
memset(qp->qdma.va, 0, qp->qdma.size);
}
memset(qm->qdma.va, 0, qm->qdma.size);
}
/**
* hisi_qm_stop() - Stop a qm.
* @qm: The qm which will be stopped.
* @r: The reason to stop qm.
*
* This function stops qm and its qps, then qm can not accept request.
* Related resources are not released at this state, we can use hisi_qm_start
* to let qm start again.
*/
int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
{
struct device *dev = &qm->pdev->dev;
int ret = 0;
down_write(&qm->qps_lock);
qm->status.stop_reason = r;
if (!qm_avail_state(qm, QM_STOP)) {
ret = -EPERM;
goto err_unlock;
}
if (qm->status.stop_reason == QM_SOFT_RESET ||
qm->status.stop_reason == QM_FLR) {
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
ret = qm_stop_started_qp(qm);
if (ret < 0) {
dev_err(dev, "Failed to stop started qp!\n");
goto err_unlock;
}
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
}
qm_disable_eq_aeq_interrupts(qm);
if (qm->fun_type == QM_HW_PF) {
ret = hisi_qm_set_vft(qm, 0, 0, 0);
if (ret < 0) {
dev_err(dev, "Failed to set vft!\n");
ret = -EBUSY;
goto err_unlock;
}
}
qm_clear_queues(qm);
atomic_set(&qm->status.flags, QM_STOP);
err_unlock:
up_write(&qm->qps_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_stop);
static void qm_hw_error_init(struct hisi_qm *qm)
{
if (!qm->ops->hw_error_init) {
dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
return;
}
qm->ops->hw_error_init(qm);
}
static void qm_hw_error_uninit(struct hisi_qm *qm)
{
if (!qm->ops->hw_error_uninit) {
dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
return;
}
qm->ops->hw_error_uninit(qm);
}
static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
{
if (!qm->ops->hw_error_handle) {
dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
return ACC_ERR_NONE;
}
return qm->ops->hw_error_handle(qm);
}
/**
* hisi_qm_dev_err_init() - Initialize device error configuration.
* @qm: The qm for which we want to do error initialization.
*
* Initialize QM and device error related configuration.
*/
void hisi_qm_dev_err_init(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_VF)
return;
qm_hw_error_init(qm);
if (!qm->err_ini->hw_err_enable) {
dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
return;
}
qm->err_ini->hw_err_enable(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
/**
* hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
* @qm: The qm for which we want to do error uninitialization.
*
* Uninitialize QM and device error related configuration.
*/
void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_VF)
return;
qm_hw_error_uninit(qm);
if (!qm->err_ini->hw_err_disable) {
dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
return;
}
qm->err_ini->hw_err_disable(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
/**
* hisi_qm_free_qps() - free multiple queue pairs.
* @qps: The queue pairs need to be freed.
* @qp_num: The num of queue pairs.
*/
void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
{
int i;
if (!qps || qp_num <= 0)
return;
for (i = qp_num - 1; i >= 0; i--)
hisi_qm_release_qp(qps[i]);
}
EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
static void free_list(struct list_head *head)
{
struct hisi_qm_resource *res, *tmp;
list_for_each_entry_safe(res, tmp, head, list) {
list_del(&res->list);
kfree(res);
}
}
static int hisi_qm_sort_devices(int node, struct list_head *head,
struct hisi_qm_list *qm_list)
{
struct hisi_qm_resource *res, *tmp;
struct hisi_qm *qm;
struct list_head *n;
struct device *dev;
int dev_node;
list_for_each_entry(qm, &qm_list->list, list) {
dev = &qm->pdev->dev;
dev_node = dev_to_node(dev);
if (dev_node < 0)
dev_node = 0;
res = kzalloc(sizeof(*res), GFP_KERNEL);
if (!res)
return -ENOMEM;
res->qm = qm;
res->distance = node_distance(dev_node, node);
n = head;
list_for_each_entry(tmp, head, list) {
if (res->distance < tmp->distance) {
n = &tmp->list;
break;
}
}
list_add_tail(&res->list, n);
}
return 0;
}
/**
* hisi_qm_alloc_qps_node() - Create multiple queue pairs.
* @qm_list: The list of all available devices.
* @qp_num: The number of queue pairs need created.
* @alg_type: The algorithm type.
* @node: The numa node.
* @qps: The queue pairs need created.
*
* This function will sort all available device according to numa distance.
* Then try to create all queue pairs from one device, if all devices do
* not meet the requirements will return error.
*/
int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
u8 alg_type, int node, struct hisi_qp **qps)
{
struct hisi_qm_resource *tmp;
int ret = -ENODEV;
LIST_HEAD(head);
int i;
if (!qps || !qm_list || qp_num <= 0)
return -EINVAL;
mutex_lock(&qm_list->lock);
if (hisi_qm_sort_devices(node, &head, qm_list)) {
mutex_unlock(&qm_list->lock);
goto err;
}
list_for_each_entry(tmp, &head, list) {
for (i = 0; i < qp_num; i++) {
qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
if (IS_ERR(qps[i])) {
hisi_qm_free_qps(qps, i);
break;
}
}
if (i == qp_num) {
ret = 0;
break;
}
}
mutex_unlock(&qm_list->lock);
if (ret)
pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
node, alg_type, qp_num);
err:
free_list(&head);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
{
u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
u32 max_qp_num = qm->max_qp_num;
u32 q_base = qm->qp_num;
int ret;
if (!num_vfs)
return -EINVAL;
vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
/* If vfs_q_num is less than num_vfs, return error. */
if (vfs_q_num < num_vfs)
return -EINVAL;
q_num = vfs_q_num / num_vfs;
remain_q_num = vfs_q_num % num_vfs;
for (i = num_vfs; i > 0; i--) {
/*
* if q_num + remain_q_num > max_qp_num in last vf, divide the
* remaining queues equally.
*/
if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
act_q_num = q_num + remain_q_num;
remain_q_num = 0;
} else if (remain_q_num > 0) {
act_q_num = q_num + 1;
remain_q_num--;
} else {
act_q_num = q_num;
}
act_q_num = min(act_q_num, max_qp_num);
ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
if (ret) {
for (j = num_vfs; j > i; j--)
hisi_qm_set_vft(qm, j, 0, 0);
return ret;
}
q_base += act_q_num;
}
return 0;
}
static int qm_clear_vft_config(struct hisi_qm *qm)
{
int ret;
u32 i;
for (i = 1; i <= qm->vfs_num; i++) {
ret = hisi_qm_set_vft(qm, i, 0, 0);
if (ret)
return ret;
}
qm->vfs_num = 0;
return 0;
}
static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
{
struct device *dev = &qm->pdev->dev;
u32 ir = qos * QM_QOS_RATE;
int ret, total_vfs, i;
total_vfs = pci_sriov_get_totalvfs(qm->pdev);
if (fun_index > total_vfs)
return -EINVAL;
qm->factor[fun_index].func_qos = qos;
ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
if (ret) {
dev_err(dev, "failed to calculate shaper parameter!\n");
return -EINVAL;
}
for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
/* The base number of queue reuse for different alg type */
ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
if (ret) {
dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
return -EINVAL;
}
}
return 0;
}
static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
{
u64 cir_u = 0, cir_b = 0, cir_s = 0;
u64 shaper_vft, ir_calc, ir;
unsigned int val;
u32 error_rate;
int ret;
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
if (ret)
return 0;
writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
writel(fun_index, qm->io_base + QM_VFT_CFG);
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
if (ret)
return 0;
shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
if (error_rate > QM_QOS_MIN_ERROR_RATE) {
pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
return 0;
}
return ir;
}
static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
{
struct device *dev = &qm->pdev->dev;
u64 mb_cmd;
u32 qos;
int ret;
qos = qm_get_shaper_vft_qos(qm, fun_num);
if (!qos) {
dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
return;
}
mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
if (ret)
dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
}
static int qm_vf_read_qos(struct hisi_qm *qm)
{
int cnt = 0;
int ret = -EINVAL;
/* reset mailbox qos val */
qm->mb_qos = 0;
/* vf ping pf to get function qos */
ret = qm_ping_pf(qm, QM_VF_GET_QOS);
if (ret) {
pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
return ret;
}
while (true) {
msleep(QM_WAIT_DST_ACK);
if (qm->mb_qos)
break;
if (++cnt > QM_MAX_VF_WAIT_COUNT) {
pci_err(qm->pdev, "PF ping VF timeout!\n");
return -ETIMEDOUT;
}
}
return ret;
}
static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
size_t count, loff_t *pos)
{
struct hisi_qm *qm = filp->private_data;
char tbuf[QM_DBG_READ_LEN];
u32 qos_val, ir;
int ret;
ret = hisi_qm_get_dfx_access(qm);
if (ret)
return ret;
/* Mailbox and reset cannot be operated at the same time */
if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
ret = -EAGAIN;
goto err_put_dfx_access;
}
if (qm->fun_type == QM_HW_PF) {
ir = qm_get_shaper_vft_qos(qm, 0);
} else {
ret = qm_vf_read_qos(qm);
if (ret)
goto err_get_status;
ir = qm->mb_qos;
}
qos_val = ir / QM_QOS_RATE;
ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
err_get_status:
clear_bit(QM_RESETTING, &qm->misc_ctl);
err_put_dfx_access:
hisi_qm_put_dfx_access(qm);
return ret;
}
static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
unsigned long *val,
unsigned int *fun_index)
{
const struct bus_type *bus_type = qm->pdev->dev.bus;
char tbuf_bdf[QM_DBG_READ_LEN] = {0};
char val_buf[QM_DBG_READ_LEN] = {0};
struct pci_dev *pdev;
struct device *dev;
int ret;
ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
if (ret != QM_QOS_PARAM_NUM)
return -EINVAL;
ret = kstrtoul(val_buf, 10, val);
if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
return -EINVAL;
}
dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
if (!dev) {
pci_err(qm->pdev, "input pci bdf number is error!\n");
return -ENODEV;
}
pdev = container_of(dev, struct pci_dev, dev);
*fun_index = pdev->devfn;
return 0;
}
static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct hisi_qm *qm = filp->private_data;
char tbuf[QM_DBG_READ_LEN];
unsigned int fun_index;
unsigned long val;
int len, ret;
if (*pos != 0)
return 0;
if (count >= QM_DBG_READ_LEN)
return -ENOSPC;
len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
if (len < 0)
return len;
tbuf[len] = '\0';
ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
if (ret)
return ret;
/* Mailbox and reset cannot be operated at the same time */
if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
return -EAGAIN;
}
ret = qm_pm_get_sync(qm);
if (ret) {
ret = -EINVAL;
goto err_get_status;
}
ret = qm_func_shaper_enable(qm, fun_index, val);
if (ret) {
pci_err(qm->pdev, "failed to enable function shaper!\n");
ret = -EINVAL;
goto err_put_sync;
}
pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
fun_index, val);
ret = count;
err_put_sync:
qm_pm_put_sync(qm);
err_get_status:
clear_bit(QM_RESETTING, &qm->misc_ctl);
return ret;
}
static const struct file_operations qm_algqos_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = qm_algqos_read,
.write = qm_algqos_write,
};
/**
* hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
* @qm: The qm for which we want to add debugfs files.
*
* Create function qos debugfs files, VF ping PF to get function qos.
*/
void hisi_qm_set_algqos_init(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_PF)
debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
qm, &qm_algqos_fops);
else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
qm, &qm_algqos_fops);
}
static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
{
int i;
for (i = 1; i <= total_func; i++)
qm->factor[i].func_qos = QM_QOS_MAX_VAL;
}
/**
* hisi_qm_sriov_enable() - enable virtual functions
* @pdev: the PCIe device
* @max_vfs: the number of virtual functions to enable
*
* Returns the number of enabled VFs. If there are VFs enabled already or
* max_vfs is more than the total number of device can be enabled, returns
* failure.
*/
int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
int pre_existing_vfs, num_vfs, total_vfs, ret;
ret = qm_pm_get_sync(qm);
if (ret)
return ret;
total_vfs = pci_sriov_get_totalvfs(pdev);
pre_existing_vfs = pci_num_vf(pdev);
if (pre_existing_vfs) {
pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
pre_existing_vfs);
goto err_put_sync;
}
if (max_vfs > total_vfs) {
pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
ret = -ERANGE;
goto err_put_sync;
}
num_vfs = max_vfs;
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
hisi_qm_init_vf_qos(qm, num_vfs);
ret = qm_vf_q_assign(qm, num_vfs);
if (ret) {
pci_err(pdev, "Can't assign queues for VF!\n");
goto err_put_sync;
}
qm->vfs_num = num_vfs;
ret = pci_enable_sriov(pdev, num_vfs);
if (ret) {
pci_err(pdev, "Can't enable VF!\n");
qm_clear_vft_config(qm);
goto err_put_sync;
}
pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
return num_vfs;
err_put_sync:
qm_pm_put_sync(qm);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
/**
* hisi_qm_sriov_disable - disable virtual functions
* @pdev: the PCI device.
* @is_frozen: true when all the VFs are frozen.
*
* Return failure if there are VFs assigned already or VF is in used.
*/
int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
if (pci_vfs_assigned(pdev)) {
pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
return -EPERM;
}
/* While VF is in used, SRIOV cannot be disabled. */
if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
pci_err(pdev, "Task is using its VF!\n");
return -EBUSY;
}
pci_disable_sriov(pdev);
ret = qm_clear_vft_config(qm);
if (ret)
return ret;
qm_pm_put_sync(qm);
return 0;
}
EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
/**
* hisi_qm_sriov_configure - configure the number of VFs
* @pdev: The PCI device
* @num_vfs: The number of VFs need enabled
*
* Enable SR-IOV according to num_vfs, 0 means disable.
*/
int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
if (num_vfs == 0)
return hisi_qm_sriov_disable(pdev, false);
else
return hisi_qm_sriov_enable(pdev, num_vfs);
}
EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
{
u32 err_sts;
if (!qm->err_ini->get_dev_hw_err_status) {
dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
return ACC_ERR_NONE;
}
/* get device hardware error status */
err_sts = qm->err_ini->get_dev_hw_err_status(qm);
if (err_sts) {
if (err_sts & qm->err_info.ecc_2bits_mask)
qm->err_status.is_dev_ecc_mbit = true;
if (qm->err_ini->log_dev_hw_err)
qm->err_ini->log_dev_hw_err(qm, err_sts);
if (err_sts & qm->err_info.dev_reset_mask)
return ACC_ERR_NEED_RESET;
if (qm->err_ini->clear_dev_hw_err_status)
qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
}
return ACC_ERR_RECOVERED;
}
static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
{
enum acc_err_result qm_ret, dev_ret;
/* log qm error */
qm_ret = qm_hw_error_handle(qm);
/* log device error */
dev_ret = qm_dev_err_handle(qm);
return (qm_ret == ACC_ERR_NEED_RESET ||
dev_ret == ACC_ERR_NEED_RESET) ?
ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
}
/**
* hisi_qm_dev_err_detected() - Get device and qm error status then log it.
* @pdev: The PCI device which need report error.
* @state: The connectivity between CPU and device.
*
* We register this function into PCIe AER handlers, It will report device or
* qm hardware error status when error occur.
*/
pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
enum acc_err_result ret;
if (pdev->is_virtfn)
return PCI_ERS_RESULT_NONE;
pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
ret = qm_process_dev_error(qm);
if (ret == ACC_ERR_NEED_RESET)
return PCI_ERS_RESULT_NEED_RESET;
return PCI_ERS_RESULT_RECOVERED;
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
static int qm_check_req_recv(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
u32 val;
if (qm->ver >= QM_HW_V3)
return 0;
writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
(val == ACC_VENDOR_ID_VALUE),
POLL_PERIOD, POLL_TIMEOUT);
if (ret) {
dev_err(&pdev->dev, "Fails to read QM reg!\n");
return ret;
}
writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
(val == PCI_VENDOR_ID_HUAWEI),
POLL_PERIOD, POLL_TIMEOUT);
if (ret)
dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
return ret;
}
static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
{
struct pci_dev *pdev = qm->pdev;
u16 cmd;
int i;
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (set)
cmd |= PCI_COMMAND_MEMORY;
else
cmd &= ~PCI_COMMAND_MEMORY;
pci_write_config_word(pdev, PCI_COMMAND, cmd);
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
{
struct pci_dev *pdev = qm->pdev;
u16 sriov_ctrl;
int pos;
int i;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
if (set)
sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
else
sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int qm_vf_reset_prepare(struct hisi_qm *qm,
enum qm_stop_reason stop_reason)
{
struct hisi_qm_list *qm_list = qm->qm_list;
struct pci_dev *pdev = qm->pdev;
struct pci_dev *virtfn;
struct hisi_qm *vf_qm;
int ret = 0;
mutex_lock(&qm_list->lock);
list_for_each_entry(vf_qm, &qm_list->list, list) {
virtfn = vf_qm->pdev;
if (virtfn == pdev)
continue;
if (pci_physfn(virtfn) == pdev) {
/* save VFs PCIE BAR configuration */
pci_save_state(virtfn);
ret = hisi_qm_stop(vf_qm, stop_reason);
if (ret)
goto stop_fail;
}
}
stop_fail:
mutex_unlock(&qm_list->lock);
return ret;
}
static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
enum qm_stop_reason stop_reason)
{
struct pci_dev *pdev = qm->pdev;
int ret;
if (!qm->vfs_num)
return 0;
/* Kunpeng930 supports to notify VFs to stop before PF reset */
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
ret = qm_ping_all_vfs(qm, cmd);
if (ret)
pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
} else {
ret = qm_vf_reset_prepare(qm, stop_reason);
if (ret)
pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
}
return ret;
}
static int qm_controller_reset_prepare(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
ret = qm_reset_prepare_ready(qm);
if (ret) {
pci_err(pdev, "Controller reset not ready!\n");
return ret;
}
/* PF obtains the information of VF by querying the register. */
qm_cmd_uninit(qm);
/* Whether VFs stop successfully, soft reset will continue. */
ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
if (ret)
pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
ret = hisi_qm_stop(qm, QM_SOFT_RESET);
if (ret) {
pci_err(pdev, "Fails to stop QM!\n");
qm_reset_bit_clear(qm);
return ret;
}
if (qm->use_sva) {
ret = qm_hw_err_isolate(qm);
if (ret)
pci_err(pdev, "failed to isolate hw err!\n");
}
ret = qm_wait_vf_prepare_finish(qm);
if (ret)
pci_err(pdev, "failed to stop by vfs in soft reset!\n");
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
return 0;
}
static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
{
u32 nfe_enb = 0;
/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
if (qm->ver >= QM_HW_V3)
return;
if (!qm->err_status.is_dev_ecc_mbit &&
qm->err_status.is_qm_ecc_mbit &&
qm->err_ini->close_axi_master_ooo) {
qm->err_ini->close_axi_master_ooo(qm);
} else if (qm->err_status.is_dev_ecc_mbit &&
!qm->err_status.is_qm_ecc_mbit &&
!qm->err_ini->close_axi_master_ooo) {
nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
qm->io_base + QM_RAS_NFE_ENABLE);
writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
}
}
static int qm_soft_reset(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
u32 val;
/* Ensure all doorbells and mailboxes received by QM */
ret = qm_check_req_recv(qm);
if (ret)
return ret;
if (qm->vfs_num) {
ret = qm_set_vf_mse(qm, false);
if (ret) {
pci_err(pdev, "Fails to disable vf MSE bit.\n");
return ret;
}
}
ret = qm->ops->set_msi(qm, false);
if (ret) {
pci_err(pdev, "Fails to disable PEH MSI bit.\n");
return ret;
}
qm_dev_ecc_mbit_handle(qm);
/* OOO register set and check */
writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
qm->io_base + ACC_MASTER_GLOBAL_CTRL);
/* If bus lock, reset chip */
ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
val,
(val == ACC_MASTER_TRANS_RETURN_RW),
POLL_PERIOD, POLL_TIMEOUT);
if (ret) {
pci_emerg(pdev, "Bus lock! Please reset system.\n");
return ret;
}
if (qm->err_ini->close_sva_prefetch)
qm->err_ini->close_sva_prefetch(qm);
ret = qm_set_pf_mse(qm, false);
if (ret) {
pci_err(pdev, "Fails to disable pf MSE bit.\n");
return ret;
}
/* The reset related sub-control registers are not in PCI BAR */
if (ACPI_HANDLE(&pdev->dev)) {
unsigned long long value = 0;
acpi_status s;
s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
qm->err_info.acpi_rst,
NULL, &value);
if (ACPI_FAILURE(s)) {
pci_err(pdev, "NO controller reset method!\n");
return -EIO;
}
if (value) {
pci_err(pdev, "Reset step %llu failed!\n", value);
return -EIO;
}
} else {
pci_err(pdev, "No reset method!\n");
return -EINVAL;
}
return 0;
}
static int qm_vf_reset_done(struct hisi_qm *qm)
{
struct hisi_qm_list *qm_list = qm->qm_list;
struct pci_dev *pdev = qm->pdev;
struct pci_dev *virtfn;
struct hisi_qm *vf_qm;
int ret = 0;
mutex_lock(&qm_list->lock);
list_for_each_entry(vf_qm, &qm_list->list, list) {
virtfn = vf_qm->pdev;
if (virtfn == pdev)
continue;
if (pci_physfn(virtfn) == pdev) {
/* enable VFs PCIE BAR configuration */
pci_restore_state(virtfn);
ret = qm_restart(vf_qm);
if (ret)
goto restart_fail;
}
}
restart_fail:
mutex_unlock(&qm_list->lock);
return ret;
}
static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
{
struct pci_dev *pdev = qm->pdev;
int ret;
if (!qm->vfs_num)
return 0;
ret = qm_vf_q_assign(qm, qm->vfs_num);
if (ret) {
pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
return ret;
}
/* Kunpeng930 supports to notify VFs to start after PF reset. */
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
ret = qm_ping_all_vfs(qm, cmd);
if (ret)
pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
} else {
ret = qm_vf_reset_done(qm);
if (ret)
pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
}
return ret;
}
static int qm_dev_hw_init(struct hisi_qm *qm)
{
return qm->err_ini->hw_init(qm);
}
static void qm_restart_prepare(struct hisi_qm *qm)
{
u32 value;
if (qm->err_ini->open_sva_prefetch)
qm->err_ini->open_sva_prefetch(qm);
if (qm->ver >= QM_HW_V3)
return;
if (!qm->err_status.is_qm_ecc_mbit &&
!qm->err_status.is_dev_ecc_mbit)
return;
/* temporarily close the OOO port used for PEH to write out MSI */
value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
writel(value & ~qm->err_info.msi_wr_port,
qm->io_base + ACC_AM_CFG_PORT_WR_EN);
/* clear dev ecc 2bit error source if having */
value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
if (value && qm->err_ini->clear_dev_hw_err_status)
qm->err_ini->clear_dev_hw_err_status(qm, value);
/* clear QM ecc mbit error source */
writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
/* clear AM Reorder Buffer ecc mbit source */
writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
}
static void qm_restart_done(struct hisi_qm *qm)
{
u32 value;
if (qm->ver >= QM_HW_V3)
goto clear_flags;
if (!qm->err_status.is_qm_ecc_mbit &&
!qm->err_status.is_dev_ecc_mbit)
return;
/* open the OOO port for PEH to write out MSI */
value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
value |= qm->err_info.msi_wr_port;
writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
clear_flags:
qm->err_status.is_qm_ecc_mbit = false;
qm->err_status.is_dev_ecc_mbit = false;
}
static int qm_controller_reset_done(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
ret = qm->ops->set_msi(qm, true);
if (ret) {
pci_err(pdev, "Fails to enable PEH MSI bit!\n");
return ret;
}
ret = qm_set_pf_mse(qm, true);
if (ret) {
pci_err(pdev, "Fails to enable pf MSE bit!\n");
return ret;
}
if (qm->vfs_num) {
ret = qm_set_vf_mse(qm, true);
if (ret) {
pci_err(pdev, "Fails to enable vf MSE bit!\n");
return ret;
}
}
ret = qm_dev_hw_init(qm);
if (ret) {
pci_err(pdev, "Failed to init device\n");
return ret;
}
qm_restart_prepare(qm);
hisi_qm_dev_err_init(qm);
if (qm->err_ini->open_axi_master_ooo)
qm->err_ini->open_axi_master_ooo(qm);
ret = qm_dev_mem_reset(qm);
if (ret) {
pci_err(pdev, "failed to reset device memory\n");
return ret;
}
ret = qm_restart(qm);
if (ret) {
pci_err(pdev, "Failed to start QM!\n");
return ret;
}
ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
if (ret)
pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
ret = qm_wait_vf_prepare_finish(qm);
if (ret)
pci_err(pdev, "failed to start by vfs in soft reset!\n");
qm_cmd_init(qm);
qm_restart_done(qm);
qm_reset_bit_clear(qm);
return 0;
}
static int qm_controller_reset(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
pci_info(pdev, "Controller resetting...\n");
ret = qm_controller_reset_prepare(qm);
if (ret) {
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
return ret;
}
hisi_qm_show_last_dfx_regs(qm);
if (qm->err_ini->show_last_dfx_regs)
qm->err_ini->show_last_dfx_regs(qm);
ret = qm_soft_reset(qm);
if (ret)
goto err_reset;
ret = qm_controller_reset_done(qm);
if (ret)
goto err_reset;
pci_info(pdev, "Controller reset complete\n");
return 0;
err_reset:
pci_err(pdev, "Controller reset failed (%d)\n", ret);
qm_reset_bit_clear(qm);
/* if resetting fails, isolate the device */
if (qm->use_sva)
qm->isolate_data.is_isolate = true;
return ret;
}
/**
* hisi_qm_dev_slot_reset() - slot reset
* @pdev: the PCIe device
*
* This function offers QM relate PCIe device reset interface. Drivers which
* use QM can use this function as slot_reset in its struct pci_error_handlers.
*/
pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
if (pdev->is_virtfn)
return PCI_ERS_RESULT_RECOVERED;
/* reset pcie device controller */
ret = qm_controller_reset(qm);
if (ret) {
pci_err(pdev, "Controller reset failed (%d)\n", ret);
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_RECOVERED;
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
void hisi_qm_reset_prepare(struct pci_dev *pdev)
{
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
struct hisi_qm *qm = pci_get_drvdata(pdev);
u32 delay = 0;
int ret;
hisi_qm_dev_err_uninit(pf_qm);
/*
* Check whether there is an ECC mbit error, If it occurs, need to
* wait for soft reset to fix it.
*/
while (qm_check_dev_error(pf_qm)) {
msleep(++delay);
if (delay > QM_RESET_WAIT_TIMEOUT)
return;
}
ret = qm_reset_prepare_ready(qm);
if (ret) {
pci_err(pdev, "FLR not ready!\n");
return;
}
/* PF obtains the information of VF by querying the register. */
if (qm->fun_type == QM_HW_PF)
qm_cmd_uninit(qm);
ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
if (ret)
pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
ret = hisi_qm_stop(qm, QM_FLR);
if (ret) {
pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
return;
}
ret = qm_wait_vf_prepare_finish(qm);
if (ret)
pci_err(pdev, "failed to stop by vfs in FLR!\n");
pci_info(pdev, "FLR resetting...\n");
}
EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
static bool qm_flr_reset_complete(struct pci_dev *pdev)
{
struct pci_dev *pf_pdev = pci_physfn(pdev);
struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
u32 id;
pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
if (id == QM_PCI_COMMAND_INVALID) {
pci_err(pdev, "Device can not be used!\n");
return false;
}
return true;
}
void hisi_qm_reset_done(struct pci_dev *pdev)
{
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
if (qm->fun_type == QM_HW_PF) {
ret = qm_dev_hw_init(qm);
if (ret) {
pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
goto flr_done;
}
}
hisi_qm_dev_err_init(pf_qm);
ret = qm_restart(qm);
if (ret) {
pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
goto flr_done;
}
ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
if (ret)
pci_err(pdev, "failed to start vfs by pf in FLR.\n");
ret = qm_wait_vf_prepare_finish(qm);
if (ret)
pci_err(pdev, "failed to start by vfs in FLR!\n");
flr_done:
if (qm->fun_type == QM_HW_PF)
qm_cmd_init(qm);
if (qm_flr_reset_complete(pdev))
pci_info(pdev, "FLR reset complete\n");
qm_reset_bit_clear(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
static irqreturn_t qm_abnormal_irq(int irq, void *data)
{
struct hisi_qm *qm = data;
enum acc_err_result ret;
atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
ret = qm_process_dev_error(qm);
if (ret == ACC_ERR_NEED_RESET &&
!test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
!test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
schedule_work(&qm->rst_work);
return IRQ_HANDLED;
}
/**
* hisi_qm_dev_shutdown() - Shutdown device.
* @pdev: The device will be shutdown.
*
* This function will stop qm when OS shutdown or rebooting.
*/
void hisi_qm_dev_shutdown(struct pci_dev *pdev)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
ret = hisi_qm_stop(qm, QM_NORMAL);
if (ret)
dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
static void hisi_qm_controller_reset(struct work_struct *rst_work)
{
struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
int ret;
ret = qm_pm_get_sync(qm);
if (ret) {
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
return;
}
/* reset pcie device controller */
ret = qm_controller_reset(qm);
if (ret)
dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
qm_pm_put_sync(qm);
}
static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
enum qm_stop_reason stop_reason)
{
enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
struct pci_dev *pdev = qm->pdev;
int ret;
ret = qm_reset_prepare_ready(qm);
if (ret) {
dev_err(&pdev->dev, "reset prepare not ready!\n");
atomic_set(&qm->status.flags, QM_STOP);
cmd = QM_VF_PREPARE_FAIL;
goto err_prepare;
}
ret = hisi_qm_stop(qm, stop_reason);
if (ret) {
dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
atomic_set(&qm->status.flags, QM_STOP);
cmd = QM_VF_PREPARE_FAIL;
goto err_prepare;
} else {
goto out;
}
err_prepare:
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
out:
pci_save_state(pdev);
ret = qm_ping_pf(qm, cmd);
if (ret)
dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
}
static void qm_pf_reset_vf_done(struct hisi_qm *qm)
{
enum qm_mb_cmd cmd = QM_VF_START_DONE;
struct pci_dev *pdev = qm->pdev;
int ret;
pci_restore_state(pdev);
ret = hisi_qm_start(qm);
if (ret) {
dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
cmd = QM_VF_START_FAIL;
}
qm_cmd_init(qm);
ret = qm_ping_pf(qm, cmd);
if (ret)
dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
qm_reset_bit_clear(qm);
}
static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
u32 val, cmd;
u64 msg;
int ret;
/* Wait for reset to finish */
ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
val == BIT(0), QM_VF_RESET_WAIT_US,
QM_VF_RESET_WAIT_TIMEOUT_US);
/* hardware completion status should be available by this time */
if (ret) {
dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
return -ETIMEDOUT;
}
/*
* Whether message is got successfully,
* VF needs to ack PF by clearing the interrupt.
*/
ret = qm_get_mb_cmd(qm, &msg, 0);
qm_clear_cmd_interrupt(qm, 0);
if (ret) {
dev_err(dev, "failed to get msg from PF in reset done!\n");
return ret;
}
cmd = msg & QM_MB_CMD_DATA_MASK;
if (cmd != QM_PF_RESET_DONE) {
dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
ret = -EINVAL;
}
return ret;
}
static void qm_pf_reset_vf_process(struct hisi_qm *qm,
enum qm_stop_reason stop_reason)
{
struct device *dev = &qm->pdev->dev;
int ret;
dev_info(dev, "device reset start...\n");
/* The message is obtained by querying the register during resetting */
qm_cmd_uninit(qm);
qm_pf_reset_vf_prepare(qm, stop_reason);
ret = qm_wait_pf_reset_finish(qm);
if (ret)
goto err_get_status;
qm_pf_reset_vf_done(qm);
dev_info(dev, "device reset done.\n");
return;
err_get_status:
qm_cmd_init(qm);
qm_reset_bit_clear(qm);
}
static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
{
struct device *dev = &qm->pdev->dev;
u64 msg;
u32 cmd;
int ret;
/*
* Get the msg from source by sending mailbox. Whether message is got
* successfully, destination needs to ack source by clearing the interrupt.
*/
ret = qm_get_mb_cmd(qm, &msg, fun_num);
qm_clear_cmd_interrupt(qm, BIT(fun_num));
if (ret) {
dev_err(dev, "failed to get msg from source!\n");
return;
}
cmd = msg & QM_MB_CMD_DATA_MASK;
switch (cmd) {
case QM_PF_FLR_PREPARE:
qm_pf_reset_vf_process(qm, QM_FLR);
break;
case QM_PF_SRST_PREPARE:
qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
break;
case QM_VF_GET_QOS:
qm_vf_get_qos(qm, fun_num);
break;
case QM_PF_SET_QOS:
qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
break;
default:
dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
break;
}
}
static void qm_cmd_process(struct work_struct *cmd_process)
{
struct hisi_qm *qm = container_of(cmd_process,
struct hisi_qm, cmd_process);
u32 vfs_num = qm->vfs_num;
u64 val;
u32 i;
if (qm->fun_type == QM_HW_PF) {
val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
if (!val)
return;
for (i = 1; i <= vfs_num; i++) {
if (val & BIT(i))
qm_handle_cmd_msg(qm, i);
}
return;
}
qm_handle_cmd_msg(qm, 0);
}
/**
* hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
* @qm: The qm needs add.
* @qm_list: The qm list.
*
* This function adds qm to qm list, and will register algorithm to
* crypto when the qm list is empty.
*/
int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
{
struct device *dev = &qm->pdev->dev;
int flag = 0;
int ret = 0;
mutex_lock(&qm_list->lock);
if (list_empty(&qm_list->list))
flag = 1;
list_add_tail(&qm->list, &qm_list->list);
mutex_unlock(&qm_list->lock);
if (qm->ver <= QM_HW_V2 && qm->use_sva) {
dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
return 0;
}
if (flag) {
ret = qm_list->register_to_crypto(qm);
if (ret) {
mutex_lock(&qm_list->lock);
list_del(&qm->list);
mutex_unlock(&qm_list->lock);
}
}
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
/**
* hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
* qm list.
* @qm: The qm needs delete.
* @qm_list: The qm list.
*
* This function deletes qm from qm list, and will unregister algorithm
* from crypto when the qm list is empty.
*/
void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
{
mutex_lock(&qm_list->lock);
list_del(&qm->list);
mutex_unlock(&qm_list->lock);
if (qm->ver <= QM_HW_V2 && qm->use_sva)
return;
if (list_empty(&qm_list->list))
qm_list->unregister_from_crypto(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
if (qm->fun_type == QM_HW_VF)
return;
val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
return;
irq_vector = val & QM_IRQ_VECTOR_MASK;
free_irq(pci_irq_vector(pdev, irq_vector), qm);
}
static int qm_register_abnormal_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
int ret;
if (qm->fun_type == QM_HW_VF)
return 0;
val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
return 0;
irq_vector = val & QM_IRQ_VECTOR_MASK;
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
if (ret)
dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
return ret;
}
static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return;
irq_vector = val & QM_IRQ_VECTOR_MASK;
free_irq(pci_irq_vector(pdev, irq_vector), qm);
}
static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
int ret;
val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return 0;
irq_vector = val & QM_IRQ_VECTOR_MASK;
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
if (ret)
dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
return ret;
}
static void qm_unregister_aeq_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return;
irq_vector = val & QM_IRQ_VECTOR_MASK;
free_irq(pci_irq_vector(pdev, irq_vector), qm);
}
static int qm_register_aeq_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
int ret;
val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return 0;
irq_vector = val & QM_IRQ_VECTOR_MASK;
ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq,
qm_aeq_thread, 0, qm->dev_name, qm);
if (ret)
dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
return ret;
}
static void qm_unregister_eq_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return;
irq_vector = val & QM_IRQ_VECTOR_MASK;
free_irq(pci_irq_vector(pdev, irq_vector), qm);
}
static int qm_register_eq_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
int ret;
val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return 0;
irq_vector = val & QM_IRQ_VECTOR_MASK;
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
if (ret)
dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
return ret;
}
static void qm_irqs_unregister(struct hisi_qm *qm)
{
qm_unregister_mb_cmd_irq(qm);
qm_unregister_abnormal_irq(qm);
qm_unregister_aeq_irq(qm);
qm_unregister_eq_irq(qm);
}
static int qm_irqs_register(struct hisi_qm *qm)
{
int ret;
ret = qm_register_eq_irq(qm);
if (ret)
return ret;
ret = qm_register_aeq_irq(qm);
if (ret)
goto free_eq_irq;
ret = qm_register_abnormal_irq(qm);
if (ret)
goto free_aeq_irq;
ret = qm_register_mb_cmd_irq(qm);
if (ret)
goto free_abnormal_irq;
return 0;
free_abnormal_irq:
qm_unregister_abnormal_irq(qm);
free_aeq_irq:
qm_unregister_aeq_irq(qm);
free_eq_irq:
qm_unregister_eq_irq(qm);
return ret;
}
static int qm_get_qp_num(struct hisi_qm *qm)
{
bool is_db_isolation;
/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
if (qm->fun_type == QM_HW_VF) {
if (qm->ver != QM_HW_V1)
/* v2 starts to support get vft by mailbox */
return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
return 0;
}
is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
QM_FUNC_MAX_QP_CAP, is_db_isolation);
/* check if qp number is valid */
if (qm->qp_num > qm->max_qp_num) {
dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
qm->qp_num, qm->max_qp_num);
return -EINVAL;
}
return 0;
}
static void qm_get_hw_caps(struct hisi_qm *qm)
{
const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
qm_cap_info_pf : qm_cap_info_vf;
u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
ARRAY_SIZE(qm_cap_info_vf);
u32 val, i;
/* Doorbell isolate register is a independent register. */
val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
if (val)
set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
if (qm->ver >= QM_HW_V3) {
val = readl(qm->io_base + QM_FUNC_CAPS_REG);
qm->cap_ver = val & QM_CAPBILITY_VERSION;
}
/* Get PF/VF common capbility */
for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
if (val)
set_bit(qm_cap_info_comm[i].type, &qm->caps);
}
/* Get PF/VF different capbility */
for (i = 0; i < size; i++) {
val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
if (val)
set_bit(cap_info[i].type, &qm->caps);
}
}
static int qm_get_pci_res(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
int ret;
ret = pci_request_mem_regions(pdev, qm->dev_name);
if (ret < 0) {
dev_err(dev, "Failed to request mem regions!\n");
return ret;
}
qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
if (!qm->io_base) {
ret = -EIO;
goto err_request_mem_regions;
}
qm_get_hw_caps(qm);
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
qm->db_interval = QM_QP_DB_INTERVAL;
qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
qm->db_io_base = ioremap(qm->db_phys_base,
pci_resource_len(pdev, PCI_BAR_4));
if (!qm->db_io_base) {
ret = -EIO;
goto err_ioremap;
}
} else {
qm->db_phys_base = qm->phys_base;
qm->db_io_base = qm->io_base;
qm->db_interval = 0;
}
ret = qm_get_qp_num(qm);
if (ret)
goto err_db_ioremap;
return 0;
err_db_ioremap:
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
iounmap(qm->db_io_base);
err_ioremap:
iounmap(qm->io_base);
err_request_mem_regions:
pci_release_mem_regions(pdev);
return ret;
}
static int hisi_qm_pci_init(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
unsigned int num_vec;
int ret;
ret = pci_enable_device_mem(pdev);
if (ret < 0) {
dev_err(dev, "Failed to enable device mem!\n");
return ret;
}
ret = qm_get_pci_res(qm);
if (ret)
goto err_disable_pcidev;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret < 0)
goto err_get_pci_res;
pci_set_master(pdev);
num_vec = qm_get_irq_num(qm);
ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
if (ret < 0) {
dev_err(dev, "Failed to enable MSI vectors!\n");
goto err_get_pci_res;
}
return 0;
err_get_pci_res:
qm_put_pci_res(qm);
err_disable_pcidev:
pci_disable_device(pdev);
return ret;
}
static int hisi_qm_init_work(struct hisi_qm *qm)
{
int i;
for (i = 0; i < qm->qp_num; i++)
INIT_WORK(&qm->poll_data[i].work, qm_work_process);
if (qm->fun_type == QM_HW_PF)
INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
if (qm->ver > QM_HW_V2)
INIT_WORK(&qm->cmd_process, qm_cmd_process);
qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
WQ_UNBOUND, num_online_cpus(),
pci_name(qm->pdev));
if (!qm->wq) {
pci_err(qm->pdev, "failed to alloc workqueue!\n");
return -ENOMEM;
}
return 0;
}
static int hisi_qp_alloc_memory(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
u16 sq_depth, cq_depth;
size_t qp_dma_size;
int i, ret;
qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
if (!qm->qp_array)
return -ENOMEM;
qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
if (!qm->poll_data) {
kfree(qm->qp_array);
return -ENOMEM;
}
qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
/* one more page for device or qp statuses */
qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
for (i = 0; i < qm->qp_num; i++) {
qm->poll_data[i].qm = qm;
ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
if (ret)
goto err_init_qp_mem;
dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
}
return 0;
err_init_qp_mem:
hisi_qp_memory_uninit(qm, i);
return ret;
}
static int hisi_qm_memory_init(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret, total_func;
size_t off = 0;
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
if (!qm->factor)
return -ENOMEM;
/* Only the PF value needs to be initialized */
qm->factor[0].func_qos = QM_QOS_MAX_VAL;
}
#define QM_INIT_BUF(qm, type, num) do { \
(qm)->type = ((qm)->qdma.va + (off)); \
(qm)->type##_dma = (qm)->qdma.dma + (off); \
off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
} while (0)
idr_init(&qm->qp_idr);
qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
GFP_ATOMIC);
dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
if (!qm->qdma.va) {
ret = -ENOMEM;
goto err_destroy_idr;
}
QM_INIT_BUF(qm, eqe, qm->eq_depth);
QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
QM_INIT_BUF(qm, sqc, qm->qp_num);
QM_INIT_BUF(qm, cqc, qm->qp_num);
ret = hisi_qp_alloc_memory(qm);
if (ret)
goto err_alloc_qp_array;
return 0;
err_alloc_qp_array:
dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
err_destroy_idr:
idr_destroy(&qm->qp_idr);
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
kfree(qm->factor);
return ret;
}
/**
* hisi_qm_init() - Initialize configures about qm.
* @qm: The qm needing init.
*
* This function init qm, then we can call hisi_qm_start to put qm into work.
*/
int hisi_qm_init(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
int ret;
hisi_qm_pre_init(qm);
ret = hisi_qm_pci_init(qm);
if (ret)
return ret;
ret = qm_irqs_register(qm);
if (ret)
goto err_pci_init;
if (qm->fun_type == QM_HW_PF) {
qm_disable_clock_gate(qm);
ret = qm_dev_mem_reset(qm);
if (ret) {
dev_err(dev, "failed to reset device memory\n");
goto err_irq_register;
}
}
if (qm->mode == UACCE_MODE_SVA) {
ret = qm_alloc_uacce(qm);
if (ret < 0)
dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
}
ret = hisi_qm_memory_init(qm);
if (ret)
goto err_alloc_uacce;
ret = hisi_qm_init_work(qm);
if (ret)
goto err_free_qm_memory;
qm_cmd_init(qm);
atomic_set(&qm->status.flags, QM_INIT);
return 0;
err_free_qm_memory:
hisi_qm_memory_uninit(qm);
err_alloc_uacce:
qm_remove_uacce(qm);
err_irq_register:
qm_irqs_unregister(qm);
err_pci_init:
hisi_qm_pci_uninit(qm);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_init);
/**
* hisi_qm_get_dfx_access() - Try to get dfx access.
* @qm: pointer to accelerator device.
*
* Try to get dfx access, then user can get message.
*
* If device is in suspended, return failure, otherwise
* bump up the runtime PM usage counter.
*/
int hisi_qm_get_dfx_access(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
if (pm_runtime_suspended(dev)) {
dev_info(dev, "can not read/write - device in suspended.\n");
return -EAGAIN;
}
return qm_pm_get_sync(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
/**
* hisi_qm_put_dfx_access() - Put dfx access.
* @qm: pointer to accelerator device.
*
* Put dfx access, drop runtime PM usage counter.
*/
void hisi_qm_put_dfx_access(struct hisi_qm *qm)
{
qm_pm_put_sync(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
/**
* hisi_qm_pm_init() - Initialize qm runtime PM.
* @qm: pointer to accelerator device.
*
* Function that initialize qm runtime PM.
*/
void hisi_qm_pm_init(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
return;
pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
pm_runtime_put_noidle(dev);
}
EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
/**
* hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
* @qm: pointer to accelerator device.
*
* Function that uninitialize qm runtime PM.
*/
void hisi_qm_pm_uninit(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
return;
pm_runtime_get_noresume(dev);
pm_runtime_dont_use_autosuspend(dev);
}
EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
static int qm_prepare_for_suspend(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
u32 val;
ret = qm->ops->set_msi(qm, false);
if (ret) {
pci_err(pdev, "failed to disable MSI before suspending!\n");
return ret;
}
/* shutdown OOO register */
writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
qm->io_base + ACC_MASTER_GLOBAL_CTRL);
ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
val,
(val == ACC_MASTER_TRANS_RETURN_RW),
POLL_PERIOD, POLL_TIMEOUT);
if (ret) {
pci_emerg(pdev, "Bus lock! Please reset system.\n");
return ret;
}
ret = qm_set_pf_mse(qm, false);
if (ret)
pci_err(pdev, "failed to disable MSE before suspending!\n");
return ret;
}
static int qm_rebuild_for_resume(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
ret = qm_set_pf_mse(qm, true);
if (ret) {
pci_err(pdev, "failed to enable MSE after resuming!\n");
return ret;
}
ret = qm->ops->set_msi(qm, true);
if (ret) {
pci_err(pdev, "failed to enable MSI after resuming!\n");
return ret;
}
ret = qm_dev_hw_init(qm);
if (ret) {
pci_err(pdev, "failed to init device after resuming\n");
return ret;
}
qm_cmd_init(qm);
hisi_qm_dev_err_init(qm);
qm_disable_clock_gate(qm);
ret = qm_dev_mem_reset(qm);
if (ret)
pci_err(pdev, "failed to reset device memory\n");
return ret;
}
/**
* hisi_qm_suspend() - Runtime suspend of given device.
* @dev: device to suspend.
*
* Function that suspend the device.
*/
int hisi_qm_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
pci_info(pdev, "entering suspended state\n");
ret = hisi_qm_stop(qm, QM_NORMAL);
if (ret) {
pci_err(pdev, "failed to stop qm(%d)\n", ret);
return ret;
}
ret = qm_prepare_for_suspend(qm);
if (ret)
pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_suspend);
/**
* hisi_qm_resume() - Runtime resume of given device.
* @dev: device to resume.
*
* Function that resume the device.
*/
int hisi_qm_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
pci_info(pdev, "resuming from suspend state\n");
ret = qm_rebuild_for_resume(qm);
if (ret) {
pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
return ret;
}
ret = hisi_qm_start(qm);
if (ret) {
if (qm_check_dev_error(qm)) {
pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
return 0;
}
pci_err(pdev, "failed to start qm(%d)!\n", ret);
}
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_resume);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");