Andy Lutomirski d8778e393a x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer
Both Intel and AMD consider it to be architecturally valid for XRSTOR to
fail with #PF but nonetheless change the register state.  The actual
conditions under which this might occur are unclear [1], but it seems
plausible that this might be triggered if one sibling thread unmaps a page
and invalidates the shared TLB while another sibling thread is executing
XRSTOR on the page in question.

__fpu__restore_sig() can execute XRSTOR while the hardware registers
are preserved on behalf of a different victim task (using the
fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but
modify the registers.

If this happens, then there is a window in which __fpu__restore_sig()
could schedule out and the victim task could schedule back in without
reloading its own FPU registers. This would result in part of the FPU
state that __fpu__restore_sig() was attempting to load leaking into the
victim task's user-visible state.

Invalidate preserved FPU registers on XRSTOR failure to prevent this
situation from corrupting any state.

[1] Frequent readers of the errata lists might imagine "complex
    microarchitectural conditions".

Fixes: 1d731e731c4c ("x86/fpu: Add a fastpath to __fpu__restore_sig()")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210608144345.758116583@linutronix.de
2021-06-09 09:49:38 +02:00
2021-05-22 07:40:34 -10:00
2021-05-08 10:00:11 -07:00
2021-04-28 14:39:37 -07:00
2021-06-06 15:39:56 -07:00
2021-06-06 14:24:13 -07:00
2021-06-06 13:00:36 -07:00
2021-06-05 08:58:12 -07:00
2021-06-03 11:52:24 -07:00
2021-06-04 10:13:20 -07:00
2021-02-24 09:38:36 -08:00
2021-06-06 15:47:27 -07:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 5.7 GiB
Languages
C 97.6%
Assembly 1%
Shell 0.5%
Python 0.3%
Makefile 0.3%