9ad9a52cce
This adds basic support for hardware implementing the MIPI I3C HCI specification. This driver is currently limited by the capabilities of the I3C subsystem, meaning things like scheduled commands, auto-commands and NCM mode are not yet supported. This supports version 1.0 of the MIPI I3C HCI spec, as well as the imminent release of version 1.1. Support for draft version 2.0 of the spec is also largely included with the caveat that future adjustments to this code are likely as the spec is still a work in progress. This is also lightly tested as actual hardware is still very scarce, even for HCI v1.0. Hence the EXPERIMENTAL tag. Further contributions to this driver are expected once vendor implementations and new I3C devices become available. Signed-off-by: Nicolas Pitre <npitre@baylibre.com> Signed-off-by: Boris Brezillon <boris.brezillon@collabora.com> Link: https://lore.kernel.org/linux-i3c/20201111220510.3622216-3-nico@fluxnic.net
785 lines
22 KiB
C
785 lines
22 KiB
C
// SPDX-License-Identifier: BSD-3-Clause
|
|
/*
|
|
* Copyright (c) 2020, MIPI Alliance, Inc.
|
|
*
|
|
* Author: Nicolas Pitre <npitre@baylibre.com>
|
|
*
|
|
* Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on
|
|
* v1.x of the spec and v2.0 will likely be split out.
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/i3c/master.h>
|
|
#include <linux/io.h>
|
|
|
|
#include "hci.h"
|
|
#include "cmd.h"
|
|
#include "ibi.h"
|
|
|
|
|
|
/*
|
|
* Software Parameter Values (somewhat arb itrary for now).
|
|
* Some of them could be determined at run time eventually.
|
|
*/
|
|
|
|
#define XFER_RINGS 1 /* max: 8 */
|
|
#define XFER_RING_ENTRIES 16 /* max: 255 */
|
|
|
|
#define IBI_RINGS 1 /* max: 8 */
|
|
#define IBI_STATUS_RING_ENTRIES 32 /* max: 255 */
|
|
#define IBI_CHUNK_CACHELINES 1 /* max: 256 bytes equivalent */
|
|
#define IBI_CHUNK_POOL_SIZE 128 /* max: 1023 */
|
|
|
|
/*
|
|
* Ring Header Preamble
|
|
*/
|
|
|
|
#define rhs_reg_read(r) readl(hci->RHS_regs + (RHS_##r))
|
|
#define rhs_reg_write(r, v) writel(v, hci->RHS_regs + (RHS_##r))
|
|
|
|
#define RHS_CONTROL 0x00
|
|
#define PREAMBLE_SIZE GENMASK(31, 24) /* Preamble Section Size */
|
|
#define HEADER_SIZE GENMASK(23, 16) /* Ring Header Size */
|
|
#define MAX_HEADER_COUNT_CAP GENMASK(7, 4) /* HC Max Header Count */
|
|
#define MAX_HEADER_COUNT GENMASK(3, 0) /* Driver Max Header Count */
|
|
|
|
#define RHS_RHn_OFFSET(n) (0x04 + (n)*4)
|
|
|
|
/*
|
|
* Ring Header (Per-Ring Bundle)
|
|
*/
|
|
|
|
#define rh_reg_read(r) readl(rh->regs + (RH_##r))
|
|
#define rh_reg_write(r, v) writel(v, rh->regs + (RH_##r))
|
|
|
|
#define RH_CR_SETUP 0x00 /* Command/Response Ring */
|
|
#define CR_XFER_STRUCT_SIZE GENMASK(31, 24)
|
|
#define CR_RESP_STRUCT_SIZE GENMASK(23, 16)
|
|
#define CR_RING_SIZE GENMASK(8, 0)
|
|
|
|
#define RH_IBI_SETUP 0x04
|
|
#define IBI_STATUS_STRUCT_SIZE GENMASK(31, 24)
|
|
#define IBI_STATUS_RING_SIZE GENMASK(23, 16)
|
|
#define IBI_DATA_CHUNK_SIZE GENMASK(12, 10)
|
|
#define IBI_DATA_CHUNK_COUNT GENMASK(9, 0)
|
|
|
|
#define RH_CHUNK_CONTROL 0x08
|
|
|
|
#define RH_INTR_STATUS 0x10
|
|
#define RH_INTR_STATUS_ENABLE 0x14
|
|
#define RH_INTR_SIGNAL_ENABLE 0x18
|
|
#define RH_INTR_FORCE 0x1c
|
|
#define INTR_IBI_READY BIT(12)
|
|
#define INTR_TRANSFER_COMPLETION BIT(11)
|
|
#define INTR_RING_OP BIT(10)
|
|
#define INTR_TRANSFER_ERR BIT(9)
|
|
#define INTR_WARN_INS_STOP_MODE BIT(7)
|
|
#define INTR_IBI_RING_FULL BIT(6)
|
|
#define INTR_TRANSFER_ABORT BIT(5)
|
|
|
|
#define RH_RING_STATUS 0x20
|
|
#define RING_STATUS_LOCKED BIT(3)
|
|
#define RING_STATUS_ABORTED BIT(2)
|
|
#define RING_STATUS_RUNNING BIT(1)
|
|
#define RING_STATUS_ENABLED BIT(0)
|
|
|
|
#define RH_RING_CONTROL 0x24
|
|
#define RING_CTRL_ABORT BIT(2)
|
|
#define RING_CTRL_RUN_STOP BIT(1)
|
|
#define RING_CTRL_ENABLE BIT(0)
|
|
|
|
#define RH_RING_OPERATION1 0x28
|
|
#define RING_OP1_IBI_DEQ_PTR GENMASK(23, 16)
|
|
#define RING_OP1_CR_SW_DEQ_PTR GENMASK(15, 8)
|
|
#define RING_OP1_CR_ENQ_PTR GENMASK(7, 0)
|
|
|
|
#define RH_RING_OPERATION2 0x2c
|
|
#define RING_OP2_IBI_ENQ_PTR GENMASK(23, 16)
|
|
#define RING_OP2_CR_DEQ_PTR GENMASK(7, 0)
|
|
|
|
#define RH_CMD_RING_BASE_LO 0x30
|
|
#define RH_CMD_RING_BASE_HI 0x34
|
|
#define RH_RESP_RING_BASE_LO 0x38
|
|
#define RH_RESP_RING_BASE_HI 0x3c
|
|
#define RH_IBI_STATUS_RING_BASE_LO 0x40
|
|
#define RH_IBI_STATUS_RING_BASE_HI 0x44
|
|
#define RH_IBI_DATA_RING_BASE_LO 0x48
|
|
#define RH_IBI_DATA_RING_BASE_HI 0x4c
|
|
|
|
#define RH_CMD_RING_SG 0x50 /* Ring Scatter Gather Support */
|
|
#define RH_RESP_RING_SG 0x54
|
|
#define RH_IBI_STATUS_RING_SG 0x58
|
|
#define RH_IBI_DATA_RING_SG 0x5c
|
|
#define RING_SG_BLP BIT(31) /* Buffer Vs. List Pointer */
|
|
#define RING_SG_LIST_SIZE GENMASK(15, 0)
|
|
|
|
/*
|
|
* Data Buffer Descriptor (in memory)
|
|
*/
|
|
|
|
#define DATA_BUF_BLP BIT(31) /* Buffer Vs. List Pointer */
|
|
#define DATA_BUF_IOC BIT(30) /* Interrupt on Completion */
|
|
#define DATA_BUF_BLOCK_SIZE GENMASK(15, 0)
|
|
|
|
|
|
struct hci_rh_data {
|
|
void __iomem *regs;
|
|
void *xfer, *resp, *ibi_status, *ibi_data;
|
|
dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma;
|
|
unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total;
|
|
unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz;
|
|
unsigned int done_ptr, ibi_chunk_ptr;
|
|
struct hci_xfer **src_xfers;
|
|
spinlock_t lock;
|
|
struct completion op_done;
|
|
};
|
|
|
|
struct hci_rings_data {
|
|
unsigned int total;
|
|
struct hci_rh_data headers[];
|
|
};
|
|
|
|
struct hci_dma_dev_ibi_data {
|
|
struct i3c_generic_ibi_pool *pool;
|
|
unsigned int max_len;
|
|
};
|
|
|
|
static inline u32 lo32(dma_addr_t physaddr)
|
|
{
|
|
return physaddr;
|
|
}
|
|
|
|
static inline u32 hi32(dma_addr_t physaddr)
|
|
{
|
|
/* trickery to avoid compiler warnings on 32-bit build targets */
|
|
if (sizeof(dma_addr_t) > 4) {
|
|
u64 hi = physaddr;
|
|
return hi >> 32;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void hci_dma_cleanup(struct i3c_hci *hci)
|
|
{
|
|
struct hci_rings_data *rings = hci->io_data;
|
|
struct hci_rh_data *rh;
|
|
unsigned int i;
|
|
|
|
if (!rings)
|
|
return;
|
|
|
|
for (i = 0; i < rings->total; i++) {
|
|
rh = &rings->headers[i];
|
|
|
|
rh_reg_write(RING_CONTROL, 0);
|
|
rh_reg_write(CR_SETUP, 0);
|
|
rh_reg_write(IBI_SETUP, 0);
|
|
rh_reg_write(INTR_SIGNAL_ENABLE, 0);
|
|
|
|
if (rh->xfer)
|
|
dma_free_coherent(&hci->master.dev,
|
|
rh->xfer_struct_sz * rh->xfer_entries,
|
|
rh->xfer, rh->xfer_dma);
|
|
if (rh->resp)
|
|
dma_free_coherent(&hci->master.dev,
|
|
rh->resp_struct_sz * rh->xfer_entries,
|
|
rh->resp, rh->resp_dma);
|
|
kfree(rh->src_xfers);
|
|
if (rh->ibi_status)
|
|
dma_free_coherent(&hci->master.dev,
|
|
rh->ibi_status_sz * rh->ibi_status_entries,
|
|
rh->ibi_status, rh->ibi_status_dma);
|
|
if (rh->ibi_data_dma)
|
|
dma_unmap_single(&hci->master.dev, rh->ibi_data_dma,
|
|
rh->ibi_chunk_sz * rh->ibi_chunks_total,
|
|
DMA_FROM_DEVICE);
|
|
kfree(rh->ibi_data);
|
|
}
|
|
|
|
rhs_reg_write(CONTROL, 0);
|
|
|
|
kfree(rings);
|
|
hci->io_data = NULL;
|
|
}
|
|
|
|
static int hci_dma_init(struct i3c_hci *hci)
|
|
{
|
|
struct hci_rings_data *rings;
|
|
struct hci_rh_data *rh;
|
|
u32 regval;
|
|
unsigned int i, nr_rings, xfers_sz, resps_sz;
|
|
unsigned int ibi_status_ring_sz, ibi_data_ring_sz;
|
|
int ret;
|
|
|
|
regval = rhs_reg_read(CONTROL);
|
|
nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval);
|
|
dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings);
|
|
if (unlikely(nr_rings > 8)) {
|
|
dev_err(&hci->master.dev, "number of rings should be <= 8\n");
|
|
nr_rings = 8;
|
|
}
|
|
if (nr_rings > XFER_RINGS)
|
|
nr_rings = XFER_RINGS;
|
|
rings = kzalloc(sizeof(*rings) + nr_rings * sizeof(*rh), GFP_KERNEL);
|
|
if (!rings)
|
|
return -ENOMEM;
|
|
hci->io_data = rings;
|
|
rings->total = nr_rings;
|
|
|
|
for (i = 0; i < rings->total; i++) {
|
|
u32 offset = rhs_reg_read(RHn_OFFSET(i));
|
|
|
|
dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset);
|
|
ret = -EINVAL;
|
|
if (!offset)
|
|
goto err_out;
|
|
rh = &rings->headers[i];
|
|
rh->regs = hci->base_regs + offset;
|
|
spin_lock_init(&rh->lock);
|
|
init_completion(&rh->op_done);
|
|
|
|
rh->xfer_entries = XFER_RING_ENTRIES;
|
|
|
|
regval = rh_reg_read(CR_SETUP);
|
|
rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval);
|
|
rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval);
|
|
DBG("xfer_struct_sz = %d, resp_struct_sz = %d",
|
|
rh->xfer_struct_sz, rh->resp_struct_sz);
|
|
xfers_sz = rh->xfer_struct_sz * rh->xfer_entries;
|
|
resps_sz = rh->resp_struct_sz * rh->xfer_entries;
|
|
|
|
rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz,
|
|
&rh->xfer_dma, GFP_KERNEL);
|
|
rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz,
|
|
&rh->resp_dma, GFP_KERNEL);
|
|
rh->src_xfers =
|
|
kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers),
|
|
GFP_KERNEL);
|
|
ret = -ENOMEM;
|
|
if (!rh->xfer || !rh->resp || !rh->src_xfers)
|
|
goto err_out;
|
|
|
|
rh_reg_write(CMD_RING_BASE_LO, lo32(rh->xfer_dma));
|
|
rh_reg_write(CMD_RING_BASE_HI, hi32(rh->xfer_dma));
|
|
rh_reg_write(RESP_RING_BASE_LO, lo32(rh->resp_dma));
|
|
rh_reg_write(RESP_RING_BASE_HI, hi32(rh->resp_dma));
|
|
|
|
regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries);
|
|
rh_reg_write(CR_SETUP, regval);
|
|
|
|
rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
|
|
rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY |
|
|
INTR_TRANSFER_COMPLETION |
|
|
INTR_RING_OP |
|
|
INTR_TRANSFER_ERR |
|
|
INTR_WARN_INS_STOP_MODE |
|
|
INTR_IBI_RING_FULL |
|
|
INTR_TRANSFER_ABORT);
|
|
|
|
/* IBIs */
|
|
|
|
if (i >= IBI_RINGS)
|
|
goto ring_ready;
|
|
|
|
regval = rh_reg_read(IBI_SETUP);
|
|
rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval);
|
|
rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES;
|
|
rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE;
|
|
|
|
rh->ibi_chunk_sz = dma_get_cache_alignment();
|
|
rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES;
|
|
BUG_ON(rh->ibi_chunk_sz > 256);
|
|
|
|
ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries;
|
|
ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total;
|
|
|
|
rh->ibi_status =
|
|
dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz,
|
|
&rh->ibi_status_dma, GFP_KERNEL);
|
|
rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL);
|
|
ret = -ENOMEM;
|
|
if (!rh->ibi_status || !rh->ibi_data)
|
|
goto err_out;
|
|
rh->ibi_data_dma =
|
|
dma_map_single(&hci->master.dev, rh->ibi_data,
|
|
ibi_data_ring_sz, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) {
|
|
rh->ibi_data_dma = 0;
|
|
ret = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
regval = FIELD_PREP(IBI_STATUS_RING_SIZE,
|
|
rh->ibi_status_entries) |
|
|
FIELD_PREP(IBI_DATA_CHUNK_SIZE,
|
|
ilog2(rh->ibi_chunk_sz) - 2) |
|
|
FIELD_PREP(IBI_DATA_CHUNK_COUNT,
|
|
rh->ibi_chunks_total);
|
|
rh_reg_write(IBI_SETUP, regval);
|
|
|
|
regval = rh_reg_read(INTR_SIGNAL_ENABLE);
|
|
regval |= INTR_IBI_READY;
|
|
rh_reg_write(INTR_SIGNAL_ENABLE, regval);
|
|
|
|
ring_ready:
|
|
rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
|
|
}
|
|
|
|
regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total);
|
|
rhs_reg_write(CONTROL, regval);
|
|
return 0;
|
|
|
|
err_out:
|
|
hci_dma_cleanup(hci);
|
|
return ret;
|
|
}
|
|
|
|
static void hci_dma_unmap_xfer(struct i3c_hci *hci,
|
|
struct hci_xfer *xfer_list, unsigned int n)
|
|
{
|
|
struct hci_xfer *xfer;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
xfer = xfer_list + i;
|
|
dma_unmap_single(&hci->master.dev,
|
|
xfer->data_dma, xfer->data_len,
|
|
xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
}
|
|
|
|
static int hci_dma_queue_xfer(struct i3c_hci *hci,
|
|
struct hci_xfer *xfer_list, int n)
|
|
{
|
|
struct hci_rings_data *rings = hci->io_data;
|
|
struct hci_rh_data *rh;
|
|
unsigned int i, ring, enqueue_ptr;
|
|
u32 op1_val, op2_val;
|
|
|
|
/* For now we only use ring 0 */
|
|
ring = 0;
|
|
rh = &rings->headers[ring];
|
|
|
|
op1_val = rh_reg_read(RING_OPERATION1);
|
|
enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val);
|
|
for (i = 0; i < n; i++) {
|
|
struct hci_xfer *xfer = xfer_list + i;
|
|
u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr;
|
|
|
|
/* store cmd descriptor */
|
|
*ring_data++ = xfer->cmd_desc[0];
|
|
*ring_data++ = xfer->cmd_desc[1];
|
|
if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
|
|
*ring_data++ = xfer->cmd_desc[2];
|
|
*ring_data++ = xfer->cmd_desc[3];
|
|
}
|
|
|
|
/* first word of Data Buffer Descriptor Structure */
|
|
if (!xfer->data)
|
|
xfer->data_len = 0;
|
|
*ring_data++ =
|
|
FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) |
|
|
((i == n - 1) ? DATA_BUF_IOC : 0);
|
|
|
|
/* 2nd and 3rd words of Data Buffer Descriptor Structure */
|
|
if (xfer->data) {
|
|
xfer->data_dma =
|
|
dma_map_single(&hci->master.dev,
|
|
xfer->data,
|
|
xfer->data_len,
|
|
xfer->rnw ?
|
|
DMA_FROM_DEVICE :
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(&hci->master.dev,
|
|
xfer->data_dma)) {
|
|
hci_dma_unmap_xfer(hci, xfer_list, i);
|
|
return -ENOMEM;
|
|
}
|
|
*ring_data++ = lo32(xfer->data_dma);
|
|
*ring_data++ = hi32(xfer->data_dma);
|
|
} else {
|
|
*ring_data++ = 0;
|
|
*ring_data++ = 0;
|
|
}
|
|
|
|
/* remember corresponding xfer struct */
|
|
rh->src_xfers[enqueue_ptr] = xfer;
|
|
/* remember corresponding ring/entry for this xfer structure */
|
|
xfer->ring_number = ring;
|
|
xfer->ring_entry = enqueue_ptr;
|
|
|
|
enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries;
|
|
|
|
/*
|
|
* We may update the hardware view of the enqueue pointer
|
|
* only if we didn't reach its dequeue pointer.
|
|
*/
|
|
op2_val = rh_reg_read(RING_OPERATION2);
|
|
if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) {
|
|
/* the ring is full */
|
|
hci_dma_unmap_xfer(hci, xfer_list, i + 1);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
/* take care to update the hardware enqueue pointer atomically */
|
|
spin_lock_irq(&rh->lock);
|
|
op1_val = rh_reg_read(RING_OPERATION1);
|
|
op1_val &= ~RING_OP1_CR_ENQ_PTR;
|
|
op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr);
|
|
rh_reg_write(RING_OPERATION1, op1_val);
|
|
spin_unlock_irq(&rh->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool hci_dma_dequeue_xfer(struct i3c_hci *hci,
|
|
struct hci_xfer *xfer_list, int n)
|
|
{
|
|
struct hci_rings_data *rings = hci->io_data;
|
|
struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number];
|
|
unsigned int i;
|
|
bool did_unqueue = false;
|
|
|
|
/* stop the ring */
|
|
rh_reg_write(RING_CONTROL, RING_CTRL_ABORT);
|
|
if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) {
|
|
/*
|
|
* We're deep in it if ever this condition is ever met.
|
|
* Hardware might still be writing to memory, etc.
|
|
* Better suspend the world than risking silent corruption.
|
|
*/
|
|
dev_crit(&hci->master.dev, "unable to abort the ring\n");
|
|
BUG();
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
struct hci_xfer *xfer = xfer_list + i;
|
|
int idx = xfer->ring_entry;
|
|
|
|
/*
|
|
* At the time the abort happened, the xfer might have
|
|
* completed already. If not then replace corresponding
|
|
* descriptor entries with a no-op.
|
|
*/
|
|
if (idx >= 0) {
|
|
u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx;
|
|
|
|
/* store no-op cmd descriptor */
|
|
*ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7);
|
|
*ring_data++ = 0;
|
|
if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
|
|
*ring_data++ = 0;
|
|
*ring_data++ = 0;
|
|
}
|
|
|
|
/* disassociate this xfer struct */
|
|
rh->src_xfers[idx] = NULL;
|
|
|
|
/* and unmap it */
|
|
hci_dma_unmap_xfer(hci, xfer, 1);
|
|
|
|
did_unqueue = true;
|
|
}
|
|
}
|
|
|
|
/* restart the ring */
|
|
rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
|
|
|
|
return did_unqueue;
|
|
}
|
|
|
|
static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh)
|
|
{
|
|
u32 op1_val, op2_val, resp, *ring_resp;
|
|
unsigned int tid, done_ptr = rh->done_ptr;
|
|
struct hci_xfer *xfer;
|
|
|
|
for (;;) {
|
|
op2_val = rh_reg_read(RING_OPERATION2);
|
|
if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val))
|
|
break;
|
|
|
|
ring_resp = rh->resp + rh->resp_struct_sz * done_ptr;
|
|
resp = *ring_resp;
|
|
tid = RESP_TID(resp);
|
|
DBG("resp = 0x%08x", resp);
|
|
|
|
xfer = rh->src_xfers[done_ptr];
|
|
if (!xfer) {
|
|
DBG("orphaned ring entry");
|
|
} else {
|
|
hci_dma_unmap_xfer(hci, xfer, 1);
|
|
xfer->ring_entry = -1;
|
|
xfer->response = resp;
|
|
if (tid != xfer->cmd_tid) {
|
|
dev_err(&hci->master.dev,
|
|
"response tid=%d when expecting %d\n",
|
|
tid, xfer->cmd_tid);
|
|
/* TODO: do something about it? */
|
|
}
|
|
if (xfer->completion)
|
|
complete(xfer->completion);
|
|
}
|
|
|
|
done_ptr = (done_ptr + 1) % rh->xfer_entries;
|
|
rh->done_ptr = done_ptr;
|
|
}
|
|
|
|
/* take care to update the software dequeue pointer atomically */
|
|
spin_lock(&rh->lock);
|
|
op1_val = rh_reg_read(RING_OPERATION1);
|
|
op1_val &= ~RING_OP1_CR_SW_DEQ_PTR;
|
|
op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr);
|
|
rh_reg_write(RING_OPERATION1, op1_val);
|
|
spin_unlock(&rh->lock);
|
|
}
|
|
|
|
static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
|
|
const struct i3c_ibi_setup *req)
|
|
{
|
|
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
|
|
struct i3c_generic_ibi_pool *pool;
|
|
struct hci_dma_dev_ibi_data *dev_ibi;
|
|
|
|
dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
|
|
if (!dev_ibi)
|
|
return -ENOMEM;
|
|
pool = i3c_generic_ibi_alloc_pool(dev, req);
|
|
if (IS_ERR(pool)) {
|
|
kfree(dev_ibi);
|
|
return PTR_ERR(pool);
|
|
}
|
|
dev_ibi->pool = pool;
|
|
dev_ibi->max_len = req->max_payload_len;
|
|
dev_data->ibi_data = dev_ibi;
|
|
return 0;
|
|
}
|
|
|
|
static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
|
|
{
|
|
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
|
|
struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
|
|
|
|
dev_data->ibi_data = NULL;
|
|
i3c_generic_ibi_free_pool(dev_ibi->pool);
|
|
kfree(dev_ibi);
|
|
}
|
|
|
|
static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci,
|
|
struct i3c_dev_desc *dev,
|
|
struct i3c_ibi_slot *slot)
|
|
{
|
|
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
|
|
struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
|
|
|
|
i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
|
|
}
|
|
|
|
static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh)
|
|
{
|
|
struct i3c_dev_desc *dev;
|
|
struct i3c_hci_dev_data *dev_data;
|
|
struct hci_dma_dev_ibi_data *dev_ibi;
|
|
struct i3c_ibi_slot *slot;
|
|
u32 op1_val, op2_val, ibi_status_error;
|
|
unsigned int ptr, enq_ptr, deq_ptr;
|
|
unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part;
|
|
int ibi_addr, last_ptr;
|
|
void *ring_ibi_data;
|
|
dma_addr_t ring_ibi_data_dma;
|
|
|
|
op1_val = rh_reg_read(RING_OPERATION1);
|
|
deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val);
|
|
|
|
op2_val = rh_reg_read(RING_OPERATION2);
|
|
enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val);
|
|
|
|
ibi_status_error = 0;
|
|
ibi_addr = -1;
|
|
ibi_chunks = 0;
|
|
ibi_size = 0;
|
|
last_ptr = -1;
|
|
|
|
/* let's find all we can about this IBI */
|
|
for (ptr = deq_ptr; ptr != enq_ptr;
|
|
ptr = (ptr + 1) % rh->ibi_status_entries) {
|
|
u32 ibi_status, *ring_ibi_status;
|
|
unsigned int chunks;
|
|
|
|
ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr;
|
|
ibi_status = *ring_ibi_status;
|
|
DBG("status = %#x", ibi_status);
|
|
|
|
if (ibi_status_error) {
|
|
/* we no longer care */
|
|
} else if (ibi_status & IBI_ERROR) {
|
|
ibi_status_error = ibi_status;
|
|
} else if (ibi_addr == -1) {
|
|
ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
|
|
} else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) {
|
|
/* the address changed unexpectedly */
|
|
ibi_status_error = ibi_status;
|
|
}
|
|
|
|
chunks = FIELD_GET(IBI_CHUNKS, ibi_status);
|
|
ibi_chunks += chunks;
|
|
if (!(ibi_status & IBI_LAST_STATUS)) {
|
|
ibi_size += chunks * rh->ibi_chunk_sz;
|
|
} else {
|
|
ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status);
|
|
last_ptr = ptr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* validate what we've got */
|
|
|
|
if (last_ptr == -1) {
|
|
/* this IBI sequence is not yet complete */
|
|
DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr);
|
|
return;
|
|
}
|
|
deq_ptr = last_ptr + 1;
|
|
deq_ptr %= rh->ibi_status_entries;
|
|
|
|
if (ibi_status_error) {
|
|
dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr);
|
|
goto done;
|
|
}
|
|
|
|
/* determine who this is for */
|
|
dev = i3c_hci_addr_to_dev(hci, ibi_addr);
|
|
if (!dev) {
|
|
dev_err(&hci->master.dev,
|
|
"IBI for unknown device %#x\n", ibi_addr);
|
|
goto done;
|
|
}
|
|
|
|
dev_data = i3c_dev_get_master_data(dev);
|
|
dev_ibi = dev_data->ibi_data;
|
|
if (ibi_size > dev_ibi->max_len) {
|
|
dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
|
|
ibi_size, dev_ibi->max_len);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* This ring model is not suitable for zero-copy processing of IBIs.
|
|
* We have the data chunk ring wrap-around to deal with, meaning
|
|
* that the payload might span multiple chunks beginning at the
|
|
* end of the ring and wrap to the start of the ring. Furthermore
|
|
* there is no guarantee that those chunks will be released in order
|
|
* and in a timely manner by the upper driver. So let's just copy
|
|
* them to a discrete buffer. In practice they're supposed to be
|
|
* small anyway.
|
|
*/
|
|
slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
|
|
if (!slot) {
|
|
dev_err(&hci->master.dev, "no free slot for IBI\n");
|
|
goto done;
|
|
}
|
|
|
|
/* copy first part of the payload */
|
|
ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr;
|
|
ring_ibi_data = rh->ibi_data + ibi_data_offset;
|
|
ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset;
|
|
first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr)
|
|
* rh->ibi_chunk_sz;
|
|
if (first_part > ibi_size)
|
|
first_part = ibi_size;
|
|
dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
|
|
first_part, DMA_FROM_DEVICE);
|
|
memcpy(slot->data, ring_ibi_data, first_part);
|
|
|
|
/* copy second part if any */
|
|
if (ibi_size > first_part) {
|
|
/* we wrap back to the start and copy remaining data */
|
|
ring_ibi_data = rh->ibi_data;
|
|
ring_ibi_data_dma = rh->ibi_data_dma;
|
|
dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
|
|
ibi_size - first_part, DMA_FROM_DEVICE);
|
|
memcpy(slot->data + first_part, ring_ibi_data,
|
|
ibi_size - first_part);
|
|
}
|
|
|
|
/* submit it */
|
|
slot->dev = dev;
|
|
slot->len = ibi_size;
|
|
i3c_master_queue_ibi(dev, slot);
|
|
|
|
done:
|
|
/* take care to update the ibi dequeue pointer atomically */
|
|
spin_lock(&rh->lock);
|
|
op1_val = rh_reg_read(RING_OPERATION1);
|
|
op1_val &= ~RING_OP1_IBI_DEQ_PTR;
|
|
op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr);
|
|
rh_reg_write(RING_OPERATION1, op1_val);
|
|
spin_unlock(&rh->lock);
|
|
|
|
/* update the chunk pointer */
|
|
rh->ibi_chunk_ptr += ibi_chunks;
|
|
rh->ibi_chunk_ptr %= rh->ibi_chunks_total;
|
|
|
|
/* and tell the hardware about freed chunks */
|
|
rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks);
|
|
}
|
|
|
|
static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask)
|
|
{
|
|
struct hci_rings_data *rings = hci->io_data;
|
|
unsigned int i;
|
|
bool handled = false;
|
|
|
|
for (i = 0; mask && i < 8; i++) {
|
|
struct hci_rh_data *rh;
|
|
u32 status;
|
|
|
|
if (!(mask & BIT(i)))
|
|
continue;
|
|
mask &= ~BIT(i);
|
|
|
|
rh = &rings->headers[i];
|
|
status = rh_reg_read(INTR_STATUS);
|
|
DBG("rh%d status: %#x", i, status);
|
|
if (!status)
|
|
continue;
|
|
rh_reg_write(INTR_STATUS, status);
|
|
|
|
if (status & INTR_IBI_READY)
|
|
hci_dma_process_ibi(hci, rh);
|
|
if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR))
|
|
hci_dma_xfer_done(hci, rh);
|
|
if (status & INTR_RING_OP)
|
|
complete(&rh->op_done);
|
|
|
|
if (status & INTR_TRANSFER_ABORT)
|
|
dev_notice_ratelimited(&hci->master.dev,
|
|
"ring %d: Transfer Aborted\n", i);
|
|
if (status & INTR_WARN_INS_STOP_MODE)
|
|
dev_warn_ratelimited(&hci->master.dev,
|
|
"ring %d: Inserted Stop on Mode Change\n", i);
|
|
if (status & INTR_IBI_RING_FULL)
|
|
dev_err_ratelimited(&hci->master.dev,
|
|
"ring %d: IBI Ring Full Condition\n", i);
|
|
|
|
handled = true;
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
const struct hci_io_ops mipi_i3c_hci_dma = {
|
|
.init = hci_dma_init,
|
|
.cleanup = hci_dma_cleanup,
|
|
.queue_xfer = hci_dma_queue_xfer,
|
|
.dequeue_xfer = hci_dma_dequeue_xfer,
|
|
.irq_handler = hci_dma_irq_handler,
|
|
.request_ibi = hci_dma_request_ibi,
|
|
.free_ibi = hci_dma_free_ibi,
|
|
.recycle_ibi_slot = hci_dma_recycle_ibi_slot,
|
|
};
|