linux/lib/zstd/compress/zstd_compress.c
Nick Terrell e0c1b49f5b lib: zstd: Upgrade to latest upstream zstd version 1.4.10
Upgrade to the latest upstream zstd version 1.4.10.

This patch is 100% generated from upstream zstd commit 20821a46f412 [0].

This patch is very large because it is transitioning from the custom
kernel zstd to using upstream directly. The new zstd follows upstreams
file structure which is different. Future update patches will be much
smaller because they will only contain the changes from one upstream
zstd release.

As an aid for review I've created a commit [1] that shows the diff
between upstream zstd as-is (which doesn't compile), and the zstd
code imported in this patch. The verion of zstd in this patch is
generated from upstream with changes applied by automation to replace
upstreams libc dependencies, remove unnecessary portability macros,
replace `/**` comments with `/*` comments, and use the kernel's xxhash
instead of bundling it.

The benefits of this patch are as follows:
1. Using upstream directly with automated script to generate kernel
   code. This allows us to update the kernel every upstream release, so
   the kernel gets the latest bug fixes and performance improvements,
   and doesn't get 3 years out of date again. The automation and the
   translated code are tested every upstream commit to ensure it
   continues to work.
2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years
   of performance improvements and bug fixes. On x86_64 I've measured
   15% faster BtrFS and SquashFS decompression+read speeds, 35% faster
   kernel decompression, and 30% faster ZRAM decompression+read speeds.
3. Zstd-1.4.10 supports negative compression levels, which allow zstd to
   match or subsume lzo's performance.
4. Maintains the same kernel-specific wrapper API, so no callers have to
   be modified with zstd version updates.

One concern that was brought up was stack usage. Upstream zstd had
already removed most of its heavy stack usage functions, but I just
removed the last functions that allocate arrays on the stack. I've
measured the high water mark for both compression and decompression
before and after this patch. Decompression is approximately neutral,
using about 1.2KB of stack space. Compression levels up to 3 regressed
from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB
-> 2KB. We've added unit tests upstream to prevent further regression.
I believe that this is a reasonable increase, and if it does end up
causing problems, this commit can be cleanly reverted, because it only
touches zstd.

I chose the bulk update instead of replaying upstream commits because
there have been ~3500 upstream commits since the 1.3.1 release, zstd
wasn't ready to be used in the kernel as-is before a month ago, and not
all upstream zstd commits build. The bulk update preserves bisectablity
because bugs can be bisected to the zstd version update. At that point
the update can be reverted, and we can work with upstream to find and
fix the bug.

Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a
staging branch at 20821a46f412 [0] and will apply any changes requested
to the staging branch. Once we're ready to merge this update I will cut
a zstd release at the commit we merge, so we have a known zstd release
in the kernel.

The implementation of the kernel API is contained in
zstd_compress_module.c and zstd_decompress_module.c.

[0] 20821a46f4
[1] e0fa481d0e

Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2021-11-08 16:55:32 -08:00

5110 lines
215 KiB
C

/*
* Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "../common/zstd_deps.h" /* INT_MAX, ZSTD_memset, ZSTD_memcpy */
#include "../common/cpu.h"
#include "../common/mem.h"
#include "hist.h" /* HIST_countFast_wksp */
#define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */
#include "../common/fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "zstd_compress_internal.h"
#include "zstd_compress_sequences.h"
#include "zstd_compress_literals.h"
#include "zstd_fast.h"
#include "zstd_double_fast.h"
#include "zstd_lazy.h"
#include "zstd_opt.h"
#include "zstd_ldm.h"
#include "zstd_compress_superblock.h"
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* COMPRESS_HEAPMODE :
* Select how default decompression function ZSTD_compress() allocates its context,
* on stack (0, default), or into heap (1).
* Note that functions with explicit context such as ZSTD_compressCCtx() are unaffected.
*/
/*-*************************************
* Helper functions
***************************************/
/* ZSTD_compressBound()
* Note that the result from this function is only compatible with the "normal"
* full-block strategy.
* When there are a lot of small blocks due to frequent flush in streaming mode
* the overhead of headers can make the compressed data to be larger than the
* return value of ZSTD_compressBound().
*/
size_t ZSTD_compressBound(size_t srcSize) {
return ZSTD_COMPRESSBOUND(srcSize);
}
/*-*************************************
* Context memory management
***************************************/
struct ZSTD_CDict_s {
const void* dictContent;
size_t dictContentSize;
ZSTD_dictContentType_e dictContentType; /* The dictContentType the CDict was created with */
U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */
ZSTD_cwksp workspace;
ZSTD_matchState_t matchState;
ZSTD_compressedBlockState_t cBlockState;
ZSTD_customMem customMem;
U32 dictID;
int compressionLevel; /* 0 indicates that advanced API was used to select CDict params */
}; /* typedef'd to ZSTD_CDict within "zstd.h" */
ZSTD_CCtx* ZSTD_createCCtx(void)
{
return ZSTD_createCCtx_advanced(ZSTD_defaultCMem);
}
static void ZSTD_initCCtx(ZSTD_CCtx* cctx, ZSTD_customMem memManager)
{
assert(cctx != NULL);
ZSTD_memset(cctx, 0, sizeof(*cctx));
cctx->customMem = memManager;
cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
{ size_t const err = ZSTD_CCtx_reset(cctx, ZSTD_reset_parameters);
assert(!ZSTD_isError(err));
(void)err;
}
}
ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
{
ZSTD_STATIC_ASSERT(zcss_init==0);
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1));
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
{ ZSTD_CCtx* const cctx = (ZSTD_CCtx*)ZSTD_customMalloc(sizeof(ZSTD_CCtx), customMem);
if (!cctx) return NULL;
ZSTD_initCCtx(cctx, customMem);
return cctx;
}
}
ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize)
{
ZSTD_cwksp ws;
ZSTD_CCtx* cctx;
if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */
if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */
ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc);
cctx = (ZSTD_CCtx*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CCtx));
if (cctx == NULL) return NULL;
ZSTD_memset(cctx, 0, sizeof(ZSTD_CCtx));
ZSTD_cwksp_move(&cctx->workspace, &ws);
cctx->staticSize = workspaceSize;
/* statically sized space. entropyWorkspace never moves (but prev/next block swap places) */
if (!ZSTD_cwksp_check_available(&cctx->workspace, ENTROPY_WORKSPACE_SIZE + 2 * sizeof(ZSTD_compressedBlockState_t))) return NULL;
cctx->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t));
cctx->blockState.nextCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t));
cctx->entropyWorkspace = (U32*)ZSTD_cwksp_reserve_object(&cctx->workspace, ENTROPY_WORKSPACE_SIZE);
cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
return cctx;
}
/*
* Clears and frees all of the dictionaries in the CCtx.
*/
static void ZSTD_clearAllDicts(ZSTD_CCtx* cctx)
{
ZSTD_customFree(cctx->localDict.dictBuffer, cctx->customMem);
ZSTD_freeCDict(cctx->localDict.cdict);
ZSTD_memset(&cctx->localDict, 0, sizeof(cctx->localDict));
ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict));
cctx->cdict = NULL;
}
static size_t ZSTD_sizeof_localDict(ZSTD_localDict dict)
{
size_t const bufferSize = dict.dictBuffer != NULL ? dict.dictSize : 0;
size_t const cdictSize = ZSTD_sizeof_CDict(dict.cdict);
return bufferSize + cdictSize;
}
static void ZSTD_freeCCtxContent(ZSTD_CCtx* cctx)
{
assert(cctx != NULL);
assert(cctx->staticSize == 0);
ZSTD_clearAllDicts(cctx);
ZSTD_cwksp_free(&cctx->workspace, cctx->customMem);
}
size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx)
{
if (cctx==NULL) return 0; /* support free on NULL */
RETURN_ERROR_IF(cctx->staticSize, memory_allocation,
"not compatible with static CCtx");
{
int cctxInWorkspace = ZSTD_cwksp_owns_buffer(&cctx->workspace, cctx);
ZSTD_freeCCtxContent(cctx);
if (!cctxInWorkspace) {
ZSTD_customFree(cctx, cctx->customMem);
}
}
return 0;
}
static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx)
{
(void)cctx;
return 0;
}
size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx)
{
if (cctx==NULL) return 0; /* support sizeof on NULL */
/* cctx may be in the workspace */
return (cctx->workspace.workspace == cctx ? 0 : sizeof(*cctx))
+ ZSTD_cwksp_sizeof(&cctx->workspace)
+ ZSTD_sizeof_localDict(cctx->localDict)
+ ZSTD_sizeof_mtctx(cctx);
}
size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs)
{
return ZSTD_sizeof_CCtx(zcs); /* same object */
}
/* private API call, for dictBuilder only */
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); }
/* Returns 1 if compression parameters are such that we should
* enable long distance matching (wlog >= 27, strategy >= btopt).
* Returns 0 otherwise.
*/
static U32 ZSTD_CParams_shouldEnableLdm(const ZSTD_compressionParameters* const cParams) {
return cParams->strategy >= ZSTD_btopt && cParams->windowLog >= 27;
}
static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams(
ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params cctxParams;
/* should not matter, as all cParams are presumed properly defined */
ZSTD_CCtxParams_init(&cctxParams, ZSTD_CLEVEL_DEFAULT);
cctxParams.cParams = cParams;
if (ZSTD_CParams_shouldEnableLdm(&cParams)) {
DEBUGLOG(4, "ZSTD_makeCCtxParamsFromCParams(): Including LDM into cctx params");
cctxParams.ldmParams.enableLdm = 1;
/* LDM is enabled by default for optimal parser and window size >= 128MB */
ZSTD_ldm_adjustParameters(&cctxParams.ldmParams, &cParams);
assert(cctxParams.ldmParams.hashLog >= cctxParams.ldmParams.bucketSizeLog);
assert(cctxParams.ldmParams.hashRateLog < 32);
}
assert(!ZSTD_checkCParams(cParams));
return cctxParams;
}
static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced(
ZSTD_customMem customMem)
{
ZSTD_CCtx_params* params;
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
params = (ZSTD_CCtx_params*)ZSTD_customCalloc(
sizeof(ZSTD_CCtx_params), customMem);
if (!params) { return NULL; }
ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT);
params->customMem = customMem;
return params;
}
ZSTD_CCtx_params* ZSTD_createCCtxParams(void)
{
return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem);
}
size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params)
{
if (params == NULL) { return 0; }
ZSTD_customFree(params, params->customMem);
return 0;
}
size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params)
{
return ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT);
}
size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel) {
RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!");
ZSTD_memset(cctxParams, 0, sizeof(*cctxParams));
cctxParams->compressionLevel = compressionLevel;
cctxParams->fParams.contentSizeFlag = 1;
return 0;
}
#define ZSTD_NO_CLEVEL 0
/*
* Initializes the cctxParams from params and compressionLevel.
* @param compressionLevel If params are derived from a compression level then that compression level, otherwise ZSTD_NO_CLEVEL.
*/
static void ZSTD_CCtxParams_init_internal(ZSTD_CCtx_params* cctxParams, ZSTD_parameters const* params, int compressionLevel)
{
assert(!ZSTD_checkCParams(params->cParams));
ZSTD_memset(cctxParams, 0, sizeof(*cctxParams));
cctxParams->cParams = params->cParams;
cctxParams->fParams = params->fParams;
/* Should not matter, as all cParams are presumed properly defined.
* But, set it for tracing anyway.
*/
cctxParams->compressionLevel = compressionLevel;
}
size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params)
{
RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!");
FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , "");
ZSTD_CCtxParams_init_internal(cctxParams, &params, ZSTD_NO_CLEVEL);
return 0;
}
/*
* Sets cctxParams' cParams and fParams from params, but otherwise leaves them alone.
* @param param Validated zstd parameters.
*/
static void ZSTD_CCtxParams_setZstdParams(
ZSTD_CCtx_params* cctxParams, const ZSTD_parameters* params)
{
assert(!ZSTD_checkCParams(params->cParams));
cctxParams->cParams = params->cParams;
cctxParams->fParams = params->fParams;
/* Should not matter, as all cParams are presumed properly defined.
* But, set it for tracing anyway.
*/
cctxParams->compressionLevel = ZSTD_NO_CLEVEL;
}
ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter param)
{
ZSTD_bounds bounds = { 0, 0, 0 };
switch(param)
{
case ZSTD_c_compressionLevel:
bounds.lowerBound = ZSTD_minCLevel();
bounds.upperBound = ZSTD_maxCLevel();
return bounds;
case ZSTD_c_windowLog:
bounds.lowerBound = ZSTD_WINDOWLOG_MIN;
bounds.upperBound = ZSTD_WINDOWLOG_MAX;
return bounds;
case ZSTD_c_hashLog:
bounds.lowerBound = ZSTD_HASHLOG_MIN;
bounds.upperBound = ZSTD_HASHLOG_MAX;
return bounds;
case ZSTD_c_chainLog:
bounds.lowerBound = ZSTD_CHAINLOG_MIN;
bounds.upperBound = ZSTD_CHAINLOG_MAX;
return bounds;
case ZSTD_c_searchLog:
bounds.lowerBound = ZSTD_SEARCHLOG_MIN;
bounds.upperBound = ZSTD_SEARCHLOG_MAX;
return bounds;
case ZSTD_c_minMatch:
bounds.lowerBound = ZSTD_MINMATCH_MIN;
bounds.upperBound = ZSTD_MINMATCH_MAX;
return bounds;
case ZSTD_c_targetLength:
bounds.lowerBound = ZSTD_TARGETLENGTH_MIN;
bounds.upperBound = ZSTD_TARGETLENGTH_MAX;
return bounds;
case ZSTD_c_strategy:
bounds.lowerBound = ZSTD_STRATEGY_MIN;
bounds.upperBound = ZSTD_STRATEGY_MAX;
return bounds;
case ZSTD_c_contentSizeFlag:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_checksumFlag:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_dictIDFlag:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_nbWorkers:
bounds.lowerBound = 0;
bounds.upperBound = 0;
return bounds;
case ZSTD_c_jobSize:
bounds.lowerBound = 0;
bounds.upperBound = 0;
return bounds;
case ZSTD_c_overlapLog:
bounds.lowerBound = 0;
bounds.upperBound = 0;
return bounds;
case ZSTD_c_enableDedicatedDictSearch:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_enableLongDistanceMatching:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_ldmHashLog:
bounds.lowerBound = ZSTD_LDM_HASHLOG_MIN;
bounds.upperBound = ZSTD_LDM_HASHLOG_MAX;
return bounds;
case ZSTD_c_ldmMinMatch:
bounds.lowerBound = ZSTD_LDM_MINMATCH_MIN;
bounds.upperBound = ZSTD_LDM_MINMATCH_MAX;
return bounds;
case ZSTD_c_ldmBucketSizeLog:
bounds.lowerBound = ZSTD_LDM_BUCKETSIZELOG_MIN;
bounds.upperBound = ZSTD_LDM_BUCKETSIZELOG_MAX;
return bounds;
case ZSTD_c_ldmHashRateLog:
bounds.lowerBound = ZSTD_LDM_HASHRATELOG_MIN;
bounds.upperBound = ZSTD_LDM_HASHRATELOG_MAX;
return bounds;
/* experimental parameters */
case ZSTD_c_rsyncable:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_forceMaxWindow :
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
case ZSTD_c_format:
ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless);
bounds.lowerBound = ZSTD_f_zstd1;
bounds.upperBound = ZSTD_f_zstd1_magicless; /* note : how to ensure at compile time that this is the highest value enum ? */
return bounds;
case ZSTD_c_forceAttachDict:
ZSTD_STATIC_ASSERT(ZSTD_dictDefaultAttach < ZSTD_dictForceLoad);
bounds.lowerBound = ZSTD_dictDefaultAttach;
bounds.upperBound = ZSTD_dictForceLoad; /* note : how to ensure at compile time that this is the highest value enum ? */
return bounds;
case ZSTD_c_literalCompressionMode:
ZSTD_STATIC_ASSERT(ZSTD_lcm_auto < ZSTD_lcm_huffman && ZSTD_lcm_huffman < ZSTD_lcm_uncompressed);
bounds.lowerBound = ZSTD_lcm_auto;
bounds.upperBound = ZSTD_lcm_uncompressed;
return bounds;
case ZSTD_c_targetCBlockSize:
bounds.lowerBound = ZSTD_TARGETCBLOCKSIZE_MIN;
bounds.upperBound = ZSTD_TARGETCBLOCKSIZE_MAX;
return bounds;
case ZSTD_c_srcSizeHint:
bounds.lowerBound = ZSTD_SRCSIZEHINT_MIN;
bounds.upperBound = ZSTD_SRCSIZEHINT_MAX;
return bounds;
case ZSTD_c_stableInBuffer:
case ZSTD_c_stableOutBuffer:
bounds.lowerBound = (int)ZSTD_bm_buffered;
bounds.upperBound = (int)ZSTD_bm_stable;
return bounds;
case ZSTD_c_blockDelimiters:
bounds.lowerBound = (int)ZSTD_sf_noBlockDelimiters;
bounds.upperBound = (int)ZSTD_sf_explicitBlockDelimiters;
return bounds;
case ZSTD_c_validateSequences:
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
default:
bounds.error = ERROR(parameter_unsupported);
return bounds;
}
}
/* ZSTD_cParam_clampBounds:
* Clamps the value into the bounded range.
*/
static size_t ZSTD_cParam_clampBounds(ZSTD_cParameter cParam, int* value)
{
ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
if (ZSTD_isError(bounds.error)) return bounds.error;
if (*value < bounds.lowerBound) *value = bounds.lowerBound;
if (*value > bounds.upperBound) *value = bounds.upperBound;
return 0;
}
#define BOUNDCHECK(cParam, val) { \
RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \
parameter_outOfBound, "Param out of bounds"); \
}
static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param)
{
switch(param)
{
case ZSTD_c_compressionLevel:
case ZSTD_c_hashLog:
case ZSTD_c_chainLog:
case ZSTD_c_searchLog:
case ZSTD_c_minMatch:
case ZSTD_c_targetLength:
case ZSTD_c_strategy:
return 1;
case ZSTD_c_format:
case ZSTD_c_windowLog:
case ZSTD_c_contentSizeFlag:
case ZSTD_c_checksumFlag:
case ZSTD_c_dictIDFlag:
case ZSTD_c_forceMaxWindow :
case ZSTD_c_nbWorkers:
case ZSTD_c_jobSize:
case ZSTD_c_overlapLog:
case ZSTD_c_rsyncable:
case ZSTD_c_enableDedicatedDictSearch:
case ZSTD_c_enableLongDistanceMatching:
case ZSTD_c_ldmHashLog:
case ZSTD_c_ldmMinMatch:
case ZSTD_c_ldmBucketSizeLog:
case ZSTD_c_ldmHashRateLog:
case ZSTD_c_forceAttachDict:
case ZSTD_c_literalCompressionMode:
case ZSTD_c_targetCBlockSize:
case ZSTD_c_srcSizeHint:
case ZSTD_c_stableInBuffer:
case ZSTD_c_stableOutBuffer:
case ZSTD_c_blockDelimiters:
case ZSTD_c_validateSequences:
default:
return 0;
}
}
size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value)
{
DEBUGLOG(4, "ZSTD_CCtx_setParameter (%i, %i)", (int)param, value);
if (cctx->streamStage != zcss_init) {
if (ZSTD_isUpdateAuthorized(param)) {
cctx->cParamsChanged = 1;
} else {
RETURN_ERROR(stage_wrong, "can only set params in ctx init stage");
} }
switch(param)
{
case ZSTD_c_nbWorkers:
RETURN_ERROR_IF((value!=0) && cctx->staticSize, parameter_unsupported,
"MT not compatible with static alloc");
break;
case ZSTD_c_compressionLevel:
case ZSTD_c_windowLog:
case ZSTD_c_hashLog:
case ZSTD_c_chainLog:
case ZSTD_c_searchLog:
case ZSTD_c_minMatch:
case ZSTD_c_targetLength:
case ZSTD_c_strategy:
case ZSTD_c_ldmHashRateLog:
case ZSTD_c_format:
case ZSTD_c_contentSizeFlag:
case ZSTD_c_checksumFlag:
case ZSTD_c_dictIDFlag:
case ZSTD_c_forceMaxWindow:
case ZSTD_c_forceAttachDict:
case ZSTD_c_literalCompressionMode:
case ZSTD_c_jobSize:
case ZSTD_c_overlapLog:
case ZSTD_c_rsyncable:
case ZSTD_c_enableDedicatedDictSearch:
case ZSTD_c_enableLongDistanceMatching:
case ZSTD_c_ldmHashLog:
case ZSTD_c_ldmMinMatch:
case ZSTD_c_ldmBucketSizeLog:
case ZSTD_c_targetCBlockSize:
case ZSTD_c_srcSizeHint:
case ZSTD_c_stableInBuffer:
case ZSTD_c_stableOutBuffer:
case ZSTD_c_blockDelimiters:
case ZSTD_c_validateSequences:
break;
default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
}
return ZSTD_CCtxParams_setParameter(&cctx->requestedParams, param, value);
}
size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
ZSTD_cParameter param, int value)
{
DEBUGLOG(4, "ZSTD_CCtxParams_setParameter (%i, %i)", (int)param, value);
switch(param)
{
case ZSTD_c_format :
BOUNDCHECK(ZSTD_c_format, value);
CCtxParams->format = (ZSTD_format_e)value;
return (size_t)CCtxParams->format;
case ZSTD_c_compressionLevel : {
FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), "");
if (value == 0)
CCtxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* 0 == default */
else
CCtxParams->compressionLevel = value;
if (CCtxParams->compressionLevel >= 0) return (size_t)CCtxParams->compressionLevel;
return 0; /* return type (size_t) cannot represent negative values */
}
case ZSTD_c_windowLog :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_windowLog, value);
CCtxParams->cParams.windowLog = (U32)value;
return CCtxParams->cParams.windowLog;
case ZSTD_c_hashLog :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_hashLog, value);
CCtxParams->cParams.hashLog = (U32)value;
return CCtxParams->cParams.hashLog;
case ZSTD_c_chainLog :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_chainLog, value);
CCtxParams->cParams.chainLog = (U32)value;
return CCtxParams->cParams.chainLog;
case ZSTD_c_searchLog :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_searchLog, value);
CCtxParams->cParams.searchLog = (U32)value;
return (size_t)value;
case ZSTD_c_minMatch :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_minMatch, value);
CCtxParams->cParams.minMatch = value;
return CCtxParams->cParams.minMatch;
case ZSTD_c_targetLength :
BOUNDCHECK(ZSTD_c_targetLength, value);
CCtxParams->cParams.targetLength = value;
return CCtxParams->cParams.targetLength;
case ZSTD_c_strategy :
if (value!=0) /* 0 => use default */
BOUNDCHECK(ZSTD_c_strategy, value);
CCtxParams->cParams.strategy = (ZSTD_strategy)value;
return (size_t)CCtxParams->cParams.strategy;
case ZSTD_c_contentSizeFlag :
/* Content size written in frame header _when known_ (default:1) */
DEBUGLOG(4, "set content size flag = %u", (value!=0));
CCtxParams->fParams.contentSizeFlag = value != 0;
return CCtxParams->fParams.contentSizeFlag;
case ZSTD_c_checksumFlag :
/* A 32-bits content checksum will be calculated and written at end of frame (default:0) */
CCtxParams->fParams.checksumFlag = value != 0;
return CCtxParams->fParams.checksumFlag;
case ZSTD_c_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */
DEBUGLOG(4, "set dictIDFlag = %u", (value!=0));
CCtxParams->fParams.noDictIDFlag = !value;
return !CCtxParams->fParams.noDictIDFlag;
case ZSTD_c_forceMaxWindow :
CCtxParams->forceWindow = (value != 0);
return CCtxParams->forceWindow;
case ZSTD_c_forceAttachDict : {
const ZSTD_dictAttachPref_e pref = (ZSTD_dictAttachPref_e)value;
BOUNDCHECK(ZSTD_c_forceAttachDict, pref);
CCtxParams->attachDictPref = pref;
return CCtxParams->attachDictPref;
}
case ZSTD_c_literalCompressionMode : {
const ZSTD_literalCompressionMode_e lcm = (ZSTD_literalCompressionMode_e)value;
BOUNDCHECK(ZSTD_c_literalCompressionMode, lcm);
CCtxParams->literalCompressionMode = lcm;
return CCtxParams->literalCompressionMode;
}
case ZSTD_c_nbWorkers :
RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
return 0;
case ZSTD_c_jobSize :
RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
return 0;
case ZSTD_c_overlapLog :
RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
return 0;
case ZSTD_c_rsyncable :
RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
return 0;
case ZSTD_c_enableDedicatedDictSearch :
CCtxParams->enableDedicatedDictSearch = (value!=0);
return CCtxParams->enableDedicatedDictSearch;
case ZSTD_c_enableLongDistanceMatching :
CCtxParams->ldmParams.enableLdm = (value!=0);
return CCtxParams->ldmParams.enableLdm;
case ZSTD_c_ldmHashLog :
if (value!=0) /* 0 ==> auto */
BOUNDCHECK(ZSTD_c_ldmHashLog, value);
CCtxParams->ldmParams.hashLog = value;
return CCtxParams->ldmParams.hashLog;
case ZSTD_c_ldmMinMatch :
if (value!=0) /* 0 ==> default */
BOUNDCHECK(ZSTD_c_ldmMinMatch, value);
CCtxParams->ldmParams.minMatchLength = value;
return CCtxParams->ldmParams.minMatchLength;
case ZSTD_c_ldmBucketSizeLog :
if (value!=0) /* 0 ==> default */
BOUNDCHECK(ZSTD_c_ldmBucketSizeLog, value);
CCtxParams->ldmParams.bucketSizeLog = value;
return CCtxParams->ldmParams.bucketSizeLog;
case ZSTD_c_ldmHashRateLog :
if (value!=0) /* 0 ==> default */
BOUNDCHECK(ZSTD_c_ldmHashRateLog, value);
CCtxParams->ldmParams.hashRateLog = value;
return CCtxParams->ldmParams.hashRateLog;
case ZSTD_c_targetCBlockSize :
if (value!=0) /* 0 ==> default */
BOUNDCHECK(ZSTD_c_targetCBlockSize, value);
CCtxParams->targetCBlockSize = value;
return CCtxParams->targetCBlockSize;
case ZSTD_c_srcSizeHint :
if (value!=0) /* 0 ==> default */
BOUNDCHECK(ZSTD_c_srcSizeHint, value);
CCtxParams->srcSizeHint = value;
return CCtxParams->srcSizeHint;
case ZSTD_c_stableInBuffer:
BOUNDCHECK(ZSTD_c_stableInBuffer, value);
CCtxParams->inBufferMode = (ZSTD_bufferMode_e)value;
return CCtxParams->inBufferMode;
case ZSTD_c_stableOutBuffer:
BOUNDCHECK(ZSTD_c_stableOutBuffer, value);
CCtxParams->outBufferMode = (ZSTD_bufferMode_e)value;
return CCtxParams->outBufferMode;
case ZSTD_c_blockDelimiters:
BOUNDCHECK(ZSTD_c_blockDelimiters, value);
CCtxParams->blockDelimiters = (ZSTD_sequenceFormat_e)value;
return CCtxParams->blockDelimiters;
case ZSTD_c_validateSequences:
BOUNDCHECK(ZSTD_c_validateSequences, value);
CCtxParams->validateSequences = value;
return CCtxParams->validateSequences;
default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
}
}
size_t ZSTD_CCtx_getParameter(ZSTD_CCtx const* cctx, ZSTD_cParameter param, int* value)
{
return ZSTD_CCtxParams_getParameter(&cctx->requestedParams, param, value);
}
size_t ZSTD_CCtxParams_getParameter(
ZSTD_CCtx_params const* CCtxParams, ZSTD_cParameter param, int* value)
{
switch(param)
{
case ZSTD_c_format :
*value = CCtxParams->format;
break;
case ZSTD_c_compressionLevel :
*value = CCtxParams->compressionLevel;
break;
case ZSTD_c_windowLog :
*value = (int)CCtxParams->cParams.windowLog;
break;
case ZSTD_c_hashLog :
*value = (int)CCtxParams->cParams.hashLog;
break;
case ZSTD_c_chainLog :
*value = (int)CCtxParams->cParams.chainLog;
break;
case ZSTD_c_searchLog :
*value = CCtxParams->cParams.searchLog;
break;
case ZSTD_c_minMatch :
*value = CCtxParams->cParams.minMatch;
break;
case ZSTD_c_targetLength :
*value = CCtxParams->cParams.targetLength;
break;
case ZSTD_c_strategy :
*value = (unsigned)CCtxParams->cParams.strategy;
break;
case ZSTD_c_contentSizeFlag :
*value = CCtxParams->fParams.contentSizeFlag;
break;
case ZSTD_c_checksumFlag :
*value = CCtxParams->fParams.checksumFlag;
break;
case ZSTD_c_dictIDFlag :
*value = !CCtxParams->fParams.noDictIDFlag;
break;
case ZSTD_c_forceMaxWindow :
*value = CCtxParams->forceWindow;
break;
case ZSTD_c_forceAttachDict :
*value = CCtxParams->attachDictPref;
break;
case ZSTD_c_literalCompressionMode :
*value = CCtxParams->literalCompressionMode;
break;
case ZSTD_c_nbWorkers :
assert(CCtxParams->nbWorkers == 0);
*value = CCtxParams->nbWorkers;
break;
case ZSTD_c_jobSize :
RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
case ZSTD_c_overlapLog :
RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
case ZSTD_c_rsyncable :
RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
case ZSTD_c_enableDedicatedDictSearch :
*value = CCtxParams->enableDedicatedDictSearch;
break;
case ZSTD_c_enableLongDistanceMatching :
*value = CCtxParams->ldmParams.enableLdm;
break;
case ZSTD_c_ldmHashLog :
*value = CCtxParams->ldmParams.hashLog;
break;
case ZSTD_c_ldmMinMatch :
*value = CCtxParams->ldmParams.minMatchLength;
break;
case ZSTD_c_ldmBucketSizeLog :
*value = CCtxParams->ldmParams.bucketSizeLog;
break;
case ZSTD_c_ldmHashRateLog :
*value = CCtxParams->ldmParams.hashRateLog;
break;
case ZSTD_c_targetCBlockSize :
*value = (int)CCtxParams->targetCBlockSize;
break;
case ZSTD_c_srcSizeHint :
*value = (int)CCtxParams->srcSizeHint;
break;
case ZSTD_c_stableInBuffer :
*value = (int)CCtxParams->inBufferMode;
break;
case ZSTD_c_stableOutBuffer :
*value = (int)CCtxParams->outBufferMode;
break;
case ZSTD_c_blockDelimiters :
*value = (int)CCtxParams->blockDelimiters;
break;
case ZSTD_c_validateSequences :
*value = (int)CCtxParams->validateSequences;
break;
default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
}
return 0;
}
/* ZSTD_CCtx_setParametersUsingCCtxParams() :
* just applies `params` into `cctx`
* no action is performed, parameters are merely stored.
* If ZSTDMT is enabled, parameters are pushed to cctx->mtctx.
* This is possible even if a compression is ongoing.
* In which case, new parameters will be applied on the fly, starting with next compression job.
*/
size_t ZSTD_CCtx_setParametersUsingCCtxParams(
ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params)
{
DEBUGLOG(4, "ZSTD_CCtx_setParametersUsingCCtxParams");
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"The context is in the wrong stage!");
RETURN_ERROR_IF(cctx->cdict, stage_wrong,
"Can't override parameters with cdict attached (some must "
"be inherited from the cdict).");
cctx->requestedParams = *params;
return 0;
}
ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %u bytes", (U32)pledgedSrcSize);
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't set pledgedSrcSize when not in init stage.");
cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1;
return 0;
}
static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams(
int const compressionLevel,
size_t const dictSize);
static int ZSTD_dedicatedDictSearch_isSupported(
const ZSTD_compressionParameters* cParams);
static void ZSTD_dedicatedDictSearch_revertCParams(
ZSTD_compressionParameters* cParams);
/*
* Initializes the local dict using the requested parameters.
* NOTE: This does not use the pledged src size, because it may be used for more
* than one compression.
*/
static size_t ZSTD_initLocalDict(ZSTD_CCtx* cctx)
{
ZSTD_localDict* const dl = &cctx->localDict;
if (dl->dict == NULL) {
/* No local dictionary. */
assert(dl->dictBuffer == NULL);
assert(dl->cdict == NULL);
assert(dl->dictSize == 0);
return 0;
}
if (dl->cdict != NULL) {
assert(cctx->cdict == dl->cdict);
/* Local dictionary already initialized. */
return 0;
}
assert(dl->dictSize > 0);
assert(cctx->cdict == NULL);
assert(cctx->prefixDict.dict == NULL);
dl->cdict = ZSTD_createCDict_advanced2(
dl->dict,
dl->dictSize,
ZSTD_dlm_byRef,
dl->dictContentType,
&cctx->requestedParams,
cctx->customMem);
RETURN_ERROR_IF(!dl->cdict, memory_allocation, "ZSTD_createCDict_advanced failed");
cctx->cdict = dl->cdict;
return 0;
}
size_t ZSTD_CCtx_loadDictionary_advanced(
ZSTD_CCtx* cctx, const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType)
{
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't load a dictionary when ctx is not in init stage.");
DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize);
ZSTD_clearAllDicts(cctx); /* in case one already exists */
if (dict == NULL || dictSize == 0) /* no dictionary mode */
return 0;
if (dictLoadMethod == ZSTD_dlm_byRef) {
cctx->localDict.dict = dict;
} else {
void* dictBuffer;
RETURN_ERROR_IF(cctx->staticSize, memory_allocation,
"no malloc for static CCtx");
dictBuffer = ZSTD_customMalloc(dictSize, cctx->customMem);
RETURN_ERROR_IF(!dictBuffer, memory_allocation, "NULL pointer!");
ZSTD_memcpy(dictBuffer, dict, dictSize);
cctx->localDict.dictBuffer = dictBuffer;
cctx->localDict.dict = dictBuffer;
}
cctx->localDict.dictSize = dictSize;
cctx->localDict.dictContentType = dictContentType;
return 0;
}
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(
ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
{
return ZSTD_CCtx_loadDictionary_advanced(
cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto);
}
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
{
return ZSTD_CCtx_loadDictionary_advanced(
cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
}
size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
{
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't ref a dict when ctx not in init stage.");
/* Free the existing local cdict (if any) to save memory. */
ZSTD_clearAllDicts(cctx);
cctx->cdict = cdict;
return 0;
}
size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool)
{
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't ref a pool when ctx not in init stage.");
cctx->pool = pool;
return 0;
}
size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize)
{
return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dct_rawContent);
}
size_t ZSTD_CCtx_refPrefix_advanced(
ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
{
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't ref a prefix when ctx not in init stage.");
ZSTD_clearAllDicts(cctx);
if (prefix != NULL && prefixSize > 0) {
cctx->prefixDict.dict = prefix;
cctx->prefixDict.dictSize = prefixSize;
cctx->prefixDict.dictContentType = dictContentType;
}
return 0;
}
/*! ZSTD_CCtx_reset() :
* Also dumps dictionary */
size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset)
{
if ( (reset == ZSTD_reset_session_only)
|| (reset == ZSTD_reset_session_and_parameters) ) {
cctx->streamStage = zcss_init;
cctx->pledgedSrcSizePlusOne = 0;
}
if ( (reset == ZSTD_reset_parameters)
|| (reset == ZSTD_reset_session_and_parameters) ) {
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Can't reset parameters only when not in init stage.");
ZSTD_clearAllDicts(cctx);
return ZSTD_CCtxParams_reset(&cctx->requestedParams);
}
return 0;
}
/* ZSTD_checkCParams() :
control CParam values remain within authorized range.
@return : 0, or an error code if one value is beyond authorized range */
size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
{
BOUNDCHECK(ZSTD_c_windowLog, (int)cParams.windowLog);
BOUNDCHECK(ZSTD_c_chainLog, (int)cParams.chainLog);
BOUNDCHECK(ZSTD_c_hashLog, (int)cParams.hashLog);
BOUNDCHECK(ZSTD_c_searchLog, (int)cParams.searchLog);
BOUNDCHECK(ZSTD_c_minMatch, (int)cParams.minMatch);
BOUNDCHECK(ZSTD_c_targetLength,(int)cParams.targetLength);
BOUNDCHECK(ZSTD_c_strategy, cParams.strategy);
return 0;
}
/* ZSTD_clampCParams() :
* make CParam values within valid range.
* @return : valid CParams */
static ZSTD_compressionParameters
ZSTD_clampCParams(ZSTD_compressionParameters cParams)
{
# define CLAMP_TYPE(cParam, val, type) { \
ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \
if ((int)val<bounds.lowerBound) val=(type)bounds.lowerBound; \
else if ((int)val>bounds.upperBound) val=(type)bounds.upperBound; \
}
# define CLAMP(cParam, val) CLAMP_TYPE(cParam, val, unsigned)
CLAMP(ZSTD_c_windowLog, cParams.windowLog);
CLAMP(ZSTD_c_chainLog, cParams.chainLog);
CLAMP(ZSTD_c_hashLog, cParams.hashLog);
CLAMP(ZSTD_c_searchLog, cParams.searchLog);
CLAMP(ZSTD_c_minMatch, cParams.minMatch);
CLAMP(ZSTD_c_targetLength,cParams.targetLength);
CLAMP_TYPE(ZSTD_c_strategy,cParams.strategy, ZSTD_strategy);
return cParams;
}
/* ZSTD_cycleLog() :
* condition for correct operation : hashLog > 1 */
U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
{
U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
return hashLog - btScale;
}
/* ZSTD_dictAndWindowLog() :
* Returns an adjusted window log that is large enough to fit the source and the dictionary.
* The zstd format says that the entire dictionary is valid if one byte of the dictionary
* is within the window. So the hashLog and chainLog should be large enough to reference both
* the dictionary and the window. So we must use this adjusted dictAndWindowLog when downsizing
* the hashLog and windowLog.
* NOTE: srcSize must not be ZSTD_CONTENTSIZE_UNKNOWN.
*/
static U32 ZSTD_dictAndWindowLog(U32 windowLog, U64 srcSize, U64 dictSize)
{
const U64 maxWindowSize = 1ULL << ZSTD_WINDOWLOG_MAX;
/* No dictionary ==> No change */
if (dictSize == 0) {
return windowLog;
}
assert(windowLog <= ZSTD_WINDOWLOG_MAX);
assert(srcSize != ZSTD_CONTENTSIZE_UNKNOWN); /* Handled in ZSTD_adjustCParams_internal() */
{
U64 const windowSize = 1ULL << windowLog;
U64 const dictAndWindowSize = dictSize + windowSize;
/* If the window size is already large enough to fit both the source and the dictionary
* then just use the window size. Otherwise adjust so that it fits the dictionary and
* the window.
*/
if (windowSize >= dictSize + srcSize) {
return windowLog; /* Window size large enough already */
} else if (dictAndWindowSize >= maxWindowSize) {
return ZSTD_WINDOWLOG_MAX; /* Larger than max window log */
} else {
return ZSTD_highbit32((U32)dictAndWindowSize - 1) + 1;
}
}
}
/* ZSTD_adjustCParams_internal() :
* optimize `cPar` for a specified input (`srcSize` and `dictSize`).
* mostly downsize to reduce memory consumption and initialization latency.
* `srcSize` can be ZSTD_CONTENTSIZE_UNKNOWN when not known.
* `mode` is the mode for parameter adjustment. See docs for `ZSTD_cParamMode_e`.
* note : `srcSize==0` means 0!
* condition : cPar is presumed validated (can be checked using ZSTD_checkCParams()). */
static ZSTD_compressionParameters
ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar,
unsigned long long srcSize,
size_t dictSize,
ZSTD_cParamMode_e mode)
{
const U64 minSrcSize = 513; /* (1<<9) + 1 */
const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1);
assert(ZSTD_checkCParams(cPar)==0);
switch (mode) {
case ZSTD_cpm_unknown:
case ZSTD_cpm_noAttachDict:
/* If we don't know the source size, don't make any
* assumptions about it. We will already have selected
* smaller parameters if a dictionary is in use.
*/
break;
case ZSTD_cpm_createCDict:
/* Assume a small source size when creating a dictionary
* with an unkown source size.
*/
if (dictSize && srcSize == ZSTD_CONTENTSIZE_UNKNOWN)
srcSize = minSrcSize;
break;
case ZSTD_cpm_attachDict:
/* Dictionary has its own dedicated parameters which have
* already been selected. We are selecting parameters
* for only the source.
*/
dictSize = 0;
break;
default:
assert(0);
break;
}
/* resize windowLog if input is small enough, to use less memory */
if ( (srcSize < maxWindowResize)
&& (dictSize < maxWindowResize) ) {
U32 const tSize = (U32)(srcSize + dictSize);
static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN;
U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN :
ZSTD_highbit32(tSize-1) + 1;
if (cPar.windowLog > srcLog) cPar.windowLog = srcLog;
}
if (srcSize != ZSTD_CONTENTSIZE_UNKNOWN) {
U32 const dictAndWindowLog = ZSTD_dictAndWindowLog(cPar.windowLog, (U64)srcSize, (U64)dictSize);
U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy);
if (cPar.hashLog > dictAndWindowLog+1) cPar.hashLog = dictAndWindowLog+1;
if (cycleLog > dictAndWindowLog)
cPar.chainLog -= (cycleLog - dictAndWindowLog);
}
if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN)
cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* minimum wlog required for valid frame header */
return cPar;
}
ZSTD_compressionParameters
ZSTD_adjustCParams(ZSTD_compressionParameters cPar,
unsigned long long srcSize,
size_t dictSize)
{
cPar = ZSTD_clampCParams(cPar); /* resulting cPar is necessarily valid (all parameters within range) */
if (srcSize == 0) srcSize = ZSTD_CONTENTSIZE_UNKNOWN;
return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize, ZSTD_cpm_unknown);
}
static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
static ZSTD_parameters ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
static void ZSTD_overrideCParams(
ZSTD_compressionParameters* cParams,
const ZSTD_compressionParameters* overrides)
{
if (overrides->windowLog) cParams->windowLog = overrides->windowLog;
if (overrides->hashLog) cParams->hashLog = overrides->hashLog;
if (overrides->chainLog) cParams->chainLog = overrides->chainLog;
if (overrides->searchLog) cParams->searchLog = overrides->searchLog;
if (overrides->minMatch) cParams->minMatch = overrides->minMatch;
if (overrides->targetLength) cParams->targetLength = overrides->targetLength;
if (overrides->strategy) cParams->strategy = overrides->strategy;
}
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode)
{
ZSTD_compressionParameters cParams;
if (srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN && CCtxParams->srcSizeHint > 0) {
srcSizeHint = CCtxParams->srcSizeHint;
}
cParams = ZSTD_getCParams_internal(CCtxParams->compressionLevel, srcSizeHint, dictSize, mode);
if (CCtxParams->ldmParams.enableLdm) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG;
ZSTD_overrideCParams(&cParams, &CCtxParams->cParams);
assert(!ZSTD_checkCParams(cParams));
/* srcSizeHint == 0 means 0 */
return ZSTD_adjustCParams_internal(cParams, srcSizeHint, dictSize, mode);
}
static size_t
ZSTD_sizeof_matchState(const ZSTD_compressionParameters* const cParams,
const U32 forCCtx)
{
size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
size_t const hSize = ((size_t)1) << cParams->hashLog;
U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0;
/* We don't use ZSTD_cwksp_alloc_size() here because the tables aren't
* surrounded by redzones in ASAN. */
size_t const tableSpace = chainSize * sizeof(U32)
+ hSize * sizeof(U32)
+ h3Size * sizeof(U32);
size_t const optPotentialSpace =
ZSTD_cwksp_alloc_size((MaxML+1) * sizeof(U32))
+ ZSTD_cwksp_alloc_size((MaxLL+1) * sizeof(U32))
+ ZSTD_cwksp_alloc_size((MaxOff+1) * sizeof(U32))
+ ZSTD_cwksp_alloc_size((1<<Litbits) * sizeof(U32))
+ ZSTD_cwksp_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t))
+ ZSTD_cwksp_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t));
size_t const optSpace = (forCCtx && (cParams->strategy >= ZSTD_btopt))
? optPotentialSpace
: 0;
DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u",
(U32)chainSize, (U32)hSize, (U32)h3Size);
return tableSpace + optSpace;
}
static size_t ZSTD_estimateCCtxSize_usingCCtxParams_internal(
const ZSTD_compressionParameters* cParams,
const ldmParams_t* ldmParams,
const int isStatic,
const size_t buffInSize,
const size_t buffOutSize,
const U64 pledgedSrcSize)
{
size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << cParams->windowLog), pledgedSrcSize));
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
U32 const divider = (cParams->minMatch==3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
size_t const tokenSpace = ZSTD_cwksp_alloc_size(WILDCOPY_OVERLENGTH + blockSize)
+ ZSTD_cwksp_alloc_size(maxNbSeq * sizeof(seqDef))
+ 3 * ZSTD_cwksp_alloc_size(maxNbSeq * sizeof(BYTE));
size_t const entropySpace = ZSTD_cwksp_alloc_size(ENTROPY_WORKSPACE_SIZE);
size_t const blockStateSpace = 2 * ZSTD_cwksp_alloc_size(sizeof(ZSTD_compressedBlockState_t));
size_t const matchStateSize = ZSTD_sizeof_matchState(cParams, /* forCCtx */ 1);
size_t const ldmSpace = ZSTD_ldm_getTableSize(*ldmParams);
size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(*ldmParams, blockSize);
size_t const ldmSeqSpace = ldmParams->enableLdm ?
ZSTD_cwksp_alloc_size(maxNbLdmSeq * sizeof(rawSeq)) : 0;
size_t const bufferSpace = ZSTD_cwksp_alloc_size(buffInSize)
+ ZSTD_cwksp_alloc_size(buffOutSize);
size_t const cctxSpace = isStatic ? ZSTD_cwksp_alloc_size(sizeof(ZSTD_CCtx)) : 0;
size_t const neededSpace =
cctxSpace +
entropySpace +
blockStateSpace +
ldmSpace +
ldmSeqSpace +
matchStateSize +
tokenSpace +
bufferSpace;
DEBUGLOG(5, "estimate workspace : %u", (U32)neededSpace);
return neededSpace;
}
size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params)
{
ZSTD_compressionParameters const cParams =
ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only.");
/* estimateCCtxSize is for one-shot compression. So no buffers should
* be needed. However, we still allocate two 0-sized buffers, which can
* take space under ASAN. */
return ZSTD_estimateCCtxSize_usingCCtxParams_internal(
&cParams, &params->ldmParams, 1, 0, 0, ZSTD_CONTENTSIZE_UNKNOWN);
}
size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
return ZSTD_estimateCCtxSize_usingCCtxParams(&params);
}
static size_t ZSTD_estimateCCtxSize_internal(int compressionLevel)
{
int tier = 0;
size_t largestSize = 0;
static const unsigned long long srcSizeTiers[4] = {16 KB, 128 KB, 256 KB, ZSTD_CONTENTSIZE_UNKNOWN};
for (; tier < 4; ++tier) {
/* Choose the set of cParams for a given level across all srcSizes that give the largest cctxSize */
ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeTiers[tier], 0, ZSTD_cpm_noAttachDict);
largestSize = MAX(ZSTD_estimateCCtxSize_usingCParams(cParams), largestSize);
}
return largestSize;
}
size_t ZSTD_estimateCCtxSize(int compressionLevel)
{
int level;
size_t memBudget = 0;
for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) {
/* Ensure monotonically increasing memory usage as compression level increases */
size_t const newMB = ZSTD_estimateCCtxSize_internal(level);
if (newMB > memBudget) memBudget = newMB;
}
return memBudget;
}
size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params)
{
RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only.");
{ ZSTD_compressionParameters const cParams =
ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog);
size_t const inBuffSize = (params->inBufferMode == ZSTD_bm_buffered)
? ((size_t)1 << cParams.windowLog) + blockSize
: 0;
size_t const outBuffSize = (params->outBufferMode == ZSTD_bm_buffered)
? ZSTD_compressBound(blockSize) + 1
: 0;
return ZSTD_estimateCCtxSize_usingCCtxParams_internal(
&cParams, &params->ldmParams, 1, inBuffSize, outBuffSize,
ZSTD_CONTENTSIZE_UNKNOWN);
}
}
size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
return ZSTD_estimateCStreamSize_usingCCtxParams(&params);
}
static size_t ZSTD_estimateCStreamSize_internal(int compressionLevel)
{
ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
return ZSTD_estimateCStreamSize_usingCParams(cParams);
}
size_t ZSTD_estimateCStreamSize(int compressionLevel)
{
int level;
size_t memBudget = 0;
for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) {
size_t const newMB = ZSTD_estimateCStreamSize_internal(level);
if (newMB > memBudget) memBudget = newMB;
}
return memBudget;
}
/* ZSTD_getFrameProgression():
* tells how much data has been consumed (input) and produced (output) for current frame.
* able to count progression inside worker threads (non-blocking mode).
*/
ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx)
{
{ ZSTD_frameProgression fp;
size_t const buffered = (cctx->inBuff == NULL) ? 0 :
cctx->inBuffPos - cctx->inToCompress;
if (buffered) assert(cctx->inBuffPos >= cctx->inToCompress);
assert(buffered <= ZSTD_BLOCKSIZE_MAX);
fp.ingested = cctx->consumedSrcSize + buffered;
fp.consumed = cctx->consumedSrcSize;
fp.produced = cctx->producedCSize;
fp.flushed = cctx->producedCSize; /* simplified; some data might still be left within streaming output buffer */
fp.currentJobID = 0;
fp.nbActiveWorkers = 0;
return fp;
} }
/*! ZSTD_toFlushNow()
* Only useful for multithreading scenarios currently (nbWorkers >= 1).
*/
size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx)
{
(void)cctx;
return 0; /* over-simplification; could also check if context is currently running in streaming mode, and in which case, report how many bytes are left to be flushed within output buffer */
}
static void ZSTD_assertEqualCParams(ZSTD_compressionParameters cParams1,
ZSTD_compressionParameters cParams2)
{
(void)cParams1;
(void)cParams2;
assert(cParams1.windowLog == cParams2.windowLog);
assert(cParams1.chainLog == cParams2.chainLog);
assert(cParams1.hashLog == cParams2.hashLog);
assert(cParams1.searchLog == cParams2.searchLog);
assert(cParams1.minMatch == cParams2.minMatch);
assert(cParams1.targetLength == cParams2.targetLength);
assert(cParams1.strategy == cParams2.strategy);
}
void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs)
{
int i;
for (i = 0; i < ZSTD_REP_NUM; ++i)
bs->rep[i] = repStartValue[i];
bs->entropy.huf.repeatMode = HUF_repeat_none;
bs->entropy.fse.offcode_repeatMode = FSE_repeat_none;
bs->entropy.fse.matchlength_repeatMode = FSE_repeat_none;
bs->entropy.fse.litlength_repeatMode = FSE_repeat_none;
}
/*! ZSTD_invalidateMatchState()
* Invalidate all the matches in the match finder tables.
* Requires nextSrc and base to be set (can be NULL).
*/
static void ZSTD_invalidateMatchState(ZSTD_matchState_t* ms)
{
ZSTD_window_clear(&ms->window);
ms->nextToUpdate = ms->window.dictLimit;
ms->loadedDictEnd = 0;
ms->opt.litLengthSum = 0; /* force reset of btopt stats */
ms->dictMatchState = NULL;
}
/*
* Controls, for this matchState reset, whether the tables need to be cleared /
* prepared for the coming compression (ZSTDcrp_makeClean), or whether the
* tables can be left unclean (ZSTDcrp_leaveDirty), because we know that a
* subsequent operation will overwrite the table space anyways (e.g., copying
* the matchState contents in from a CDict).
*/
typedef enum {
ZSTDcrp_makeClean,
ZSTDcrp_leaveDirty
} ZSTD_compResetPolicy_e;
/*
* Controls, for this matchState reset, whether indexing can continue where it
* left off (ZSTDirp_continue), or whether it needs to be restarted from zero
* (ZSTDirp_reset).
*/
typedef enum {
ZSTDirp_continue,
ZSTDirp_reset
} ZSTD_indexResetPolicy_e;
typedef enum {
ZSTD_resetTarget_CDict,
ZSTD_resetTarget_CCtx
} ZSTD_resetTarget_e;
static size_t
ZSTD_reset_matchState(ZSTD_matchState_t* ms,
ZSTD_cwksp* ws,
const ZSTD_compressionParameters* cParams,
const ZSTD_compResetPolicy_e crp,
const ZSTD_indexResetPolicy_e forceResetIndex,
const ZSTD_resetTarget_e forWho)
{
size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
size_t const hSize = ((size_t)1) << cParams->hashLog;
U32 const hashLog3 = ((forWho == ZSTD_resetTarget_CCtx) && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0;
DEBUGLOG(4, "reset indices : %u", forceResetIndex == ZSTDirp_reset);
if (forceResetIndex == ZSTDirp_reset) {
ZSTD_window_init(&ms->window);
ZSTD_cwksp_mark_tables_dirty(ws);
}
ms->hashLog3 = hashLog3;
ZSTD_invalidateMatchState(ms);
assert(!ZSTD_cwksp_reserve_failed(ws)); /* check that allocation hasn't already failed */
ZSTD_cwksp_clear_tables(ws);
DEBUGLOG(5, "reserving table space");
/* table Space */
ms->hashTable = (U32*)ZSTD_cwksp_reserve_table(ws, hSize * sizeof(U32));
ms->chainTable = (U32*)ZSTD_cwksp_reserve_table(ws, chainSize * sizeof(U32));
ms->hashTable3 = (U32*)ZSTD_cwksp_reserve_table(ws, h3Size * sizeof(U32));
RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation,
"failed a workspace allocation in ZSTD_reset_matchState");
DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_leaveDirty);
if (crp!=ZSTDcrp_leaveDirty) {
/* reset tables only */
ZSTD_cwksp_clean_tables(ws);
}
/* opt parser space */
if ((forWho == ZSTD_resetTarget_CCtx) && (cParams->strategy >= ZSTD_btopt)) {
DEBUGLOG(4, "reserving optimal parser space");
ms->opt.litFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (1<<Litbits) * sizeof(unsigned));
ms->opt.litLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxLL+1) * sizeof(unsigned));
ms->opt.matchLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxML+1) * sizeof(unsigned));
ms->opt.offCodeFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxOff+1) * sizeof(unsigned));
ms->opt.matchTable = (ZSTD_match_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t));
ms->opt.priceTable = (ZSTD_optimal_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t));
}
ms->cParams = *cParams;
RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation,
"failed a workspace allocation in ZSTD_reset_matchState");
return 0;
}
/* ZSTD_indexTooCloseToMax() :
* minor optimization : prefer memset() rather than reduceIndex()
* which is measurably slow in some circumstances (reported for Visual Studio).
* Works when re-using a context for a lot of smallish inputs :
* if all inputs are smaller than ZSTD_INDEXOVERFLOW_MARGIN,
* memset() will be triggered before reduceIndex().
*/
#define ZSTD_INDEXOVERFLOW_MARGIN (16 MB)
static int ZSTD_indexTooCloseToMax(ZSTD_window_t w)
{
return (size_t)(w.nextSrc - w.base) > (ZSTD_CURRENT_MAX - ZSTD_INDEXOVERFLOW_MARGIN);
}
/*! ZSTD_resetCCtx_internal() :
note : `params` are assumed fully validated at this stage */
static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
ZSTD_CCtx_params params,
U64 const pledgedSrcSize,
ZSTD_compResetPolicy_e const crp,
ZSTD_buffered_policy_e const zbuff)
{
ZSTD_cwksp* const ws = &zc->workspace;
DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u",
(U32)pledgedSrcSize, params.cParams.windowLog);
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
zc->isFirstBlock = 1;
if (params.ldmParams.enableLdm) {
/* Adjust long distance matching parameters */
ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
assert(params.ldmParams.hashRateLog < 32);
}
{ size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize));
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
U32 const divider = (params.cParams.minMatch==3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
size_t const buffOutSize = (zbuff == ZSTDb_buffered && params.outBufferMode == ZSTD_bm_buffered)
? ZSTD_compressBound(blockSize) + 1
: 0;
size_t const buffInSize = (zbuff == ZSTDb_buffered && params.inBufferMode == ZSTD_bm_buffered)
? windowSize + blockSize
: 0;
size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params.ldmParams, blockSize);
int const indexTooClose = ZSTD_indexTooCloseToMax(zc->blockState.matchState.window);
ZSTD_indexResetPolicy_e needsIndexReset =
(!indexTooClose && zc->initialized) ? ZSTDirp_continue : ZSTDirp_reset;
size_t const neededSpace =
ZSTD_estimateCCtxSize_usingCCtxParams_internal(
&params.cParams, &params.ldmParams, zc->staticSize != 0,
buffInSize, buffOutSize, pledgedSrcSize);
FORWARD_IF_ERROR(neededSpace, "cctx size estimate failed!");
if (!zc->staticSize) ZSTD_cwksp_bump_oversized_duration(ws, 0);
/* Check if workspace is large enough, alloc a new one if needed */
{
int const workspaceTooSmall = ZSTD_cwksp_sizeof(ws) < neededSpace;
int const workspaceWasteful = ZSTD_cwksp_check_wasteful(ws, neededSpace);
DEBUGLOG(4, "Need %zu B workspace", neededSpace);
DEBUGLOG(4, "windowSize: %zu - blockSize: %zu", windowSize, blockSize);
if (workspaceTooSmall || workspaceWasteful) {
DEBUGLOG(4, "Resize workspaceSize from %zuKB to %zuKB",
ZSTD_cwksp_sizeof(ws) >> 10,
neededSpace >> 10);
RETURN_ERROR_IF(zc->staticSize, memory_allocation, "static cctx : no resize");
needsIndexReset = ZSTDirp_reset;
ZSTD_cwksp_free(ws, zc->customMem);
FORWARD_IF_ERROR(ZSTD_cwksp_create(ws, neededSpace, zc->customMem), "");
DEBUGLOG(5, "reserving object space");
/* Statically sized space.
* entropyWorkspace never moves,
* though prev/next block swap places */
assert(ZSTD_cwksp_check_available(ws, 2 * sizeof(ZSTD_compressedBlockState_t)));
zc->blockState.prevCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t));
RETURN_ERROR_IF(zc->blockState.prevCBlock == NULL, memory_allocation, "couldn't allocate prevCBlock");
zc->blockState.nextCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t));
RETURN_ERROR_IF(zc->blockState.nextCBlock == NULL, memory_allocation, "couldn't allocate nextCBlock");
zc->entropyWorkspace = (U32*) ZSTD_cwksp_reserve_object(ws, ENTROPY_WORKSPACE_SIZE);
RETURN_ERROR_IF(zc->blockState.nextCBlock == NULL, memory_allocation, "couldn't allocate entropyWorkspace");
} }
ZSTD_cwksp_clear(ws);
/* init params */
zc->appliedParams = params;
zc->blockState.matchState.cParams = params.cParams;
zc->pledgedSrcSizePlusOne = pledgedSrcSize+1;
zc->consumedSrcSize = 0;
zc->producedCSize = 0;
if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)
zc->appliedParams.fParams.contentSizeFlag = 0;
DEBUGLOG(4, "pledged content size : %u ; flag : %u",
(unsigned)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag);
zc->blockSize = blockSize;
xxh64_reset(&zc->xxhState, 0);
zc->stage = ZSTDcs_init;
zc->dictID = 0;
zc->dictContentSize = 0;
ZSTD_reset_compressedBlockState(zc->blockState.prevCBlock);
/* ZSTD_wildcopy() is used to copy into the literals buffer,
* so we have to oversize the buffer by WILDCOPY_OVERLENGTH bytes.
*/
zc->seqStore.litStart = ZSTD_cwksp_reserve_buffer(ws, blockSize + WILDCOPY_OVERLENGTH);
zc->seqStore.maxNbLit = blockSize;
/* buffers */
zc->bufferedPolicy = zbuff;
zc->inBuffSize = buffInSize;
zc->inBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffInSize);
zc->outBuffSize = buffOutSize;
zc->outBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffOutSize);
/* ldm bucketOffsets table */
if (params.ldmParams.enableLdm) {
/* TODO: avoid memset? */
size_t const numBuckets =
((size_t)1) << (params.ldmParams.hashLog -
params.ldmParams.bucketSizeLog);
zc->ldmState.bucketOffsets = ZSTD_cwksp_reserve_buffer(ws, numBuckets);
ZSTD_memset(zc->ldmState.bucketOffsets, 0, numBuckets);
}
/* sequences storage */
ZSTD_referenceExternalSequences(zc, NULL, 0);
zc->seqStore.maxNbSeq = maxNbSeq;
zc->seqStore.llCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE));
zc->seqStore.mlCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE));
zc->seqStore.ofCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE));
zc->seqStore.sequencesStart = (seqDef*)ZSTD_cwksp_reserve_aligned(ws, maxNbSeq * sizeof(seqDef));
FORWARD_IF_ERROR(ZSTD_reset_matchState(
&zc->blockState.matchState,
ws,
&params.cParams,
crp,
needsIndexReset,
ZSTD_resetTarget_CCtx), "");
/* ldm hash table */
if (params.ldmParams.enableLdm) {
/* TODO: avoid memset? */
size_t const ldmHSize = ((size_t)1) << params.ldmParams.hashLog;
zc->ldmState.hashTable = (ldmEntry_t*)ZSTD_cwksp_reserve_aligned(ws, ldmHSize * sizeof(ldmEntry_t));
ZSTD_memset(zc->ldmState.hashTable, 0, ldmHSize * sizeof(ldmEntry_t));
zc->ldmSequences = (rawSeq*)ZSTD_cwksp_reserve_aligned(ws, maxNbLdmSeq * sizeof(rawSeq));
zc->maxNbLdmSequences = maxNbLdmSeq;
ZSTD_window_init(&zc->ldmState.window);
ZSTD_window_clear(&zc->ldmState.window);
zc->ldmState.loadedDictEnd = 0;
}
/* Due to alignment, when reusing a workspace, we can actually consume
* up to 3 extra bytes for alignment. See the comments in zstd_cwksp.h
*/
assert(ZSTD_cwksp_used(ws) >= neededSpace &&
ZSTD_cwksp_used(ws) <= neededSpace + 3);
DEBUGLOG(3, "wksp: finished allocating, %zd bytes remain available", ZSTD_cwksp_available_space(ws));
zc->initialized = 1;
return 0;
}
}
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) {
int i;
for (i=0; i<ZSTD_REP_NUM; i++) cctx->blockState.prevCBlock->rep[i] = 0;
assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
}
/* These are the approximate sizes for each strategy past which copying the
* dictionary tables into the working context is faster than using them
* in-place.
*/
static const size_t attachDictSizeCutoffs[ZSTD_STRATEGY_MAX+1] = {
8 KB, /* unused */
8 KB, /* ZSTD_fast */
16 KB, /* ZSTD_dfast */
32 KB, /* ZSTD_greedy */
32 KB, /* ZSTD_lazy */
32 KB, /* ZSTD_lazy2 */
32 KB, /* ZSTD_btlazy2 */
32 KB, /* ZSTD_btopt */
8 KB, /* ZSTD_btultra */
8 KB /* ZSTD_btultra2 */
};
static int ZSTD_shouldAttachDict(const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
U64 pledgedSrcSize)
{
size_t cutoff = attachDictSizeCutoffs[cdict->matchState.cParams.strategy];
int const dedicatedDictSearch = cdict->matchState.dedicatedDictSearch;
return dedicatedDictSearch
|| ( ( pledgedSrcSize <= cutoff
|| pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
|| params->attachDictPref == ZSTD_dictForceAttach )
&& params->attachDictPref != ZSTD_dictForceCopy
&& !params->forceWindow ); /* dictMatchState isn't correctly
* handled in _enforceMaxDist */
}
static size_t
ZSTD_resetCCtx_byAttachingCDict(ZSTD_CCtx* cctx,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
{
ZSTD_compressionParameters adjusted_cdict_cParams = cdict->matchState.cParams;
unsigned const windowLog = params.cParams.windowLog;
assert(windowLog != 0);
/* Resize working context table params for input only, since the dict
* has its own tables. */
/* pledgedSrcSize == 0 means 0! */
if (cdict->matchState.dedicatedDictSearch) {
ZSTD_dedicatedDictSearch_revertCParams(&adjusted_cdict_cParams);
}
params.cParams = ZSTD_adjustCParams_internal(adjusted_cdict_cParams, pledgedSrcSize,
cdict->dictContentSize, ZSTD_cpm_attachDict);
params.cParams.windowLog = windowLog;
FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
ZSTDcrp_makeClean, zbuff), "");
assert(cctx->appliedParams.cParams.strategy == adjusted_cdict_cParams.strategy);
}
{ const U32 cdictEnd = (U32)( cdict->matchState.window.nextSrc
- cdict->matchState.window.base);
const U32 cdictLen = cdictEnd - cdict->matchState.window.dictLimit;
if (cdictLen == 0) {
/* don't even attach dictionaries with no contents */
DEBUGLOG(4, "skipping attaching empty dictionary");
} else {
DEBUGLOG(4, "attaching dictionary into context");
cctx->blockState.matchState.dictMatchState = &cdict->matchState;
/* prep working match state so dict matches never have negative indices
* when they are translated to the working context's index space. */
if (cctx->blockState.matchState.window.dictLimit < cdictEnd) {
cctx->blockState.matchState.window.nextSrc =
cctx->blockState.matchState.window.base + cdictEnd;
ZSTD_window_clear(&cctx->blockState.matchState.window);
}
/* loadedDictEnd is expressed within the referential of the active context */
cctx->blockState.matchState.loadedDictEnd = cctx->blockState.matchState.window.dictLimit;
} }
cctx->dictID = cdict->dictID;
cctx->dictContentSize = cdict->dictContentSize;
/* copy block state */
ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState));
return 0;
}
static size_t ZSTD_resetCCtx_byCopyingCDict(ZSTD_CCtx* cctx,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams;
assert(!cdict->matchState.dedicatedDictSearch);
DEBUGLOG(4, "copying dictionary into context");
{ unsigned const windowLog = params.cParams.windowLog;
assert(windowLog != 0);
/* Copy only compression parameters related to tables. */
params.cParams = *cdict_cParams;
params.cParams.windowLog = windowLog;
FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
ZSTDcrp_leaveDirty, zbuff), "");
assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy);
assert(cctx->appliedParams.cParams.hashLog == cdict_cParams->hashLog);
assert(cctx->appliedParams.cParams.chainLog == cdict_cParams->chainLog);
}
ZSTD_cwksp_mark_tables_dirty(&cctx->workspace);
/* copy tables */
{ size_t const chainSize = (cdict_cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cdict_cParams->chainLog);
size_t const hSize = (size_t)1 << cdict_cParams->hashLog;
ZSTD_memcpy(cctx->blockState.matchState.hashTable,
cdict->matchState.hashTable,
hSize * sizeof(U32));
ZSTD_memcpy(cctx->blockState.matchState.chainTable,
cdict->matchState.chainTable,
chainSize * sizeof(U32));
}
/* Zero the hashTable3, since the cdict never fills it */
{ int const h3log = cctx->blockState.matchState.hashLog3;
size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0;
assert(cdict->matchState.hashLog3 == 0);
ZSTD_memset(cctx->blockState.matchState.hashTable3, 0, h3Size * sizeof(U32));
}
ZSTD_cwksp_mark_tables_clean(&cctx->workspace);
/* copy dictionary offsets */
{ ZSTD_matchState_t const* srcMatchState = &cdict->matchState;
ZSTD_matchState_t* dstMatchState = &cctx->blockState.matchState;
dstMatchState->window = srcMatchState->window;
dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
}
cctx->dictID = cdict->dictID;
cctx->dictContentSize = cdict->dictContentSize;
/* copy block state */
ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState));
return 0;
}
/* We have a choice between copying the dictionary context into the working
* context, or referencing the dictionary context from the working context
* in-place. We decide here which strategy to use. */
static size_t ZSTD_resetCCtx_usingCDict(ZSTD_CCtx* cctx,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
DEBUGLOG(4, "ZSTD_resetCCtx_usingCDict (pledgedSrcSize=%u)",
(unsigned)pledgedSrcSize);
if (ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) {
return ZSTD_resetCCtx_byAttachingCDict(
cctx, cdict, *params, pledgedSrcSize, zbuff);
} else {
return ZSTD_resetCCtx_byCopyingCDict(
cctx, cdict, *params, pledgedSrcSize, zbuff);
}
}
/*! ZSTD_copyCCtx_internal() :
* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
* The "context", in this case, refers to the hash and chain tables,
* entropy tables, and dictionary references.
* `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx.
* @return : 0, or an error code */
static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx,
const ZSTD_CCtx* srcCCtx,
ZSTD_frameParameters fParams,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
DEBUGLOG(5, "ZSTD_copyCCtx_internal");
RETURN_ERROR_IF(srcCCtx->stage!=ZSTDcs_init, stage_wrong,
"Can't copy a ctx that's not in init stage.");
ZSTD_memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
{ ZSTD_CCtx_params params = dstCCtx->requestedParams;
/* Copy only compression parameters related to tables. */
params.cParams = srcCCtx->appliedParams.cParams;
params.fParams = fParams;
ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize,
ZSTDcrp_leaveDirty, zbuff);
assert(dstCCtx->appliedParams.cParams.windowLog == srcCCtx->appliedParams.cParams.windowLog);
assert(dstCCtx->appliedParams.cParams.strategy == srcCCtx->appliedParams.cParams.strategy);
assert(dstCCtx->appliedParams.cParams.hashLog == srcCCtx->appliedParams.cParams.hashLog);
assert(dstCCtx->appliedParams.cParams.chainLog == srcCCtx->appliedParams.cParams.chainLog);
assert(dstCCtx->blockState.matchState.hashLog3 == srcCCtx->blockState.matchState.hashLog3);
}
ZSTD_cwksp_mark_tables_dirty(&dstCCtx->workspace);
/* copy tables */
{ size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog);
size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog;
int const h3log = srcCCtx->blockState.matchState.hashLog3;
size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0;
ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable,
srcCCtx->blockState.matchState.hashTable,
hSize * sizeof(U32));
ZSTD_memcpy(dstCCtx->blockState.matchState.chainTable,
srcCCtx->blockState.matchState.chainTable,
chainSize * sizeof(U32));
ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable3,
srcCCtx->blockState.matchState.hashTable3,
h3Size * sizeof(U32));
}
ZSTD_cwksp_mark_tables_clean(&dstCCtx->workspace);
/* copy dictionary offsets */
{
const ZSTD_matchState_t* srcMatchState = &srcCCtx->blockState.matchState;
ZSTD_matchState_t* dstMatchState = &dstCCtx->blockState.matchState;
dstMatchState->window = srcMatchState->window;
dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
}
dstCCtx->dictID = srcCCtx->dictID;
dstCCtx->dictContentSize = srcCCtx->dictContentSize;
/* copy block state */
ZSTD_memcpy(dstCCtx->blockState.prevCBlock, srcCCtx->blockState.prevCBlock, sizeof(*srcCCtx->blockState.prevCBlock));
return 0;
}
/*! ZSTD_copyCCtx() :
* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
* pledgedSrcSize==0 means "unknown".
* @return : 0, or an error code */
size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize)
{
ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
ZSTD_buffered_policy_e const zbuff = srcCCtx->bufferedPolicy;
ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1);
if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN);
return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx,
fParams, pledgedSrcSize,
zbuff);
}
#define ZSTD_ROWSIZE 16
/*! ZSTD_reduceTable() :
* reduce table indexes by `reducerValue`, or squash to zero.
* PreserveMark preserves "unsorted mark" for btlazy2 strategy.
* It must be set to a clear 0/1 value, to remove branch during inlining.
* Presume table size is a multiple of ZSTD_ROWSIZE
* to help auto-vectorization */
FORCE_INLINE_TEMPLATE void
ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerValue, int const preserveMark)
{
int const nbRows = (int)size / ZSTD_ROWSIZE;
int cellNb = 0;
int rowNb;
assert((size & (ZSTD_ROWSIZE-1)) == 0); /* multiple of ZSTD_ROWSIZE */
assert(size < (1U<<31)); /* can be casted to int */
for (rowNb=0 ; rowNb < nbRows ; rowNb++) {
int column;
for (column=0; column<ZSTD_ROWSIZE; column++) {
if (preserveMark) {
U32 const adder = (table[cellNb] == ZSTD_DUBT_UNSORTED_MARK) ? reducerValue : 0;
table[cellNb] += adder;
}
if (table[cellNb] < reducerValue) table[cellNb] = 0;
else table[cellNb] -= reducerValue;
cellNb++;
} }
}
static void ZSTD_reduceTable(U32* const table, U32 const size, U32 const reducerValue)
{
ZSTD_reduceTable_internal(table, size, reducerValue, 0);
}
static void ZSTD_reduceTable_btlazy2(U32* const table, U32 const size, U32 const reducerValue)
{
ZSTD_reduceTable_internal(table, size, reducerValue, 1);
}
/*! ZSTD_reduceIndex() :
* rescale all indexes to avoid future overflow (indexes are U32) */
static void ZSTD_reduceIndex (ZSTD_matchState_t* ms, ZSTD_CCtx_params const* params, const U32 reducerValue)
{
{ U32 const hSize = (U32)1 << params->cParams.hashLog;
ZSTD_reduceTable(ms->hashTable, hSize, reducerValue);
}
if (params->cParams.strategy != ZSTD_fast) {
U32 const chainSize = (U32)1 << params->cParams.chainLog;
if (params->cParams.strategy == ZSTD_btlazy2)
ZSTD_reduceTable_btlazy2(ms->chainTable, chainSize, reducerValue);
else
ZSTD_reduceTable(ms->chainTable, chainSize, reducerValue);
}
if (ms->hashLog3) {
U32 const h3Size = (U32)1 << ms->hashLog3;
ZSTD_reduceTable(ms->hashTable3, h3Size, reducerValue);
}
}
/*-*******************************************************
* Block entropic compression
*********************************************************/
/* See doc/zstd_compression_format.md for detailed format description */
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr)
{
const seqDef* const sequences = seqStorePtr->sequencesStart;
BYTE* const llCodeTable = seqStorePtr->llCode;
BYTE* const ofCodeTable = seqStorePtr->ofCode;
BYTE* const mlCodeTable = seqStorePtr->mlCode;
U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
U32 u;
assert(nbSeq <= seqStorePtr->maxNbSeq);
for (u=0; u<nbSeq; u++) {
U32 const llv = sequences[u].litLength;
U32 const mlv = sequences[u].matchLength;
llCodeTable[u] = (BYTE)ZSTD_LLcode(llv);
ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
mlCodeTable[u] = (BYTE)ZSTD_MLcode(mlv);
}
if (seqStorePtr->longLengthID==1)
llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
if (seqStorePtr->longLengthID==2)
mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
}
/* ZSTD_useTargetCBlockSize():
* Returns if target compressed block size param is being used.
* If used, compression will do best effort to make a compressed block size to be around targetCBlockSize.
* Returns 1 if true, 0 otherwise. */
static int ZSTD_useTargetCBlockSize(const ZSTD_CCtx_params* cctxParams)
{
DEBUGLOG(5, "ZSTD_useTargetCBlockSize (targetCBlockSize=%zu)", cctxParams->targetCBlockSize);
return (cctxParams->targetCBlockSize != 0);
}
/* ZSTD_entropyCompressSequences_internal():
* actually compresses both literals and sequences */
MEM_STATIC size_t
ZSTD_entropyCompressSequences_internal(seqStore_t* seqStorePtr,
const ZSTD_entropyCTables_t* prevEntropy,
ZSTD_entropyCTables_t* nextEntropy,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
void* entropyWorkspace, size_t entropyWkspSize,
const int bmi2)
{
const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
ZSTD_strategy const strategy = cctxParams->cParams.strategy;
unsigned* count = (unsigned*)entropyWorkspace;
FSE_CTable* CTable_LitLength = nextEntropy->fse.litlengthCTable;
FSE_CTable* CTable_OffsetBits = nextEntropy->fse.offcodeCTable;
FSE_CTable* CTable_MatchLength = nextEntropy->fse.matchlengthCTable;
U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
const seqDef* const sequences = seqStorePtr->sequencesStart;
const BYTE* const ofCodeTable = seqStorePtr->ofCode;
const BYTE* const llCodeTable = seqStorePtr->llCode;
const BYTE* const mlCodeTable = seqStorePtr->mlCode;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
size_t const nbSeq = (size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
BYTE* seqHead;
BYTE* lastNCount = NULL;
entropyWorkspace = count + (MaxSeq + 1);
entropyWkspSize -= (MaxSeq + 1) * sizeof(*count);
DEBUGLOG(4, "ZSTD_entropyCompressSequences_internal (nbSeq=%zu)", nbSeq);
ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
assert(entropyWkspSize >= HUF_WORKSPACE_SIZE);
/* Compress literals */
{ const BYTE* const literals = seqStorePtr->litStart;
size_t const litSize = (size_t)(seqStorePtr->lit - literals);
size_t const cSize = ZSTD_compressLiterals(
&prevEntropy->huf, &nextEntropy->huf,
cctxParams->cParams.strategy,
ZSTD_disableLiteralsCompression(cctxParams),
op, dstCapacity,
literals, litSize,
entropyWorkspace, entropyWkspSize,
bmi2);
FORWARD_IF_ERROR(cSize, "ZSTD_compressLiterals failed");
assert(cSize <= dstCapacity);
op += cSize;
}
/* Sequences Header */
RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/,
dstSize_tooSmall, "Can't fit seq hdr in output buf!");
if (nbSeq < 128) {
*op++ = (BYTE)nbSeq;
} else if (nbSeq < LONGNBSEQ) {
op[0] = (BYTE)((nbSeq>>8) + 0x80);
op[1] = (BYTE)nbSeq;
op+=2;
} else {
op[0]=0xFF;
MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ));
op+=3;
}
assert(op <= oend);
if (nbSeq==0) {
/* Copy the old tables over as if we repeated them */
ZSTD_memcpy(&nextEntropy->fse, &prevEntropy->fse, sizeof(prevEntropy->fse));
return (size_t)(op - ostart);
}
/* seqHead : flags for FSE encoding type */
seqHead = op++;
assert(op <= oend);
/* convert length/distances into codes */
ZSTD_seqToCodes(seqStorePtr);
/* build CTable for Literal Lengths */
{ unsigned max = MaxLL;
size_t const mostFrequent = HIST_countFast_wksp(count, &max, llCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
DEBUGLOG(5, "Building LL table");
nextEntropy->fse.litlength_repeatMode = prevEntropy->fse.litlength_repeatMode;
LLtype = ZSTD_selectEncodingType(&nextEntropy->fse.litlength_repeatMode,
count, max, mostFrequent, nbSeq,
LLFSELog, prevEntropy->fse.litlengthCTable,
LL_defaultNorm, LL_defaultNormLog,
ZSTD_defaultAllowed, strategy);
assert(set_basic < set_compressed && set_rle < set_compressed);
assert(!(LLtype < set_compressed && nextEntropy->fse.litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
{ size_t const countSize = ZSTD_buildCTable(
op, (size_t)(oend - op),
CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype,
count, max, llCodeTable, nbSeq,
LL_defaultNorm, LL_defaultNormLog, MaxLL,
prevEntropy->fse.litlengthCTable,
sizeof(prevEntropy->fse.litlengthCTable),
entropyWorkspace, entropyWkspSize);
FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for LitLens failed");
if (LLtype == set_compressed)
lastNCount = op;
op += countSize;
assert(op <= oend);
} }
/* build CTable for Offsets */
{ unsigned max = MaxOff;
size_t const mostFrequent = HIST_countFast_wksp(
count, &max, ofCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
/* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */
ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed;
DEBUGLOG(5, "Building OF table");
nextEntropy->fse.offcode_repeatMode = prevEntropy->fse.offcode_repeatMode;
Offtype = ZSTD_selectEncodingType(&nextEntropy->fse.offcode_repeatMode,
count, max, mostFrequent, nbSeq,
OffFSELog, prevEntropy->fse.offcodeCTable,
OF_defaultNorm, OF_defaultNormLog,
defaultPolicy, strategy);
assert(!(Offtype < set_compressed && nextEntropy->fse.offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */
{ size_t const countSize = ZSTD_buildCTable(
op, (size_t)(oend - op),
CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype,
count, max, ofCodeTable, nbSeq,
OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
prevEntropy->fse.offcodeCTable,
sizeof(prevEntropy->fse.offcodeCTable),
entropyWorkspace, entropyWkspSize);
FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for Offsets failed");
if (Offtype == set_compressed)
lastNCount = op;
op += countSize;
assert(op <= oend);
} }
/* build CTable for MatchLengths */
{ unsigned max = MaxML;
size_t const mostFrequent = HIST_countFast_wksp(
count, &max, mlCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op));
nextEntropy->fse.matchlength_repeatMode = prevEntropy->fse.matchlength_repeatMode;
MLtype = ZSTD_selectEncodingType(&nextEntropy->fse.matchlength_repeatMode,
count, max, mostFrequent, nbSeq,
MLFSELog, prevEntropy->fse.matchlengthCTable,
ML_defaultNorm, ML_defaultNormLog,
ZSTD_defaultAllowed, strategy);
assert(!(MLtype < set_compressed && nextEntropy->fse.matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
{ size_t const countSize = ZSTD_buildCTable(
op, (size_t)(oend - op),
CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype,
count, max, mlCodeTable, nbSeq,
ML_defaultNorm, ML_defaultNormLog, MaxML,
prevEntropy->fse.matchlengthCTable,
sizeof(prevEntropy->fse.matchlengthCTable),
entropyWorkspace, entropyWkspSize);
FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for MatchLengths failed");
if (MLtype == set_compressed)
lastNCount = op;
op += countSize;
assert(op <= oend);
} }
*seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
{ size_t const bitstreamSize = ZSTD_encodeSequences(
op, (size_t)(oend - op),
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq,
longOffsets, bmi2);
FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed");
op += bitstreamSize;
assert(op <= oend);
/* zstd versions <= 1.3.4 mistakenly report corruption when
* FSE_readNCount() receives a buffer < 4 bytes.
* Fixed by https://github.com/facebook/zstd/pull/1146.
* This can happen when the last set_compressed table present is 2
* bytes and the bitstream is only one byte.
* In this exceedingly rare case, we will simply emit an uncompressed
* block, since it isn't worth optimizing.
*/
if (lastNCount && (op - lastNCount) < 4) {
/* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */
assert(op - lastNCount == 3);
DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by "
"emitting an uncompressed block.");
return 0;
}
}
DEBUGLOG(5, "compressed block size : %u", (unsigned)(op - ostart));
return (size_t)(op - ostart);
}
MEM_STATIC size_t
ZSTD_entropyCompressSequences(seqStore_t* seqStorePtr,
const ZSTD_entropyCTables_t* prevEntropy,
ZSTD_entropyCTables_t* nextEntropy,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
size_t srcSize,
void* entropyWorkspace, size_t entropyWkspSize,
int bmi2)
{
size_t const cSize = ZSTD_entropyCompressSequences_internal(
seqStorePtr, prevEntropy, nextEntropy, cctxParams,
dst, dstCapacity,
entropyWorkspace, entropyWkspSize, bmi2);
if (cSize == 0) return 0;
/* When srcSize <= dstCapacity, there is enough space to write a raw uncompressed block.
* Since we ran out of space, block must be not compressible, so fall back to raw uncompressed block.
*/
if ((cSize == ERROR(dstSize_tooSmall)) & (srcSize <= dstCapacity))
return 0; /* block not compressed */
FORWARD_IF_ERROR(cSize, "ZSTD_entropyCompressSequences_internal failed");
/* Check compressibility */
{ size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, cctxParams->cParams.strategy);
if (cSize >= maxCSize) return 0; /* block not compressed */
}
DEBUGLOG(4, "ZSTD_entropyCompressSequences() cSize: %zu\n", cSize);
return cSize;
}
/* ZSTD_selectBlockCompressor() :
* Not static, but internal use only (used by long distance matcher)
* assumption : strat is a valid strategy */
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode)
{
static const ZSTD_blockCompressor blockCompressor[4][ZSTD_STRATEGY_MAX+1] = {
{ ZSTD_compressBlock_fast /* default for 0 */,
ZSTD_compressBlock_fast,
ZSTD_compressBlock_doubleFast,
ZSTD_compressBlock_greedy,
ZSTD_compressBlock_lazy,
ZSTD_compressBlock_lazy2,
ZSTD_compressBlock_btlazy2,
ZSTD_compressBlock_btopt,
ZSTD_compressBlock_btultra,
ZSTD_compressBlock_btultra2 },
{ ZSTD_compressBlock_fast_extDict /* default for 0 */,
ZSTD_compressBlock_fast_extDict,
ZSTD_compressBlock_doubleFast_extDict,
ZSTD_compressBlock_greedy_extDict,
ZSTD_compressBlock_lazy_extDict,
ZSTD_compressBlock_lazy2_extDict,
ZSTD_compressBlock_btlazy2_extDict,
ZSTD_compressBlock_btopt_extDict,
ZSTD_compressBlock_btultra_extDict,
ZSTD_compressBlock_btultra_extDict },
{ ZSTD_compressBlock_fast_dictMatchState /* default for 0 */,
ZSTD_compressBlock_fast_dictMatchState,
ZSTD_compressBlock_doubleFast_dictMatchState,
ZSTD_compressBlock_greedy_dictMatchState,
ZSTD_compressBlock_lazy_dictMatchState,
ZSTD_compressBlock_lazy2_dictMatchState,
ZSTD_compressBlock_btlazy2_dictMatchState,
ZSTD_compressBlock_btopt_dictMatchState,
ZSTD_compressBlock_btultra_dictMatchState,
ZSTD_compressBlock_btultra_dictMatchState },
{ NULL /* default for 0 */,
NULL,
NULL,
ZSTD_compressBlock_greedy_dedicatedDictSearch,
ZSTD_compressBlock_lazy_dedicatedDictSearch,
ZSTD_compressBlock_lazy2_dedicatedDictSearch,
NULL,
NULL,
NULL,
NULL }
};
ZSTD_blockCompressor selectedCompressor;
ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1);
assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
selectedCompressor = blockCompressor[(int)dictMode][(int)strat];
assert(selectedCompressor != NULL);
return selectedCompressor;
}
static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr,
const BYTE* anchor, size_t lastLLSize)
{
ZSTD_memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
void ZSTD_resetSeqStore(seqStore_t* ssPtr)
{
ssPtr->lit = ssPtr->litStart;
ssPtr->sequences = ssPtr->sequencesStart;
ssPtr->longLengthID = 0;
}
typedef enum { ZSTDbss_compress, ZSTDbss_noCompress } ZSTD_buildSeqStore_e;
static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
{
ZSTD_matchState_t* const ms = &zc->blockState.matchState;
DEBUGLOG(5, "ZSTD_buildSeqStore (srcSize=%zu)", srcSize);
assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
/* Assert that we have correctly flushed the ctx params into the ms's copy */
ZSTD_assertEqualCParams(zc->appliedParams.cParams, ms->cParams);
if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) {
if (zc->appliedParams.cParams.strategy >= ZSTD_btopt) {
ZSTD_ldm_skipRawSeqStoreBytes(&zc->externSeqStore, srcSize);
} else {
ZSTD_ldm_skipSequences(&zc->externSeqStore, srcSize, zc->appliedParams.cParams.minMatch);
}
return ZSTDbss_noCompress; /* don't even attempt compression below a certain srcSize */
}
ZSTD_resetSeqStore(&(zc->seqStore));
/* required for optimal parser to read stats from dictionary */
ms->opt.symbolCosts = &zc->blockState.prevCBlock->entropy;
/* tell the optimal parser how we expect to compress literals */
ms->opt.literalCompressionMode = zc->appliedParams.literalCompressionMode;
/* a gap between an attached dict and the current window is not safe,
* they must remain adjacent,
* and when that stops being the case, the dict must be unset */
assert(ms->dictMatchState == NULL || ms->loadedDictEnd == ms->window.dictLimit);
/* limited update after a very long match */
{ const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const U32 curr = (U32)(istart-base);
if (sizeof(ptrdiff_t)==8) assert(istart - base < (ptrdiff_t)(U32)(-1)); /* ensure no overflow */
if (curr > ms->nextToUpdate + 384)
ms->nextToUpdate = curr - MIN(192, (U32)(curr - ms->nextToUpdate - 384));
}
/* select and store sequences */
{ ZSTD_dictMode_e const dictMode = ZSTD_matchState_dictMode(ms);
size_t lastLLSize;
{ int i;
for (i = 0; i < ZSTD_REP_NUM; ++i)
zc->blockState.nextCBlock->rep[i] = zc->blockState.prevCBlock->rep[i];
}
if (zc->externSeqStore.pos < zc->externSeqStore.size) {
assert(!zc->appliedParams.ldmParams.enableLdm);
/* Updates ldmSeqStore.pos */
lastLLSize =
ZSTD_ldm_blockCompress(&zc->externSeqStore,
ms, &zc->seqStore,
zc->blockState.nextCBlock->rep,
src, srcSize);
assert(zc->externSeqStore.pos <= zc->externSeqStore.size);
} else if (zc->appliedParams.ldmParams.enableLdm) {
rawSeqStore_t ldmSeqStore = kNullRawSeqStore;
ldmSeqStore.seq = zc->ldmSequences;
ldmSeqStore.capacity = zc->maxNbLdmSequences;
/* Updates ldmSeqStore.size */
FORWARD_IF_ERROR(ZSTD_ldm_generateSequences(&zc->ldmState, &ldmSeqStore,
&zc->appliedParams.ldmParams,
src, srcSize), "");
/* Updates ldmSeqStore.pos */
lastLLSize =
ZSTD_ldm_blockCompress(&ldmSeqStore,
ms, &zc->seqStore,
zc->blockState.nextCBlock->rep,
src, srcSize);
assert(ldmSeqStore.pos == ldmSeqStore.size);
} else { /* not long range mode */
ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, dictMode);
ms->ldmSeqStore = NULL;
lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize);
}
{ const BYTE* const lastLiterals = (const BYTE*)src + srcSize - lastLLSize;
ZSTD_storeLastLiterals(&zc->seqStore, lastLiterals, lastLLSize);
} }
return ZSTDbss_compress;
}
static void ZSTD_copyBlockSequences(ZSTD_CCtx* zc)
{
const seqStore_t* seqStore = ZSTD_getSeqStore(zc);
const seqDef* seqStoreSeqs = seqStore->sequencesStart;
size_t seqStoreSeqSize = seqStore->sequences - seqStoreSeqs;
size_t seqStoreLiteralsSize = (size_t)(seqStore->lit - seqStore->litStart);
size_t literalsRead = 0;
size_t lastLLSize;
ZSTD_Sequence* outSeqs = &zc->seqCollector.seqStart[zc->seqCollector.seqIndex];
size_t i;
repcodes_t updatedRepcodes;
assert(zc->seqCollector.seqIndex + 1 < zc->seqCollector.maxSequences);
/* Ensure we have enough space for last literals "sequence" */
assert(zc->seqCollector.maxSequences >= seqStoreSeqSize + 1);
ZSTD_memcpy(updatedRepcodes.rep, zc->blockState.prevCBlock->rep, sizeof(repcodes_t));
for (i = 0; i < seqStoreSeqSize; ++i) {
U32 rawOffset = seqStoreSeqs[i].offset - ZSTD_REP_NUM;
outSeqs[i].litLength = seqStoreSeqs[i].litLength;
outSeqs[i].matchLength = seqStoreSeqs[i].matchLength + MINMATCH;
outSeqs[i].rep = 0;
if (i == seqStore->longLengthPos) {
if (seqStore->longLengthID == 1) {
outSeqs[i].litLength += 0x10000;
} else if (seqStore->longLengthID == 2) {
outSeqs[i].matchLength += 0x10000;
}
}
if (seqStoreSeqs[i].offset <= ZSTD_REP_NUM) {
/* Derive the correct offset corresponding to a repcode */
outSeqs[i].rep = seqStoreSeqs[i].offset;
if (outSeqs[i].litLength != 0) {
rawOffset = updatedRepcodes.rep[outSeqs[i].rep - 1];
} else {
if (outSeqs[i].rep == 3) {
rawOffset = updatedRepcodes.rep[0] - 1;
} else {
rawOffset = updatedRepcodes.rep[outSeqs[i].rep];
}
}
}
outSeqs[i].offset = rawOffset;
/* seqStoreSeqs[i].offset == offCode+1, and ZSTD_updateRep() expects offCode
so we provide seqStoreSeqs[i].offset - 1 */
updatedRepcodes = ZSTD_updateRep(updatedRepcodes.rep,
seqStoreSeqs[i].offset - 1,
seqStoreSeqs[i].litLength == 0);
literalsRead += outSeqs[i].litLength;
}
/* Insert last literals (if any exist) in the block as a sequence with ml == off == 0.
* If there are no last literals, then we'll emit (of: 0, ml: 0, ll: 0), which is a marker
* for the block boundary, according to the API.
*/
assert(seqStoreLiteralsSize >= literalsRead);
lastLLSize = seqStoreLiteralsSize - literalsRead;
outSeqs[i].litLength = (U32)lastLLSize;
outSeqs[i].matchLength = outSeqs[i].offset = outSeqs[i].rep = 0;
seqStoreSeqSize++;
zc->seqCollector.seqIndex += seqStoreSeqSize;
}
size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
size_t outSeqsSize, const void* src, size_t srcSize)
{
const size_t dstCapacity = ZSTD_compressBound(srcSize);
void* dst = ZSTD_customMalloc(dstCapacity, ZSTD_defaultCMem);
SeqCollector seqCollector;
RETURN_ERROR_IF(dst == NULL, memory_allocation, "NULL pointer!");
seqCollector.collectSequences = 1;
seqCollector.seqStart = outSeqs;
seqCollector.seqIndex = 0;
seqCollector.maxSequences = outSeqsSize;
zc->seqCollector = seqCollector;
ZSTD_compress2(zc, dst, dstCapacity, src, srcSize);
ZSTD_customFree(dst, ZSTD_defaultCMem);
return zc->seqCollector.seqIndex;
}
size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize) {
size_t in = 0;
size_t out = 0;
for (; in < seqsSize; ++in) {
if (sequences[in].offset == 0 && sequences[in].matchLength == 0) {
if (in != seqsSize - 1) {
sequences[in+1].litLength += sequences[in].litLength;
}
} else {
sequences[out] = sequences[in];
++out;
}
}
return out;
}
/* Unrolled loop to read four size_ts of input at a time. Returns 1 if is RLE, 0 if not. */
static int ZSTD_isRLE(const BYTE* src, size_t length) {
const BYTE* ip = src;
const BYTE value = ip[0];
const size_t valueST = (size_t)((U64)value * 0x0101010101010101ULL);
const size_t unrollSize = sizeof(size_t) * 4;
const size_t unrollMask = unrollSize - 1;
const size_t prefixLength = length & unrollMask;
size_t i;
size_t u;
if (length == 1) return 1;
/* Check if prefix is RLE first before using unrolled loop */
if (prefixLength && ZSTD_count(ip+1, ip, ip+prefixLength) != prefixLength-1) {
return 0;
}
for (i = prefixLength; i != length; i += unrollSize) {
for (u = 0; u < unrollSize; u += sizeof(size_t)) {
if (MEM_readST(ip + i + u) != valueST) {
return 0;
}
}
}
return 1;
}
/* Returns true if the given block may be RLE.
* This is just a heuristic based on the compressibility.
* It may return both false positives and false negatives.
*/
static int ZSTD_maybeRLE(seqStore_t const* seqStore)
{
size_t const nbSeqs = (size_t)(seqStore->sequences - seqStore->sequencesStart);
size_t const nbLits = (size_t)(seqStore->lit - seqStore->litStart);
return nbSeqs < 4 && nbLits < 10;
}
static void ZSTD_confirmRepcodesAndEntropyTables(ZSTD_CCtx* zc)
{
ZSTD_compressedBlockState_t* const tmp = zc->blockState.prevCBlock;
zc->blockState.prevCBlock = zc->blockState.nextCBlock;
zc->blockState.nextCBlock = tmp;
}
static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize, U32 frame)
{
/* This the upper bound for the length of an rle block.
* This isn't the actual upper bound. Finding the real threshold
* needs further investigation.
*/
const U32 rleMaxLength = 25;
size_t cSize;
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
DEBUGLOG(5, "ZSTD_compressBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)",
(unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit,
(unsigned)zc->blockState.matchState.nextToUpdate);
{ const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize);
FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed");
if (bss == ZSTDbss_noCompress) { cSize = 0; goto out; }
}
if (zc->seqCollector.collectSequences) {
ZSTD_copyBlockSequences(zc);
ZSTD_confirmRepcodesAndEntropyTables(zc);
return 0;
}
/* encode sequences and literals */
cSize = ZSTD_entropyCompressSequences(&zc->seqStore,
&zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy,
&zc->appliedParams,
dst, dstCapacity,
srcSize,
zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */,
zc->bmi2);
if (zc->seqCollector.collectSequences) {
ZSTD_copyBlockSequences(zc);
return 0;
}
if (frame &&
/* We don't want to emit our first block as a RLE even if it qualifies because
* doing so will cause the decoder (cli only) to throw a "should consume all input error."
* This is only an issue for zstd <= v1.4.3
*/
!zc->isFirstBlock &&
cSize < rleMaxLength &&
ZSTD_isRLE(ip, srcSize))
{
cSize = 1;
op[0] = ip[0];
}
out:
if (!ZSTD_isError(cSize) && cSize > 1) {
ZSTD_confirmRepcodesAndEntropyTables(zc);
}
/* We check that dictionaries have offset codes available for the first
* block. After the first block, the offcode table might not have large
* enough codes to represent the offsets in the data.
*/
if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
return cSize;
}
static size_t ZSTD_compressBlock_targetCBlockSize_body(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const size_t bss, U32 lastBlock)
{
DEBUGLOG(6, "Attempting ZSTD_compressSuperBlock()");
if (bss == ZSTDbss_compress) {
if (/* We don't want to emit our first block as a RLE even if it qualifies because
* doing so will cause the decoder (cli only) to throw a "should consume all input error."
* This is only an issue for zstd <= v1.4.3
*/
!zc->isFirstBlock &&
ZSTD_maybeRLE(&zc->seqStore) &&
ZSTD_isRLE((BYTE const*)src, srcSize))
{
return ZSTD_rleCompressBlock(dst, dstCapacity, *(BYTE const*)src, srcSize, lastBlock);
}
/* Attempt superblock compression.
*
* Note that compressed size of ZSTD_compressSuperBlock() is not bound by the
* standard ZSTD_compressBound(). This is a problem, because even if we have
* space now, taking an extra byte now could cause us to run out of space later
* and violate ZSTD_compressBound().
*
* Define blockBound(blockSize) = blockSize + ZSTD_blockHeaderSize.
*
* In order to respect ZSTD_compressBound() we must attempt to emit a raw
* uncompressed block in these cases:
* * cSize == 0: Return code for an uncompressed block.
* * cSize == dstSize_tooSmall: We may have expanded beyond blockBound(srcSize).
* ZSTD_noCompressBlock() will return dstSize_tooSmall if we are really out of
* output space.
* * cSize >= blockBound(srcSize): We have expanded the block too much so
* emit an uncompressed block.
*/
{
size_t const cSize = ZSTD_compressSuperBlock(zc, dst, dstCapacity, src, srcSize, lastBlock);
if (cSize != ERROR(dstSize_tooSmall)) {
size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, zc->appliedParams.cParams.strategy);
FORWARD_IF_ERROR(cSize, "ZSTD_compressSuperBlock failed");
if (cSize != 0 && cSize < maxCSize + ZSTD_blockHeaderSize) {
ZSTD_confirmRepcodesAndEntropyTables(zc);
return cSize;
}
}
}
}
DEBUGLOG(6, "Resorting to ZSTD_noCompressBlock()");
/* Superblock compression failed, attempt to emit a single no compress block.
* The decoder will be able to stream this block since it is uncompressed.
*/
return ZSTD_noCompressBlock(dst, dstCapacity, src, srcSize, lastBlock);
}
static size_t ZSTD_compressBlock_targetCBlockSize(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 lastBlock)
{
size_t cSize = 0;
const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize);
DEBUGLOG(5, "ZSTD_compressBlock_targetCBlockSize (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u, srcSize=%zu)",
(unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, (unsigned)zc->blockState.matchState.nextToUpdate, srcSize);
FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed");
cSize = ZSTD_compressBlock_targetCBlockSize_body(zc, dst, dstCapacity, src, srcSize, bss, lastBlock);
FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize_body failed");
if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
return cSize;
}
static void ZSTD_overflowCorrectIfNeeded(ZSTD_matchState_t* ms,
ZSTD_cwksp* ws,
ZSTD_CCtx_params const* params,
void const* ip,
void const* iend)
{
if (ZSTD_window_needOverflowCorrection(ms->window, iend)) {
U32 const maxDist = (U32)1 << params->cParams.windowLog;
U32 const cycleLog = ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy);
U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, maxDist, ip);
ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30);
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30);
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
ZSTD_cwksp_mark_tables_dirty(ws);
ZSTD_reduceIndex(ms, params, correction);
ZSTD_cwksp_mark_tables_clean(ws);
if (ms->nextToUpdate < correction) ms->nextToUpdate = 0;
else ms->nextToUpdate -= correction;
/* invalidate dictionaries on overflow correction */
ms->loadedDictEnd = 0;
ms->dictMatchState = NULL;
}
}
/*! ZSTD_compress_frameChunk() :
* Compress a chunk of data into one or multiple blocks.
* All blocks will be terminated, all input will be consumed.
* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
* Frame is supposed already started (header already produced)
* @return : compressed size, or an error code
*/
static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 lastFrameChunk)
{
size_t blockSize = cctx->blockSize;
size_t remaining = srcSize;
const BYTE* ip = (const BYTE*)src;
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog;
assert(cctx->appliedParams.cParams.windowLog <= ZSTD_WINDOWLOG_MAX);
DEBUGLOG(4, "ZSTD_compress_frameChunk (blockSize=%u)", (unsigned)blockSize);
if (cctx->appliedParams.fParams.checksumFlag && srcSize)
xxh64_update(&cctx->xxhState, src, srcSize);
while (remaining) {
ZSTD_matchState_t* const ms = &cctx->blockState.matchState;
U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE,
dstSize_tooSmall,
"not enough space to store compressed block");
if (remaining < blockSize) blockSize = remaining;
ZSTD_overflowCorrectIfNeeded(
ms, &cctx->workspace, &cctx->appliedParams, ip, ip + blockSize);
ZSTD_checkDictValidity(&ms->window, ip + blockSize, maxDist, &ms->loadedDictEnd, &ms->dictMatchState);
/* Ensure hash/chain table insertion resumes no sooner than lowlimit */
if (ms->nextToUpdate < ms->window.lowLimit) ms->nextToUpdate = ms->window.lowLimit;
{ size_t cSize;
if (ZSTD_useTargetCBlockSize(&cctx->appliedParams)) {
cSize = ZSTD_compressBlock_targetCBlockSize(cctx, op, dstCapacity, ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize failed");
assert(cSize > 0);
assert(cSize <= blockSize + ZSTD_blockHeaderSize);
} else {
cSize = ZSTD_compressBlock_internal(cctx,
op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize,
ip, blockSize, 1 /* frame */);
FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_internal failed");
if (cSize == 0) { /* block is not compressible */
cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
} else {
U32 const cBlockHeader = cSize == 1 ?
lastBlock + (((U32)bt_rle)<<1) + (U32)(blockSize << 3) :
lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
MEM_writeLE24(op, cBlockHeader);
cSize += ZSTD_blockHeaderSize;
}
}
ip += blockSize;
assert(remaining >= blockSize);
remaining -= blockSize;
op += cSize;
assert(dstCapacity >= cSize);
dstCapacity -= cSize;
cctx->isFirstBlock = 0;
DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u",
(unsigned)cSize);
} }
if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending;
return (size_t)(op-ostart);
}
static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity,
const ZSTD_CCtx_params* params, U64 pledgedSrcSize, U32 dictID)
{ BYTE* const op = (BYTE*)dst;
U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */
U32 const dictIDSizeCode = params->fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */
U32 const checksumFlag = params->fParams.checksumFlag>0;
U32 const windowSize = (U32)1 << params->cParams.windowLog;
U32 const singleSegment = params->fParams.contentSizeFlag && (windowSize >= pledgedSrcSize);
BYTE const windowLogByte = (BYTE)((params->cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
U32 const fcsCode = params->fParams.contentSizeFlag ?
(pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */
BYTE const frameHeaderDescriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) );
size_t pos=0;
assert(!(params->fParams.contentSizeFlag && pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN));
RETURN_ERROR_IF(dstCapacity < ZSTD_FRAMEHEADERSIZE_MAX, dstSize_tooSmall,
"dst buf is too small to fit worst-case frame header size.");
DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u",
!params->fParams.noDictIDFlag, (unsigned)dictID, (unsigned)dictIDSizeCode);
if (params->format == ZSTD_f_zstd1) {
MEM_writeLE32(dst, ZSTD_MAGICNUMBER);
pos = 4;
}
op[pos++] = frameHeaderDescriptionByte;
if (!singleSegment) op[pos++] = windowLogByte;
switch(dictIDSizeCode)
{
default:
assert(0); /* impossible */
ZSTD_FALLTHROUGH;
case 0 : break;
case 1 : op[pos] = (BYTE)(dictID); pos++; break;
case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break;
case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break;
}
switch(fcsCode)
{
default:
assert(0); /* impossible */
ZSTD_FALLTHROUGH;
case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break;
case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break;
case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break;
case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break;
}
return pos;
}
/* ZSTD_writeSkippableFrame_advanced() :
* Writes out a skippable frame with the specified magic number variant (16 are supported),
* from ZSTD_MAGIC_SKIPPABLE_START to ZSTD_MAGIC_SKIPPABLE_START+15, and the desired source data.
*
* Returns the total number of bytes written, or a ZSTD error code.
*/
size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity,
const void* src, size_t srcSize, unsigned magicVariant) {
BYTE* op = (BYTE*)dst;
RETURN_ERROR_IF(dstCapacity < srcSize + ZSTD_SKIPPABLEHEADERSIZE /* Skippable frame overhead */,
dstSize_tooSmall, "Not enough room for skippable frame");
RETURN_ERROR_IF(srcSize > (unsigned)0xFFFFFFFF, srcSize_wrong, "Src size too large for skippable frame");
RETURN_ERROR_IF(magicVariant > 15, parameter_outOfBound, "Skippable frame magic number variant not supported");
MEM_writeLE32(op, (U32)(ZSTD_MAGIC_SKIPPABLE_START + magicVariant));
MEM_writeLE32(op+4, (U32)srcSize);
ZSTD_memcpy(op+8, src, srcSize);
return srcSize + ZSTD_SKIPPABLEHEADERSIZE;
}
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity)
{
RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall,
"dst buf is too small to write frame trailer empty block.");
{ U32 const cBlockHeader24 = 1 /*lastBlock*/ + (((U32)bt_raw)<<1); /* 0 size */
MEM_writeLE24(dst, cBlockHeader24);
return ZSTD_blockHeaderSize;
}
}
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq)
{
RETURN_ERROR_IF(cctx->stage != ZSTDcs_init, stage_wrong,
"wrong cctx stage");
RETURN_ERROR_IF(cctx->appliedParams.ldmParams.enableLdm,
parameter_unsupported,
"incompatible with ldm");
cctx->externSeqStore.seq = seq;
cctx->externSeqStore.size = nbSeq;
cctx->externSeqStore.capacity = nbSeq;
cctx->externSeqStore.pos = 0;
cctx->externSeqStore.posInSequence = 0;
return 0;
}
static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 frame, U32 lastFrameChunk)
{
ZSTD_matchState_t* const ms = &cctx->blockState.matchState;
size_t fhSize = 0;
DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u, srcSize: %u",
cctx->stage, (unsigned)srcSize);
RETURN_ERROR_IF(cctx->stage==ZSTDcs_created, stage_wrong,
"missing init (ZSTD_compressBegin)");
if (frame && (cctx->stage==ZSTDcs_init)) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams,
cctx->pledgedSrcSizePlusOne-1, cctx->dictID);
FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed");
assert(fhSize <= dstCapacity);
dstCapacity -= fhSize;
dst = (char*)dst + fhSize;
cctx->stage = ZSTDcs_ongoing;
}
if (!srcSize) return fhSize; /* do not generate an empty block if no input */
if (!ZSTD_window_update(&ms->window, src, srcSize)) {
ms->nextToUpdate = ms->window.dictLimit;
}
if (cctx->appliedParams.ldmParams.enableLdm) {
ZSTD_window_update(&cctx->ldmState.window, src, srcSize);
}
if (!frame) {
/* overflow check and correction for block mode */
ZSTD_overflowCorrectIfNeeded(
ms, &cctx->workspace, &cctx->appliedParams,
src, (BYTE const*)src + srcSize);
}
DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (unsigned)cctx->blockSize);
{ size_t const cSize = frame ?
ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) :
ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize, 0 /* frame */);
FORWARD_IF_ERROR(cSize, "%s", frame ? "ZSTD_compress_frameChunk failed" : "ZSTD_compressBlock_internal failed");
cctx->consumedSrcSize += srcSize;
cctx->producedCSize += (cSize + fhSize);
assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0));
if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1);
RETURN_ERROR_IF(
cctx->consumedSrcSize+1 > cctx->pledgedSrcSizePlusOne,
srcSize_wrong,
"error : pledgedSrcSize = %u, while realSrcSize >= %u",
(unsigned)cctx->pledgedSrcSizePlusOne-1,
(unsigned)cctx->consumedSrcSize);
}
return cSize + fhSize;
}
}
size_t ZSTD_compressContinue (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_compressContinue (srcSize=%u)", (unsigned)srcSize);
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */);
}
size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx)
{
ZSTD_compressionParameters const cParams = cctx->appliedParams.cParams;
assert(!ZSTD_checkCParams(cParams));
return MIN (ZSTD_BLOCKSIZE_MAX, (U32)1 << cParams.windowLog);
}
size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_compressBlock: srcSize = %u", (unsigned)srcSize);
{ size_t const blockSizeMax = ZSTD_getBlockSize(cctx);
RETURN_ERROR_IF(srcSize > blockSizeMax, srcSize_wrong, "input is larger than a block"); }
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */);
}
/*! ZSTD_loadDictionaryContent() :
* @return : 0, or an error code
*/
static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms,
ldmState_t* ls,
ZSTD_cwksp* ws,
ZSTD_CCtx_params const* params,
const void* src, size_t srcSize,
ZSTD_dictTableLoadMethod_e dtlm)
{
const BYTE* ip = (const BYTE*) src;
const BYTE* const iend = ip + srcSize;
ZSTD_window_update(&ms->window, src, srcSize);
ms->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ms->window.base);
if (params->ldmParams.enableLdm && ls != NULL) {
ZSTD_window_update(&ls->window, src, srcSize);
ls->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ls->window.base);
}
/* Assert that we the ms params match the params we're being given */
ZSTD_assertEqualCParams(params->cParams, ms->cParams);
if (srcSize <= HASH_READ_SIZE) return 0;
while (iend - ip > HASH_READ_SIZE) {
size_t const remaining = (size_t)(iend - ip);
size_t const chunk = MIN(remaining, ZSTD_CHUNKSIZE_MAX);
const BYTE* const ichunk = ip + chunk;
ZSTD_overflowCorrectIfNeeded(ms, ws, params, ip, ichunk);
if (params->ldmParams.enableLdm && ls != NULL)
ZSTD_ldm_fillHashTable(ls, (const BYTE*)src, (const BYTE*)src + srcSize, &params->ldmParams);
switch(params->cParams.strategy)
{
case ZSTD_fast:
ZSTD_fillHashTable(ms, ichunk, dtlm);
break;
case ZSTD_dfast:
ZSTD_fillDoubleHashTable(ms, ichunk, dtlm);
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
if (chunk >= HASH_READ_SIZE && ms->dedicatedDictSearch) {
assert(chunk == remaining); /* must load everything in one go */
ZSTD_dedicatedDictSearch_lazy_loadDictionary(ms, ichunk-HASH_READ_SIZE);
} else if (chunk >= HASH_READ_SIZE) {
ZSTD_insertAndFindFirstIndex(ms, ichunk-HASH_READ_SIZE);
}
break;
case ZSTD_btlazy2: /* we want the dictionary table fully sorted */
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
if (chunk >= HASH_READ_SIZE)
ZSTD_updateTree(ms, ichunk-HASH_READ_SIZE, ichunk);
break;
default:
assert(0); /* not possible : not a valid strategy id */
}
ip = ichunk;
}
ms->nextToUpdate = (U32)(iend - ms->window.base);
return 0;
}
/* Dictionaries that assign zero probability to symbols that show up causes problems
* when FSE encoding. Mark dictionaries with zero probability symbols as FSE_repeat_check
* and only dictionaries with 100% valid symbols can be assumed valid.
*/
static FSE_repeat ZSTD_dictNCountRepeat(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue)
{
U32 s;
if (dictMaxSymbolValue < maxSymbolValue) {
return FSE_repeat_check;
}
for (s = 0; s <= maxSymbolValue; ++s) {
if (normalizedCounter[s] == 0) {
return FSE_repeat_check;
}
}
return FSE_repeat_valid;
}
size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
const void* const dict, size_t dictSize)
{
short offcodeNCount[MaxOff+1];
unsigned offcodeMaxValue = MaxOff;
const BYTE* dictPtr = (const BYTE*)dict; /* skip magic num and dict ID */
const BYTE* const dictEnd = dictPtr + dictSize;
dictPtr += 8;
bs->entropy.huf.repeatMode = HUF_repeat_check;
{ unsigned maxSymbolValue = 255;
unsigned hasZeroWeights = 1;
size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)bs->entropy.huf.CTable, &maxSymbolValue, dictPtr,
dictEnd-dictPtr, &hasZeroWeights);
/* We only set the loaded table as valid if it contains all non-zero
* weights. Otherwise, we set it to check */
if (!hasZeroWeights)
bs->entropy.huf.repeatMode = HUF_repeat_valid;
RETURN_ERROR_IF(HUF_isError(hufHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(maxSymbolValue < 255, dictionary_corrupted, "");
dictPtr += hufHeaderSize;
}
{ unsigned offcodeLog;
size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, "");
/* fill all offset symbols to avoid garbage at end of table */
RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
bs->entropy.fse.offcodeCTable,
offcodeNCount, MaxOff, offcodeLog,
workspace, HUF_WORKSPACE_SIZE)),
dictionary_corrupted, "");
/* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
dictPtr += offcodeHeaderSize;
}
{ short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, "");
RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
bs->entropy.fse.matchlengthCTable,
matchlengthNCount, matchlengthMaxValue, matchlengthLog,
workspace, HUF_WORKSPACE_SIZE)),
dictionary_corrupted, "");
bs->entropy.fse.matchlength_repeatMode = ZSTD_dictNCountRepeat(matchlengthNCount, matchlengthMaxValue, MaxML);
dictPtr += matchlengthHeaderSize;
}
{ short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, "");
RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, "");
RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
bs->entropy.fse.litlengthCTable,
litlengthNCount, litlengthMaxValue, litlengthLog,
workspace, HUF_WORKSPACE_SIZE)),
dictionary_corrupted, "");
bs->entropy.fse.litlength_repeatMode = ZSTD_dictNCountRepeat(litlengthNCount, litlengthMaxValue, MaxLL);
dictPtr += litlengthHeaderSize;
}
RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, "");
bs->rep[0] = MEM_readLE32(dictPtr+0);
bs->rep[1] = MEM_readLE32(dictPtr+4);
bs->rep[2] = MEM_readLE32(dictPtr+8);
dictPtr += 12;
{ size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
U32 offcodeMax = MaxOff;
if (dictContentSize <= ((U32)-1) - 128 KB) {
U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */
offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */
}
/* All offset values <= dictContentSize + 128 KB must be representable for a valid table */
bs->entropy.fse.offcode_repeatMode = ZSTD_dictNCountRepeat(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff));
/* All repCodes must be <= dictContentSize and != 0 */
{ U32 u;
for (u=0; u<3; u++) {
RETURN_ERROR_IF(bs->rep[u] == 0, dictionary_corrupted, "");
RETURN_ERROR_IF(bs->rep[u] > dictContentSize, dictionary_corrupted, "");
} } }
return dictPtr - (const BYTE*)dict;
}
/* Dictionary format :
* See :
* https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#dictionary-format
*/
/*! ZSTD_loadZstdDictionary() :
* @return : dictID, or an error code
* assumptions : magic number supposed already checked
* dictSize supposed >= 8
*/
static size_t ZSTD_loadZstdDictionary(ZSTD_compressedBlockState_t* bs,
ZSTD_matchState_t* ms,
ZSTD_cwksp* ws,
ZSTD_CCtx_params const* params,
const void* dict, size_t dictSize,
ZSTD_dictTableLoadMethod_e dtlm,
void* workspace)
{
const BYTE* dictPtr = (const BYTE*)dict;
const BYTE* const dictEnd = dictPtr + dictSize;
size_t dictID;
size_t eSize;
ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
assert(dictSize >= 8);
assert(MEM_readLE32(dictPtr) == ZSTD_MAGIC_DICTIONARY);
dictID = params->fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr + 4 /* skip magic number */ );
eSize = ZSTD_loadCEntropy(bs, workspace, dict, dictSize);
FORWARD_IF_ERROR(eSize, "ZSTD_loadCEntropy failed");
dictPtr += eSize;
{
size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
FORWARD_IF_ERROR(ZSTD_loadDictionaryContent(
ms, NULL, ws, params, dictPtr, dictContentSize, dtlm), "");
}
return dictID;
}
/* ZSTD_compress_insertDictionary() :
* @return : dictID, or an error code */
static size_t
ZSTD_compress_insertDictionary(ZSTD_compressedBlockState_t* bs,
ZSTD_matchState_t* ms,
ldmState_t* ls,
ZSTD_cwksp* ws,
const ZSTD_CCtx_params* params,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
void* workspace)
{
DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize);
if ((dict==NULL) || (dictSize<8)) {
RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, "");
return 0;
}
ZSTD_reset_compressedBlockState(bs);
/* dict restricted modes */
if (dictContentType == ZSTD_dct_rawContent)
return ZSTD_loadDictionaryContent(ms, ls, ws, params, dict, dictSize, dtlm);
if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) {
if (dictContentType == ZSTD_dct_auto) {
DEBUGLOG(4, "raw content dictionary detected");
return ZSTD_loadDictionaryContent(
ms, ls, ws, params, dict, dictSize, dtlm);
}
RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, "");
assert(0); /* impossible */
}
/* dict as full zstd dictionary */
return ZSTD_loadZstdDictionary(
bs, ms, ws, params, dict, dictSize, dtlm, workspace);
}
#define ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF (128 KB)
#define ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER (6ULL)
/*! ZSTD_compressBegin_internal() :
* @return : 0, or an error code */
static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params, U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params->cParams.windowLog);
/* params are supposed to be fully validated at this point */
assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
if ( (cdict)
&& (cdict->dictContentSize > 0)
&& ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF
|| pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER
|| pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
|| cdict->compressionLevel == 0)
&& (params->attachDictPref != ZSTD_dictForceLoad) ) {
return ZSTD_resetCCtx_usingCDict(cctx, cdict, params, pledgedSrcSize, zbuff);
}
FORWARD_IF_ERROR( ZSTD_resetCCtx_internal(cctx, *params, pledgedSrcSize,
ZSTDcrp_makeClean, zbuff) , "");
{ size_t const dictID = cdict ?
ZSTD_compress_insertDictionary(
cctx->blockState.prevCBlock, &cctx->blockState.matchState,
&cctx->ldmState, &cctx->workspace, &cctx->appliedParams, cdict->dictContent,
cdict->dictContentSize, cdict->dictContentType, dtlm,
cctx->entropyWorkspace)
: ZSTD_compress_insertDictionary(
cctx->blockState.prevCBlock, &cctx->blockState.matchState,
&cctx->ldmState, &cctx->workspace, &cctx->appliedParams, dict, dictSize,
dictContentType, dtlm, cctx->entropyWorkspace);
FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed");
assert(dictID <= UINT_MAX);
cctx->dictID = (U32)dictID;
cctx->dictContentSize = cdict ? cdict->dictContentSize : dictSize;
}
return 0;
}
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params->cParams.windowLog);
/* compression parameters verification and optimization */
FORWARD_IF_ERROR( ZSTD_checkCParams(params->cParams) , "");
return ZSTD_compressBegin_internal(cctx,
dict, dictSize, dictContentType, dtlm,
cdict,
params, pledgedSrcSize,
ZSTDb_not_buffered);
}
/*! ZSTD_compressBegin_advanced() :
* @return : 0, or an error code */
size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
ZSTD_CCtx_params cctxParams;
ZSTD_CCtxParams_init_internal(&cctxParams, &params, ZSTD_NO_CLEVEL);
return ZSTD_compressBegin_advanced_internal(cctx,
dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast,
NULL /*cdict*/,
&cctxParams, pledgedSrcSize);
}
size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_CCtx_params cctxParams;
{
ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_noAttachDict);
ZSTD_CCtxParams_init_internal(&cctxParams, &params, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel);
}
DEBUGLOG(4, "ZSTD_compressBegin_usingDict (dictSize=%u)", (unsigned)dictSize);
return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL,
&cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered);
}
size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel)
{
return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel);
}
/*! ZSTD_writeEpilogue() :
* Ends a frame.
* @return : nb of bytes written into dst (or an error code) */
static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
size_t fhSize = 0;
DEBUGLOG(4, "ZSTD_writeEpilogue");
RETURN_ERROR_IF(cctx->stage == ZSTDcs_created, stage_wrong, "init missing");
/* special case : empty frame */
if (cctx->stage == ZSTDcs_init) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams, 0, 0);
FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed");
dstCapacity -= fhSize;
op += fhSize;
cctx->stage = ZSTDcs_ongoing;
}
if (cctx->stage != ZSTDcs_ending) {
/* write one last empty block, make it the "last" block */
U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0;
RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for epilogue");
MEM_writeLE32(op, cBlockHeader24);
op += ZSTD_blockHeaderSize;
dstCapacity -= ZSTD_blockHeaderSize;
}
if (cctx->appliedParams.fParams.checksumFlag) {
U32 const checksum = (U32) xxh64_digest(&cctx->xxhState);
RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum");
DEBUGLOG(4, "ZSTD_writeEpilogue: write checksum : %08X", (unsigned)checksum);
MEM_writeLE32(op, checksum);
op += 4;
}
cctx->stage = ZSTDcs_created; /* return to "created but no init" status */
return op-ostart;
}
void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize)
{
(void)cctx;
(void)extraCSize;
}
size_t ZSTD_compressEnd (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t endResult;
size_t const cSize = ZSTD_compressContinue_internal(cctx,
dst, dstCapacity, src, srcSize,
1 /* frame mode */, 1 /* last chunk */);
FORWARD_IF_ERROR(cSize, "ZSTD_compressContinue_internal failed");
endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize);
FORWARD_IF_ERROR(endResult, "ZSTD_writeEpilogue failed");
assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0));
if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1);
DEBUGLOG(4, "end of frame : controlling src size");
RETURN_ERROR_IF(
cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1,
srcSize_wrong,
"error : pledgedSrcSize = %u, while realSrcSize = %u",
(unsigned)cctx->pledgedSrcSizePlusOne-1,
(unsigned)cctx->consumedSrcSize);
}
ZSTD_CCtx_trace(cctx, endResult);
return cSize + endResult;
}
size_t ZSTD_compress_advanced (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params)
{
ZSTD_CCtx_params cctxParams;
DEBUGLOG(4, "ZSTD_compress_advanced");
FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams), "");
ZSTD_CCtxParams_init_internal(&cctxParams, &params, ZSTD_NO_CLEVEL);
return ZSTD_compress_advanced_internal(cctx,
dst, dstCapacity,
src, srcSize,
dict, dictSize,
&cctxParams);
}
/* Internal */
size_t ZSTD_compress_advanced_internal(
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
const ZSTD_CCtx_params* params)
{
DEBUGLOG(4, "ZSTD_compress_advanced_internal (srcSize:%u)", (unsigned)srcSize);
FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx,
dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL,
params, srcSize, ZSTDb_not_buffered) , "");
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
size_t ZSTD_compress_usingDict(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict, size_t dictSize,
int compressionLevel)
{
ZSTD_CCtx_params cctxParams;
{
ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, srcSize, dict ? dictSize : 0, ZSTD_cpm_noAttachDict);
assert(params.fParams.contentSizeFlag == 1);
ZSTD_CCtxParams_init_internal(&cctxParams, &params, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT: compressionLevel);
}
DEBUGLOG(4, "ZSTD_compress_usingDict (srcSize=%u)", (unsigned)srcSize);
return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, &cctxParams);
}
size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel)
{
DEBUGLOG(4, "ZSTD_compressCCtx (srcSize=%u)", (unsigned)srcSize);
assert(cctx != NULL);
return ZSTD_compress_usingDict(cctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel);
}
size_t ZSTD_compress(void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel)
{
size_t result;
ZSTD_CCtx* cctx = ZSTD_createCCtx();
RETURN_ERROR_IF(!cctx, memory_allocation, "ZSTD_createCCtx failed");
result = ZSTD_compressCCtx(cctx, dst, dstCapacity, src, srcSize, compressionLevel);
ZSTD_freeCCtx(cctx);
return result;
}
/* ===== Dictionary API ===== */
/*! ZSTD_estimateCDictSize_advanced() :
* Estimate amount of memory that will be needed to create a dictionary with following arguments */
size_t ZSTD_estimateCDictSize_advanced(
size_t dictSize, ZSTD_compressionParameters cParams,
ZSTD_dictLoadMethod_e dictLoadMethod)
{
DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (unsigned)sizeof(ZSTD_CDict));
return ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict))
+ ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE)
+ ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0)
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0
: ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void *))));
}
size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy);
}
size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0; /* support sizeof on NULL */
DEBUGLOG(5, "sizeof(*cdict) : %u", (unsigned)sizeof(*cdict));
/* cdict may be in the workspace */
return (cdict->workspace.workspace == cdict ? 0 : sizeof(*cdict))
+ ZSTD_cwksp_sizeof(&cdict->workspace);
}
static size_t ZSTD_initCDict_internal(
ZSTD_CDict* cdict,
const void* dictBuffer, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_CCtx_params params)
{
DEBUGLOG(3, "ZSTD_initCDict_internal (dictContentType:%u)", (unsigned)dictContentType);
assert(!ZSTD_checkCParams(params.cParams));
cdict->matchState.cParams = params.cParams;
cdict->matchState.dedicatedDictSearch = params.enableDedicatedDictSearch;
if (cdict->matchState.dedicatedDictSearch && dictSize > ZSTD_CHUNKSIZE_MAX) {
cdict->matchState.dedicatedDictSearch = 0;
}
if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) {
cdict->dictContent = dictBuffer;
} else {
void *internalBuffer = ZSTD_cwksp_reserve_object(&cdict->workspace, ZSTD_cwksp_align(dictSize, sizeof(void*)));
RETURN_ERROR_IF(!internalBuffer, memory_allocation, "NULL pointer!");
cdict->dictContent = internalBuffer;
ZSTD_memcpy(internalBuffer, dictBuffer, dictSize);
}
cdict->dictContentSize = dictSize;
cdict->dictContentType = dictContentType;
cdict->entropyWorkspace = (U32*)ZSTD_cwksp_reserve_object(&cdict->workspace, HUF_WORKSPACE_SIZE);
/* Reset the state to no dictionary */
ZSTD_reset_compressedBlockState(&cdict->cBlockState);
FORWARD_IF_ERROR(ZSTD_reset_matchState(
&cdict->matchState,
&cdict->workspace,
&params.cParams,
ZSTDcrp_makeClean,
ZSTDirp_reset,
ZSTD_resetTarget_CDict), "");
/* (Maybe) load the dictionary
* Skips loading the dictionary if it is < 8 bytes.
*/
{ params.compressionLevel = ZSTD_CLEVEL_DEFAULT;
params.fParams.contentSizeFlag = 1;
{ size_t const dictID = ZSTD_compress_insertDictionary(
&cdict->cBlockState, &cdict->matchState, NULL, &cdict->workspace,
&params, cdict->dictContent, cdict->dictContentSize,
dictContentType, ZSTD_dtlm_full, cdict->entropyWorkspace);
FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed");
assert(dictID <= (size_t)(U32)-1);
cdict->dictID = (U32)dictID;
}
}
return 0;
}
static ZSTD_CDict* ZSTD_createCDict_advanced_internal(size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_compressionParameters cParams, ZSTD_customMem customMem)
{
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
{ size_t const workspaceSize =
ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict)) +
ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE) +
ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0) +
(dictLoadMethod == ZSTD_dlm_byRef ? 0
: ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*))));
void* const workspace = ZSTD_customMalloc(workspaceSize, customMem);
ZSTD_cwksp ws;
ZSTD_CDict* cdict;
if (!workspace) {
ZSTD_customFree(workspace, customMem);
return NULL;
}
ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_dynamic_alloc);
cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict));
assert(cdict != NULL);
ZSTD_cwksp_move(&cdict->workspace, &ws);
cdict->customMem = customMem;
cdict->compressionLevel = ZSTD_NO_CLEVEL; /* signals advanced API usage */
return cdict;
}
}
ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams,
ZSTD_customMem customMem)
{
ZSTD_CCtx_params cctxParams;
ZSTD_memset(&cctxParams, 0, sizeof(cctxParams));
ZSTD_CCtxParams_init(&cctxParams, 0);
cctxParams.cParams = cParams;
cctxParams.customMem = customMem;
return ZSTD_createCDict_advanced2(
dictBuffer, dictSize,
dictLoadMethod, dictContentType,
&cctxParams, customMem);
}
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced2(
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
const ZSTD_CCtx_params* originalCctxParams,
ZSTD_customMem customMem)
{
ZSTD_CCtx_params cctxParams = *originalCctxParams;
ZSTD_compressionParameters cParams;
ZSTD_CDict* cdict;
DEBUGLOG(3, "ZSTD_createCDict_advanced2, mode %u", (unsigned)dictContentType);
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
if (cctxParams.enableDedicatedDictSearch) {
cParams = ZSTD_dedicatedDictSearch_getCParams(
cctxParams.compressionLevel, dictSize);
ZSTD_overrideCParams(&cParams, &cctxParams.cParams);
} else {
cParams = ZSTD_getCParamsFromCCtxParams(
&cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
}
if (!ZSTD_dedicatedDictSearch_isSupported(&cParams)) {
/* Fall back to non-DDSS params */
cctxParams.enableDedicatedDictSearch = 0;
cParams = ZSTD_getCParamsFromCCtxParams(
&cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
}
cctxParams.cParams = cParams;
cdict = ZSTD_createCDict_advanced_internal(dictSize,
dictLoadMethod, cctxParams.cParams,
customMem);
if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
dict, dictSize,
dictLoadMethod, dictContentType,
cctxParams) )) {
ZSTD_freeCDict(cdict);
return NULL;
}
return cdict;
}
ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byCopy, ZSTD_dct_auto,
cParams, ZSTD_defaultCMem);
if (cdict)
cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel;
return cdict;
}
ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byRef, ZSTD_dct_auto,
cParams, ZSTD_defaultCMem);
if (cdict)
cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel;
return cdict;
}
size_t ZSTD_freeCDict(ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0; /* support free on NULL */
{ ZSTD_customMem const cMem = cdict->customMem;
int cdictInWorkspace = ZSTD_cwksp_owns_buffer(&cdict->workspace, cdict);
ZSTD_cwksp_free(&cdict->workspace, cMem);
if (!cdictInWorkspace) {
ZSTD_customFree(cdict, cMem);
}
return 0;
}
}
/*! ZSTD_initStaticCDict_advanced() :
* Generate a digested dictionary in provided memory area.
* workspace: The memory area to emplace the dictionary into.
* Provided pointer must 8-bytes aligned.
* It must outlive dictionary usage.
* workspaceSize: Use ZSTD_estimateCDictSize()
* to determine how large workspace must be.
* cParams : use ZSTD_getCParams() to transform a compression level
* into its relevants cParams.
* @return : pointer to ZSTD_CDict*, or NULL if error (size too small)
* Note : there is no corresponding "free" function.
* Since workspace was allocated externally, it must be freed externally.
*/
const ZSTD_CDict* ZSTD_initStaticCDict(
void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams)
{
size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0);
size_t const neededSize = ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict))
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0
: ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*))))
+ ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE)
+ matchStateSize;
ZSTD_CDict* cdict;
ZSTD_CCtx_params params;
if ((size_t)workspace & 7) return NULL; /* 8-aligned */
{
ZSTD_cwksp ws;
ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc);
cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict));
if (cdict == NULL) return NULL;
ZSTD_cwksp_move(&cdict->workspace, &ws);
}
DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u",
(unsigned)workspaceSize, (unsigned)neededSize, (unsigned)(workspaceSize < neededSize));
if (workspaceSize < neededSize) return NULL;
ZSTD_CCtxParams_init(&params, 0);
params.cParams = cParams;
if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
dict, dictSize,
dictLoadMethod, dictContentType,
params) ))
return NULL;
return cdict;
}
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict)
{
assert(cdict != NULL);
return cdict->matchState.cParams;
}
/*! ZSTD_getDictID_fromCDict() :
* Provides the dictID of the dictionary loaded into `cdict`.
* If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
* Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0;
return cdict->dictID;
}
/* ZSTD_compressBegin_usingCDict_advanced() :
* cdict must be != NULL */
size_t ZSTD_compressBegin_usingCDict_advanced(
ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict,
ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize)
{
ZSTD_CCtx_params cctxParams;
DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_advanced");
RETURN_ERROR_IF(cdict==NULL, dictionary_wrong, "NULL pointer!");
/* Initialize the cctxParams from the cdict */
{
ZSTD_parameters params;
params.fParams = fParams;
params.cParams = ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF
|| pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER
|| pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
|| cdict->compressionLevel == 0 ) ?
ZSTD_getCParamsFromCDict(cdict)
: ZSTD_getCParams(cdict->compressionLevel,
pledgedSrcSize,
cdict->dictContentSize);
ZSTD_CCtxParams_init_internal(&cctxParams, &params, cdict->compressionLevel);
}
/* Increase window log to fit the entire dictionary and source if the
* source size is known. Limit the increase to 19, which is the
* window log for compression level 1 with the largest source size.
*/
if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) {
U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19);
U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1;
cctxParams.cParams.windowLog = MAX(cctxParams.cParams.windowLog, limitedSrcLog);
}
return ZSTD_compressBegin_internal(cctx,
NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast,
cdict,
&cctxParams, pledgedSrcSize,
ZSTDb_not_buffered);
}
/* ZSTD_compressBegin_usingCDict() :
* pledgedSrcSize=0 means "unknown"
* if pledgedSrcSize>0, it will enable contentSizeFlag */
size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
DEBUGLOG(4, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag);
return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN);
}
size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict, ZSTD_frameParameters fParams)
{
FORWARD_IF_ERROR(ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize), ""); /* will check if cdict != NULL */
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
/*! ZSTD_compress_usingCDict() :
* Compression using a digested Dictionary.
* Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
* Note that compression parameters are decided at CDict creation time
* while frame parameters are hardcoded */
size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams);
}
/* ******************************************************************
* Streaming
********************************************************************/
ZSTD_CStream* ZSTD_createCStream(void)
{
DEBUGLOG(3, "ZSTD_createCStream");
return ZSTD_createCStream_advanced(ZSTD_defaultCMem);
}
ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize)
{
return ZSTD_initStaticCCtx(workspace, workspaceSize);
}
ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem)
{ /* CStream and CCtx are now same object */
return ZSTD_createCCtx_advanced(customMem);
}
size_t ZSTD_freeCStream(ZSTD_CStream* zcs)
{
return ZSTD_freeCCtx(zcs); /* same object */
}
/*====== Initialization ======*/
size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; }
size_t ZSTD_CStreamOutSize(void)
{
return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ;
}
static ZSTD_cParamMode_e ZSTD_getCParamMode(ZSTD_CDict const* cdict, ZSTD_CCtx_params const* params, U64 pledgedSrcSize)
{
if (cdict != NULL && ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize))
return ZSTD_cpm_attachDict;
else
return ZSTD_cpm_noAttachDict;
}
/* ZSTD_resetCStream():
* pledgedSrcSize == 0 means "unknown" */
size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pss)
{
/* temporary : 0 interpreted as "unknown" during transition period.
* Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN.
* 0 will be interpreted as "empty" in the future.
*/
U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (unsigned)pledgedSrcSize);
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
return 0;
}
/*! ZSTD_initCStream_internal() :
* Note : for lib/compress only. Used by zstdmt_compress.c.
* Assumption 1 : params are valid
* Assumption 2 : either dict, or cdict, is defined, not both */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize, const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_initCStream_internal");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams)));
zcs->requestedParams = *params;
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
if (dict) {
FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , "");
} else {
/* Dictionary is cleared if !cdict */
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , "");
}
return 0;
}
/* ZSTD_initCStream_usingCDict_advanced() :
* same as ZSTD_initCStream_usingCDict(), with control over frame parameters */
size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fParams,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
zcs->requestedParams.fParams = fParams;
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , "");
return 0;
}
/* note : cdict must outlive compression session */
size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict)
{
DEBUGLOG(4, "ZSTD_initCStream_usingCDict");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , "");
return 0;
}
/* ZSTD_initCStream_advanced() :
* pledgedSrcSize must be exact.
* if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN.
* dict is loaded with default parameters ZSTD_dct_auto and ZSTD_dlm_byCopy. */
size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pss)
{
/* for compatibility with older programs relying on this behavior.
* Users should now specify ZSTD_CONTENTSIZE_UNKNOWN.
* This line will be removed in the future.
*/
U64 const pledgedSrcSize = (pss==0 && params.fParams.contentSizeFlag==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
DEBUGLOG(4, "ZSTD_initCStream_advanced");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , "");
ZSTD_CCtxParams_setZstdParams(&zcs->requestedParams, &params);
FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , "");
return 0;
}
size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel)
{
DEBUGLOG(4, "ZSTD_initCStream_usingDict");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , "");
return 0;
}
size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss)
{
/* temporary : 0 interpreted as "unknown" during transition period.
* Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN.
* 0 will be interpreted as "empty" in the future.
*/
U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
DEBUGLOG(4, "ZSTD_initCStream_srcSize");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
return 0;
}
size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel)
{
DEBUGLOG(4, "ZSTD_initCStream");
FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , "");
FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , "");
return 0;
}
/*====== Compression ======*/
static size_t ZSTD_nextInputSizeHint(const ZSTD_CCtx* cctx)
{
size_t hintInSize = cctx->inBuffTarget - cctx->inBuffPos;
if (hintInSize==0) hintInSize = cctx->blockSize;
return hintInSize;
}
/* ZSTD_compressStream_generic():
* internal function for all *compressStream*() variants
* non-static, because can be called from zstdmt_compress.c
* @return : hint size for next input */
static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective const flushMode)
{
const char* const istart = (const char*)input->src;
const char* const iend = input->size != 0 ? istart + input->size : istart;
const char* ip = input->pos != 0 ? istart + input->pos : istart;
char* const ostart = (char*)output->dst;
char* const oend = output->size != 0 ? ostart + output->size : ostart;
char* op = output->pos != 0 ? ostart + output->pos : ostart;
U32 someMoreWork = 1;
/* check expectations */
DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (unsigned)flushMode);
if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) {
assert(zcs->inBuff != NULL);
assert(zcs->inBuffSize > 0);
}
if (zcs->appliedParams.outBufferMode == ZSTD_bm_buffered) {
assert(zcs->outBuff != NULL);
assert(zcs->outBuffSize > 0);
}
assert(output->pos <= output->size);
assert(input->pos <= input->size);
assert((U32)flushMode <= (U32)ZSTD_e_end);
while (someMoreWork) {
switch(zcs->streamStage)
{
case zcss_init:
RETURN_ERROR(init_missing, "call ZSTD_initCStream() first!");
case zcss_load:
if ( (flushMode == ZSTD_e_end)
&& ( (size_t)(oend-op) >= ZSTD_compressBound(iend-ip) /* Enough output space */
|| zcs->appliedParams.outBufferMode == ZSTD_bm_stable) /* OR we are allowed to return dstSizeTooSmall */
&& (zcs->inBuffPos == 0) ) {
/* shortcut to compression pass directly into output buffer */
size_t const cSize = ZSTD_compressEnd(zcs,
op, oend-op, ip, iend-ip);
DEBUGLOG(4, "ZSTD_compressEnd : cSize=%u", (unsigned)cSize);
FORWARD_IF_ERROR(cSize, "ZSTD_compressEnd failed");
ip = iend;
op += cSize;
zcs->frameEnded = 1;
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
someMoreWork = 0; break;
}
/* complete loading into inBuffer in buffered mode */
if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) {
size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
size_t const loaded = ZSTD_limitCopy(
zcs->inBuff + zcs->inBuffPos, toLoad,
ip, iend-ip);
zcs->inBuffPos += loaded;
if (loaded != 0)
ip += loaded;
if ( (flushMode == ZSTD_e_continue)
&& (zcs->inBuffPos < zcs->inBuffTarget) ) {
/* not enough input to fill full block : stop here */
someMoreWork = 0; break;
}
if ( (flushMode == ZSTD_e_flush)
&& (zcs->inBuffPos == zcs->inToCompress) ) {
/* empty */
someMoreWork = 0; break;
}
}
/* compress current block (note : this stage cannot be stopped in the middle) */
DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode);
{ int const inputBuffered = (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered);
void* cDst;
size_t cSize;
size_t oSize = oend-op;
size_t const iSize = inputBuffered
? zcs->inBuffPos - zcs->inToCompress
: MIN((size_t)(iend - ip), zcs->blockSize);
if (oSize >= ZSTD_compressBound(iSize) || zcs->appliedParams.outBufferMode == ZSTD_bm_stable)
cDst = op; /* compress into output buffer, to skip flush stage */
else
cDst = zcs->outBuff, oSize = zcs->outBuffSize;
if (inputBuffered) {
unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend);
cSize = lastBlock ?
ZSTD_compressEnd(zcs, cDst, oSize,
zcs->inBuff + zcs->inToCompress, iSize) :
ZSTD_compressContinue(zcs, cDst, oSize,
zcs->inBuff + zcs->inToCompress, iSize);
FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed");
zcs->frameEnded = lastBlock;
/* prepare next block */
zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
if (zcs->inBuffTarget > zcs->inBuffSize)
zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize;
DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u",
(unsigned)zcs->inBuffTarget, (unsigned)zcs->inBuffSize);
if (!lastBlock)
assert(zcs->inBuffTarget <= zcs->inBuffSize);
zcs->inToCompress = zcs->inBuffPos;
} else {
unsigned const lastBlock = (ip + iSize == iend);
assert(flushMode == ZSTD_e_end /* Already validated */);
cSize = lastBlock ?
ZSTD_compressEnd(zcs, cDst, oSize, ip, iSize) :
ZSTD_compressContinue(zcs, cDst, oSize, ip, iSize);
/* Consume the input prior to error checking to mirror buffered mode. */
if (iSize > 0)
ip += iSize;
FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed");
zcs->frameEnded = lastBlock;
if (lastBlock)
assert(ip == iend);
}
if (cDst == op) { /* no need to flush */
op += cSize;
if (zcs->frameEnded) {
DEBUGLOG(5, "Frame completed directly in outBuffer");
someMoreWork = 0;
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
}
break;
}
zcs->outBuffContentSize = cSize;
zcs->outBuffFlushedSize = 0;
zcs->streamStage = zcss_flush; /* pass-through to flush stage */
}
ZSTD_FALLTHROUGH;
case zcss_flush:
DEBUGLOG(5, "flush stage");
assert(zcs->appliedParams.outBufferMode == ZSTD_bm_buffered);
{ size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
size_t const flushed = ZSTD_limitCopy(op, (size_t)(oend-op),
zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u",
(unsigned)toFlush, (unsigned)(oend-op), (unsigned)flushed);
if (flushed)
op += flushed;
zcs->outBuffFlushedSize += flushed;
if (toFlush!=flushed) {
/* flush not fully completed, presumably because dst is too small */
assert(op==oend);
someMoreWork = 0;
break;
}
zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
if (zcs->frameEnded) {
DEBUGLOG(5, "Frame completed on flush");
someMoreWork = 0;
ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
break;
}
zcs->streamStage = zcss_load;
break;
}
default: /* impossible */
assert(0);
}
}
input->pos = ip - istart;
output->pos = op - ostart;
if (zcs->frameEnded) return 0;
return ZSTD_nextInputSizeHint(zcs);
}
static size_t ZSTD_nextInputSizeHint_MTorST(const ZSTD_CCtx* cctx)
{
return ZSTD_nextInputSizeHint(cctx);
}
size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
FORWARD_IF_ERROR( ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue) , "");
return ZSTD_nextInputSizeHint_MTorST(zcs);
}
/* After a compression call set the expected input/output buffer.
* This is validated at the start of the next compression call.
*/
static void ZSTD_setBufferExpectations(ZSTD_CCtx* cctx, ZSTD_outBuffer const* output, ZSTD_inBuffer const* input)
{
if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) {
cctx->expectedInBuffer = *input;
}
if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) {
cctx->expectedOutBufferSize = output->size - output->pos;
}
}
/* Validate that the input/output buffers match the expectations set by
* ZSTD_setBufferExpectations.
*/
static size_t ZSTD_checkBufferStability(ZSTD_CCtx const* cctx,
ZSTD_outBuffer const* output,
ZSTD_inBuffer const* input,
ZSTD_EndDirective endOp)
{
if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) {
ZSTD_inBuffer const expect = cctx->expectedInBuffer;
if (expect.src != input->src || expect.pos != input->pos || expect.size != input->size)
RETURN_ERROR(srcBuffer_wrong, "ZSTD_c_stableInBuffer enabled but input differs!");
if (endOp != ZSTD_e_end)
RETURN_ERROR(srcBuffer_wrong, "ZSTD_c_stableInBuffer can only be used with ZSTD_e_end!");
}
if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) {
size_t const outBufferSize = output->size - output->pos;
if (cctx->expectedOutBufferSize != outBufferSize)
RETURN_ERROR(dstBuffer_wrong, "ZSTD_c_stableOutBuffer enabled but output size differs!");
}
return 0;
}
static size_t ZSTD_CCtx_init_compressStream2(ZSTD_CCtx* cctx,
ZSTD_EndDirective endOp,
size_t inSize) {
ZSTD_CCtx_params params = cctx->requestedParams;
ZSTD_prefixDict const prefixDict = cctx->prefixDict;
FORWARD_IF_ERROR( ZSTD_initLocalDict(cctx) , ""); /* Init the local dict if present. */
ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */
assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */
if (cctx->cdict)
params.compressionLevel = cctx->cdict->compressionLevel; /* let cdict take priority in terms of compression level */
DEBUGLOG(4, "ZSTD_compressStream2 : transparent init stage");
if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = inSize + 1; /* auto-fix pledgedSrcSize */
{
size_t const dictSize = prefixDict.dict
? prefixDict.dictSize
: (cctx->cdict ? cctx->cdict->dictContentSize : 0);
ZSTD_cParamMode_e const mode = ZSTD_getCParamMode(cctx->cdict, &params, cctx->pledgedSrcSizePlusOne - 1);
params.cParams = ZSTD_getCParamsFromCCtxParams(
&params, cctx->pledgedSrcSizePlusOne-1,
dictSize, mode);
}
if (ZSTD_CParams_shouldEnableLdm(&params.cParams)) {
/* Enable LDM by default for optimal parser and window size >= 128MB */
DEBUGLOG(4, "LDM enabled by default (window size >= 128MB, strategy >= btopt)");
params.ldmParams.enableLdm = 1;
}
{ U64 const pledgedSrcSize = cctx->pledgedSrcSizePlusOne - 1;
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx,
prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType, ZSTD_dtlm_fast,
cctx->cdict,
&params, pledgedSrcSize,
ZSTDb_buffered) , "");
assert(cctx->appliedParams.nbWorkers == 0);
cctx->inToCompress = 0;
cctx->inBuffPos = 0;
if (cctx->appliedParams.inBufferMode == ZSTD_bm_buffered) {
/* for small input: avoid automatic flush on reaching end of block, since
* it would require to add a 3-bytes null block to end frame
*/
cctx->inBuffTarget = cctx->blockSize + (cctx->blockSize == pledgedSrcSize);
} else {
cctx->inBuffTarget = 0;
}
cctx->outBuffContentSize = cctx->outBuffFlushedSize = 0;
cctx->streamStage = zcss_load;
cctx->frameEnded = 0;
}
return 0;
}
size_t ZSTD_compressStream2( ZSTD_CCtx* cctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp)
{
DEBUGLOG(5, "ZSTD_compressStream2, endOp=%u ", (unsigned)endOp);
/* check conditions */
RETURN_ERROR_IF(output->pos > output->size, dstSize_tooSmall, "invalid output buffer");
RETURN_ERROR_IF(input->pos > input->size, srcSize_wrong, "invalid input buffer");
RETURN_ERROR_IF((U32)endOp > (U32)ZSTD_e_end, parameter_outOfBound, "invalid endDirective");
assert(cctx != NULL);
/* transparent initialization stage */
if (cctx->streamStage == zcss_init) {
FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, endOp, input->size), "CompressStream2 initialization failed");
ZSTD_setBufferExpectations(cctx, output, input); /* Set initial buffer expectations now that we've initialized */
}
/* end of transparent initialization stage */
FORWARD_IF_ERROR(ZSTD_checkBufferStability(cctx, output, input, endOp), "invalid buffers");
/* compression stage */
FORWARD_IF_ERROR( ZSTD_compressStream_generic(cctx, output, input, endOp) , "");
DEBUGLOG(5, "completed ZSTD_compressStream2");
ZSTD_setBufferExpectations(cctx, output, input);
return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */
}
size_t ZSTD_compressStream2_simpleArgs (
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos,
ZSTD_EndDirective endOp)
{
ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
ZSTD_inBuffer input = { src, srcSize, *srcPos };
/* ZSTD_compressStream2() will check validity of dstPos and srcPos */
size_t const cErr = ZSTD_compressStream2(cctx, &output, &input, endOp);
*dstPos = output.pos;
*srcPos = input.pos;
return cErr;
}
size_t ZSTD_compress2(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
ZSTD_bufferMode_e const originalInBufferMode = cctx->requestedParams.inBufferMode;
ZSTD_bufferMode_e const originalOutBufferMode = cctx->requestedParams.outBufferMode;
DEBUGLOG(4, "ZSTD_compress2 (srcSize=%u)", (unsigned)srcSize);
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only);
/* Enable stable input/output buffers. */
cctx->requestedParams.inBufferMode = ZSTD_bm_stable;
cctx->requestedParams.outBufferMode = ZSTD_bm_stable;
{ size_t oPos = 0;
size_t iPos = 0;
size_t const result = ZSTD_compressStream2_simpleArgs(cctx,
dst, dstCapacity, &oPos,
src, srcSize, &iPos,
ZSTD_e_end);
/* Reset to the original values. */
cctx->requestedParams.inBufferMode = originalInBufferMode;
cctx->requestedParams.outBufferMode = originalOutBufferMode;
FORWARD_IF_ERROR(result, "ZSTD_compressStream2_simpleArgs failed");
if (result != 0) { /* compression not completed, due to lack of output space */
assert(oPos == dstCapacity);
RETURN_ERROR(dstSize_tooSmall, "");
}
assert(iPos == srcSize); /* all input is expected consumed */
return oPos;
}
}
typedef struct {
U32 idx; /* Index in array of ZSTD_Sequence */
U32 posInSequence; /* Position within sequence at idx */
size_t posInSrc; /* Number of bytes given by sequences provided so far */
} ZSTD_sequencePosition;
/* Returns a ZSTD error code if sequence is not valid */
static size_t ZSTD_validateSequence(U32 offCode, U32 matchLength,
size_t posInSrc, U32 windowLog, size_t dictSize, U32 minMatch) {
size_t offsetBound;
U32 windowSize = 1 << windowLog;
/* posInSrc represents the amount of data the the decoder would decode up to this point.
* As long as the amount of data decoded is less than or equal to window size, offsets may be
* larger than the total length of output decoded in order to reference the dict, even larger than
* window size. After output surpasses windowSize, we're limited to windowSize offsets again.
*/
offsetBound = posInSrc > windowSize ? (size_t)windowSize : posInSrc + (size_t)dictSize;
RETURN_ERROR_IF(offCode > offsetBound + ZSTD_REP_MOVE, corruption_detected, "Offset too large!");
RETURN_ERROR_IF(matchLength < minMatch, corruption_detected, "Matchlength too small");
return 0;
}
/* Returns an offset code, given a sequence's raw offset, the ongoing repcode array, and whether litLength == 0 */
static U32 ZSTD_finalizeOffCode(U32 rawOffset, const U32 rep[ZSTD_REP_NUM], U32 ll0) {
U32 offCode = rawOffset + ZSTD_REP_MOVE;
U32 repCode = 0;
if (!ll0 && rawOffset == rep[0]) {
repCode = 1;
} else if (rawOffset == rep[1]) {
repCode = 2 - ll0;
} else if (rawOffset == rep[2]) {
repCode = 3 - ll0;
} else if (ll0 && rawOffset == rep[0] - 1) {
repCode = 3;
}
if (repCode) {
/* ZSTD_storeSeq expects a number in the range [0, 2] to represent a repcode */
offCode = repCode - 1;
}
return offCode;
}
/* Returns 0 on success, and a ZSTD_error otherwise. This function scans through an array of
* ZSTD_Sequence, storing the sequences it finds, until it reaches a block delimiter.
*/
static size_t ZSTD_copySequencesToSeqStoreExplicitBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
const void* src, size_t blockSize) {
U32 idx = seqPos->idx;
BYTE const* ip = (BYTE const*)(src);
const BYTE* const iend = ip + blockSize;
repcodes_t updatedRepcodes;
U32 dictSize;
U32 litLength;
U32 matchLength;
U32 ll0;
U32 offCode;
if (cctx->cdict) {
dictSize = (U32)cctx->cdict->dictContentSize;
} else if (cctx->prefixDict.dict) {
dictSize = (U32)cctx->prefixDict.dictSize;
} else {
dictSize = 0;
}
ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(repcodes_t));
for (; (inSeqs[idx].matchLength != 0 || inSeqs[idx].offset != 0) && idx < inSeqsSize; ++idx) {
litLength = inSeqs[idx].litLength;
matchLength = inSeqs[idx].matchLength;
ll0 = litLength == 0;
offCode = ZSTD_finalizeOffCode(inSeqs[idx].offset, updatedRepcodes.rep, ll0);
updatedRepcodes = ZSTD_updateRep(updatedRepcodes.rep, offCode, ll0);
DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offCode, matchLength, litLength);
if (cctx->appliedParams.validateSequences) {
seqPos->posInSrc += litLength + matchLength;
FORWARD_IF_ERROR(ZSTD_validateSequence(offCode, matchLength, seqPos->posInSrc,
cctx->appliedParams.cParams.windowLog, dictSize,
cctx->appliedParams.cParams.minMatch),
"Sequence validation failed");
}
RETURN_ERROR_IF(idx - seqPos->idx > cctx->seqStore.maxNbSeq, memory_allocation,
"Not enough memory allocated. Try adjusting ZSTD_c_minMatch.");
ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offCode, matchLength - MINMATCH);
ip += matchLength + litLength;
}
ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(repcodes_t));
if (inSeqs[idx].litLength) {
DEBUGLOG(6, "Storing last literals of size: %u", inSeqs[idx].litLength);
ZSTD_storeLastLiterals(&cctx->seqStore, ip, inSeqs[idx].litLength);
ip += inSeqs[idx].litLength;
seqPos->posInSrc += inSeqs[idx].litLength;
}
RETURN_ERROR_IF(ip != iend, corruption_detected, "Blocksize doesn't agree with block delimiter!");
seqPos->idx = idx+1;
return 0;
}
/* Returns the number of bytes to move the current read position back by. Only non-zero
* if we ended up splitting a sequence. Otherwise, it may return a ZSTD error if something
* went wrong.
*
* This function will attempt to scan through blockSize bytes represented by the sequences
* in inSeqs, storing any (partial) sequences.
*
* Occasionally, we may want to change the actual number of bytes we consumed from inSeqs to
* avoid splitting a match, or to avoid splitting a match such that it would produce a match
* smaller than MINMATCH. In this case, we return the number of bytes that we didn't read from this block.
*/
static size_t ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
const void* src, size_t blockSize) {
U32 idx = seqPos->idx;
U32 startPosInSequence = seqPos->posInSequence;
U32 endPosInSequence = seqPos->posInSequence + (U32)blockSize;
size_t dictSize;
BYTE const* ip = (BYTE const*)(src);
BYTE const* iend = ip + blockSize; /* May be adjusted if we decide to process fewer than blockSize bytes */
repcodes_t updatedRepcodes;
U32 bytesAdjustment = 0;
U32 finalMatchSplit = 0;
U32 litLength;
U32 matchLength;
U32 rawOffset;
U32 offCode;
if (cctx->cdict) {
dictSize = cctx->cdict->dictContentSize;
} else if (cctx->prefixDict.dict) {
dictSize = cctx->prefixDict.dictSize;
} else {
dictSize = 0;
}
DEBUGLOG(5, "ZSTD_copySequencesToSeqStore: idx: %u PIS: %u blockSize: %zu", idx, startPosInSequence, blockSize);
DEBUGLOG(5, "Start seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength);
ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(repcodes_t));
while (endPosInSequence && idx < inSeqsSize && !finalMatchSplit) {
const ZSTD_Sequence currSeq = inSeqs[idx];
litLength = currSeq.litLength;
matchLength = currSeq.matchLength;
rawOffset = currSeq.offset;
/* Modify the sequence depending on where endPosInSequence lies */
if (endPosInSequence >= currSeq.litLength + currSeq.matchLength) {
if (startPosInSequence >= litLength) {
startPosInSequence -= litLength;
litLength = 0;
matchLength -= startPosInSequence;
} else {
litLength -= startPosInSequence;
}
/* Move to the next sequence */
endPosInSequence -= currSeq.litLength + currSeq.matchLength;
startPosInSequence = 0;
idx++;
} else {
/* This is the final (partial) sequence we're adding from inSeqs, and endPosInSequence
does not reach the end of the match. So, we have to split the sequence */
DEBUGLOG(6, "Require a split: diff: %u, idx: %u PIS: %u",
currSeq.litLength + currSeq.matchLength - endPosInSequence, idx, endPosInSequence);
if (endPosInSequence > litLength) {
U32 firstHalfMatchLength;
litLength = startPosInSequence >= litLength ? 0 : litLength - startPosInSequence;
firstHalfMatchLength = endPosInSequence - startPosInSequence - litLength;
if (matchLength > blockSize && firstHalfMatchLength >= cctx->appliedParams.cParams.minMatch) {
/* Only ever split the match if it is larger than the block size */
U32 secondHalfMatchLength = currSeq.matchLength + currSeq.litLength - endPosInSequence;
if (secondHalfMatchLength < cctx->appliedParams.cParams.minMatch) {
/* Move the endPosInSequence backward so that it creates match of minMatch length */
endPosInSequence -= cctx->appliedParams.cParams.minMatch - secondHalfMatchLength;
bytesAdjustment = cctx->appliedParams.cParams.minMatch - secondHalfMatchLength;
firstHalfMatchLength -= bytesAdjustment;
}
matchLength = firstHalfMatchLength;
/* Flag that we split the last match - after storing the sequence, exit the loop,
but keep the value of endPosInSequence */
finalMatchSplit = 1;
} else {
/* Move the position in sequence backwards so that we don't split match, and break to store
* the last literals. We use the original currSeq.litLength as a marker for where endPosInSequence
* should go. We prefer to do this whenever it is not necessary to split the match, or if doing so
* would cause the first half of the match to be too small
*/
bytesAdjustment = endPosInSequence - currSeq.litLength;
endPosInSequence = currSeq.litLength;
break;
}
} else {
/* This sequence ends inside the literals, break to store the last literals */
break;
}
}
/* Check if this offset can be represented with a repcode */
{ U32 ll0 = (litLength == 0);
offCode = ZSTD_finalizeOffCode(rawOffset, updatedRepcodes.rep, ll0);
updatedRepcodes = ZSTD_updateRep(updatedRepcodes.rep, offCode, ll0);
}
if (cctx->appliedParams.validateSequences) {
seqPos->posInSrc += litLength + matchLength;
FORWARD_IF_ERROR(ZSTD_validateSequence(offCode, matchLength, seqPos->posInSrc,
cctx->appliedParams.cParams.windowLog, dictSize,
cctx->appliedParams.cParams.minMatch),
"Sequence validation failed");
}
DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offCode, matchLength, litLength);
RETURN_ERROR_IF(idx - seqPos->idx > cctx->seqStore.maxNbSeq, memory_allocation,
"Not enough memory allocated. Try adjusting ZSTD_c_minMatch.");
ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offCode, matchLength - MINMATCH);
ip += matchLength + litLength;
}
DEBUGLOG(5, "Ending seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength);
assert(idx == inSeqsSize || endPosInSequence <= inSeqs[idx].litLength + inSeqs[idx].matchLength);
seqPos->idx = idx;
seqPos->posInSequence = endPosInSequence;
ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(repcodes_t));
iend -= bytesAdjustment;
if (ip != iend) {
/* Store any last literals */
U32 lastLLSize = (U32)(iend - ip);
assert(ip <= iend);
DEBUGLOG(6, "Storing last literals of size: %u", lastLLSize);
ZSTD_storeLastLiterals(&cctx->seqStore, ip, lastLLSize);
seqPos->posInSrc += lastLLSize;
}
return bytesAdjustment;
}
typedef size_t (*ZSTD_sequenceCopier) (ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
const void* src, size_t blockSize);
static ZSTD_sequenceCopier ZSTD_selectSequenceCopier(ZSTD_sequenceFormat_e mode) {
ZSTD_sequenceCopier sequenceCopier = NULL;
assert(ZSTD_cParam_withinBounds(ZSTD_c_blockDelimiters, mode));
if (mode == ZSTD_sf_explicitBlockDelimiters) {
return ZSTD_copySequencesToSeqStoreExplicitBlockDelim;
} else if (mode == ZSTD_sf_noBlockDelimiters) {
return ZSTD_copySequencesToSeqStoreNoBlockDelim;
}
assert(sequenceCopier != NULL);
return sequenceCopier;
}
/* Compress, block-by-block, all of the sequences given.
*
* Returns the cumulative size of all compressed blocks (including their headers), otherwise a ZSTD error.
*/
static size_t ZSTD_compressSequences_internal(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
const void* src, size_t srcSize) {
size_t cSize = 0;
U32 lastBlock;
size_t blockSize;
size_t compressedSeqsSize;
size_t remaining = srcSize;
ZSTD_sequencePosition seqPos = {0, 0, 0};
BYTE const* ip = (BYTE const*)src;
BYTE* op = (BYTE*)dst;
ZSTD_sequenceCopier sequenceCopier = ZSTD_selectSequenceCopier(cctx->appliedParams.blockDelimiters);
DEBUGLOG(4, "ZSTD_compressSequences_internal srcSize: %zu, inSeqsSize: %zu", srcSize, inSeqsSize);
/* Special case: empty frame */
if (remaining == 0) {
U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1);
RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "No room for empty frame block header");
MEM_writeLE32(op, cBlockHeader24);
op += ZSTD_blockHeaderSize;
dstCapacity -= ZSTD_blockHeaderSize;
cSize += ZSTD_blockHeaderSize;
}
while (remaining) {
size_t cBlockSize;
size_t additionalByteAdjustment;
lastBlock = remaining <= cctx->blockSize;
blockSize = lastBlock ? (U32)remaining : (U32)cctx->blockSize;
ZSTD_resetSeqStore(&cctx->seqStore);
DEBUGLOG(4, "Working on new block. Blocksize: %zu", blockSize);
additionalByteAdjustment = sequenceCopier(cctx, &seqPos, inSeqs, inSeqsSize, ip, blockSize);
FORWARD_IF_ERROR(additionalByteAdjustment, "Bad sequence copy");
blockSize -= additionalByteAdjustment;
/* If blocks are too small, emit as a nocompress block */
if (blockSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) {
cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cBlockSize, "Nocompress block failed");
DEBUGLOG(4, "Block too small, writing out nocompress block: cSize: %zu", cBlockSize);
cSize += cBlockSize;
ip += blockSize;
op += cBlockSize;
remaining -= blockSize;
dstCapacity -= cBlockSize;
continue;
}
compressedSeqsSize = ZSTD_entropyCompressSequences(&cctx->seqStore,
&cctx->blockState.prevCBlock->entropy, &cctx->blockState.nextCBlock->entropy,
&cctx->appliedParams,
op + ZSTD_blockHeaderSize /* Leave space for block header */, dstCapacity - ZSTD_blockHeaderSize,
blockSize,
cctx->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */,
cctx->bmi2);
FORWARD_IF_ERROR(compressedSeqsSize, "Compressing sequences of block failed");
DEBUGLOG(4, "Compressed sequences size: %zu", compressedSeqsSize);
if (!cctx->isFirstBlock &&
ZSTD_maybeRLE(&cctx->seqStore) &&
ZSTD_isRLE((BYTE const*)src, srcSize)) {
/* We don't want to emit our first block as a RLE even if it qualifies because
* doing so will cause the decoder (cli only) to throw a "should consume all input error."
* This is only an issue for zstd <= v1.4.3
*/
compressedSeqsSize = 1;
}
if (compressedSeqsSize == 0) {
/* ZSTD_noCompressBlock writes the block header as well */
cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cBlockSize, "Nocompress block failed");
DEBUGLOG(4, "Writing out nocompress block, size: %zu", cBlockSize);
} else if (compressedSeqsSize == 1) {
cBlockSize = ZSTD_rleCompressBlock(op, dstCapacity, *ip, blockSize, lastBlock);
FORWARD_IF_ERROR(cBlockSize, "RLE compress block failed");
DEBUGLOG(4, "Writing out RLE block, size: %zu", cBlockSize);
} else {
U32 cBlockHeader;
/* Error checking and repcodes update */
ZSTD_confirmRepcodesAndEntropyTables(cctx);
if (cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
/* Write block header into beginning of block*/
cBlockHeader = lastBlock + (((U32)bt_compressed)<<1) + (U32)(compressedSeqsSize << 3);
MEM_writeLE24(op, cBlockHeader);
cBlockSize = ZSTD_blockHeaderSize + compressedSeqsSize;
DEBUGLOG(4, "Writing out compressed block, size: %zu", cBlockSize);
}
cSize += cBlockSize;
DEBUGLOG(4, "cSize running total: %zu", cSize);
if (lastBlock) {
break;
} else {
ip += blockSize;
op += cBlockSize;
remaining -= blockSize;
dstCapacity -= cBlockSize;
cctx->isFirstBlock = 0;
}
}
return cSize;
}
size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstCapacity,
const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
const void* src, size_t srcSize) {
BYTE* op = (BYTE*)dst;
size_t cSize = 0;
size_t compressedBlocksSize = 0;
size_t frameHeaderSize = 0;
/* Transparent initialization stage, same as compressStream2() */
DEBUGLOG(3, "ZSTD_compressSequences()");
assert(cctx != NULL);
FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, ZSTD_e_end, srcSize), "CCtx initialization failed");
/* Begin writing output, starting with frame header */
frameHeaderSize = ZSTD_writeFrameHeader(op, dstCapacity, &cctx->appliedParams, srcSize, cctx->dictID);
op += frameHeaderSize;
dstCapacity -= frameHeaderSize;
cSize += frameHeaderSize;
if (cctx->appliedParams.fParams.checksumFlag && srcSize) {
xxh64_update(&cctx->xxhState, src, srcSize);
}
/* cSize includes block header size and compressed sequences size */
compressedBlocksSize = ZSTD_compressSequences_internal(cctx,
op, dstCapacity,
inSeqs, inSeqsSize,
src, srcSize);
FORWARD_IF_ERROR(compressedBlocksSize, "Compressing blocks failed!");
cSize += compressedBlocksSize;
dstCapacity -= compressedBlocksSize;
if (cctx->appliedParams.fParams.checksumFlag) {
U32 const checksum = (U32) xxh64_digest(&cctx->xxhState);
RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum");
DEBUGLOG(4, "Write checksum : %08X", (unsigned)checksum);
MEM_writeLE32((char*)dst + cSize, checksum);
cSize += 4;
}
DEBUGLOG(3, "Final compressed size: %zu", cSize);
return cSize;
}
/*====== Finalize ======*/
/*! ZSTD_flushStream() :
* @return : amount of data remaining to flush */
size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
{
ZSTD_inBuffer input = { NULL, 0, 0 };
return ZSTD_compressStream2(zcs, output, &input, ZSTD_e_flush);
}
size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
{
ZSTD_inBuffer input = { NULL, 0, 0 };
size_t const remainingToFlush = ZSTD_compressStream2(zcs, output, &input, ZSTD_e_end);
FORWARD_IF_ERROR( remainingToFlush , "ZSTD_compressStream2 failed");
if (zcs->appliedParams.nbWorkers > 0) return remainingToFlush; /* minimal estimation */
/* single thread mode : attempt to calculate remaining to flush more precisely */
{ size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE;
size_t const checksumSize = (size_t)(zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4);
size_t const toFlush = remainingToFlush + lastBlockSize + checksumSize;
DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (unsigned)toFlush);
return toFlush;
}
}
/*-===== Pre-defined compression levels =====-*/
#define ZSTD_MAX_CLEVEL 22
int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
int ZSTD_minCLevel(void) { return (int)-ZSTD_TARGETLENGTH_MAX; }
static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
{ /* "default" - for any srcSize > 256 KB */
/* W, C, H, S, L, TL, strat */
{ 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */
{ 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */
{ 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */
{ 21, 16, 17, 1, 5, 0, ZSTD_dfast }, /* level 3 */
{ 21, 18, 18, 1, 5, 0, ZSTD_dfast }, /* level 4 */
{ 21, 18, 19, 2, 5, 2, ZSTD_greedy }, /* level 5 */
{ 21, 19, 19, 3, 5, 4, ZSTD_greedy }, /* level 6 */
{ 21, 19, 19, 3, 5, 8, ZSTD_lazy }, /* level 7 */
{ 21, 19, 19, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */
{ 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */
{ 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */
{ 22, 21, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */
{ 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */
{ 22, 21, 22, 5, 5, 32, ZSTD_btlazy2 }, /* level 13 */
{ 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */
{ 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */
{ 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */
{ 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */
{ 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */
{ 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */
{ 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */
{ 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */
{ 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */
},
{ /* for srcSize <= 256 KB */
/* W, C, H, S, L, T, strat */
{ 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */
{ 18, 14, 14, 1, 5, 0, ZSTD_dfast }, /* level 2 */
{ 18, 16, 16, 1, 4, 0, ZSTD_dfast }, /* level 3 */
{ 18, 16, 17, 2, 5, 2, ZSTD_greedy }, /* level 4.*/
{ 18, 18, 18, 3, 5, 2, ZSTD_greedy }, /* level 5.*/
{ 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/
{ 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */
{ 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/
{ 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/
{ 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */
{ 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
{ 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/
{ 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/
{ 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/
{ 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/
{ 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/
},
{ /* for srcSize <= 128 KB */
/* W, C, H, S, L, T, strat */
{ 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */
{ 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */
{ 17, 15, 16, 2, 5, 0, ZSTD_dfast }, /* level 3 */
{ 17, 17, 17, 2, 4, 0, ZSTD_dfast }, /* level 4 */
{ 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */
{ 17, 17, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */
{ 17, 17, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */
{ 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */
{ 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/
{ 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
{ 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/
{ 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/
{ 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/
{ 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/
{ 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/
},
{ /* for srcSize <= 16 KB */
/* W, C, H, S, L, T, strat */
{ 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */
{ 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */
{ 14, 14, 15, 2, 4, 0, ZSTD_dfast }, /* level 3 */
{ 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */
{ 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/
{ 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */
{ 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/
{ 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/
{ 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/
{ 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/
{ 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/
{ 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/
{ 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/
{ 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/
{ 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/
{ 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/
},
};
static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams(int const compressionLevel, size_t const dictSize)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, 0, dictSize, ZSTD_cpm_createCDict);
switch (cParams.strategy) {
case ZSTD_fast:
case ZSTD_dfast:
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
cParams.hashLog += ZSTD_LAZY_DDSS_BUCKET_LOG;
break;
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
break;
}
return cParams;
}
static int ZSTD_dedicatedDictSearch_isSupported(
ZSTD_compressionParameters const* cParams)
{
return (cParams->strategy >= ZSTD_greedy)
&& (cParams->strategy <= ZSTD_lazy2)
&& (cParams->hashLog >= cParams->chainLog)
&& (cParams->chainLog <= 24);
}
/*
* Reverses the adjustment applied to cparams when enabling dedicated dict
* search. This is used to recover the params set to be used in the working
* context. (Otherwise, those tables would also grow.)
*/
static void ZSTD_dedicatedDictSearch_revertCParams(
ZSTD_compressionParameters* cParams) {
switch (cParams->strategy) {
case ZSTD_fast:
case ZSTD_dfast:
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
cParams->hashLog -= ZSTD_LAZY_DDSS_BUCKET_LOG;
break;
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
break;
}
}
static U64 ZSTD_getCParamRowSize(U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode)
{
switch (mode) {
case ZSTD_cpm_unknown:
case ZSTD_cpm_noAttachDict:
case ZSTD_cpm_createCDict:
break;
case ZSTD_cpm_attachDict:
dictSize = 0;
break;
default:
assert(0);
break;
}
{ int const unknown = srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN;
size_t const addedSize = unknown && dictSize > 0 ? 500 : 0;
return unknown && dictSize == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : srcSizeHint+dictSize+addedSize;
}
}
/*! ZSTD_getCParams_internal() :
* @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize.
* Note: srcSizeHint 0 means 0, use ZSTD_CONTENTSIZE_UNKNOWN for unknown.
* Use dictSize == 0 for unknown or unused.
* Note: `mode` controls how we treat the `dictSize`. See docs for `ZSTD_cParamMode_e`. */
static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode)
{
U64 const rSize = ZSTD_getCParamRowSize(srcSizeHint, dictSize, mode);
U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB);
int row;
DEBUGLOG(5, "ZSTD_getCParams_internal (cLevel=%i)", compressionLevel);
/* row */
if (compressionLevel == 0) row = ZSTD_CLEVEL_DEFAULT; /* 0 == default */
else if (compressionLevel < 0) row = 0; /* entry 0 is baseline for fast mode */
else if (compressionLevel > ZSTD_MAX_CLEVEL) row = ZSTD_MAX_CLEVEL;
else row = compressionLevel;
{ ZSTD_compressionParameters cp = ZSTD_defaultCParameters[tableID][row];
/* acceleration factor */
if (compressionLevel < 0) {
int const clampedCompressionLevel = MAX(ZSTD_minCLevel(), compressionLevel);
cp.targetLength = (unsigned)(-clampedCompressionLevel);
}
/* refine parameters based on srcSize & dictSize */
return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize, mode);
}
}
/*! ZSTD_getCParams() :
* @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize.
* Size values are optional, provide 0 if not known or unused */
ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize)
{
if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN;
return ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown);
}
/*! ZSTD_getParams() :
* same idea as ZSTD_getCParams()
* @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`).
* Fields of `ZSTD_frameParameters` are set to default values */
static ZSTD_parameters ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode) {
ZSTD_parameters params;
ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, mode);
DEBUGLOG(5, "ZSTD_getParams (cLevel=%i)", compressionLevel);
ZSTD_memset(&params, 0, sizeof(params));
params.cParams = cParams;
params.fParams.contentSizeFlag = 1;
return params;
}
/*! ZSTD_getParams() :
* same idea as ZSTD_getCParams()
* @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`).
* Fields of `ZSTD_frameParameters` are set to default values */
ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) {
if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN;
return ZSTD_getParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown);
}