d98e000cc7
requesed -> requested Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2608 lines
68 KiB
C
2608 lines
68 KiB
C
/*
|
|
* Adaptec AAC series RAID controller driver
|
|
* (c) Copyright 2001 Red Hat Inc.
|
|
*
|
|
* based on the old aacraid driver that is..
|
|
* Adaptec aacraid device driver for Linux.
|
|
*
|
|
* Copyright (c) 2000-2010 Adaptec, Inc.
|
|
* 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
|
|
* 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Module Name:
|
|
* commsup.c
|
|
*
|
|
* Abstract: Contain all routines that are required for FSA host/adapter
|
|
* communication.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/types.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/semaphore.h>
|
|
#include <linux/bcd.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
|
|
#include "aacraid.h"
|
|
|
|
/**
|
|
* fib_map_alloc - allocate the fib objects
|
|
* @dev: Adapter to allocate for
|
|
*
|
|
* Allocate and map the shared PCI space for the FIB blocks used to
|
|
* talk to the Adaptec firmware.
|
|
*/
|
|
|
|
static int fib_map_alloc(struct aac_dev *dev)
|
|
{
|
|
if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
|
|
dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
|
|
else
|
|
dev->max_cmd_size = dev->max_fib_size;
|
|
if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
|
|
dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
|
|
} else {
|
|
dev->max_cmd_size = dev->max_fib_size;
|
|
}
|
|
|
|
dprintk((KERN_INFO
|
|
"allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
|
|
&dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
|
|
AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
|
|
dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
|
|
(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
|
|
* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
|
|
&dev->hw_fib_pa, GFP_KERNEL);
|
|
if (dev->hw_fib_va == NULL)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* aac_fib_map_free - free the fib objects
|
|
* @dev: Adapter to free
|
|
*
|
|
* Free the PCI mappings and the memory allocated for FIB blocks
|
|
* on this adapter.
|
|
*/
|
|
|
|
void aac_fib_map_free(struct aac_dev *dev)
|
|
{
|
|
size_t alloc_size;
|
|
size_t fib_size;
|
|
int num_fibs;
|
|
|
|
if(!dev->hw_fib_va || !dev->max_cmd_size)
|
|
return;
|
|
|
|
num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
|
|
fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
|
|
alloc_size = fib_size * num_fibs + ALIGN32 - 1;
|
|
|
|
dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
|
|
dev->hw_fib_pa);
|
|
|
|
dev->hw_fib_va = NULL;
|
|
dev->hw_fib_pa = 0;
|
|
}
|
|
|
|
void aac_fib_vector_assign(struct aac_dev *dev)
|
|
{
|
|
u32 i = 0;
|
|
u32 vector = 1;
|
|
struct fib *fibptr = NULL;
|
|
|
|
for (i = 0, fibptr = &dev->fibs[i];
|
|
i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
|
|
i++, fibptr++) {
|
|
if ((dev->max_msix == 1) ||
|
|
(i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
|
|
- dev->vector_cap))) {
|
|
fibptr->vector_no = 0;
|
|
} else {
|
|
fibptr->vector_no = vector;
|
|
vector++;
|
|
if (vector == dev->max_msix)
|
|
vector = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* aac_fib_setup - setup the fibs
|
|
* @dev: Adapter to set up
|
|
*
|
|
* Allocate the PCI space for the fibs, map it and then initialise the
|
|
* fib area, the unmapped fib data and also the free list
|
|
*/
|
|
|
|
int aac_fib_setup(struct aac_dev * dev)
|
|
{
|
|
struct fib *fibptr;
|
|
struct hw_fib *hw_fib;
|
|
dma_addr_t hw_fib_pa;
|
|
int i;
|
|
u32 max_cmds;
|
|
|
|
while (((i = fib_map_alloc(dev)) == -ENOMEM)
|
|
&& (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
|
|
max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
|
|
dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
|
|
if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
|
|
dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
|
|
}
|
|
if (i<0)
|
|
return -ENOMEM;
|
|
|
|
memset(dev->hw_fib_va, 0,
|
|
(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
|
|
(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
|
|
|
|
/* 32 byte alignment for PMC */
|
|
hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
|
|
hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
|
|
(hw_fib_pa - dev->hw_fib_pa));
|
|
|
|
/* add Xport header */
|
|
hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
|
|
sizeof(struct aac_fib_xporthdr));
|
|
hw_fib_pa += sizeof(struct aac_fib_xporthdr);
|
|
|
|
/*
|
|
* Initialise the fibs
|
|
*/
|
|
for (i = 0, fibptr = &dev->fibs[i];
|
|
i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
|
|
i++, fibptr++)
|
|
{
|
|
fibptr->flags = 0;
|
|
fibptr->size = sizeof(struct fib);
|
|
fibptr->dev = dev;
|
|
fibptr->hw_fib_va = hw_fib;
|
|
fibptr->data = (void *) fibptr->hw_fib_va->data;
|
|
fibptr->next = fibptr+1; /* Forward chain the fibs */
|
|
sema_init(&fibptr->event_wait, 0);
|
|
spin_lock_init(&fibptr->event_lock);
|
|
hw_fib->header.XferState = cpu_to_le32(0xffffffff);
|
|
hw_fib->header.SenderSize =
|
|
cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
|
|
fibptr->hw_fib_pa = hw_fib_pa;
|
|
fibptr->hw_sgl_pa = hw_fib_pa +
|
|
offsetof(struct aac_hba_cmd_req, sge[2]);
|
|
/*
|
|
* one element is for the ptr to the separate sg list,
|
|
* second element for 32 byte alignment
|
|
*/
|
|
fibptr->hw_error_pa = hw_fib_pa +
|
|
offsetof(struct aac_native_hba, resp.resp_bytes[0]);
|
|
|
|
hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
|
|
dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
|
|
hw_fib_pa = hw_fib_pa +
|
|
dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
|
|
}
|
|
|
|
/*
|
|
*Assign vector numbers to fibs
|
|
*/
|
|
aac_fib_vector_assign(dev);
|
|
|
|
/*
|
|
* Add the fib chain to the free list
|
|
*/
|
|
dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
|
|
/*
|
|
* Set 8 fibs aside for management tools
|
|
*/
|
|
dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* aac_fib_alloc_tag-allocate a fib using tags
|
|
* @dev: Adapter to allocate the fib for
|
|
*
|
|
* Allocate a fib from the adapter fib pool using tags
|
|
* from the blk layer.
|
|
*/
|
|
|
|
struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
|
|
{
|
|
struct fib *fibptr;
|
|
|
|
fibptr = &dev->fibs[scmd->request->tag];
|
|
/*
|
|
* Null out fields that depend on being zero at the start of
|
|
* each I/O
|
|
*/
|
|
fibptr->hw_fib_va->header.XferState = 0;
|
|
fibptr->type = FSAFS_NTC_FIB_CONTEXT;
|
|
fibptr->callback_data = NULL;
|
|
fibptr->callback = NULL;
|
|
|
|
return fibptr;
|
|
}
|
|
|
|
/**
|
|
* aac_fib_alloc - allocate a fib
|
|
* @dev: Adapter to allocate the fib for
|
|
*
|
|
* Allocate a fib from the adapter fib pool. If the pool is empty we
|
|
* return NULL.
|
|
*/
|
|
|
|
struct fib *aac_fib_alloc(struct aac_dev *dev)
|
|
{
|
|
struct fib * fibptr;
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&dev->fib_lock, flags);
|
|
fibptr = dev->free_fib;
|
|
if(!fibptr){
|
|
spin_unlock_irqrestore(&dev->fib_lock, flags);
|
|
return fibptr;
|
|
}
|
|
dev->free_fib = fibptr->next;
|
|
spin_unlock_irqrestore(&dev->fib_lock, flags);
|
|
/*
|
|
* Set the proper node type code and node byte size
|
|
*/
|
|
fibptr->type = FSAFS_NTC_FIB_CONTEXT;
|
|
fibptr->size = sizeof(struct fib);
|
|
/*
|
|
* Null out fields that depend on being zero at the start of
|
|
* each I/O
|
|
*/
|
|
fibptr->hw_fib_va->header.XferState = 0;
|
|
fibptr->flags = 0;
|
|
fibptr->callback = NULL;
|
|
fibptr->callback_data = NULL;
|
|
|
|
return fibptr;
|
|
}
|
|
|
|
/**
|
|
* aac_fib_free - free a fib
|
|
* @fibptr: fib to free up
|
|
*
|
|
* Frees up a fib and places it on the appropriate queue
|
|
*/
|
|
|
|
void aac_fib_free(struct fib *fibptr)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (fibptr->done == 2)
|
|
return;
|
|
|
|
spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
|
|
if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
|
|
aac_config.fib_timeouts++;
|
|
if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
|
|
fibptr->hw_fib_va->header.XferState != 0) {
|
|
printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
|
|
(void*)fibptr,
|
|
le32_to_cpu(fibptr->hw_fib_va->header.XferState));
|
|
}
|
|
fibptr->next = fibptr->dev->free_fib;
|
|
fibptr->dev->free_fib = fibptr;
|
|
spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* aac_fib_init - initialise a fib
|
|
* @fibptr: The fib to initialize
|
|
*
|
|
* Set up the generic fib fields ready for use
|
|
*/
|
|
|
|
void aac_fib_init(struct fib *fibptr)
|
|
{
|
|
struct hw_fib *hw_fib = fibptr->hw_fib_va;
|
|
|
|
memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
|
|
hw_fib->header.StructType = FIB_MAGIC;
|
|
hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
|
|
hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
|
|
hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
|
|
hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
|
|
}
|
|
|
|
/**
|
|
* fib_deallocate - deallocate a fib
|
|
* @fibptr: fib to deallocate
|
|
*
|
|
* Will deallocate and return to the free pool the FIB pointed to by the
|
|
* caller.
|
|
*/
|
|
|
|
static void fib_dealloc(struct fib * fibptr)
|
|
{
|
|
struct hw_fib *hw_fib = fibptr->hw_fib_va;
|
|
hw_fib->header.XferState = 0;
|
|
}
|
|
|
|
/*
|
|
* Commuication primitives define and support the queuing method we use to
|
|
* support host to adapter commuication. All queue accesses happen through
|
|
* these routines and are the only routines which have a knowledge of the
|
|
* how these queues are implemented.
|
|
*/
|
|
|
|
/**
|
|
* aac_get_entry - get a queue entry
|
|
* @dev: Adapter
|
|
* @qid: Queue Number
|
|
* @entry: Entry return
|
|
* @index: Index return
|
|
* @nonotify: notification control
|
|
*
|
|
* With a priority the routine returns a queue entry if the queue has free entries. If the queue
|
|
* is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
|
|
* returned.
|
|
*/
|
|
|
|
static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
|
|
{
|
|
struct aac_queue * q;
|
|
unsigned long idx;
|
|
|
|
/*
|
|
* All of the queues wrap when they reach the end, so we check
|
|
* to see if they have reached the end and if they have we just
|
|
* set the index back to zero. This is a wrap. You could or off
|
|
* the high bits in all updates but this is a bit faster I think.
|
|
*/
|
|
|
|
q = &dev->queues->queue[qid];
|
|
|
|
idx = *index = le32_to_cpu(*(q->headers.producer));
|
|
/* Interrupt Moderation, only interrupt for first two entries */
|
|
if (idx != le32_to_cpu(*(q->headers.consumer))) {
|
|
if (--idx == 0) {
|
|
if (qid == AdapNormCmdQueue)
|
|
idx = ADAP_NORM_CMD_ENTRIES;
|
|
else
|
|
idx = ADAP_NORM_RESP_ENTRIES;
|
|
}
|
|
if (idx != le32_to_cpu(*(q->headers.consumer)))
|
|
*nonotify = 1;
|
|
}
|
|
|
|
if (qid == AdapNormCmdQueue) {
|
|
if (*index >= ADAP_NORM_CMD_ENTRIES)
|
|
*index = 0; /* Wrap to front of the Producer Queue. */
|
|
} else {
|
|
if (*index >= ADAP_NORM_RESP_ENTRIES)
|
|
*index = 0; /* Wrap to front of the Producer Queue. */
|
|
}
|
|
|
|
/* Queue is full */
|
|
if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
|
|
printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
|
|
qid, atomic_read(&q->numpending));
|
|
return 0;
|
|
} else {
|
|
*entry = q->base + *index;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* aac_queue_get - get the next free QE
|
|
* @dev: Adapter
|
|
* @index: Returned index
|
|
* @priority: Priority of fib
|
|
* @fib: Fib to associate with the queue entry
|
|
* @wait: Wait if queue full
|
|
* @fibptr: Driver fib object to go with fib
|
|
* @nonotify: Don't notify the adapter
|
|
*
|
|
* Gets the next free QE off the requested priorty adapter command
|
|
* queue and associates the Fib with the QE. The QE represented by
|
|
* index is ready to insert on the queue when this routine returns
|
|
* success.
|
|
*/
|
|
|
|
int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
|
|
{
|
|
struct aac_entry * entry = NULL;
|
|
int map = 0;
|
|
|
|
if (qid == AdapNormCmdQueue) {
|
|
/* if no entries wait for some if caller wants to */
|
|
while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
|
|
printk(KERN_ERR "GetEntries failed\n");
|
|
}
|
|
/*
|
|
* Setup queue entry with a command, status and fib mapped
|
|
*/
|
|
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
|
|
map = 1;
|
|
} else {
|
|
while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
|
|
/* if no entries wait for some if caller wants to */
|
|
}
|
|
/*
|
|
* Setup queue entry with command, status and fib mapped
|
|
*/
|
|
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
|
|
entry->addr = hw_fib->header.SenderFibAddress;
|
|
/* Restore adapters pointer to the FIB */
|
|
hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
|
|
map = 0;
|
|
}
|
|
/*
|
|
* If MapFib is true than we need to map the Fib and put pointers
|
|
* in the queue entry.
|
|
*/
|
|
if (map)
|
|
entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Define the highest level of host to adapter communication routines.
|
|
* These routines will support host to adapter FS commuication. These
|
|
* routines have no knowledge of the commuication method used. This level
|
|
* sends and receives FIBs. This level has no knowledge of how these FIBs
|
|
* get passed back and forth.
|
|
*/
|
|
|
|
/**
|
|
* aac_fib_send - send a fib to the adapter
|
|
* @command: Command to send
|
|
* @fibptr: The fib
|
|
* @size: Size of fib data area
|
|
* @priority: Priority of Fib
|
|
* @wait: Async/sync select
|
|
* @reply: True if a reply is wanted
|
|
* @callback: Called with reply
|
|
* @callback_data: Passed to callback
|
|
*
|
|
* Sends the requested FIB to the adapter and optionally will wait for a
|
|
* response FIB. If the caller does not wish to wait for a response than
|
|
* an event to wait on must be supplied. This event will be set when a
|
|
* response FIB is received from the adapter.
|
|
*/
|
|
|
|
int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
|
|
int priority, int wait, int reply, fib_callback callback,
|
|
void *callback_data)
|
|
{
|
|
struct aac_dev * dev = fibptr->dev;
|
|
struct hw_fib * hw_fib = fibptr->hw_fib_va;
|
|
unsigned long flags = 0;
|
|
unsigned long mflags = 0;
|
|
unsigned long sflags = 0;
|
|
|
|
if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
|
|
return -EBUSY;
|
|
|
|
if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* There are 5 cases with the wait and response requested flags.
|
|
* The only invalid cases are if the caller requests to wait and
|
|
* does not request a response and if the caller does not want a
|
|
* response and the Fib is not allocated from pool. If a response
|
|
* is not requested the Fib will just be deallocaed by the DPC
|
|
* routine when the response comes back from the adapter. No
|
|
* further processing will be done besides deleting the Fib. We
|
|
* will have a debug mode where the adapter can notify the host
|
|
* it had a problem and the host can log that fact.
|
|
*/
|
|
fibptr->flags = 0;
|
|
if (wait && !reply) {
|
|
return -EINVAL;
|
|
} else if (!wait && reply) {
|
|
hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
|
|
FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
|
|
} else if (!wait && !reply) {
|
|
hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
|
|
FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
|
|
} else if (wait && reply) {
|
|
hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
|
|
FIB_COUNTER_INCREMENT(aac_config.NormalSent);
|
|
}
|
|
/*
|
|
* Map the fib into 32bits by using the fib number
|
|
*/
|
|
|
|
hw_fib->header.SenderFibAddress =
|
|
cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
|
|
|
|
/* use the same shifted value for handle to be compatible
|
|
* with the new native hba command handle
|
|
*/
|
|
hw_fib->header.Handle =
|
|
cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
|
|
|
|
/*
|
|
* Set FIB state to indicate where it came from and if we want a
|
|
* response from the adapter. Also load the command from the
|
|
* caller.
|
|
*
|
|
* Map the hw fib pointer as a 32bit value
|
|
*/
|
|
hw_fib->header.Command = cpu_to_le16(command);
|
|
hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
|
|
/*
|
|
* Set the size of the Fib we want to send to the adapter
|
|
*/
|
|
hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
|
|
if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
|
|
return -EMSGSIZE;
|
|
}
|
|
/*
|
|
* Get a queue entry connect the FIB to it and send an notify
|
|
* the adapter a command is ready.
|
|
*/
|
|
hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
|
|
|
|
/*
|
|
* Fill in the Callback and CallbackContext if we are not
|
|
* going to wait.
|
|
*/
|
|
if (!wait) {
|
|
fibptr->callback = callback;
|
|
fibptr->callback_data = callback_data;
|
|
fibptr->flags = FIB_CONTEXT_FLAG;
|
|
}
|
|
|
|
fibptr->done = 0;
|
|
|
|
FIB_COUNTER_INCREMENT(aac_config.FibsSent);
|
|
|
|
dprintk((KERN_DEBUG "Fib contents:.\n"));
|
|
dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
|
|
dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
|
|
dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
|
|
dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
|
|
dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
|
|
dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
|
|
|
|
if (!dev->queues)
|
|
return -EBUSY;
|
|
|
|
if (wait) {
|
|
|
|
spin_lock_irqsave(&dev->manage_lock, mflags);
|
|
if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
|
|
printk(KERN_INFO "No management Fibs Available:%d\n",
|
|
dev->management_fib_count);
|
|
spin_unlock_irqrestore(&dev->manage_lock, mflags);
|
|
return -EBUSY;
|
|
}
|
|
dev->management_fib_count++;
|
|
spin_unlock_irqrestore(&dev->manage_lock, mflags);
|
|
spin_lock_irqsave(&fibptr->event_lock, flags);
|
|
}
|
|
|
|
if (dev->sync_mode) {
|
|
if (wait)
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
spin_lock_irqsave(&dev->sync_lock, sflags);
|
|
if (dev->sync_fib) {
|
|
list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
|
|
spin_unlock_irqrestore(&dev->sync_lock, sflags);
|
|
} else {
|
|
dev->sync_fib = fibptr;
|
|
spin_unlock_irqrestore(&dev->sync_lock, sflags);
|
|
aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
|
|
(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
|
|
NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
if (wait) {
|
|
fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
|
|
if (down_interruptible(&fibptr->event_wait)) {
|
|
fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
return -EINPROGRESS;
|
|
}
|
|
|
|
if (aac_adapter_deliver(fibptr) != 0) {
|
|
printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
|
|
if (wait) {
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
spin_lock_irqsave(&dev->manage_lock, mflags);
|
|
dev->management_fib_count--;
|
|
spin_unlock_irqrestore(&dev->manage_lock, mflags);
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
|
|
/*
|
|
* If the caller wanted us to wait for response wait now.
|
|
*/
|
|
|
|
if (wait) {
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
/* Only set for first known interruptable command */
|
|
if (wait < 0) {
|
|
/*
|
|
* *VERY* Dangerous to time out a command, the
|
|
* assumption is made that we have no hope of
|
|
* functioning because an interrupt routing or other
|
|
* hardware failure has occurred.
|
|
*/
|
|
unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
|
|
while (down_trylock(&fibptr->event_wait)) {
|
|
int blink;
|
|
if (time_is_before_eq_jiffies(timeout)) {
|
|
struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
|
|
atomic_dec(&q->numpending);
|
|
if (wait == -1) {
|
|
printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
|
|
"Usually a result of a PCI interrupt routing problem;\n"
|
|
"update mother board BIOS or consider utilizing one of\n"
|
|
"the SAFE mode kernel options (acpi, apic etc)\n");
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (unlikely(pci_channel_offline(dev->pdev)))
|
|
return -EFAULT;
|
|
|
|
if ((blink = aac_adapter_check_health(dev)) > 0) {
|
|
if (wait == -1) {
|
|
printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
|
|
"Usually a result of a serious unrecoverable hardware problem\n",
|
|
blink);
|
|
}
|
|
return -EFAULT;
|
|
}
|
|
/*
|
|
* Allow other processes / CPUS to use core
|
|
*/
|
|
schedule();
|
|
}
|
|
} else if (down_interruptible(&fibptr->event_wait)) {
|
|
/* Do nothing ... satisfy
|
|
* down_interruptible must_check */
|
|
}
|
|
|
|
spin_lock_irqsave(&fibptr->event_lock, flags);
|
|
if (fibptr->done == 0) {
|
|
fibptr->done = 2; /* Tell interrupt we aborted */
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
return -ERESTARTSYS;
|
|
}
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
BUG_ON(fibptr->done == 0);
|
|
|
|
if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
|
|
return -ETIMEDOUT;
|
|
return 0;
|
|
}
|
|
/*
|
|
* If the user does not want a response than return success otherwise
|
|
* return pending
|
|
*/
|
|
if (reply)
|
|
return -EINPROGRESS;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
|
|
void *callback_data)
|
|
{
|
|
struct aac_dev *dev = fibptr->dev;
|
|
int wait;
|
|
unsigned long flags = 0;
|
|
unsigned long mflags = 0;
|
|
struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
|
|
fibptr->hw_fib_va;
|
|
|
|
fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
|
|
if (callback) {
|
|
wait = 0;
|
|
fibptr->callback = callback;
|
|
fibptr->callback_data = callback_data;
|
|
} else
|
|
wait = 1;
|
|
|
|
|
|
hbacmd->iu_type = command;
|
|
|
|
if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
|
|
/* bit1 of request_id must be 0 */
|
|
hbacmd->request_id =
|
|
cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
|
|
fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
|
|
} else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
|
|
return -EINVAL;
|
|
|
|
|
|
if (wait) {
|
|
spin_lock_irqsave(&dev->manage_lock, mflags);
|
|
if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
|
|
spin_unlock_irqrestore(&dev->manage_lock, mflags);
|
|
return -EBUSY;
|
|
}
|
|
dev->management_fib_count++;
|
|
spin_unlock_irqrestore(&dev->manage_lock, mflags);
|
|
spin_lock_irqsave(&fibptr->event_lock, flags);
|
|
}
|
|
|
|
if (aac_adapter_deliver(fibptr) != 0) {
|
|
if (wait) {
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
spin_lock_irqsave(&dev->manage_lock, mflags);
|
|
dev->management_fib_count--;
|
|
spin_unlock_irqrestore(&dev->manage_lock, mflags);
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
FIB_COUNTER_INCREMENT(aac_config.NativeSent);
|
|
|
|
if (wait) {
|
|
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
|
|
if (unlikely(pci_channel_offline(dev->pdev)))
|
|
return -EFAULT;
|
|
|
|
fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
|
|
if (down_interruptible(&fibptr->event_wait))
|
|
fibptr->done = 2;
|
|
fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
|
|
|
|
spin_lock_irqsave(&fibptr->event_lock, flags);
|
|
if ((fibptr->done == 0) || (fibptr->done == 2)) {
|
|
fibptr->done = 2; /* Tell interrupt we aborted */
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
return -ERESTARTSYS;
|
|
}
|
|
spin_unlock_irqrestore(&fibptr->event_lock, flags);
|
|
WARN_ON(fibptr->done == 0);
|
|
|
|
if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -EINPROGRESS;
|
|
}
|
|
|
|
/**
|
|
* aac_consumer_get - get the top of the queue
|
|
* @dev: Adapter
|
|
* @q: Queue
|
|
* @entry: Return entry
|
|
*
|
|
* Will return a pointer to the entry on the top of the queue requested that
|
|
* we are a consumer of, and return the address of the queue entry. It does
|
|
* not change the state of the queue.
|
|
*/
|
|
|
|
int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
|
|
{
|
|
u32 index;
|
|
int status;
|
|
if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
|
|
status = 0;
|
|
} else {
|
|
/*
|
|
* The consumer index must be wrapped if we have reached
|
|
* the end of the queue, else we just use the entry
|
|
* pointed to by the header index
|
|
*/
|
|
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
|
|
index = 0;
|
|
else
|
|
index = le32_to_cpu(*q->headers.consumer);
|
|
*entry = q->base + index;
|
|
status = 1;
|
|
}
|
|
return(status);
|
|
}
|
|
|
|
/**
|
|
* aac_consumer_free - free consumer entry
|
|
* @dev: Adapter
|
|
* @q: Queue
|
|
* @qid: Queue ident
|
|
*
|
|
* Frees up the current top of the queue we are a consumer of. If the
|
|
* queue was full notify the producer that the queue is no longer full.
|
|
*/
|
|
|
|
void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
|
|
{
|
|
int wasfull = 0;
|
|
u32 notify;
|
|
|
|
if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
|
|
wasfull = 1;
|
|
|
|
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
|
|
*q->headers.consumer = cpu_to_le32(1);
|
|
else
|
|
le32_add_cpu(q->headers.consumer, 1);
|
|
|
|
if (wasfull) {
|
|
switch (qid) {
|
|
|
|
case HostNormCmdQueue:
|
|
notify = HostNormCmdNotFull;
|
|
break;
|
|
case HostNormRespQueue:
|
|
notify = HostNormRespNotFull;
|
|
break;
|
|
default:
|
|
BUG();
|
|
return;
|
|
}
|
|
aac_adapter_notify(dev, notify);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* aac_fib_adapter_complete - complete adapter issued fib
|
|
* @fibptr: fib to complete
|
|
* @size: size of fib
|
|
*
|
|
* Will do all necessary work to complete a FIB that was sent from
|
|
* the adapter.
|
|
*/
|
|
|
|
int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
|
|
{
|
|
struct hw_fib * hw_fib = fibptr->hw_fib_va;
|
|
struct aac_dev * dev = fibptr->dev;
|
|
struct aac_queue * q;
|
|
unsigned long nointr = 0;
|
|
unsigned long qflags;
|
|
|
|
if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
|
|
dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
|
|
dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
|
|
kfree(hw_fib);
|
|
return 0;
|
|
}
|
|
|
|
if (hw_fib->header.XferState == 0) {
|
|
if (dev->comm_interface == AAC_COMM_MESSAGE)
|
|
kfree(hw_fib);
|
|
return 0;
|
|
}
|
|
/*
|
|
* If we plan to do anything check the structure type first.
|
|
*/
|
|
if (hw_fib->header.StructType != FIB_MAGIC &&
|
|
hw_fib->header.StructType != FIB_MAGIC2 &&
|
|
hw_fib->header.StructType != FIB_MAGIC2_64) {
|
|
if (dev->comm_interface == AAC_COMM_MESSAGE)
|
|
kfree(hw_fib);
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* This block handles the case where the adapter had sent us a
|
|
* command and we have finished processing the command. We
|
|
* call completeFib when we are done processing the command
|
|
* and want to send a response back to the adapter. This will
|
|
* send the completed cdb to the adapter.
|
|
*/
|
|
if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
|
|
if (dev->comm_interface == AAC_COMM_MESSAGE) {
|
|
kfree (hw_fib);
|
|
} else {
|
|
u32 index;
|
|
hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
|
|
if (size) {
|
|
size += sizeof(struct aac_fibhdr);
|
|
if (size > le16_to_cpu(hw_fib->header.SenderSize))
|
|
return -EMSGSIZE;
|
|
hw_fib->header.Size = cpu_to_le16(size);
|
|
}
|
|
q = &dev->queues->queue[AdapNormRespQueue];
|
|
spin_lock_irqsave(q->lock, qflags);
|
|
aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
|
|
*(q->headers.producer) = cpu_to_le32(index + 1);
|
|
spin_unlock_irqrestore(q->lock, qflags);
|
|
if (!(nointr & (int)aac_config.irq_mod))
|
|
aac_adapter_notify(dev, AdapNormRespQueue);
|
|
}
|
|
} else {
|
|
printk(KERN_WARNING "aac_fib_adapter_complete: "
|
|
"Unknown xferstate detected.\n");
|
|
BUG();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* aac_fib_complete - fib completion handler
|
|
* @fib: FIB to complete
|
|
*
|
|
* Will do all necessary work to complete a FIB.
|
|
*/
|
|
|
|
int aac_fib_complete(struct fib *fibptr)
|
|
{
|
|
struct hw_fib * hw_fib = fibptr->hw_fib_va;
|
|
|
|
if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
|
|
fib_dealloc(fibptr);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check for a fib which has already been completed or with a
|
|
* status wait timeout
|
|
*/
|
|
|
|
if (hw_fib->header.XferState == 0 || fibptr->done == 2)
|
|
return 0;
|
|
/*
|
|
* If we plan to do anything check the structure type first.
|
|
*/
|
|
|
|
if (hw_fib->header.StructType != FIB_MAGIC &&
|
|
hw_fib->header.StructType != FIB_MAGIC2 &&
|
|
hw_fib->header.StructType != FIB_MAGIC2_64)
|
|
return -EINVAL;
|
|
/*
|
|
* This block completes a cdb which orginated on the host and we
|
|
* just need to deallocate the cdb or reinit it. At this point the
|
|
* command is complete that we had sent to the adapter and this
|
|
* cdb could be reused.
|
|
*/
|
|
|
|
if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
|
|
(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
|
|
{
|
|
fib_dealloc(fibptr);
|
|
}
|
|
else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
|
|
{
|
|
/*
|
|
* This handles the case when the host has aborted the I/O
|
|
* to the adapter because the adapter is not responding
|
|
*/
|
|
fib_dealloc(fibptr);
|
|
} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
|
|
fib_dealloc(fibptr);
|
|
} else {
|
|
BUG();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* aac_printf - handle printf from firmware
|
|
* @dev: Adapter
|
|
* @val: Message info
|
|
*
|
|
* Print a message passed to us by the controller firmware on the
|
|
* Adaptec board
|
|
*/
|
|
|
|
void aac_printf(struct aac_dev *dev, u32 val)
|
|
{
|
|
char *cp = dev->printfbuf;
|
|
if (dev->printf_enabled)
|
|
{
|
|
int length = val & 0xffff;
|
|
int level = (val >> 16) & 0xffff;
|
|
|
|
/*
|
|
* The size of the printfbuf is set in port.c
|
|
* There is no variable or define for it
|
|
*/
|
|
if (length > 255)
|
|
length = 255;
|
|
if (cp[length] != 0)
|
|
cp[length] = 0;
|
|
if (level == LOG_AAC_HIGH_ERROR)
|
|
printk(KERN_WARNING "%s:%s", dev->name, cp);
|
|
else
|
|
printk(KERN_INFO "%s:%s", dev->name, cp);
|
|
}
|
|
memset(cp, 0, 256);
|
|
}
|
|
|
|
static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
|
|
{
|
|
return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
|
|
}
|
|
|
|
|
|
static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
|
|
{
|
|
switch (aac_aif_data(aifcmd, 1)) {
|
|
case AifBuCacheDataLoss:
|
|
if (aac_aif_data(aifcmd, 2))
|
|
dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
|
|
aac_aif_data(aifcmd, 2));
|
|
else
|
|
dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
|
|
break;
|
|
case AifBuCacheDataRecover:
|
|
if (aac_aif_data(aifcmd, 2))
|
|
dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
|
|
aac_aif_data(aifcmd, 2));
|
|
else
|
|
dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* aac_handle_aif - Handle a message from the firmware
|
|
* @dev: Which adapter this fib is from
|
|
* @fibptr: Pointer to fibptr from adapter
|
|
*
|
|
* This routine handles a driver notify fib from the adapter and
|
|
* dispatches it to the appropriate routine for handling.
|
|
*/
|
|
|
|
#define AIF_SNIFF_TIMEOUT (500*HZ)
|
|
static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
|
|
{
|
|
struct hw_fib * hw_fib = fibptr->hw_fib_va;
|
|
struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
|
|
u32 channel, id, lun, container;
|
|
struct scsi_device *device;
|
|
enum {
|
|
NOTHING,
|
|
DELETE,
|
|
ADD,
|
|
CHANGE
|
|
} device_config_needed = NOTHING;
|
|
|
|
/* Sniff for container changes */
|
|
|
|
if (!dev || !dev->fsa_dev)
|
|
return;
|
|
container = channel = id = lun = (u32)-1;
|
|
|
|
/*
|
|
* We have set this up to try and minimize the number of
|
|
* re-configures that take place. As a result of this when
|
|
* certain AIF's come in we will set a flag waiting for another
|
|
* type of AIF before setting the re-config flag.
|
|
*/
|
|
switch (le32_to_cpu(aifcmd->command)) {
|
|
case AifCmdDriverNotify:
|
|
switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
|
|
case AifRawDeviceRemove:
|
|
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
|
|
if ((container >> 28)) {
|
|
container = (u32)-1;
|
|
break;
|
|
}
|
|
channel = (container >> 24) & 0xF;
|
|
if (channel >= dev->maximum_num_channels) {
|
|
container = (u32)-1;
|
|
break;
|
|
}
|
|
id = container & 0xFFFF;
|
|
if (id >= dev->maximum_num_physicals) {
|
|
container = (u32)-1;
|
|
break;
|
|
}
|
|
lun = (container >> 16) & 0xFF;
|
|
container = (u32)-1;
|
|
channel = aac_phys_to_logical(channel);
|
|
device_config_needed = DELETE;
|
|
break;
|
|
|
|
/*
|
|
* Morph or Expand complete
|
|
*/
|
|
case AifDenMorphComplete:
|
|
case AifDenVolumeExtendComplete:
|
|
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
|
|
if (container >= dev->maximum_num_containers)
|
|
break;
|
|
|
|
/*
|
|
* Find the scsi_device associated with the SCSI
|
|
* address. Make sure we have the right array, and if
|
|
* so set the flag to initiate a new re-config once we
|
|
* see an AifEnConfigChange AIF come through.
|
|
*/
|
|
|
|
if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
|
|
device = scsi_device_lookup(dev->scsi_host_ptr,
|
|
CONTAINER_TO_CHANNEL(container),
|
|
CONTAINER_TO_ID(container),
|
|
CONTAINER_TO_LUN(container));
|
|
if (device) {
|
|
dev->fsa_dev[container].config_needed = CHANGE;
|
|
dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
|
|
dev->fsa_dev[container].config_waiting_stamp = jiffies;
|
|
scsi_device_put(device);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are waiting on something and this happens to be
|
|
* that thing then set the re-configure flag.
|
|
*/
|
|
if (container != (u32)-1) {
|
|
if (container >= dev->maximum_num_containers)
|
|
break;
|
|
if ((dev->fsa_dev[container].config_waiting_on ==
|
|
le32_to_cpu(*(__le32 *)aifcmd->data)) &&
|
|
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
|
|
dev->fsa_dev[container].config_waiting_on = 0;
|
|
} else for (container = 0;
|
|
container < dev->maximum_num_containers; ++container) {
|
|
if ((dev->fsa_dev[container].config_waiting_on ==
|
|
le32_to_cpu(*(__le32 *)aifcmd->data)) &&
|
|
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
|
|
dev->fsa_dev[container].config_waiting_on = 0;
|
|
}
|
|
break;
|
|
|
|
case AifCmdEventNotify:
|
|
switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
|
|
case AifEnBatteryEvent:
|
|
dev->cache_protected =
|
|
(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
|
|
break;
|
|
/*
|
|
* Add an Array.
|
|
*/
|
|
case AifEnAddContainer:
|
|
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
|
|
if (container >= dev->maximum_num_containers)
|
|
break;
|
|
dev->fsa_dev[container].config_needed = ADD;
|
|
dev->fsa_dev[container].config_waiting_on =
|
|
AifEnConfigChange;
|
|
dev->fsa_dev[container].config_waiting_stamp = jiffies;
|
|
break;
|
|
|
|
/*
|
|
* Delete an Array.
|
|
*/
|
|
case AifEnDeleteContainer:
|
|
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
|
|
if (container >= dev->maximum_num_containers)
|
|
break;
|
|
dev->fsa_dev[container].config_needed = DELETE;
|
|
dev->fsa_dev[container].config_waiting_on =
|
|
AifEnConfigChange;
|
|
dev->fsa_dev[container].config_waiting_stamp = jiffies;
|
|
break;
|
|
|
|
/*
|
|
* Container change detected. If we currently are not
|
|
* waiting on something else, setup to wait on a Config Change.
|
|
*/
|
|
case AifEnContainerChange:
|
|
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
|
|
if (container >= dev->maximum_num_containers)
|
|
break;
|
|
if (dev->fsa_dev[container].config_waiting_on &&
|
|
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
|
|
break;
|
|
dev->fsa_dev[container].config_needed = CHANGE;
|
|
dev->fsa_dev[container].config_waiting_on =
|
|
AifEnConfigChange;
|
|
dev->fsa_dev[container].config_waiting_stamp = jiffies;
|
|
break;
|
|
|
|
case AifEnConfigChange:
|
|
break;
|
|
|
|
case AifEnAddJBOD:
|
|
case AifEnDeleteJBOD:
|
|
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
|
|
if ((container >> 28)) {
|
|
container = (u32)-1;
|
|
break;
|
|
}
|
|
channel = (container >> 24) & 0xF;
|
|
if (channel >= dev->maximum_num_channels) {
|
|
container = (u32)-1;
|
|
break;
|
|
}
|
|
id = container & 0xFFFF;
|
|
if (id >= dev->maximum_num_physicals) {
|
|
container = (u32)-1;
|
|
break;
|
|
}
|
|
lun = (container >> 16) & 0xFF;
|
|
container = (u32)-1;
|
|
channel = aac_phys_to_logical(channel);
|
|
device_config_needed =
|
|
(((__le32 *)aifcmd->data)[0] ==
|
|
cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
|
|
if (device_config_needed == ADD) {
|
|
device = scsi_device_lookup(dev->scsi_host_ptr,
|
|
channel,
|
|
id,
|
|
lun);
|
|
if (device) {
|
|
scsi_remove_device(device);
|
|
scsi_device_put(device);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case AifEnEnclosureManagement:
|
|
/*
|
|
* If in JBOD mode, automatic exposure of new
|
|
* physical target to be suppressed until configured.
|
|
*/
|
|
if (dev->jbod)
|
|
break;
|
|
switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
|
|
case EM_DRIVE_INSERTION:
|
|
case EM_DRIVE_REMOVAL:
|
|
case EM_SES_DRIVE_INSERTION:
|
|
case EM_SES_DRIVE_REMOVAL:
|
|
container = le32_to_cpu(
|
|
((__le32 *)aifcmd->data)[2]);
|
|
if ((container >> 28)) {
|
|
container = (u32)-1;
|
|
break;
|
|
}
|
|
channel = (container >> 24) & 0xF;
|
|
if (channel >= dev->maximum_num_channels) {
|
|
container = (u32)-1;
|
|
break;
|
|
}
|
|
id = container & 0xFFFF;
|
|
lun = (container >> 16) & 0xFF;
|
|
container = (u32)-1;
|
|
if (id >= dev->maximum_num_physicals) {
|
|
/* legacy dev_t ? */
|
|
if ((0x2000 <= id) || lun || channel ||
|
|
((channel = (id >> 7) & 0x3F) >=
|
|
dev->maximum_num_channels))
|
|
break;
|
|
lun = (id >> 4) & 7;
|
|
id &= 0xF;
|
|
}
|
|
channel = aac_phys_to_logical(channel);
|
|
device_config_needed =
|
|
((((__le32 *)aifcmd->data)[3]
|
|
== cpu_to_le32(EM_DRIVE_INSERTION)) ||
|
|
(((__le32 *)aifcmd->data)[3]
|
|
== cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
|
|
ADD : DELETE;
|
|
break;
|
|
}
|
|
case AifBuManagerEvent:
|
|
aac_handle_aif_bu(dev, aifcmd);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we are waiting on something and this happens to be
|
|
* that thing then set the re-configure flag.
|
|
*/
|
|
if (container != (u32)-1) {
|
|
if (container >= dev->maximum_num_containers)
|
|
break;
|
|
if ((dev->fsa_dev[container].config_waiting_on ==
|
|
le32_to_cpu(*(__le32 *)aifcmd->data)) &&
|
|
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
|
|
dev->fsa_dev[container].config_waiting_on = 0;
|
|
} else for (container = 0;
|
|
container < dev->maximum_num_containers; ++container) {
|
|
if ((dev->fsa_dev[container].config_waiting_on ==
|
|
le32_to_cpu(*(__le32 *)aifcmd->data)) &&
|
|
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
|
|
dev->fsa_dev[container].config_waiting_on = 0;
|
|
}
|
|
break;
|
|
|
|
case AifCmdJobProgress:
|
|
/*
|
|
* These are job progress AIF's. When a Clear is being
|
|
* done on a container it is initially created then hidden from
|
|
* the OS. When the clear completes we don't get a config
|
|
* change so we monitor the job status complete on a clear then
|
|
* wait for a container change.
|
|
*/
|
|
|
|
if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
|
|
(((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
|
|
((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
|
|
for (container = 0;
|
|
container < dev->maximum_num_containers;
|
|
++container) {
|
|
/*
|
|
* Stomp on all config sequencing for all
|
|
* containers?
|
|
*/
|
|
dev->fsa_dev[container].config_waiting_on =
|
|
AifEnContainerChange;
|
|
dev->fsa_dev[container].config_needed = ADD;
|
|
dev->fsa_dev[container].config_waiting_stamp =
|
|
jiffies;
|
|
}
|
|
}
|
|
if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
|
|
((__le32 *)aifcmd->data)[6] == 0 &&
|
|
((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
|
|
for (container = 0;
|
|
container < dev->maximum_num_containers;
|
|
++container) {
|
|
/*
|
|
* Stomp on all config sequencing for all
|
|
* containers?
|
|
*/
|
|
dev->fsa_dev[container].config_waiting_on =
|
|
AifEnContainerChange;
|
|
dev->fsa_dev[container].config_needed = DELETE;
|
|
dev->fsa_dev[container].config_waiting_stamp =
|
|
jiffies;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
container = 0;
|
|
retry_next:
|
|
if (device_config_needed == NOTHING)
|
|
for (; container < dev->maximum_num_containers; ++container) {
|
|
if ((dev->fsa_dev[container].config_waiting_on == 0) &&
|
|
(dev->fsa_dev[container].config_needed != NOTHING) &&
|
|
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
|
|
device_config_needed =
|
|
dev->fsa_dev[container].config_needed;
|
|
dev->fsa_dev[container].config_needed = NOTHING;
|
|
channel = CONTAINER_TO_CHANNEL(container);
|
|
id = CONTAINER_TO_ID(container);
|
|
lun = CONTAINER_TO_LUN(container);
|
|
break;
|
|
}
|
|
}
|
|
if (device_config_needed == NOTHING)
|
|
return;
|
|
|
|
/*
|
|
* If we decided that a re-configuration needs to be done,
|
|
* schedule it here on the way out the door, please close the door
|
|
* behind you.
|
|
*/
|
|
|
|
/*
|
|
* Find the scsi_device associated with the SCSI address,
|
|
* and mark it as changed, invalidating the cache. This deals
|
|
* with changes to existing device IDs.
|
|
*/
|
|
|
|
if (!dev || !dev->scsi_host_ptr)
|
|
return;
|
|
/*
|
|
* force reload of disk info via aac_probe_container
|
|
*/
|
|
if ((channel == CONTAINER_CHANNEL) &&
|
|
(device_config_needed != NOTHING)) {
|
|
if (dev->fsa_dev[container].valid == 1)
|
|
dev->fsa_dev[container].valid = 2;
|
|
aac_probe_container(dev, container);
|
|
}
|
|
device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
|
|
if (device) {
|
|
switch (device_config_needed) {
|
|
case DELETE:
|
|
#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
|
|
scsi_remove_device(device);
|
|
#else
|
|
if (scsi_device_online(device)) {
|
|
scsi_device_set_state(device, SDEV_OFFLINE);
|
|
sdev_printk(KERN_INFO, device,
|
|
"Device offlined - %s\n",
|
|
(channel == CONTAINER_CHANNEL) ?
|
|
"array deleted" :
|
|
"enclosure services event");
|
|
}
|
|
#endif
|
|
break;
|
|
case ADD:
|
|
if (!scsi_device_online(device)) {
|
|
sdev_printk(KERN_INFO, device,
|
|
"Device online - %s\n",
|
|
(channel == CONTAINER_CHANNEL) ?
|
|
"array created" :
|
|
"enclosure services event");
|
|
scsi_device_set_state(device, SDEV_RUNNING);
|
|
}
|
|
/* FALLTHRU */
|
|
case CHANGE:
|
|
if ((channel == CONTAINER_CHANNEL)
|
|
&& (!dev->fsa_dev[container].valid)) {
|
|
#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
|
|
scsi_remove_device(device);
|
|
#else
|
|
if (!scsi_device_online(device))
|
|
break;
|
|
scsi_device_set_state(device, SDEV_OFFLINE);
|
|
sdev_printk(KERN_INFO, device,
|
|
"Device offlined - %s\n",
|
|
"array failed");
|
|
#endif
|
|
break;
|
|
}
|
|
scsi_rescan_device(&device->sdev_gendev);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
scsi_device_put(device);
|
|
device_config_needed = NOTHING;
|
|
}
|
|
if (device_config_needed == ADD)
|
|
scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
|
|
if (channel == CONTAINER_CHANNEL) {
|
|
container++;
|
|
device_config_needed = NOTHING;
|
|
goto retry_next;
|
|
}
|
|
}
|
|
|
|
static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
|
|
{
|
|
int index, quirks;
|
|
int retval;
|
|
struct Scsi_Host *host;
|
|
struct scsi_device *dev;
|
|
struct scsi_cmnd *command;
|
|
struct scsi_cmnd *command_list;
|
|
int jafo = 0;
|
|
int bled;
|
|
u64 dmamask;
|
|
int num_of_fibs = 0;
|
|
|
|
/*
|
|
* Assumptions:
|
|
* - host is locked, unless called by the aacraid thread.
|
|
* (a matter of convenience, due to legacy issues surrounding
|
|
* eh_host_adapter_reset).
|
|
* - in_reset is asserted, so no new i/o is getting to the
|
|
* card.
|
|
* - The card is dead, or will be very shortly ;-/ so no new
|
|
* commands are completing in the interrupt service.
|
|
*/
|
|
host = aac->scsi_host_ptr;
|
|
scsi_block_requests(host);
|
|
aac_adapter_disable_int(aac);
|
|
if (aac->thread && aac->thread->pid != current->pid) {
|
|
spin_unlock_irq(host->host_lock);
|
|
kthread_stop(aac->thread);
|
|
aac->thread = NULL;
|
|
jafo = 1;
|
|
}
|
|
|
|
/*
|
|
* If a positive health, means in a known DEAD PANIC
|
|
* state and the adapter could be reset to `try again'.
|
|
*/
|
|
bled = forced ? 0 : aac_adapter_check_health(aac);
|
|
retval = aac_adapter_restart(aac, bled, reset_type);
|
|
|
|
if (retval)
|
|
goto out;
|
|
|
|
/*
|
|
* Loop through the fibs, close the synchronous FIBS
|
|
*/
|
|
retval = 1;
|
|
num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
|
|
for (index = 0; index < num_of_fibs; index++) {
|
|
|
|
struct fib *fib = &aac->fibs[index];
|
|
__le32 XferState = fib->hw_fib_va->header.XferState;
|
|
bool is_response_expected = false;
|
|
|
|
if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
|
|
(XferState & cpu_to_le32(ResponseExpected)))
|
|
is_response_expected = true;
|
|
|
|
if (is_response_expected
|
|
|| fib->flags & FIB_CONTEXT_FLAG_WAIT) {
|
|
unsigned long flagv;
|
|
spin_lock_irqsave(&fib->event_lock, flagv);
|
|
up(&fib->event_wait);
|
|
spin_unlock_irqrestore(&fib->event_lock, flagv);
|
|
schedule();
|
|
retval = 0;
|
|
}
|
|
}
|
|
/* Give some extra time for ioctls to complete. */
|
|
if (retval == 0)
|
|
ssleep(2);
|
|
index = aac->cardtype;
|
|
|
|
/*
|
|
* Re-initialize the adapter, first free resources, then carefully
|
|
* apply the initialization sequence to come back again. Only risk
|
|
* is a change in Firmware dropping cache, it is assumed the caller
|
|
* will ensure that i/o is queisced and the card is flushed in that
|
|
* case.
|
|
*/
|
|
aac_free_irq(aac);
|
|
aac_fib_map_free(aac);
|
|
dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
|
|
aac->comm_phys);
|
|
aac->comm_addr = NULL;
|
|
aac->comm_phys = 0;
|
|
kfree(aac->queues);
|
|
aac->queues = NULL;
|
|
kfree(aac->fsa_dev);
|
|
aac->fsa_dev = NULL;
|
|
|
|
dmamask = DMA_BIT_MASK(32);
|
|
quirks = aac_get_driver_ident(index)->quirks;
|
|
if (quirks & AAC_QUIRK_31BIT)
|
|
retval = pci_set_dma_mask(aac->pdev, dmamask);
|
|
else if (!(quirks & AAC_QUIRK_SRC))
|
|
retval = pci_set_dma_mask(aac->pdev, dmamask);
|
|
else
|
|
retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
|
|
|
|
if (quirks & AAC_QUIRK_31BIT && !retval) {
|
|
dmamask = DMA_BIT_MASK(31);
|
|
retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
|
|
}
|
|
|
|
if (retval)
|
|
goto out;
|
|
|
|
if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
|
|
goto out;
|
|
|
|
if (jafo) {
|
|
aac->thread = kthread_run(aac_command_thread, aac, "%s",
|
|
aac->name);
|
|
if (IS_ERR(aac->thread)) {
|
|
retval = PTR_ERR(aac->thread);
|
|
aac->thread = NULL;
|
|
goto out;
|
|
}
|
|
}
|
|
(void)aac_get_adapter_info(aac);
|
|
if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
|
|
host->sg_tablesize = 34;
|
|
host->max_sectors = (host->sg_tablesize * 8) + 112;
|
|
}
|
|
if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
|
|
host->sg_tablesize = 17;
|
|
host->max_sectors = (host->sg_tablesize * 8) + 112;
|
|
}
|
|
aac_get_config_status(aac, 1);
|
|
aac_get_containers(aac);
|
|
/*
|
|
* This is where the assumption that the Adapter is quiesced
|
|
* is important.
|
|
*/
|
|
command_list = NULL;
|
|
__shost_for_each_device(dev, host) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&dev->list_lock, flags);
|
|
list_for_each_entry(command, &dev->cmd_list, list)
|
|
if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
|
|
command->SCp.buffer = (struct scatterlist *)command_list;
|
|
command_list = command;
|
|
}
|
|
spin_unlock_irqrestore(&dev->list_lock, flags);
|
|
}
|
|
while ((command = command_list)) {
|
|
command_list = (struct scsi_cmnd *)command->SCp.buffer;
|
|
command->SCp.buffer = NULL;
|
|
command->result = DID_OK << 16
|
|
| COMMAND_COMPLETE << 8
|
|
| SAM_STAT_TASK_SET_FULL;
|
|
command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
|
|
command->scsi_done(command);
|
|
}
|
|
/*
|
|
* Any Device that was already marked offline needs to be marked
|
|
* running
|
|
*/
|
|
__shost_for_each_device(dev, host) {
|
|
if (!scsi_device_online(dev))
|
|
scsi_device_set_state(dev, SDEV_RUNNING);
|
|
}
|
|
retval = 0;
|
|
|
|
out:
|
|
aac->in_reset = 0;
|
|
scsi_unblock_requests(host);
|
|
|
|
/*
|
|
* Issue bus rescan to catch any configuration that might have
|
|
* occurred
|
|
*/
|
|
if (!retval && !is_kdump_kernel()) {
|
|
dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
|
|
aac_schedule_safw_scan_worker(aac);
|
|
}
|
|
|
|
if (jafo) {
|
|
spin_lock_irq(host->host_lock);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
|
|
{
|
|
unsigned long flagv = 0;
|
|
int retval;
|
|
struct Scsi_Host * host;
|
|
int bled;
|
|
|
|
if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
|
|
return -EBUSY;
|
|
|
|
if (aac->in_reset) {
|
|
spin_unlock_irqrestore(&aac->fib_lock, flagv);
|
|
return -EBUSY;
|
|
}
|
|
aac->in_reset = 1;
|
|
spin_unlock_irqrestore(&aac->fib_lock, flagv);
|
|
|
|
/*
|
|
* Wait for all commands to complete to this specific
|
|
* target (block maximum 60 seconds). Although not necessary,
|
|
* it does make us a good storage citizen.
|
|
*/
|
|
host = aac->scsi_host_ptr;
|
|
scsi_block_requests(host);
|
|
|
|
/* Quiesce build, flush cache, write through mode */
|
|
if (forced < 2)
|
|
aac_send_shutdown(aac);
|
|
spin_lock_irqsave(host->host_lock, flagv);
|
|
bled = forced ? forced :
|
|
(aac_check_reset != 0 && aac_check_reset != 1);
|
|
retval = _aac_reset_adapter(aac, bled, reset_type);
|
|
spin_unlock_irqrestore(host->host_lock, flagv);
|
|
|
|
if ((forced < 2) && (retval == -ENODEV)) {
|
|
/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
|
|
struct fib * fibctx = aac_fib_alloc(aac);
|
|
if (fibctx) {
|
|
struct aac_pause *cmd;
|
|
int status;
|
|
|
|
aac_fib_init(fibctx);
|
|
|
|
cmd = (struct aac_pause *) fib_data(fibctx);
|
|
|
|
cmd->command = cpu_to_le32(VM_ContainerConfig);
|
|
cmd->type = cpu_to_le32(CT_PAUSE_IO);
|
|
cmd->timeout = cpu_to_le32(1);
|
|
cmd->min = cpu_to_le32(1);
|
|
cmd->noRescan = cpu_to_le32(1);
|
|
cmd->count = cpu_to_le32(0);
|
|
|
|
status = aac_fib_send(ContainerCommand,
|
|
fibctx,
|
|
sizeof(struct aac_pause),
|
|
FsaNormal,
|
|
-2 /* Timeout silently */, 1,
|
|
NULL, NULL);
|
|
|
|
if (status >= 0)
|
|
aac_fib_complete(fibctx);
|
|
/* FIB should be freed only after getting
|
|
* the response from the F/W */
|
|
if (status != -ERESTARTSYS)
|
|
aac_fib_free(fibctx);
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int aac_check_health(struct aac_dev * aac)
|
|
{
|
|
int BlinkLED;
|
|
unsigned long time_now, flagv = 0;
|
|
struct list_head * entry;
|
|
|
|
/* Extending the scope of fib_lock slightly to protect aac->in_reset */
|
|
if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
|
|
return 0;
|
|
|
|
if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
|
|
spin_unlock_irqrestore(&aac->fib_lock, flagv);
|
|
return 0; /* OK */
|
|
}
|
|
|
|
aac->in_reset = 1;
|
|
|
|
/* Fake up an AIF:
|
|
* aac_aifcmd.command = AifCmdEventNotify = 1
|
|
* aac_aifcmd.seqnum = 0xFFFFFFFF
|
|
* aac_aifcmd.data[0] = AifEnExpEvent = 23
|
|
* aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
|
|
* aac.aifcmd.data[2] = AifHighPriority = 3
|
|
* aac.aifcmd.data[3] = BlinkLED
|
|
*/
|
|
|
|
time_now = jiffies/HZ;
|
|
entry = aac->fib_list.next;
|
|
|
|
/*
|
|
* For each Context that is on the
|
|
* fibctxList, make a copy of the
|
|
* fib, and then set the event to wake up the
|
|
* thread that is waiting for it.
|
|
*/
|
|
while (entry != &aac->fib_list) {
|
|
/*
|
|
* Extract the fibctx
|
|
*/
|
|
struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
|
|
struct hw_fib * hw_fib;
|
|
struct fib * fib;
|
|
/*
|
|
* Check if the queue is getting
|
|
* backlogged
|
|
*/
|
|
if (fibctx->count > 20) {
|
|
/*
|
|
* It's *not* jiffies folks,
|
|
* but jiffies / HZ, so do not
|
|
* panic ...
|
|
*/
|
|
u32 time_last = fibctx->jiffies;
|
|
/*
|
|
* Has it been > 2 minutes
|
|
* since the last read off
|
|
* the queue?
|
|
*/
|
|
if ((time_now - time_last) > aif_timeout) {
|
|
entry = entry->next;
|
|
aac_close_fib_context(aac, fibctx);
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* Warning: no sleep allowed while
|
|
* holding spinlock
|
|
*/
|
|
hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
|
|
fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
|
|
if (fib && hw_fib) {
|
|
struct aac_aifcmd * aif;
|
|
|
|
fib->hw_fib_va = hw_fib;
|
|
fib->dev = aac;
|
|
aac_fib_init(fib);
|
|
fib->type = FSAFS_NTC_FIB_CONTEXT;
|
|
fib->size = sizeof (struct fib);
|
|
fib->data = hw_fib->data;
|
|
aif = (struct aac_aifcmd *)hw_fib->data;
|
|
aif->command = cpu_to_le32(AifCmdEventNotify);
|
|
aif->seqnum = cpu_to_le32(0xFFFFFFFF);
|
|
((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
|
|
((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
|
|
((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
|
|
((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
|
|
|
|
/*
|
|
* Put the FIB onto the
|
|
* fibctx's fibs
|
|
*/
|
|
list_add_tail(&fib->fiblink, &fibctx->fib_list);
|
|
fibctx->count++;
|
|
/*
|
|
* Set the event to wake up the
|
|
* thread that will waiting.
|
|
*/
|
|
up(&fibctx->wait_sem);
|
|
} else {
|
|
printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
|
|
kfree(fib);
|
|
kfree(hw_fib);
|
|
}
|
|
entry = entry->next;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&aac->fib_lock, flagv);
|
|
|
|
if (BlinkLED < 0) {
|
|
printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
|
|
aac->name, BlinkLED);
|
|
goto out;
|
|
}
|
|
|
|
printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
|
|
|
|
out:
|
|
aac->in_reset = 0;
|
|
return BlinkLED;
|
|
}
|
|
|
|
static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
|
|
{
|
|
return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
|
|
}
|
|
|
|
static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
|
|
int bus,
|
|
int target)
|
|
{
|
|
if (bus != CONTAINER_CHANNEL)
|
|
bus = aac_phys_to_logical(bus);
|
|
|
|
return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
|
|
}
|
|
|
|
static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
|
|
{
|
|
if (bus != CONTAINER_CHANNEL)
|
|
bus = aac_phys_to_logical(bus);
|
|
|
|
return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
|
|
}
|
|
|
|
static void aac_put_safw_scsi_device(struct scsi_device *sdev)
|
|
{
|
|
if (sdev)
|
|
scsi_device_put(sdev);
|
|
}
|
|
|
|
static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
|
|
{
|
|
struct scsi_device *sdev;
|
|
|
|
sdev = aac_lookup_safw_scsi_device(dev, bus, target);
|
|
scsi_remove_device(sdev);
|
|
aac_put_safw_scsi_device(sdev);
|
|
}
|
|
|
|
static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
|
|
int bus, int target)
|
|
{
|
|
return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
|
|
}
|
|
|
|
static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
|
|
{
|
|
if (is_safw_raid_volume(dev, bus, target))
|
|
return dev->fsa_dev[target].valid;
|
|
else
|
|
return aac_is_safw_scan_count_equal(dev, bus, target);
|
|
}
|
|
|
|
static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
|
|
{
|
|
int is_exposed = 0;
|
|
struct scsi_device *sdev;
|
|
|
|
sdev = aac_lookup_safw_scsi_device(dev, bus, target);
|
|
if (sdev)
|
|
is_exposed = 1;
|
|
aac_put_safw_scsi_device(sdev);
|
|
|
|
return is_exposed;
|
|
}
|
|
|
|
static int aac_update_safw_host_devices(struct aac_dev *dev)
|
|
{
|
|
int i;
|
|
int bus;
|
|
int target;
|
|
int is_exposed = 0;
|
|
int rcode = 0;
|
|
|
|
rcode = aac_setup_safw_adapter(dev);
|
|
if (unlikely(rcode < 0)) {
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
|
|
|
|
bus = get_bus_number(i);
|
|
target = get_target_number(i);
|
|
|
|
is_exposed = aac_is_safw_device_exposed(dev, bus, target);
|
|
|
|
if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
|
|
aac_add_safw_device(dev, bus, target);
|
|
else if (!aac_is_safw_target_valid(dev, bus, target) &&
|
|
is_exposed)
|
|
aac_remove_safw_device(dev, bus, target);
|
|
}
|
|
out:
|
|
return rcode;
|
|
}
|
|
|
|
static int aac_scan_safw_host(struct aac_dev *dev)
|
|
{
|
|
int rcode = 0;
|
|
|
|
rcode = aac_update_safw_host_devices(dev);
|
|
if (rcode)
|
|
aac_schedule_safw_scan_worker(dev);
|
|
|
|
return rcode;
|
|
}
|
|
|
|
int aac_scan_host(struct aac_dev *dev)
|
|
{
|
|
int rcode = 0;
|
|
|
|
mutex_lock(&dev->scan_mutex);
|
|
if (dev->sa_firmware)
|
|
rcode = aac_scan_safw_host(dev);
|
|
else
|
|
scsi_scan_host(dev->scsi_host_ptr);
|
|
mutex_unlock(&dev->scan_mutex);
|
|
|
|
return rcode;
|
|
}
|
|
|
|
/**
|
|
* aac_handle_sa_aif Handle a message from the firmware
|
|
* @dev: Which adapter this fib is from
|
|
* @fibptr: Pointer to fibptr from adapter
|
|
*
|
|
* This routine handles a driver notify fib from the adapter and
|
|
* dispatches it to the appropriate routine for handling.
|
|
*/
|
|
static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
|
|
{
|
|
int i;
|
|
u32 events = 0;
|
|
|
|
if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
|
|
events = SA_AIF_HOTPLUG;
|
|
else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
|
|
events = SA_AIF_HARDWARE;
|
|
else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
|
|
events = SA_AIF_PDEV_CHANGE;
|
|
else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
|
|
events = SA_AIF_LDEV_CHANGE;
|
|
else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
|
|
events = SA_AIF_BPSTAT_CHANGE;
|
|
else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
|
|
events = SA_AIF_BPCFG_CHANGE;
|
|
|
|
switch (events) {
|
|
case SA_AIF_HOTPLUG:
|
|
case SA_AIF_HARDWARE:
|
|
case SA_AIF_PDEV_CHANGE:
|
|
case SA_AIF_LDEV_CHANGE:
|
|
case SA_AIF_BPCFG_CHANGE:
|
|
|
|
aac_scan_host(dev);
|
|
|
|
break;
|
|
|
|
case SA_AIF_BPSTAT_CHANGE:
|
|
/* currently do nothing */
|
|
break;
|
|
}
|
|
|
|
for (i = 1; i <= 10; ++i) {
|
|
events = src_readl(dev, MUnit.IDR);
|
|
if (events & (1<<23)) {
|
|
pr_warn(" AIF not cleared by firmware - %d/%d)\n",
|
|
i, 10);
|
|
ssleep(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int get_fib_count(struct aac_dev *dev)
|
|
{
|
|
unsigned int num = 0;
|
|
struct list_head *entry;
|
|
unsigned long flagv;
|
|
|
|
/*
|
|
* Warning: no sleep allowed while
|
|
* holding spinlock. We take the estimate
|
|
* and pre-allocate a set of fibs outside the
|
|
* lock.
|
|
*/
|
|
num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
|
|
/ sizeof(struct hw_fib); /* some extra */
|
|
spin_lock_irqsave(&dev->fib_lock, flagv);
|
|
entry = dev->fib_list.next;
|
|
while (entry != &dev->fib_list) {
|
|
entry = entry->next;
|
|
++num;
|
|
}
|
|
spin_unlock_irqrestore(&dev->fib_lock, flagv);
|
|
|
|
return num;
|
|
}
|
|
|
|
static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
|
|
struct fib **fib_pool,
|
|
unsigned int num)
|
|
{
|
|
struct hw_fib **hw_fib_p;
|
|
struct fib **fib_p;
|
|
|
|
hw_fib_p = hw_fib_pool;
|
|
fib_p = fib_pool;
|
|
while (hw_fib_p < &hw_fib_pool[num]) {
|
|
*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
|
|
if (!(*(hw_fib_p++))) {
|
|
--hw_fib_p;
|
|
break;
|
|
}
|
|
|
|
*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
|
|
if (!(*(fib_p++))) {
|
|
kfree(*(--hw_fib_p));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the actual number of allocated fibs
|
|
*/
|
|
num = hw_fib_p - hw_fib_pool;
|
|
return num;
|
|
}
|
|
|
|
static void wakeup_fibctx_threads(struct aac_dev *dev,
|
|
struct hw_fib **hw_fib_pool,
|
|
struct fib **fib_pool,
|
|
struct fib *fib,
|
|
struct hw_fib *hw_fib,
|
|
unsigned int num)
|
|
{
|
|
unsigned long flagv;
|
|
struct list_head *entry;
|
|
struct hw_fib **hw_fib_p;
|
|
struct fib **fib_p;
|
|
u32 time_now, time_last;
|
|
struct hw_fib *hw_newfib;
|
|
struct fib *newfib;
|
|
struct aac_fib_context *fibctx;
|
|
|
|
time_now = jiffies/HZ;
|
|
spin_lock_irqsave(&dev->fib_lock, flagv);
|
|
entry = dev->fib_list.next;
|
|
/*
|
|
* For each Context that is on the
|
|
* fibctxList, make a copy of the
|
|
* fib, and then set the event to wake up the
|
|
* thread that is waiting for it.
|
|
*/
|
|
|
|
hw_fib_p = hw_fib_pool;
|
|
fib_p = fib_pool;
|
|
while (entry != &dev->fib_list) {
|
|
/*
|
|
* Extract the fibctx
|
|
*/
|
|
fibctx = list_entry(entry, struct aac_fib_context,
|
|
next);
|
|
/*
|
|
* Check if the queue is getting
|
|
* backlogged
|
|
*/
|
|
if (fibctx->count > 20) {
|
|
/*
|
|
* It's *not* jiffies folks,
|
|
* but jiffies / HZ so do not
|
|
* panic ...
|
|
*/
|
|
time_last = fibctx->jiffies;
|
|
/*
|
|
* Has it been > 2 minutes
|
|
* since the last read off
|
|
* the queue?
|
|
*/
|
|
if ((time_now - time_last) > aif_timeout) {
|
|
entry = entry->next;
|
|
aac_close_fib_context(dev, fibctx);
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* Warning: no sleep allowed while
|
|
* holding spinlock
|
|
*/
|
|
if (hw_fib_p >= &hw_fib_pool[num]) {
|
|
pr_warn("aifd: didn't allocate NewFib\n");
|
|
entry = entry->next;
|
|
continue;
|
|
}
|
|
|
|
hw_newfib = *hw_fib_p;
|
|
*(hw_fib_p++) = NULL;
|
|
newfib = *fib_p;
|
|
*(fib_p++) = NULL;
|
|
/*
|
|
* Make the copy of the FIB
|
|
*/
|
|
memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
|
|
memcpy(newfib, fib, sizeof(struct fib));
|
|
newfib->hw_fib_va = hw_newfib;
|
|
/*
|
|
* Put the FIB onto the
|
|
* fibctx's fibs
|
|
*/
|
|
list_add_tail(&newfib->fiblink, &fibctx->fib_list);
|
|
fibctx->count++;
|
|
/*
|
|
* Set the event to wake up the
|
|
* thread that is waiting.
|
|
*/
|
|
up(&fibctx->wait_sem);
|
|
|
|
entry = entry->next;
|
|
}
|
|
/*
|
|
* Set the status of this FIB
|
|
*/
|
|
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
|
|
aac_fib_adapter_complete(fib, sizeof(u32));
|
|
spin_unlock_irqrestore(&dev->fib_lock, flagv);
|
|
|
|
}
|
|
|
|
static void aac_process_events(struct aac_dev *dev)
|
|
{
|
|
struct hw_fib *hw_fib;
|
|
struct fib *fib;
|
|
unsigned long flags;
|
|
spinlock_t *t_lock;
|
|
|
|
t_lock = dev->queues->queue[HostNormCmdQueue].lock;
|
|
spin_lock_irqsave(t_lock, flags);
|
|
|
|
while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
|
|
struct list_head *entry;
|
|
struct aac_aifcmd *aifcmd;
|
|
unsigned int num;
|
|
struct hw_fib **hw_fib_pool, **hw_fib_p;
|
|
struct fib **fib_pool, **fib_p;
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
|
|
list_del(entry);
|
|
|
|
t_lock = dev->queues->queue[HostNormCmdQueue].lock;
|
|
spin_unlock_irqrestore(t_lock, flags);
|
|
|
|
fib = list_entry(entry, struct fib, fiblink);
|
|
hw_fib = fib->hw_fib_va;
|
|
if (dev->sa_firmware) {
|
|
/* Thor AIF */
|
|
aac_handle_sa_aif(dev, fib);
|
|
aac_fib_adapter_complete(fib, (u16)sizeof(u32));
|
|
goto free_fib;
|
|
}
|
|
/*
|
|
* We will process the FIB here or pass it to a
|
|
* worker thread that is TBD. We Really can't
|
|
* do anything at this point since we don't have
|
|
* anything defined for this thread to do.
|
|
*/
|
|
memset(fib, 0, sizeof(struct fib));
|
|
fib->type = FSAFS_NTC_FIB_CONTEXT;
|
|
fib->size = sizeof(struct fib);
|
|
fib->hw_fib_va = hw_fib;
|
|
fib->data = hw_fib->data;
|
|
fib->dev = dev;
|
|
/*
|
|
* We only handle AifRequest fibs from the adapter.
|
|
*/
|
|
|
|
aifcmd = (struct aac_aifcmd *) hw_fib->data;
|
|
if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
|
|
/* Handle Driver Notify Events */
|
|
aac_handle_aif(dev, fib);
|
|
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
|
|
aac_fib_adapter_complete(fib, (u16)sizeof(u32));
|
|
goto free_fib;
|
|
}
|
|
/*
|
|
* The u32 here is important and intended. We are using
|
|
* 32bit wrapping time to fit the adapter field
|
|
*/
|
|
|
|
/* Sniff events */
|
|
if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
|
|
|| aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
|
|
aac_handle_aif(dev, fib);
|
|
}
|
|
|
|
/*
|
|
* get number of fibs to process
|
|
*/
|
|
num = get_fib_count(dev);
|
|
if (!num)
|
|
goto free_fib;
|
|
|
|
hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
|
|
GFP_KERNEL);
|
|
if (!hw_fib_pool)
|
|
goto free_fib;
|
|
|
|
fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
|
|
if (!fib_pool)
|
|
goto free_hw_fib_pool;
|
|
|
|
/*
|
|
* Fill up fib pointer pools with actual fibs
|
|
* and hw_fibs
|
|
*/
|
|
num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
|
|
if (!num)
|
|
goto free_mem;
|
|
|
|
/*
|
|
* wakeup the thread that is waiting for
|
|
* the response from fw (ioctl)
|
|
*/
|
|
wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
|
|
fib, hw_fib, num);
|
|
|
|
free_mem:
|
|
/* Free up the remaining resources */
|
|
hw_fib_p = hw_fib_pool;
|
|
fib_p = fib_pool;
|
|
while (hw_fib_p < &hw_fib_pool[num]) {
|
|
kfree(*hw_fib_p);
|
|
kfree(*fib_p);
|
|
++fib_p;
|
|
++hw_fib_p;
|
|
}
|
|
kfree(fib_pool);
|
|
free_hw_fib_pool:
|
|
kfree(hw_fib_pool);
|
|
free_fib:
|
|
kfree(fib);
|
|
t_lock = dev->queues->queue[HostNormCmdQueue].lock;
|
|
spin_lock_irqsave(t_lock, flags);
|
|
}
|
|
/*
|
|
* There are no more AIF's
|
|
*/
|
|
t_lock = dev->queues->queue[HostNormCmdQueue].lock;
|
|
spin_unlock_irqrestore(t_lock, flags);
|
|
}
|
|
|
|
static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
|
|
u32 datasize)
|
|
{
|
|
struct aac_srb *srbcmd;
|
|
struct sgmap64 *sg64;
|
|
dma_addr_t addr;
|
|
char *dma_buf;
|
|
struct fib *fibptr;
|
|
int ret = -ENOMEM;
|
|
u32 vbus, vid;
|
|
|
|
fibptr = aac_fib_alloc(dev);
|
|
if (!fibptr)
|
|
goto out;
|
|
|
|
dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
|
|
GFP_KERNEL);
|
|
if (!dma_buf)
|
|
goto fib_free_out;
|
|
|
|
aac_fib_init(fibptr);
|
|
|
|
vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
|
|
vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
|
|
|
|
srbcmd = (struct aac_srb *)fib_data(fibptr);
|
|
|
|
srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
|
|
srbcmd->channel = cpu_to_le32(vbus);
|
|
srbcmd->id = cpu_to_le32(vid);
|
|
srbcmd->lun = 0;
|
|
srbcmd->flags = cpu_to_le32(SRB_DataOut);
|
|
srbcmd->timeout = cpu_to_le32(10);
|
|
srbcmd->retry_limit = 0;
|
|
srbcmd->cdb_size = cpu_to_le32(12);
|
|
srbcmd->count = cpu_to_le32(datasize);
|
|
|
|
memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
|
|
srbcmd->cdb[0] = BMIC_OUT;
|
|
srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
|
|
memcpy(dma_buf, (char *)wellness_str, datasize);
|
|
|
|
sg64 = (struct sgmap64 *)&srbcmd->sg;
|
|
sg64->count = cpu_to_le32(1);
|
|
sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
|
|
sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
|
|
sg64->sg[0].count = cpu_to_le32(datasize);
|
|
|
|
ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
|
|
FsaNormal, 1, 1, NULL, NULL);
|
|
|
|
dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
|
|
|
|
/*
|
|
* Do not set XferState to zero unless
|
|
* receives a response from F/W
|
|
*/
|
|
if (ret >= 0)
|
|
aac_fib_complete(fibptr);
|
|
|
|
/*
|
|
* FIB should be freed only after
|
|
* getting the response from the F/W
|
|
*/
|
|
if (ret != -ERESTARTSYS)
|
|
goto fib_free_out;
|
|
|
|
out:
|
|
return ret;
|
|
fib_free_out:
|
|
aac_fib_free(fibptr);
|
|
goto out;
|
|
}
|
|
|
|
int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
|
|
{
|
|
struct tm cur_tm;
|
|
char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
|
|
u32 datasize = sizeof(wellness_str);
|
|
time64_t local_time;
|
|
int ret = -ENODEV;
|
|
|
|
if (!dev->sa_firmware)
|
|
goto out;
|
|
|
|
local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
|
|
time64_to_tm(local_time, 0, &cur_tm);
|
|
cur_tm.tm_mon += 1;
|
|
cur_tm.tm_year += 1900;
|
|
wellness_str[8] = bin2bcd(cur_tm.tm_hour);
|
|
wellness_str[9] = bin2bcd(cur_tm.tm_min);
|
|
wellness_str[10] = bin2bcd(cur_tm.tm_sec);
|
|
wellness_str[12] = bin2bcd(cur_tm.tm_mon);
|
|
wellness_str[13] = bin2bcd(cur_tm.tm_mday);
|
|
wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
|
|
wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
|
|
|
|
ret = aac_send_wellness_command(dev, wellness_str, datasize);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
|
|
{
|
|
int ret = -ENOMEM;
|
|
struct fib *fibptr;
|
|
__le32 *info;
|
|
|
|
fibptr = aac_fib_alloc(dev);
|
|
if (!fibptr)
|
|
goto out;
|
|
|
|
aac_fib_init(fibptr);
|
|
info = (__le32 *)fib_data(fibptr);
|
|
*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
|
|
ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
|
|
1, 1, NULL, NULL);
|
|
|
|
/*
|
|
* Do not set XferState to zero unless
|
|
* receives a response from F/W
|
|
*/
|
|
if (ret >= 0)
|
|
aac_fib_complete(fibptr);
|
|
|
|
/*
|
|
* FIB should be freed only after
|
|
* getting the response from the F/W
|
|
*/
|
|
if (ret != -ERESTARTSYS)
|
|
aac_fib_free(fibptr);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* aac_command_thread - command processing thread
|
|
* @dev: Adapter to monitor
|
|
*
|
|
* Waits on the commandready event in it's queue. When the event gets set
|
|
* it will pull FIBs off it's queue. It will continue to pull FIBs off
|
|
* until the queue is empty. When the queue is empty it will wait for
|
|
* more FIBs.
|
|
*/
|
|
|
|
int aac_command_thread(void *data)
|
|
{
|
|
struct aac_dev *dev = data;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
unsigned long next_jiffies = jiffies + HZ;
|
|
unsigned long next_check_jiffies = next_jiffies;
|
|
long difference = HZ;
|
|
|
|
/*
|
|
* We can only have one thread per adapter for AIF's.
|
|
*/
|
|
if (dev->aif_thread)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Let the DPC know it has a place to send the AIF's to.
|
|
*/
|
|
dev->aif_thread = 1;
|
|
add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
dprintk ((KERN_INFO "aac_command_thread start\n"));
|
|
while (1) {
|
|
|
|
aac_process_events(dev);
|
|
|
|
/*
|
|
* Background activity
|
|
*/
|
|
if ((time_before(next_check_jiffies,next_jiffies))
|
|
&& ((difference = next_check_jiffies - jiffies) <= 0)) {
|
|
next_check_jiffies = next_jiffies;
|
|
if (aac_adapter_check_health(dev) == 0) {
|
|
difference = ((long)(unsigned)check_interval)
|
|
* HZ;
|
|
next_check_jiffies = jiffies + difference;
|
|
} else if (!dev->queues)
|
|
break;
|
|
}
|
|
if (!time_before(next_check_jiffies,next_jiffies)
|
|
&& ((difference = next_jiffies - jiffies) <= 0)) {
|
|
struct timespec64 now;
|
|
int ret;
|
|
|
|
/* Don't even try to talk to adapter if its sick */
|
|
ret = aac_adapter_check_health(dev);
|
|
if (ret || !dev->queues)
|
|
break;
|
|
next_check_jiffies = jiffies
|
|
+ ((long)(unsigned)check_interval)
|
|
* HZ;
|
|
ktime_get_real_ts64(&now);
|
|
|
|
/* Synchronize our watches */
|
|
if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
|
|
&& (now.tv_nsec > (NSEC_PER_SEC / HZ)))
|
|
difference = HZ + HZ / 2 -
|
|
now.tv_nsec / (NSEC_PER_SEC / HZ);
|
|
else {
|
|
if (now.tv_nsec > NSEC_PER_SEC / 2)
|
|
++now.tv_sec;
|
|
|
|
if (dev->sa_firmware)
|
|
ret =
|
|
aac_send_safw_hostttime(dev, &now);
|
|
else
|
|
ret = aac_send_hosttime(dev, &now);
|
|
|
|
difference = (long)(unsigned)update_interval*HZ;
|
|
}
|
|
next_jiffies = jiffies + difference;
|
|
if (time_before(next_check_jiffies,next_jiffies))
|
|
difference = next_check_jiffies - jiffies;
|
|
}
|
|
if (difference <= 0)
|
|
difference = 1;
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (kthread_should_stop())
|
|
break;
|
|
|
|
/*
|
|
* we probably want usleep_range() here instead of the
|
|
* jiffies computation
|
|
*/
|
|
schedule_timeout(difference);
|
|
|
|
if (kthread_should_stop())
|
|
break;
|
|
}
|
|
if (dev->queues)
|
|
remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
|
|
dev->aif_thread = 0;
|
|
return 0;
|
|
}
|
|
|
|
int aac_acquire_irq(struct aac_dev *dev)
|
|
{
|
|
int i;
|
|
int j;
|
|
int ret = 0;
|
|
|
|
if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
|
|
for (i = 0; i < dev->max_msix; i++) {
|
|
dev->aac_msix[i].vector_no = i;
|
|
dev->aac_msix[i].dev = dev;
|
|
if (request_irq(pci_irq_vector(dev->pdev, i),
|
|
dev->a_ops.adapter_intr,
|
|
0, "aacraid", &(dev->aac_msix[i]))) {
|
|
printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
|
|
dev->name, dev->id, i);
|
|
for (j = 0 ; j < i ; j++)
|
|
free_irq(pci_irq_vector(dev->pdev, j),
|
|
&(dev->aac_msix[j]));
|
|
pci_disable_msix(dev->pdev);
|
|
ret = -1;
|
|
}
|
|
}
|
|
} else {
|
|
dev->aac_msix[0].vector_no = 0;
|
|
dev->aac_msix[0].dev = dev;
|
|
|
|
if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
|
|
IRQF_SHARED, "aacraid",
|
|
&(dev->aac_msix[0])) < 0) {
|
|
if (dev->msi)
|
|
pci_disable_msi(dev->pdev);
|
|
printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
|
|
dev->name, dev->id);
|
|
ret = -1;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void aac_free_irq(struct aac_dev *dev)
|
|
{
|
|
int i;
|
|
int cpu;
|
|
|
|
cpu = cpumask_first(cpu_online_mask);
|
|
if (aac_is_src(dev)) {
|
|
if (dev->max_msix > 1) {
|
|
for (i = 0; i < dev->max_msix; i++)
|
|
free_irq(pci_irq_vector(dev->pdev, i),
|
|
&(dev->aac_msix[i]));
|
|
} else {
|
|
free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
|
|
}
|
|
} else {
|
|
free_irq(dev->pdev->irq, dev);
|
|
}
|
|
if (dev->msi)
|
|
pci_disable_msi(dev->pdev);
|
|
else if (dev->max_msix > 1)
|
|
pci_disable_msix(dev->pdev);
|
|
}
|