linux/fs/xfs/xfs_inode.h
Dave Chinner a44a027a8b Merge tag 'large-extent-counters-v9' of https://github.com/chandanr/linux into xfs-5.19-for-next
xfs: Large extent counters

The commit xfs: fix inode fork extent count overflow
(3f8a4f1d876d3e3e49e50b0396eaffcc4ba71b08) mentions that 10 billion
data fork extents should be possible to create. However the
corresponding on-disk field has a signed 32-bit type. Hence this
patchset extends the per-inode data fork extent counter to 64 bits
(out of which 48 bits are used to store the extent count).

Also, XFS has an attribute fork extent counter which is 16 bits
wide. A workload that,
1. Creates 1 million 255-byte sized xattrs,
2. Deletes 50% of these xattrs in an alternating manner,
3. Tries to insert 400,000 new 255-byte sized xattrs
   causes the xattr extent counter to overflow.

Dave tells me that there are instances where a single file has more
than 100 million hardlinks. With parent pointers being stored in
xattrs, we will overflow the signed 16-bits wide attribute extent
counter when large number of hardlinks are created. Hence this
patchset extends the on-disk field to 32-bits.

The following changes are made to accomplish this,
1. A 64-bit inode field is carved out of existing di_pad and
   di_flushiter fields to hold the 64-bit data fork extent counter.
2. The existing 32-bit inode data fork extent counter will be used to
   hold the attribute fork extent counter.
3. A new incompat superblock flag to prevent older kernels from mounting
   the filesystem.

Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 16:46:17 +10:00

517 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#ifndef __XFS_INODE_H__
#define __XFS_INODE_H__
#include "xfs_inode_buf.h"
#include "xfs_inode_fork.h"
/*
* Kernel only inode definitions
*/
struct xfs_dinode;
struct xfs_inode;
struct xfs_buf;
struct xfs_bmbt_irec;
struct xfs_inode_log_item;
struct xfs_mount;
struct xfs_trans;
struct xfs_dquot;
typedef struct xfs_inode {
/* Inode linking and identification information. */
struct xfs_mount *i_mount; /* fs mount struct ptr */
struct xfs_dquot *i_udquot; /* user dquot */
struct xfs_dquot *i_gdquot; /* group dquot */
struct xfs_dquot *i_pdquot; /* project dquot */
/* Inode location stuff */
xfs_ino_t i_ino; /* inode number (agno/agino)*/
struct xfs_imap i_imap; /* location for xfs_imap() */
/* Extent information. */
struct xfs_ifork *i_afp; /* attribute fork pointer */
struct xfs_ifork *i_cowfp; /* copy on write extents */
struct xfs_ifork i_df; /* data fork */
/* Transaction and locking information. */
struct xfs_inode_log_item *i_itemp; /* logging information */
mrlock_t i_lock; /* inode lock */
atomic_t i_pincount; /* inode pin count */
struct llist_node i_gclist; /* deferred inactivation list */
/*
* Bitsets of inode metadata that have been checked and/or are sick.
* Callers must hold i_flags_lock before accessing this field.
*/
uint16_t i_checked;
uint16_t i_sick;
spinlock_t i_flags_lock; /* inode i_flags lock */
/* Miscellaneous state. */
unsigned long i_flags; /* see defined flags below */
uint64_t i_delayed_blks; /* count of delay alloc blks */
xfs_fsize_t i_disk_size; /* number of bytes in file */
xfs_rfsblock_t i_nblocks; /* # of direct & btree blocks */
prid_t i_projid; /* owner's project id */
xfs_extlen_t i_extsize; /* basic/minimum extent size */
/* cowextsize is only used for v3 inodes, flushiter for v1/2 */
union {
xfs_extlen_t i_cowextsize; /* basic cow extent size */
uint16_t i_flushiter; /* incremented on flush */
};
uint8_t i_forkoff; /* attr fork offset >> 3 */
uint16_t i_diflags; /* XFS_DIFLAG_... */
uint64_t i_diflags2; /* XFS_DIFLAG2_... */
struct timespec64 i_crtime; /* time created */
/* VFS inode */
struct inode i_vnode; /* embedded VFS inode */
/* pending io completions */
spinlock_t i_ioend_lock;
struct work_struct i_ioend_work;
struct list_head i_ioend_list;
} xfs_inode_t;
/* Convert from vfs inode to xfs inode */
static inline struct xfs_inode *XFS_I(struct inode *inode)
{
return container_of(inode, struct xfs_inode, i_vnode);
}
/* convert from xfs inode to vfs inode */
static inline struct inode *VFS_I(struct xfs_inode *ip)
{
return &ip->i_vnode;
}
/*
* For regular files we only update the on-disk filesize when actually
* writing data back to disk. Until then only the copy in the VFS inode
* is uptodate.
*/
static inline xfs_fsize_t XFS_ISIZE(struct xfs_inode *ip)
{
if (S_ISREG(VFS_I(ip)->i_mode))
return i_size_read(VFS_I(ip));
return ip->i_disk_size;
}
/*
* If this I/O goes past the on-disk inode size update it unless it would
* be past the current in-core inode size.
*/
static inline xfs_fsize_t
xfs_new_eof(struct xfs_inode *ip, xfs_fsize_t new_size)
{
xfs_fsize_t i_size = i_size_read(VFS_I(ip));
if (new_size > i_size || new_size < 0)
new_size = i_size;
return new_size > ip->i_disk_size ? new_size : 0;
}
/*
* i_flags helper functions
*/
static inline void
__xfs_iflags_set(xfs_inode_t *ip, unsigned short flags)
{
ip->i_flags |= flags;
}
static inline void
xfs_iflags_set(xfs_inode_t *ip, unsigned short flags)
{
spin_lock(&ip->i_flags_lock);
__xfs_iflags_set(ip, flags);
spin_unlock(&ip->i_flags_lock);
}
static inline void
xfs_iflags_clear(xfs_inode_t *ip, unsigned short flags)
{
spin_lock(&ip->i_flags_lock);
ip->i_flags &= ~flags;
spin_unlock(&ip->i_flags_lock);
}
static inline int
__xfs_iflags_test(xfs_inode_t *ip, unsigned short flags)
{
return (ip->i_flags & flags);
}
static inline int
xfs_iflags_test(xfs_inode_t *ip, unsigned short flags)
{
int ret;
spin_lock(&ip->i_flags_lock);
ret = __xfs_iflags_test(ip, flags);
spin_unlock(&ip->i_flags_lock);
return ret;
}
static inline int
xfs_iflags_test_and_clear(xfs_inode_t *ip, unsigned short flags)
{
int ret;
spin_lock(&ip->i_flags_lock);
ret = ip->i_flags & flags;
if (ret)
ip->i_flags &= ~flags;
spin_unlock(&ip->i_flags_lock);
return ret;
}
static inline int
xfs_iflags_test_and_set(xfs_inode_t *ip, unsigned short flags)
{
int ret;
spin_lock(&ip->i_flags_lock);
ret = ip->i_flags & flags;
if (!ret)
ip->i_flags |= flags;
spin_unlock(&ip->i_flags_lock);
return ret;
}
static inline prid_t
xfs_get_initial_prid(struct xfs_inode *dp)
{
if (dp->i_diflags & XFS_DIFLAG_PROJINHERIT)
return dp->i_projid;
return XFS_PROJID_DEFAULT;
}
static inline bool xfs_is_reflink_inode(struct xfs_inode *ip)
{
return ip->i_diflags2 & XFS_DIFLAG2_REFLINK;
}
static inline bool xfs_is_metadata_inode(struct xfs_inode *ip)
{
struct xfs_mount *mp = ip->i_mount;
return ip == mp->m_rbmip || ip == mp->m_rsumip ||
xfs_is_quota_inode(&mp->m_sb, ip->i_ino);
}
/*
* Check if an inode has any data in the COW fork. This might be often false
* even for inodes with the reflink flag when there is no pending COW operation.
*/
static inline bool xfs_inode_has_cow_data(struct xfs_inode *ip)
{
return ip->i_cowfp && ip->i_cowfp->if_bytes;
}
static inline bool xfs_inode_has_bigtime(struct xfs_inode *ip)
{
return ip->i_diflags2 & XFS_DIFLAG2_BIGTIME;
}
static inline bool xfs_inode_has_large_extent_counts(struct xfs_inode *ip)
{
return ip->i_diflags2 & XFS_DIFLAG2_NREXT64;
}
/*
* Return the buftarg used for data allocations on a given inode.
*/
#define xfs_inode_buftarg(ip) \
(XFS_IS_REALTIME_INODE(ip) ? \
(ip)->i_mount->m_rtdev_targp : (ip)->i_mount->m_ddev_targp)
/*
* In-core inode flags.
*/
#define XFS_IRECLAIM (1 << 0) /* started reclaiming this inode */
#define XFS_ISTALE (1 << 1) /* inode has been staled */
#define XFS_IRECLAIMABLE (1 << 2) /* inode can be reclaimed */
#define XFS_INEW (1 << 3) /* inode has just been allocated */
#define XFS_IPRESERVE_DM_FIELDS (1 << 4) /* has legacy DMAPI fields set */
#define XFS_ITRUNCATED (1 << 5) /* truncated down so flush-on-close */
#define XFS_IDIRTY_RELEASE (1 << 6) /* dirty release already seen */
#define XFS_IFLUSHING (1 << 7) /* inode is being flushed */
#define __XFS_IPINNED_BIT 8 /* wakeup key for zero pin count */
#define XFS_IPINNED (1 << __XFS_IPINNED_BIT)
#define XFS_IEOFBLOCKS (1 << 9) /* has the preallocblocks tag set */
#define XFS_NEED_INACTIVE (1 << 10) /* see XFS_INACTIVATING below */
/*
* If this unlinked inode is in the middle of recovery, don't let drop_inode
* truncate and free the inode. This can happen if we iget the inode during
* log recovery to replay a bmap operation on the inode.
*/
#define XFS_IRECOVERY (1 << 11)
#define XFS_ICOWBLOCKS (1 << 12)/* has the cowblocks tag set */
/*
* If we need to update on-disk metadata before this IRECLAIMABLE inode can be
* freed, then NEED_INACTIVE will be set. Once we start the updates, the
* INACTIVATING bit will be set to keep iget away from this inode. After the
* inactivation completes, both flags will be cleared and the inode is a
* plain old IRECLAIMABLE inode.
*/
#define XFS_INACTIVATING (1 << 13)
/* All inode state flags related to inode reclaim. */
#define XFS_ALL_IRECLAIM_FLAGS (XFS_IRECLAIMABLE | \
XFS_IRECLAIM | \
XFS_NEED_INACTIVE | \
XFS_INACTIVATING)
/*
* Per-lifetime flags need to be reset when re-using a reclaimable inode during
* inode lookup. This prevents unintended behaviour on the new inode from
* ocurring.
*/
#define XFS_IRECLAIM_RESET_FLAGS \
(XFS_IRECLAIMABLE | XFS_IRECLAIM | \
XFS_IDIRTY_RELEASE | XFS_ITRUNCATED | XFS_NEED_INACTIVE | \
XFS_INACTIVATING)
/*
* Flags for inode locking.
* Bit ranges: 1<<1 - 1<<16-1 -- iolock/ilock modes (bitfield)
* 1<<16 - 1<<32-1 -- lockdep annotation (integers)
*/
#define XFS_IOLOCK_EXCL (1u << 0)
#define XFS_IOLOCK_SHARED (1u << 1)
#define XFS_ILOCK_EXCL (1u << 2)
#define XFS_ILOCK_SHARED (1u << 3)
#define XFS_MMAPLOCK_EXCL (1u << 4)
#define XFS_MMAPLOCK_SHARED (1u << 5)
#define XFS_LOCK_MASK (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED \
| XFS_ILOCK_EXCL | XFS_ILOCK_SHARED \
| XFS_MMAPLOCK_EXCL | XFS_MMAPLOCK_SHARED)
#define XFS_LOCK_FLAGS \
{ XFS_IOLOCK_EXCL, "IOLOCK_EXCL" }, \
{ XFS_IOLOCK_SHARED, "IOLOCK_SHARED" }, \
{ XFS_ILOCK_EXCL, "ILOCK_EXCL" }, \
{ XFS_ILOCK_SHARED, "ILOCK_SHARED" }, \
{ XFS_MMAPLOCK_EXCL, "MMAPLOCK_EXCL" }, \
{ XFS_MMAPLOCK_SHARED, "MMAPLOCK_SHARED" }
/*
* Flags for lockdep annotations.
*
* XFS_LOCK_PARENT - for directory operations that require locking a
* parent directory inode and a child entry inode. IOLOCK requires nesting,
* MMAPLOCK does not support this class, ILOCK requires a single subclass
* to differentiate parent from child.
*
* XFS_LOCK_RTBITMAP/XFS_LOCK_RTSUM - the realtime device bitmap and summary
* inodes do not participate in the normal lock order, and thus have their
* own subclasses.
*
* XFS_LOCK_INUMORDER - for locking several inodes at the some time
* with xfs_lock_inodes(). This flag is used as the starting subclass
* and each subsequent lock acquired will increment the subclass by one.
* However, MAX_LOCKDEP_SUBCLASSES == 8, which means we are greatly
* limited to the subclasses we can represent via nesting. We need at least
* 5 inodes nest depth for the ILOCK through rename, and we also have to support
* XFS_ILOCK_PARENT, which gives 6 subclasses. Then we have XFS_ILOCK_RTBITMAP
* and XFS_ILOCK_RTSUM, which are another 2 unique subclasses, so that's all
* 8 subclasses supported by lockdep.
*
* This also means we have to number the sub-classes in the lowest bits of
* the mask we keep, and we have to ensure we never exceed 3 bits of lockdep
* mask and we can't use bit-masking to build the subclasses. What a mess.
*
* Bit layout:
*
* Bit Lock Region
* 16-19 XFS_IOLOCK_SHIFT dependencies
* 20-23 XFS_MMAPLOCK_SHIFT dependencies
* 24-31 XFS_ILOCK_SHIFT dependencies
*
* IOLOCK values
*
* 0-3 subclass value
* 4-7 unused
*
* MMAPLOCK values
*
* 0-3 subclass value
* 4-7 unused
*
* ILOCK values
* 0-4 subclass values
* 5 PARENT subclass (not nestable)
* 6 RTBITMAP subclass (not nestable)
* 7 RTSUM subclass (not nestable)
*
*/
#define XFS_IOLOCK_SHIFT 16
#define XFS_IOLOCK_MAX_SUBCLASS 3
#define XFS_IOLOCK_DEP_MASK 0x000f0000u
#define XFS_MMAPLOCK_SHIFT 20
#define XFS_MMAPLOCK_NUMORDER 0
#define XFS_MMAPLOCK_MAX_SUBCLASS 3
#define XFS_MMAPLOCK_DEP_MASK 0x00f00000u
#define XFS_ILOCK_SHIFT 24
#define XFS_ILOCK_PARENT_VAL 5u
#define XFS_ILOCK_MAX_SUBCLASS (XFS_ILOCK_PARENT_VAL - 1)
#define XFS_ILOCK_RTBITMAP_VAL 6u
#define XFS_ILOCK_RTSUM_VAL 7u
#define XFS_ILOCK_DEP_MASK 0xff000000u
#define XFS_ILOCK_PARENT (XFS_ILOCK_PARENT_VAL << XFS_ILOCK_SHIFT)
#define XFS_ILOCK_RTBITMAP (XFS_ILOCK_RTBITMAP_VAL << XFS_ILOCK_SHIFT)
#define XFS_ILOCK_RTSUM (XFS_ILOCK_RTSUM_VAL << XFS_ILOCK_SHIFT)
#define XFS_LOCK_SUBCLASS_MASK (XFS_IOLOCK_DEP_MASK | \
XFS_MMAPLOCK_DEP_MASK | \
XFS_ILOCK_DEP_MASK)
#define XFS_IOLOCK_DEP(flags) (((flags) & XFS_IOLOCK_DEP_MASK) \
>> XFS_IOLOCK_SHIFT)
#define XFS_MMAPLOCK_DEP(flags) (((flags) & XFS_MMAPLOCK_DEP_MASK) \
>> XFS_MMAPLOCK_SHIFT)
#define XFS_ILOCK_DEP(flags) (((flags) & XFS_ILOCK_DEP_MASK) \
>> XFS_ILOCK_SHIFT)
/*
* Layouts are broken in the BREAK_WRITE case to ensure that
* layout-holders do not collide with local writes. Additionally,
* layouts are broken in the BREAK_UNMAP case to make sure the
* layout-holder has a consistent view of the file's extent map. While
* BREAK_WRITE breaks can be satisfied by recalling FL_LAYOUT leases,
* BREAK_UNMAP breaks additionally require waiting for busy dax-pages to
* go idle.
*/
enum layout_break_reason {
BREAK_WRITE,
BREAK_UNMAP,
};
/*
* For multiple groups support: if S_ISGID bit is set in the parent
* directory, group of new file is set to that of the parent, and
* new subdirectory gets S_ISGID bit from parent.
*/
#define XFS_INHERIT_GID(pip) \
(xfs_has_grpid((pip)->i_mount) || (VFS_I(pip)->i_mode & S_ISGID))
int xfs_release(struct xfs_inode *ip);
void xfs_inactive(struct xfs_inode *ip);
int xfs_lookup(struct xfs_inode *dp, const struct xfs_name *name,
struct xfs_inode **ipp, struct xfs_name *ci_name);
int xfs_create(struct user_namespace *mnt_userns,
struct xfs_inode *dp, struct xfs_name *name,
umode_t mode, dev_t rdev, bool need_xattr,
struct xfs_inode **ipp);
int xfs_create_tmpfile(struct user_namespace *mnt_userns,
struct xfs_inode *dp, umode_t mode,
struct xfs_inode **ipp);
int xfs_remove(struct xfs_inode *dp, struct xfs_name *name,
struct xfs_inode *ip);
int xfs_link(struct xfs_inode *tdp, struct xfs_inode *sip,
struct xfs_name *target_name);
int xfs_rename(struct user_namespace *mnt_userns,
struct xfs_inode *src_dp, struct xfs_name *src_name,
struct xfs_inode *src_ip, struct xfs_inode *target_dp,
struct xfs_name *target_name,
struct xfs_inode *target_ip, unsigned int flags);
void xfs_ilock(xfs_inode_t *, uint);
int xfs_ilock_nowait(xfs_inode_t *, uint);
void xfs_iunlock(xfs_inode_t *, uint);
void xfs_ilock_demote(xfs_inode_t *, uint);
bool xfs_isilocked(struct xfs_inode *, uint);
uint xfs_ilock_data_map_shared(struct xfs_inode *);
uint xfs_ilock_attr_map_shared(struct xfs_inode *);
uint xfs_ip2xflags(struct xfs_inode *);
int xfs_ifree(struct xfs_trans *, struct xfs_inode *);
int xfs_itruncate_extents_flags(struct xfs_trans **,
struct xfs_inode *, int, xfs_fsize_t, int);
void xfs_iext_realloc(xfs_inode_t *, int, int);
int xfs_log_force_inode(struct xfs_inode *ip);
void xfs_iunpin_wait(xfs_inode_t *);
#define xfs_ipincount(ip) ((unsigned int) atomic_read(&ip->i_pincount))
int xfs_iflush_cluster(struct xfs_buf *);
void xfs_lock_two_inodes(struct xfs_inode *ip0, uint ip0_mode,
struct xfs_inode *ip1, uint ip1_mode);
xfs_extlen_t xfs_get_extsz_hint(struct xfs_inode *ip);
xfs_extlen_t xfs_get_cowextsz_hint(struct xfs_inode *ip);
int xfs_init_new_inode(struct user_namespace *mnt_userns, struct xfs_trans *tp,
struct xfs_inode *pip, xfs_ino_t ino, umode_t mode,
xfs_nlink_t nlink, dev_t rdev, prid_t prid, bool init_xattrs,
struct xfs_inode **ipp);
static inline int
xfs_itruncate_extents(
struct xfs_trans **tpp,
struct xfs_inode *ip,
int whichfork,
xfs_fsize_t new_size)
{
return xfs_itruncate_extents_flags(tpp, ip, whichfork, new_size, 0);
}
/* from xfs_file.c */
int xfs_break_layouts(struct inode *inode, uint *iolock,
enum layout_break_reason reason);
/* from xfs_iops.c */
extern void xfs_setup_inode(struct xfs_inode *ip);
extern void xfs_setup_iops(struct xfs_inode *ip);
extern void xfs_diflags_to_iflags(struct xfs_inode *ip, bool init);
/*
* When setting up a newly allocated inode, we need to call
* xfs_finish_inode_setup() once the inode is fully instantiated at
* the VFS level to prevent the rest of the world seeing the inode
* before we've completed instantiation. Otherwise we can do it
* the moment the inode lookup is complete.
*/
static inline void xfs_finish_inode_setup(struct xfs_inode *ip)
{
xfs_iflags_clear(ip, XFS_INEW);
barrier();
unlock_new_inode(VFS_I(ip));
}
static inline void xfs_setup_existing_inode(struct xfs_inode *ip)
{
xfs_setup_inode(ip);
xfs_setup_iops(ip);
xfs_finish_inode_setup(ip);
}
void xfs_irele(struct xfs_inode *ip);
extern struct kmem_cache *xfs_inode_cache;
/* The default CoW extent size hint. */
#define XFS_DEFAULT_COWEXTSZ_HINT 32
bool xfs_inode_needs_inactive(struct xfs_inode *ip);
int xfs_iunlink_init(struct xfs_perag *pag);
void xfs_iunlink_destroy(struct xfs_perag *pag);
void xfs_end_io(struct work_struct *work);
int xfs_ilock2_io_mmap(struct xfs_inode *ip1, struct xfs_inode *ip2);
void xfs_iunlock2_io_mmap(struct xfs_inode *ip1, struct xfs_inode *ip2);
#endif /* __XFS_INODE_H__ */