linux/drivers/clk/mvebu/armada-37xx-periph.c
Miquel Raynal d9d95e78cf clk: mvebu: armada-37xx-periph: save the IP base address in the driver data
Prepare the introduction of suspend/resume hooks by having an easy way
to access all the registers in one go just from a device: add the IP
base address in the driver data.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2018-08-31 10:47:48 -07:00

755 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Marvell Armada 37xx SoC Peripheral clocks
*
* Copyright (C) 2016 Marvell
*
* Gregory CLEMENT <gregory.clement@free-electrons.com>
*
* Most of the peripheral clocks can be modelled like this:
* _____ _______ _______
* TBG-A-P --| | | | | | ______
* TBG-B-P --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk
* TBG-A-S --| | | | | | |______|
* TBG-B-S --|_____| |_______| |_______|
*
* However some clocks may use only one or two block or and use the
* xtal clock as parent.
*/
#include <linux/clk-provider.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define TBG_SEL 0x0
#define DIV_SEL0 0x4
#define DIV_SEL1 0x8
#define DIV_SEL2 0xC
#define CLK_SEL 0x10
#define CLK_DIS 0x14
#define ARMADA_37XX_DVFS_LOAD_1 1
#define LOAD_LEVEL_NR 4
#define ARMADA_37XX_NB_L0L1 0x18
#define ARMADA_37XX_NB_L2L3 0x1C
#define ARMADA_37XX_NB_TBG_DIV_OFF 13
#define ARMADA_37XX_NB_TBG_DIV_MASK 0x7
#define ARMADA_37XX_NB_CLK_SEL_OFF 11
#define ARMADA_37XX_NB_CLK_SEL_MASK 0x1
#define ARMADA_37XX_NB_TBG_SEL_OFF 9
#define ARMADA_37XX_NB_TBG_SEL_MASK 0x3
#define ARMADA_37XX_NB_CONFIG_SHIFT 16
#define ARMADA_37XX_NB_DYN_MOD 0x24
#define ARMADA_37XX_NB_DFS_EN 31
#define ARMADA_37XX_NB_CPU_LOAD 0x30
#define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3
#define ARMADA_37XX_DVFS_LOAD_0 0
#define ARMADA_37XX_DVFS_LOAD_1 1
#define ARMADA_37XX_DVFS_LOAD_2 2
#define ARMADA_37XX_DVFS_LOAD_3 3
struct clk_periph_driver_data {
struct clk_hw_onecell_data *hw_data;
spinlock_t lock;
void __iomem *reg;
};
struct clk_double_div {
struct clk_hw hw;
void __iomem *reg1;
u8 shift1;
void __iomem *reg2;
u8 shift2;
};
struct clk_pm_cpu {
struct clk_hw hw;
void __iomem *reg_mux;
u8 shift_mux;
u32 mask_mux;
void __iomem *reg_div;
u8 shift_div;
struct regmap *nb_pm_base;
};
#define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw)
#define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw)
struct clk_periph_data {
const char *name;
const char * const *parent_names;
int num_parents;
struct clk_hw *mux_hw;
struct clk_hw *rate_hw;
struct clk_hw *gate_hw;
struct clk_hw *muxrate_hw;
bool is_double_div;
};
static const struct clk_div_table clk_table6[] = {
{ .val = 1, .div = 1, },
{ .val = 2, .div = 2, },
{ .val = 3, .div = 3, },
{ .val = 4, .div = 4, },
{ .val = 5, .div = 5, },
{ .val = 6, .div = 6, },
{ .val = 0, .div = 0, }, /* last entry */
};
static const struct clk_div_table clk_table1[] = {
{ .val = 0, .div = 1, },
{ .val = 1, .div = 2, },
{ .val = 0, .div = 0, }, /* last entry */
};
static const struct clk_div_table clk_table2[] = {
{ .val = 0, .div = 2, },
{ .val = 1, .div = 4, },
{ .val = 0, .div = 0, }, /* last entry */
};
static const struct clk_ops clk_double_div_ops;
static const struct clk_ops clk_pm_cpu_ops;
#define PERIPH_GATE(_name, _bit) \
struct clk_gate gate_##_name = { \
.reg = (void *)CLK_DIS, \
.bit_idx = _bit, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_gate_ops, \
} \
};
#define PERIPH_MUX(_name, _shift) \
struct clk_mux mux_##_name = { \
.reg = (void *)TBG_SEL, \
.shift = _shift, \
.mask = 3, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_mux_ro_ops, \
} \
};
#define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \
struct clk_double_div rate_##_name = { \
.reg1 = (void *)_reg1, \
.reg2 = (void *)_reg2, \
.shift1 = _shift1, \
.shift2 = _shift2, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_double_div_ops, \
} \
};
#define PERIPH_DIV(_name, _reg, _shift, _table) \
struct clk_divider rate_##_name = { \
.reg = (void *)_reg, \
.table = _table, \
.shift = _shift, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_divider_ro_ops, \
} \
};
#define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2) \
struct clk_pm_cpu muxrate_##_name = { \
.reg_mux = (void *)TBG_SEL, \
.mask_mux = 3, \
.shift_mux = _shift1, \
.reg_div = (void *)_reg, \
.shift_div = _shift2, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_pm_cpu_ops, \
} \
};
#define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\
static PERIPH_GATE(_name, _bit); \
static PERIPH_MUX(_name, _shift); \
static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
#define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table) \
static PERIPH_GATE(_name, _bit); \
static PERIPH_MUX(_name, _shift); \
static PERIPH_DIV(_name, _reg, _shift1, _table);
#define PERIPH_CLK_GATE_DIV(_name, _bit, _reg, _shift, _table) \
static PERIPH_GATE(_name, _bit); \
static PERIPH_DIV(_name, _reg, _shift, _table);
#define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\
static PERIPH_MUX(_name, _shift); \
static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
#define REF_CLK_FULL(_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ "TBG-A-P", \
"TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
.num_parents = 4, \
.mux_hw = &mux_##_name.hw, \
.gate_hw = &gate_##_name.hw, \
.rate_hw = &rate_##_name.hw, \
}
#define REF_CLK_FULL_DD(_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ "TBG-A-P", \
"TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
.num_parents = 4, \
.mux_hw = &mux_##_name.hw, \
.gate_hw = &gate_##_name.hw, \
.rate_hw = &rate_##_name.hw, \
.is_double_div = true, \
}
#define REF_CLK_GATE(_name, _parent_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ _parent_name}, \
.num_parents = 1, \
.gate_hw = &gate_##_name.hw, \
}
#define REF_CLK_GATE_DIV(_name, _parent_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ _parent_name}, \
.num_parents = 1, \
.gate_hw = &gate_##_name.hw, \
.rate_hw = &rate_##_name.hw, \
}
#define REF_CLK_PM_CPU(_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ "TBG-A-P", \
"TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
.num_parents = 4, \
.muxrate_hw = &muxrate_##_name.hw, \
}
#define REF_CLK_MUX_DD(_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ "TBG-A-P", \
"TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
.num_parents = 4, \
.mux_hw = &mux_##_name.hw, \
.rate_hw = &rate_##_name.hw, \
.is_double_div = true, \
}
/* NB periph clocks */
PERIPH_CLK_FULL_DD(mmc, 2, 0, DIV_SEL2, DIV_SEL2, 16, 13);
PERIPH_CLK_FULL_DD(sata_host, 3, 2, DIV_SEL2, DIV_SEL2, 10, 7);
PERIPH_CLK_FULL_DD(sec_at, 6, 4, DIV_SEL1, DIV_SEL1, 3, 0);
PERIPH_CLK_FULL_DD(sec_dap, 7, 6, DIV_SEL1, DIV_SEL1, 9, 6);
PERIPH_CLK_FULL_DD(tscem, 8, 8, DIV_SEL1, DIV_SEL1, 15, 12);
PERIPH_CLK_FULL(tscem_tmx, 10, 10, DIV_SEL1, 18, clk_table6);
static PERIPH_GATE(avs, 11);
PERIPH_CLK_FULL_DD(pwm, 13, 14, DIV_SEL0, DIV_SEL0, 3, 0);
PERIPH_CLK_FULL_DD(sqf, 12, 12, DIV_SEL1, DIV_SEL1, 27, 24);
static PERIPH_GATE(i2c_2, 16);
static PERIPH_GATE(i2c_1, 17);
PERIPH_CLK_GATE_DIV(ddr_phy, 19, DIV_SEL0, 18, clk_table2);
PERIPH_CLK_FULL_DD(ddr_fclk, 21, 16, DIV_SEL0, DIV_SEL0, 15, 12);
PERIPH_CLK_FULL(trace, 22, 18, DIV_SEL0, 20, clk_table6);
PERIPH_CLK_FULL(counter, 23, 20, DIV_SEL0, 23, clk_table6);
PERIPH_CLK_FULL_DD(eip97, 24, 24, DIV_SEL2, DIV_SEL2, 22, 19);
static PERIPH_PM_CPU(cpu, 22, DIV_SEL0, 28);
static struct clk_periph_data data_nb[] = {
REF_CLK_FULL_DD(mmc),
REF_CLK_FULL_DD(sata_host),
REF_CLK_FULL_DD(sec_at),
REF_CLK_FULL_DD(sec_dap),
REF_CLK_FULL_DD(tscem),
REF_CLK_FULL(tscem_tmx),
REF_CLK_GATE(avs, "xtal"),
REF_CLK_FULL_DD(sqf),
REF_CLK_FULL_DD(pwm),
REF_CLK_GATE(i2c_2, "xtal"),
REF_CLK_GATE(i2c_1, "xtal"),
REF_CLK_GATE_DIV(ddr_phy, "TBG-A-S"),
REF_CLK_FULL_DD(ddr_fclk),
REF_CLK_FULL(trace),
REF_CLK_FULL(counter),
REF_CLK_FULL_DD(eip97),
REF_CLK_PM_CPU(cpu),
{ },
};
/* SB periph clocks */
PERIPH_CLK_MUX_DD(gbe_50, 6, DIV_SEL2, DIV_SEL2, 6, 9);
PERIPH_CLK_MUX_DD(gbe_core, 8, DIV_SEL1, DIV_SEL1, 18, 21);
PERIPH_CLK_MUX_DD(gbe_125, 10, DIV_SEL1, DIV_SEL1, 6, 9);
static PERIPH_GATE(gbe1_50, 0);
static PERIPH_GATE(gbe0_50, 1);
static PERIPH_GATE(gbe1_125, 2);
static PERIPH_GATE(gbe0_125, 3);
PERIPH_CLK_GATE_DIV(gbe1_core, 4, DIV_SEL1, 13, clk_table1);
PERIPH_CLK_GATE_DIV(gbe0_core, 5, DIV_SEL1, 14, clk_table1);
PERIPH_CLK_GATE_DIV(gbe_bm, 12, DIV_SEL1, 0, clk_table1);
PERIPH_CLK_FULL_DD(sdio, 11, 14, DIV_SEL0, DIV_SEL0, 3, 6);
PERIPH_CLK_FULL_DD(usb32_usb2_sys, 16, 16, DIV_SEL0, DIV_SEL0, 9, 12);
PERIPH_CLK_FULL_DD(usb32_ss_sys, 17, 18, DIV_SEL0, DIV_SEL0, 15, 18);
static struct clk_periph_data data_sb[] = {
REF_CLK_MUX_DD(gbe_50),
REF_CLK_MUX_DD(gbe_core),
REF_CLK_MUX_DD(gbe_125),
REF_CLK_GATE(gbe1_50, "gbe_50"),
REF_CLK_GATE(gbe0_50, "gbe_50"),
REF_CLK_GATE(gbe1_125, "gbe_125"),
REF_CLK_GATE(gbe0_125, "gbe_125"),
REF_CLK_GATE_DIV(gbe1_core, "gbe_core"),
REF_CLK_GATE_DIV(gbe0_core, "gbe_core"),
REF_CLK_GATE_DIV(gbe_bm, "gbe_core"),
REF_CLK_FULL_DD(sdio),
REF_CLK_FULL_DD(usb32_usb2_sys),
REF_CLK_FULL_DD(usb32_ss_sys),
{ },
};
static unsigned int get_div(void __iomem *reg, int shift)
{
u32 val;
val = (readl(reg) >> shift) & 0x7;
if (val > 6)
return 0;
return val;
}
static unsigned long clk_double_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_double_div *double_div = to_clk_double_div(hw);
unsigned int div;
div = get_div(double_div->reg1, double_div->shift1);
div *= get_div(double_div->reg2, double_div->shift2);
return DIV_ROUND_UP_ULL((u64)parent_rate, div);
}
static const struct clk_ops clk_double_div_ops = {
.recalc_rate = clk_double_div_recalc_rate,
};
static void armada_3700_pm_dvfs_update_regs(unsigned int load_level,
unsigned int *reg,
unsigned int *offset)
{
if (load_level <= ARMADA_37XX_DVFS_LOAD_1)
*reg = ARMADA_37XX_NB_L0L1;
else
*reg = ARMADA_37XX_NB_L2L3;
if (load_level == ARMADA_37XX_DVFS_LOAD_0 ||
load_level == ARMADA_37XX_DVFS_LOAD_2)
*offset += ARMADA_37XX_NB_CONFIG_SHIFT;
}
static bool armada_3700_pm_dvfs_is_enabled(struct regmap *base)
{
unsigned int val, reg = ARMADA_37XX_NB_DYN_MOD;
if (IS_ERR(base))
return false;
regmap_read(base, reg, &val);
return !!(val & BIT(ARMADA_37XX_NB_DFS_EN));
}
static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap *base)
{
unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
unsigned int offset = ARMADA_37XX_NB_TBG_DIV_OFF;
unsigned int load_level, div;
/*
* This function is always called after the function
* armada_3700_pm_dvfs_is_enabled, so no need to check again
* if the base is valid.
*/
regmap_read(base, reg, &load_level);
/*
* The register and the offset inside this register accessed to
* read the current divider depend on the load level
*/
load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
regmap_read(base, reg, &div);
return (div >> offset) & ARMADA_37XX_NB_TBG_DIV_MASK;
}
static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap *base)
{
unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
unsigned int offset = ARMADA_37XX_NB_TBG_SEL_OFF;
unsigned int load_level, sel;
/*
* This function is always called after the function
* armada_3700_pm_dvfs_is_enabled, so no need to check again
* if the base is valid
*/
regmap_read(base, reg, &load_level);
/*
* The register and the offset inside this register accessed to
* read the current divider depend on the load level
*/
load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
regmap_read(base, reg, &sel);
return (sel >> offset) & ARMADA_37XX_NB_TBG_SEL_MASK;
}
static u8 clk_pm_cpu_get_parent(struct clk_hw *hw)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
u32 val;
if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) {
val = armada_3700_pm_dvfs_get_cpu_parent(pm_cpu->nb_pm_base);
} else {
val = readl(pm_cpu->reg_mux) >> pm_cpu->shift_mux;
val &= pm_cpu->mask_mux;
}
return val;
}
static int clk_pm_cpu_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
struct regmap *base = pm_cpu->nb_pm_base;
int load_level;
/*
* We set the clock parent only if the DVFS is available but
* not enabled.
*/
if (IS_ERR(base) || armada_3700_pm_dvfs_is_enabled(base))
return -EINVAL;
/* Set the parent clock for all the load level */
for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
unsigned int reg, mask, val,
offset = ARMADA_37XX_NB_TBG_SEL_OFF;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
val = index << offset;
mask = ARMADA_37XX_NB_TBG_SEL_MASK << offset;
regmap_update_bits(base, reg, mask, val);
}
return 0;
}
static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
unsigned int div;
if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base))
div = armada_3700_pm_dvfs_get_cpu_div(pm_cpu->nb_pm_base);
else
div = get_div(pm_cpu->reg_div, pm_cpu->shift_div);
return DIV_ROUND_UP_ULL((u64)parent_rate, div);
}
static long clk_pm_cpu_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
struct regmap *base = pm_cpu->nb_pm_base;
unsigned int div = *parent_rate / rate;
unsigned int load_level;
/* only available when DVFS is enabled */
if (!armada_3700_pm_dvfs_is_enabled(base))
return -EINVAL;
for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
unsigned int reg, val, offset = ARMADA_37XX_NB_TBG_DIV_OFF;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
regmap_read(base, reg, &val);
val >>= offset;
val &= ARMADA_37XX_NB_TBG_DIV_MASK;
if (val == div)
/*
* We found a load level matching the target
* divider, switch to this load level and
* return.
*/
return *parent_rate / div;
}
/* We didn't find any valid divider */
return -EINVAL;
}
/*
* Switching the CPU from the L2 or L3 frequencies (300 and 200 Mhz
* respectively) to L0 frequency (1.2 Ghz) requires a significant
* amount of time to let VDD stabilize to the appropriate
* voltage. This amount of time is large enough that it cannot be
* covered by the hardware countdown register. Due to this, the CPU
* might start operating at L0 before the voltage is stabilized,
* leading to CPU stalls.
*
* To work around this problem, we prevent switching directly from the
* L2/L3 frequencies to the L0 frequency, and instead switch to the L1
* frequency in-between. The sequence therefore becomes:
* 1. First switch from L2/L3(200/300MHz) to L1(600MHZ)
* 2. Sleep 20ms for stabling VDD voltage
* 3. Then switch from L1(600MHZ) to L0(1200Mhz).
*/
static void clk_pm_cpu_set_rate_wa(unsigned long rate, struct regmap *base)
{
unsigned int cur_level;
if (rate != 1200 * 1000 * 1000)
return;
regmap_read(base, ARMADA_37XX_NB_CPU_LOAD, &cur_level);
cur_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
if (cur_level <= ARMADA_37XX_DVFS_LOAD_1)
return;
regmap_update_bits(base, ARMADA_37XX_NB_CPU_LOAD,
ARMADA_37XX_NB_CPU_LOAD_MASK,
ARMADA_37XX_DVFS_LOAD_1);
msleep(20);
}
static int clk_pm_cpu_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
struct regmap *base = pm_cpu->nb_pm_base;
unsigned int div = parent_rate / rate;
unsigned int load_level;
/* only available when DVFS is enabled */
if (!armada_3700_pm_dvfs_is_enabled(base))
return -EINVAL;
for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
unsigned int reg, mask, val,
offset = ARMADA_37XX_NB_TBG_DIV_OFF;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
regmap_read(base, reg, &val);
val >>= offset;
val &= ARMADA_37XX_NB_TBG_DIV_MASK;
if (val == div) {
/*
* We found a load level matching the target
* divider, switch to this load level and
* return.
*/
reg = ARMADA_37XX_NB_CPU_LOAD;
mask = ARMADA_37XX_NB_CPU_LOAD_MASK;
clk_pm_cpu_set_rate_wa(rate, base);
regmap_update_bits(base, reg, mask, load_level);
return rate;
}
}
/* We didn't find any valid divider */
return -EINVAL;
}
static const struct clk_ops clk_pm_cpu_ops = {
.get_parent = clk_pm_cpu_get_parent,
.set_parent = clk_pm_cpu_set_parent,
.round_rate = clk_pm_cpu_round_rate,
.set_rate = clk_pm_cpu_set_rate,
.recalc_rate = clk_pm_cpu_recalc_rate,
};
static const struct of_device_id armada_3700_periph_clock_of_match[] = {
{ .compatible = "marvell,armada-3700-periph-clock-nb",
.data = data_nb, },
{ .compatible = "marvell,armada-3700-periph-clock-sb",
.data = data_sb, },
{ }
};
static int armada_3700_add_composite_clk(const struct clk_periph_data *data,
void __iomem *reg, spinlock_t *lock,
struct device *dev, struct clk_hw **hw)
{
const struct clk_ops *mux_ops = NULL, *gate_ops = NULL,
*rate_ops = NULL;
struct clk_hw *mux_hw = NULL, *gate_hw = NULL, *rate_hw = NULL;
if (data->mux_hw) {
struct clk_mux *mux;
mux_hw = data->mux_hw;
mux = to_clk_mux(mux_hw);
mux->lock = lock;
mux_ops = mux_hw->init->ops;
mux->reg = reg + (u64)mux->reg;
}
if (data->gate_hw) {
struct clk_gate *gate;
gate_hw = data->gate_hw;
gate = to_clk_gate(gate_hw);
gate->lock = lock;
gate_ops = gate_hw->init->ops;
gate->reg = reg + (u64)gate->reg;
gate->flags = CLK_GATE_SET_TO_DISABLE;
}
if (data->rate_hw) {
rate_hw = data->rate_hw;
rate_ops = rate_hw->init->ops;
if (data->is_double_div) {
struct clk_double_div *rate;
rate = to_clk_double_div(rate_hw);
rate->reg1 = reg + (u64)rate->reg1;
rate->reg2 = reg + (u64)rate->reg2;
} else {
struct clk_divider *rate = to_clk_divider(rate_hw);
const struct clk_div_table *clkt;
int table_size = 0;
rate->reg = reg + (u64)rate->reg;
for (clkt = rate->table; clkt->div; clkt++)
table_size++;
rate->width = order_base_2(table_size);
rate->lock = lock;
}
}
if (data->muxrate_hw) {
struct clk_pm_cpu *pmcpu_clk;
struct clk_hw *muxrate_hw = data->muxrate_hw;
struct regmap *map;
pmcpu_clk = to_clk_pm_cpu(muxrate_hw);
pmcpu_clk->reg_mux = reg + (u64)pmcpu_clk->reg_mux;
pmcpu_clk->reg_div = reg + (u64)pmcpu_clk->reg_div;
mux_hw = muxrate_hw;
rate_hw = muxrate_hw;
mux_ops = muxrate_hw->init->ops;
rate_ops = muxrate_hw->init->ops;
map = syscon_regmap_lookup_by_compatible(
"marvell,armada-3700-nb-pm");
pmcpu_clk->nb_pm_base = map;
}
*hw = clk_hw_register_composite(dev, data->name, data->parent_names,
data->num_parents, mux_hw,
mux_ops, rate_hw, rate_ops,
gate_hw, gate_ops, CLK_IGNORE_UNUSED);
return PTR_ERR_OR_ZERO(*hw);
}
static int armada_3700_periph_clock_probe(struct platform_device *pdev)
{
struct clk_periph_driver_data *driver_data;
struct device_node *np = pdev->dev.of_node;
const struct clk_periph_data *data;
struct device *dev = &pdev->dev;
int num_periph = 0, i, ret;
struct resource *res;
data = of_device_get_match_data(dev);
if (!data)
return -ENODEV;
while (data[num_periph].name)
num_periph++;
driver_data = devm_kzalloc(dev, sizeof(*driver_data), GFP_KERNEL);
if (!driver_data)
return -ENOMEM;
driver_data->hw_data = devm_kzalloc(dev,
struct_size(driver_data->hw_data,
hws, num_periph),
GFP_KERNEL);
if (!driver_data->hw_data)
return -ENOMEM;
driver_data->hw_data->num = num_periph;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
driver_data->reg = devm_ioremap_resource(dev, res);
if (IS_ERR(driver_data->reg))
return PTR_ERR(driver_data->reg);
spin_lock_init(&driver_data->lock);
for (i = 0; i < num_periph; i++) {
struct clk_hw **hw = &driver_data->hw_data->hws[i];
if (armada_3700_add_composite_clk(&data[i], driver_data->reg,
&driver_data->lock, dev, hw))
dev_err(dev, "Can't register periph clock %s\n",
data[i].name);
}
ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get,
driver_data->hw_data);
if (ret) {
for (i = 0; i < num_periph; i++)
clk_hw_unregister(driver_data->hw_data->hws[i]);
return ret;
}
platform_set_drvdata(pdev, driver_data);
return 0;
}
static int armada_3700_periph_clock_remove(struct platform_device *pdev)
{
struct clk_periph_driver_data *data = platform_get_drvdata(pdev);
struct clk_hw_onecell_data *hw_data = data->hw_data;
int i;
of_clk_del_provider(pdev->dev.of_node);
for (i = 0; i < hw_data->num; i++)
clk_hw_unregister(hw_data->hws[i]);
return 0;
}
static struct platform_driver armada_3700_periph_clock_driver = {
.probe = armada_3700_periph_clock_probe,
.remove = armada_3700_periph_clock_remove,
.driver = {
.name = "marvell-armada-3700-periph-clock",
.of_match_table = armada_3700_periph_clock_of_match,
},
};
builtin_platform_driver(armada_3700_periph_clock_driver);