linux/net/wireless/pmsr.c
Lin Ma ab904521f4 wifi: cfg80211: pmsr: use correct nla_get_uX functions
The commit 9bb7e0f24e7e ("cfg80211: add peer measurement with FTM
initiator API") defines four attributes NL80211_PMSR_FTM_REQ_ATTR_
{NUM_BURSTS_EXP}/{BURST_PERIOD}/{BURST_DURATION}/{FTMS_PER_BURST} in
following ways.

static const struct nla_policy
nl80211_pmsr_ftm_req_attr_policy[NL80211_PMSR_FTM_REQ_ATTR_MAX + 1] = {
    ...
    [NL80211_PMSR_FTM_REQ_ATTR_NUM_BURSTS_EXP] =
        NLA_POLICY_MAX(NLA_U8, 15),
    [NL80211_PMSR_FTM_REQ_ATTR_BURST_PERIOD] = { .type = NLA_U16 },
    [NL80211_PMSR_FTM_REQ_ATTR_BURST_DURATION] =
        NLA_POLICY_MAX(NLA_U8, 15),
    [NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST] =
        NLA_POLICY_MAX(NLA_U8, 31),
    ...
};

That is, those attributes are expected to be NLA_U8 and NLA_U16 types.
However, the consumers of these attributes in `pmsr_parse_ftm` blindly
all use `nla_get_u32`, which is incorrect and causes functionality issues
on little-endian platforms. Hence, fix them with the correct `nla_get_u8`
and `nla_get_u16` functions.

Fixes: 9bb7e0f24e7e ("cfg80211: add peer measurement with FTM initiator API")
Signed-off-by: Lin Ma <linma@zju.edu.cn>
Link: https://msgid.link/20240521075059.47999-1-linma@zju.edu.cn
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2024-05-29 15:23:54 +02:00

661 lines
18 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2018 - 2021, 2023 Intel Corporation
*/
#include <net/cfg80211.h>
#include "core.h"
#include "nl80211.h"
#include "rdev-ops.h"
static int pmsr_parse_ftm(struct cfg80211_registered_device *rdev,
struct nlattr *ftmreq,
struct cfg80211_pmsr_request_peer *out,
struct genl_info *info)
{
const struct cfg80211_pmsr_capabilities *capa = rdev->wiphy.pmsr_capa;
struct nlattr *tb[NL80211_PMSR_FTM_REQ_ATTR_MAX + 1];
u32 preamble = NL80211_PREAMBLE_DMG; /* only optional in DMG */
/* validate existing data */
if (!(rdev->wiphy.pmsr_capa->ftm.bandwidths & BIT(out->chandef.width))) {
NL_SET_ERR_MSG(info->extack, "FTM: unsupported bandwidth");
return -EINVAL;
}
/* no validation needed - was already done via nested policy */
nla_parse_nested_deprecated(tb, NL80211_PMSR_FTM_REQ_ATTR_MAX, ftmreq,
NULL, NULL);
if (tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE])
preamble = nla_get_u32(tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE]);
/* set up values - struct is 0-initialized */
out->ftm.requested = true;
switch (out->chandef.chan->band) {
case NL80211_BAND_60GHZ:
/* optional */
break;
default:
if (!tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE]) {
NL_SET_ERR_MSG(info->extack,
"FTM: must specify preamble");
return -EINVAL;
}
}
if (!(capa->ftm.preambles & BIT(preamble))) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE],
"FTM: invalid preamble");
return -EINVAL;
}
out->ftm.preamble = preamble;
out->ftm.burst_period = 0;
if (tb[NL80211_PMSR_FTM_REQ_ATTR_BURST_PERIOD])
out->ftm.burst_period =
nla_get_u16(tb[NL80211_PMSR_FTM_REQ_ATTR_BURST_PERIOD]);
out->ftm.asap = !!tb[NL80211_PMSR_FTM_REQ_ATTR_ASAP];
if (out->ftm.asap && !capa->ftm.asap) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_ASAP],
"FTM: ASAP mode not supported");
return -EINVAL;
}
if (!out->ftm.asap && !capa->ftm.non_asap) {
NL_SET_ERR_MSG(info->extack,
"FTM: non-ASAP mode not supported");
return -EINVAL;
}
out->ftm.num_bursts_exp = 0;
if (tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_BURSTS_EXP])
out->ftm.num_bursts_exp =
nla_get_u8(tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_BURSTS_EXP]);
if (capa->ftm.max_bursts_exponent >= 0 &&
out->ftm.num_bursts_exp > capa->ftm.max_bursts_exponent) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_BURSTS_EXP],
"FTM: max NUM_BURSTS_EXP must be set lower than the device limit");
return -EINVAL;
}
out->ftm.burst_duration = 15;
if (tb[NL80211_PMSR_FTM_REQ_ATTR_BURST_DURATION])
out->ftm.burst_duration =
nla_get_u8(tb[NL80211_PMSR_FTM_REQ_ATTR_BURST_DURATION]);
out->ftm.ftms_per_burst = 0;
if (tb[NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST])
out->ftm.ftms_per_burst =
nla_get_u32(tb[NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST]);
if (capa->ftm.max_ftms_per_burst &&
(out->ftm.ftms_per_burst > capa->ftm.max_ftms_per_burst ||
out->ftm.ftms_per_burst == 0)) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST],
"FTM: FTMs per burst must be set lower than the device limit but non-zero");
return -EINVAL;
}
out->ftm.ftmr_retries = 3;
if (tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_FTMR_RETRIES])
out->ftm.ftmr_retries =
nla_get_u8(tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_FTMR_RETRIES]);
out->ftm.request_lci = !!tb[NL80211_PMSR_FTM_REQ_ATTR_REQUEST_LCI];
if (out->ftm.request_lci && !capa->ftm.request_lci) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_REQUEST_LCI],
"FTM: LCI request not supported");
}
out->ftm.request_civicloc =
!!tb[NL80211_PMSR_FTM_REQ_ATTR_REQUEST_CIVICLOC];
if (out->ftm.request_civicloc && !capa->ftm.request_civicloc) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_REQUEST_CIVICLOC],
"FTM: civic location request not supported");
}
out->ftm.trigger_based =
!!tb[NL80211_PMSR_FTM_REQ_ATTR_TRIGGER_BASED];
if (out->ftm.trigger_based && !capa->ftm.trigger_based) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_TRIGGER_BASED],
"FTM: trigger based ranging is not supported");
return -EINVAL;
}
out->ftm.non_trigger_based =
!!tb[NL80211_PMSR_FTM_REQ_ATTR_NON_TRIGGER_BASED];
if (out->ftm.non_trigger_based && !capa->ftm.non_trigger_based) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_NON_TRIGGER_BASED],
"FTM: trigger based ranging is not supported");
return -EINVAL;
}
if (out->ftm.trigger_based && out->ftm.non_trigger_based) {
NL_SET_ERR_MSG(info->extack,
"FTM: can't set both trigger based and non trigger based");
return -EINVAL;
}
if ((out->ftm.trigger_based || out->ftm.non_trigger_based) &&
out->ftm.preamble != NL80211_PREAMBLE_HE) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE],
"FTM: non EDCA based ranging must use HE preamble");
return -EINVAL;
}
out->ftm.lmr_feedback =
!!tb[NL80211_PMSR_FTM_REQ_ATTR_LMR_FEEDBACK];
if (!out->ftm.trigger_based && !out->ftm.non_trigger_based &&
out->ftm.lmr_feedback) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_LMR_FEEDBACK],
"FTM: LMR feedback set for EDCA based ranging");
return -EINVAL;
}
if (tb[NL80211_PMSR_FTM_REQ_ATTR_BSS_COLOR]) {
if (!out->ftm.non_trigger_based && !out->ftm.trigger_based) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_FTM_REQ_ATTR_BSS_COLOR],
"FTM: BSS color set for EDCA based ranging");
return -EINVAL;
}
out->ftm.bss_color =
nla_get_u8(tb[NL80211_PMSR_FTM_REQ_ATTR_BSS_COLOR]);
}
return 0;
}
static int pmsr_parse_peer(struct cfg80211_registered_device *rdev,
struct nlattr *peer,
struct cfg80211_pmsr_request_peer *out,
struct genl_info *info)
{
struct nlattr *tb[NL80211_PMSR_PEER_ATTR_MAX + 1];
struct nlattr *req[NL80211_PMSR_REQ_ATTR_MAX + 1];
struct nlattr *treq;
int err, rem;
/* no validation needed - was already done via nested policy */
nla_parse_nested_deprecated(tb, NL80211_PMSR_PEER_ATTR_MAX, peer,
NULL, NULL);
if (!tb[NL80211_PMSR_PEER_ATTR_ADDR] ||
!tb[NL80211_PMSR_PEER_ATTR_CHAN] ||
!tb[NL80211_PMSR_PEER_ATTR_REQ]) {
NL_SET_ERR_MSG_ATTR(info->extack, peer,
"insufficient peer data");
return -EINVAL;
}
memcpy(out->addr, nla_data(tb[NL80211_PMSR_PEER_ATTR_ADDR]), ETH_ALEN);
/* reuse info->attrs */
memset(info->attrs, 0, sizeof(*info->attrs) * (NL80211_ATTR_MAX + 1));
err = nla_parse_nested_deprecated(info->attrs, NL80211_ATTR_MAX,
tb[NL80211_PMSR_PEER_ATTR_CHAN],
NULL, info->extack);
if (err)
return err;
err = nl80211_parse_chandef(rdev, info, &out->chandef);
if (err)
return err;
/* no validation needed - was already done via nested policy */
nla_parse_nested_deprecated(req, NL80211_PMSR_REQ_ATTR_MAX,
tb[NL80211_PMSR_PEER_ATTR_REQ], NULL,
NULL);
if (!req[NL80211_PMSR_REQ_ATTR_DATA]) {
NL_SET_ERR_MSG_ATTR(info->extack,
tb[NL80211_PMSR_PEER_ATTR_REQ],
"missing request type/data");
return -EINVAL;
}
if (req[NL80211_PMSR_REQ_ATTR_GET_AP_TSF])
out->report_ap_tsf = true;
if (out->report_ap_tsf && !rdev->wiphy.pmsr_capa->report_ap_tsf) {
NL_SET_ERR_MSG_ATTR(info->extack,
req[NL80211_PMSR_REQ_ATTR_GET_AP_TSF],
"reporting AP TSF is not supported");
return -EINVAL;
}
nla_for_each_nested(treq, req[NL80211_PMSR_REQ_ATTR_DATA], rem) {
switch (nla_type(treq)) {
case NL80211_PMSR_TYPE_FTM:
err = pmsr_parse_ftm(rdev, treq, out, info);
break;
default:
NL_SET_ERR_MSG_ATTR(info->extack, treq,
"unsupported measurement type");
err = -EINVAL;
}
}
if (err)
return err;
return 0;
}
int nl80211_pmsr_start(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *reqattr = info->attrs[NL80211_ATTR_PEER_MEASUREMENTS];
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct wireless_dev *wdev = info->user_ptr[1];
struct cfg80211_pmsr_request *req;
struct nlattr *peers, *peer;
int count, rem, err, idx;
if (!rdev->wiphy.pmsr_capa)
return -EOPNOTSUPP;
if (!reqattr)
return -EINVAL;
peers = nla_find(nla_data(reqattr), nla_len(reqattr),
NL80211_PMSR_ATTR_PEERS);
if (!peers)
return -EINVAL;
count = 0;
nla_for_each_nested(peer, peers, rem) {
count++;
if (count > rdev->wiphy.pmsr_capa->max_peers) {
NL_SET_ERR_MSG_ATTR(info->extack, peer,
"Too many peers used");
return -EINVAL;
}
}
req = kzalloc(struct_size(req, peers, count), GFP_KERNEL);
if (!req)
return -ENOMEM;
req->n_peers = count;
if (info->attrs[NL80211_ATTR_TIMEOUT])
req->timeout = nla_get_u32(info->attrs[NL80211_ATTR_TIMEOUT]);
if (info->attrs[NL80211_ATTR_MAC]) {
if (!rdev->wiphy.pmsr_capa->randomize_mac_addr) {
NL_SET_ERR_MSG_ATTR(info->extack,
info->attrs[NL80211_ATTR_MAC],
"device cannot randomize MAC address");
err = -EINVAL;
goto out_err;
}
err = nl80211_parse_random_mac(info->attrs, req->mac_addr,
req->mac_addr_mask);
if (err)
goto out_err;
} else {
memcpy(req->mac_addr, wdev_address(wdev), ETH_ALEN);
eth_broadcast_addr(req->mac_addr_mask);
}
idx = 0;
nla_for_each_nested(peer, peers, rem) {
/* NB: this reuses info->attrs, but we no longer need it */
err = pmsr_parse_peer(rdev, peer, &req->peers[idx], info);
if (err)
goto out_err;
idx++;
}
req->cookie = cfg80211_assign_cookie(rdev);
req->nl_portid = info->snd_portid;
err = rdev_start_pmsr(rdev, wdev, req);
if (err)
goto out_err;
list_add_tail(&req->list, &wdev->pmsr_list);
nl_set_extack_cookie_u64(info->extack, req->cookie);
return 0;
out_err:
kfree(req);
return err;
}
void cfg80211_pmsr_complete(struct wireless_dev *wdev,
struct cfg80211_pmsr_request *req,
gfp_t gfp)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct cfg80211_pmsr_request *tmp, *prev, *to_free = NULL;
struct sk_buff *msg;
void *hdr;
trace_cfg80211_pmsr_complete(wdev->wiphy, wdev, req->cookie);
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!msg)
goto free_request;
hdr = nl80211hdr_put(msg, 0, 0, 0,
NL80211_CMD_PEER_MEASUREMENT_COMPLETE);
if (!hdr)
goto free_msg;
if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) ||
nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev),
NL80211_ATTR_PAD))
goto free_msg;
if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, req->cookie,
NL80211_ATTR_PAD))
goto free_msg;
genlmsg_end(msg, hdr);
genlmsg_unicast(wiphy_net(wdev->wiphy), msg, req->nl_portid);
goto free_request;
free_msg:
nlmsg_free(msg);
free_request:
spin_lock_bh(&wdev->pmsr_lock);
/*
* cfg80211_pmsr_process_abort() may have already moved this request
* to the free list, and will free it later. In this case, don't free
* it here.
*/
list_for_each_entry_safe(tmp, prev, &wdev->pmsr_list, list) {
if (tmp == req) {
list_del(&req->list);
to_free = req;
break;
}
}
spin_unlock_bh(&wdev->pmsr_lock);
kfree(to_free);
}
EXPORT_SYMBOL_GPL(cfg80211_pmsr_complete);
static int nl80211_pmsr_send_ftm_res(struct sk_buff *msg,
struct cfg80211_pmsr_result *res)
{
if (res->status == NL80211_PMSR_STATUS_FAILURE) {
if (nla_put_u32(msg, NL80211_PMSR_FTM_RESP_ATTR_FAIL_REASON,
res->ftm.failure_reason))
goto error;
if (res->ftm.failure_reason ==
NL80211_PMSR_FTM_FAILURE_PEER_BUSY &&
res->ftm.busy_retry_time &&
nla_put_u32(msg, NL80211_PMSR_FTM_RESP_ATTR_BUSY_RETRY_TIME,
res->ftm.busy_retry_time))
goto error;
return 0;
}
#define PUT(tp, attr, val) \
do { \
if (nla_put_##tp(msg, \
NL80211_PMSR_FTM_RESP_ATTR_##attr, \
res->ftm.val)) \
goto error; \
} while (0)
#define PUTOPT(tp, attr, val) \
do { \
if (res->ftm.val##_valid) \
PUT(tp, attr, val); \
} while (0)
#define PUT_U64(attr, val) \
do { \
if (nla_put_u64_64bit(msg, \
NL80211_PMSR_FTM_RESP_ATTR_##attr,\
res->ftm.val, \
NL80211_PMSR_FTM_RESP_ATTR_PAD)) \
goto error; \
} while (0)
#define PUTOPT_U64(attr, val) \
do { \
if (res->ftm.val##_valid) \
PUT_U64(attr, val); \
} while (0)
if (res->ftm.burst_index >= 0)
PUT(u32, BURST_INDEX, burst_index);
PUTOPT(u32, NUM_FTMR_ATTEMPTS, num_ftmr_attempts);
PUTOPT(u32, NUM_FTMR_SUCCESSES, num_ftmr_successes);
PUT(u8, NUM_BURSTS_EXP, num_bursts_exp);
PUT(u8, BURST_DURATION, burst_duration);
PUT(u8, FTMS_PER_BURST, ftms_per_burst);
PUTOPT(s32, RSSI_AVG, rssi_avg);
PUTOPT(s32, RSSI_SPREAD, rssi_spread);
if (res->ftm.tx_rate_valid &&
!nl80211_put_sta_rate(msg, &res->ftm.tx_rate,
NL80211_PMSR_FTM_RESP_ATTR_TX_RATE))
goto error;
if (res->ftm.rx_rate_valid &&
!nl80211_put_sta_rate(msg, &res->ftm.rx_rate,
NL80211_PMSR_FTM_RESP_ATTR_RX_RATE))
goto error;
PUTOPT_U64(RTT_AVG, rtt_avg);
PUTOPT_U64(RTT_VARIANCE, rtt_variance);
PUTOPT_U64(RTT_SPREAD, rtt_spread);
PUTOPT_U64(DIST_AVG, dist_avg);
PUTOPT_U64(DIST_VARIANCE, dist_variance);
PUTOPT_U64(DIST_SPREAD, dist_spread);
if (res->ftm.lci && res->ftm.lci_len &&
nla_put(msg, NL80211_PMSR_FTM_RESP_ATTR_LCI,
res->ftm.lci_len, res->ftm.lci))
goto error;
if (res->ftm.civicloc && res->ftm.civicloc_len &&
nla_put(msg, NL80211_PMSR_FTM_RESP_ATTR_CIVICLOC,
res->ftm.civicloc_len, res->ftm.civicloc))
goto error;
#undef PUT
#undef PUTOPT
#undef PUT_U64
#undef PUTOPT_U64
return 0;
error:
return -ENOSPC;
}
static int nl80211_pmsr_send_result(struct sk_buff *msg,
struct cfg80211_pmsr_result *res)
{
struct nlattr *pmsr, *peers, *peer, *resp, *data, *typedata;
pmsr = nla_nest_start_noflag(msg, NL80211_ATTR_PEER_MEASUREMENTS);
if (!pmsr)
goto error;
peers = nla_nest_start_noflag(msg, NL80211_PMSR_ATTR_PEERS);
if (!peers)
goto error;
peer = nla_nest_start_noflag(msg, 1);
if (!peer)
goto error;
if (nla_put(msg, NL80211_PMSR_PEER_ATTR_ADDR, ETH_ALEN, res->addr))
goto error;
resp = nla_nest_start_noflag(msg, NL80211_PMSR_PEER_ATTR_RESP);
if (!resp)
goto error;
if (nla_put_u32(msg, NL80211_PMSR_RESP_ATTR_STATUS, res->status) ||
nla_put_u64_64bit(msg, NL80211_PMSR_RESP_ATTR_HOST_TIME,
res->host_time, NL80211_PMSR_RESP_ATTR_PAD))
goto error;
if (res->ap_tsf_valid &&
nla_put_u64_64bit(msg, NL80211_PMSR_RESP_ATTR_AP_TSF,
res->ap_tsf, NL80211_PMSR_RESP_ATTR_PAD))
goto error;
if (res->final && nla_put_flag(msg, NL80211_PMSR_RESP_ATTR_FINAL))
goto error;
data = nla_nest_start_noflag(msg, NL80211_PMSR_RESP_ATTR_DATA);
if (!data)
goto error;
typedata = nla_nest_start_noflag(msg, res->type);
if (!typedata)
goto error;
switch (res->type) {
case NL80211_PMSR_TYPE_FTM:
if (nl80211_pmsr_send_ftm_res(msg, res))
goto error;
break;
default:
WARN_ON(1);
}
nla_nest_end(msg, typedata);
nla_nest_end(msg, data);
nla_nest_end(msg, resp);
nla_nest_end(msg, peer);
nla_nest_end(msg, peers);
nla_nest_end(msg, pmsr);
return 0;
error:
return -ENOSPC;
}
void cfg80211_pmsr_report(struct wireless_dev *wdev,
struct cfg80211_pmsr_request *req,
struct cfg80211_pmsr_result *result,
gfp_t gfp)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct sk_buff *msg;
void *hdr;
int err;
trace_cfg80211_pmsr_report(wdev->wiphy, wdev, req->cookie,
result->addr);
/*
* Currently, only variable items are LCI and civic location,
* both of which are reasonably short so we don't need to
* worry about them here for the allocation.
*/
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_PEER_MEASUREMENT_RESULT);
if (!hdr)
goto free;
if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) ||
nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev),
NL80211_ATTR_PAD))
goto free;
if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, req->cookie,
NL80211_ATTR_PAD))
goto free;
err = nl80211_pmsr_send_result(msg, result);
if (err) {
pr_err_ratelimited("peer measurement result: message didn't fit!");
goto free;
}
genlmsg_end(msg, hdr);
genlmsg_unicast(wiphy_net(wdev->wiphy), msg, req->nl_portid);
return;
free:
nlmsg_free(msg);
}
EXPORT_SYMBOL_GPL(cfg80211_pmsr_report);
static void cfg80211_pmsr_process_abort(struct wireless_dev *wdev)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct cfg80211_pmsr_request *req, *tmp;
LIST_HEAD(free_list);
lockdep_assert_wiphy(wdev->wiphy);
spin_lock_bh(&wdev->pmsr_lock);
list_for_each_entry_safe(req, tmp, &wdev->pmsr_list, list) {
if (req->nl_portid)
continue;
list_move_tail(&req->list, &free_list);
}
spin_unlock_bh(&wdev->pmsr_lock);
list_for_each_entry_safe(req, tmp, &free_list, list) {
rdev_abort_pmsr(rdev, wdev, req);
kfree(req);
}
}
void cfg80211_pmsr_free_wk(struct work_struct *work)
{
struct wireless_dev *wdev = container_of(work, struct wireless_dev,
pmsr_free_wk);
wiphy_lock(wdev->wiphy);
cfg80211_pmsr_process_abort(wdev);
wiphy_unlock(wdev->wiphy);
}
void cfg80211_pmsr_wdev_down(struct wireless_dev *wdev)
{
struct cfg80211_pmsr_request *req;
bool found = false;
spin_lock_bh(&wdev->pmsr_lock);
list_for_each_entry(req, &wdev->pmsr_list, list) {
found = true;
req->nl_portid = 0;
}
spin_unlock_bh(&wdev->pmsr_lock);
if (found)
cfg80211_pmsr_process_abort(wdev);
WARN_ON(!list_empty(&wdev->pmsr_list));
}
void cfg80211_release_pmsr(struct wireless_dev *wdev, u32 portid)
{
struct cfg80211_pmsr_request *req;
spin_lock_bh(&wdev->pmsr_lock);
list_for_each_entry(req, &wdev->pmsr_list, list) {
if (req->nl_portid == portid) {
req->nl_portid = 0;
schedule_work(&wdev->pmsr_free_wk);
}
}
spin_unlock_bh(&wdev->pmsr_lock);
}