f122a08b19
Back in 2008 we extended the capability bits from 32 to 64, and we did it by extending the single 32-bit capability word from one word to an array of two words. It was then obfuscated by hiding the "2" behind two macro expansions, with the reasoning being that maybe it gets extended further some day. That reasoning may have been valid at the time, but the last thing we want to do is to extend the capability set any more. And the array of values not only causes source code oddities (with loops to deal with it), but also results in worse code generation. It's a lose-lose situation. So just change the 'u32[2]' into a 'u64' and be done with it. We still have to deal with the fact that the user space interface is designed around an array of these 32-bit values, but that was the case before too, since the array layouts were different (ie user space doesn't use an array of 32-bit values for individual capability masks, but an array of 32-bit slices of multiple masks). So that marshalling of data is actually simplified too, even if it does remain somewhat obscure and odd. This was all triggered by my reaction to the new "cap_isidentical()" introduced recently. By just using a saner data structure, it went from unsigned __capi; CAP_FOR_EACH_U32(__capi) { if (a.cap[__capi] != b.cap[__capi]) return false; } return true; to just being return a.val == b.val; instead. Which is rather more obvious both to humans and to compilers. Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Serge Hallyn <serge@hallyn.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Paul Moore <paul@paul-moore.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3037 lines
82 KiB
C
3037 lines
82 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* auditsc.c -- System-call auditing support
|
|
* Handles all system-call specific auditing features.
|
|
*
|
|
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
|
|
* Copyright 2005 Hewlett-Packard Development Company, L.P.
|
|
* Copyright (C) 2005, 2006 IBM Corporation
|
|
* All Rights Reserved.
|
|
*
|
|
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
|
|
*
|
|
* Many of the ideas implemented here are from Stephen C. Tweedie,
|
|
* especially the idea of avoiding a copy by using getname.
|
|
*
|
|
* The method for actual interception of syscall entry and exit (not in
|
|
* this file -- see entry.S) is based on a GPL'd patch written by
|
|
* okir@suse.de and Copyright 2003 SuSE Linux AG.
|
|
*
|
|
* POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
|
|
* 2006.
|
|
*
|
|
* The support of additional filter rules compares (>, <, >=, <=) was
|
|
* added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
|
|
*
|
|
* Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
|
|
* filesystem information.
|
|
*
|
|
* Subject and object context labeling support added by <danjones@us.ibm.com>
|
|
* and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <asm/types.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/time.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/unistd.h>
|
|
#include <linux/security.h>
|
|
#include <linux/list.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/syscalls.h>
|
|
#include <asm/syscall.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/fs_struct.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/string.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/fsnotify_backend.h>
|
|
#include <uapi/linux/limits.h>
|
|
#include <uapi/linux/netfilter/nf_tables.h>
|
|
#include <uapi/linux/openat2.h> // struct open_how
|
|
#include <uapi/linux/fanotify.h>
|
|
|
|
#include "audit.h"
|
|
|
|
/* flags stating the success for a syscall */
|
|
#define AUDITSC_INVALID 0
|
|
#define AUDITSC_SUCCESS 1
|
|
#define AUDITSC_FAILURE 2
|
|
|
|
/* no execve audit message should be longer than this (userspace limits),
|
|
* see the note near the top of audit_log_execve_info() about this value */
|
|
#define MAX_EXECVE_AUDIT_LEN 7500
|
|
|
|
/* max length to print of cmdline/proctitle value during audit */
|
|
#define MAX_PROCTITLE_AUDIT_LEN 128
|
|
|
|
/* number of audit rules */
|
|
int audit_n_rules;
|
|
|
|
/* determines whether we collect data for signals sent */
|
|
int audit_signals;
|
|
|
|
struct audit_aux_data {
|
|
struct audit_aux_data *next;
|
|
int type;
|
|
};
|
|
|
|
/* Number of target pids per aux struct. */
|
|
#define AUDIT_AUX_PIDS 16
|
|
|
|
struct audit_aux_data_pids {
|
|
struct audit_aux_data d;
|
|
pid_t target_pid[AUDIT_AUX_PIDS];
|
|
kuid_t target_auid[AUDIT_AUX_PIDS];
|
|
kuid_t target_uid[AUDIT_AUX_PIDS];
|
|
unsigned int target_sessionid[AUDIT_AUX_PIDS];
|
|
u32 target_sid[AUDIT_AUX_PIDS];
|
|
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
|
|
int pid_count;
|
|
};
|
|
|
|
struct audit_aux_data_bprm_fcaps {
|
|
struct audit_aux_data d;
|
|
struct audit_cap_data fcap;
|
|
unsigned int fcap_ver;
|
|
struct audit_cap_data old_pcap;
|
|
struct audit_cap_data new_pcap;
|
|
};
|
|
|
|
struct audit_tree_refs {
|
|
struct audit_tree_refs *next;
|
|
struct audit_chunk *c[31];
|
|
};
|
|
|
|
struct audit_nfcfgop_tab {
|
|
enum audit_nfcfgop op;
|
|
const char *s;
|
|
};
|
|
|
|
static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
|
|
{ AUDIT_XT_OP_REGISTER, "xt_register" },
|
|
{ AUDIT_XT_OP_REPLACE, "xt_replace" },
|
|
{ AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
|
|
{ AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
|
|
{ AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
|
|
{ AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
|
|
{ AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
|
|
{ AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
|
|
{ AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
|
|
{ AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
|
|
{ AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
|
|
{ AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
|
|
{ AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
|
|
{ AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
|
|
{ AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
|
|
{ AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
|
|
{ AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
|
|
{ AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
|
|
{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
|
|
{ AUDIT_NFT_OP_INVALID, "nft_invalid" },
|
|
};
|
|
|
|
static int audit_match_perm(struct audit_context *ctx, int mask)
|
|
{
|
|
unsigned n;
|
|
|
|
if (unlikely(!ctx))
|
|
return 0;
|
|
n = ctx->major;
|
|
|
|
switch (audit_classify_syscall(ctx->arch, n)) {
|
|
case AUDITSC_NATIVE:
|
|
if ((mask & AUDIT_PERM_WRITE) &&
|
|
audit_match_class(AUDIT_CLASS_WRITE, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_READ) &&
|
|
audit_match_class(AUDIT_CLASS_READ, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_ATTR) &&
|
|
audit_match_class(AUDIT_CLASS_CHATTR, n))
|
|
return 1;
|
|
return 0;
|
|
case AUDITSC_COMPAT: /* 32bit on biarch */
|
|
if ((mask & AUDIT_PERM_WRITE) &&
|
|
audit_match_class(AUDIT_CLASS_WRITE_32, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_READ) &&
|
|
audit_match_class(AUDIT_CLASS_READ_32, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_ATTR) &&
|
|
audit_match_class(AUDIT_CLASS_CHATTR_32, n))
|
|
return 1;
|
|
return 0;
|
|
case AUDITSC_OPEN:
|
|
return mask & ACC_MODE(ctx->argv[1]);
|
|
case AUDITSC_OPENAT:
|
|
return mask & ACC_MODE(ctx->argv[2]);
|
|
case AUDITSC_SOCKETCALL:
|
|
return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
|
|
case AUDITSC_EXECVE:
|
|
return mask & AUDIT_PERM_EXEC;
|
|
case AUDITSC_OPENAT2:
|
|
return mask & ACC_MODE((u32)ctx->openat2.flags);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int audit_match_filetype(struct audit_context *ctx, int val)
|
|
{
|
|
struct audit_names *n;
|
|
umode_t mode = (umode_t)val;
|
|
|
|
if (unlikely(!ctx))
|
|
return 0;
|
|
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if ((n->ino != AUDIT_INO_UNSET) &&
|
|
((n->mode & S_IFMT) == mode))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
|
|
* ->first_trees points to its beginning, ->trees - to the current end of data.
|
|
* ->tree_count is the number of free entries in array pointed to by ->trees.
|
|
* Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
|
|
* "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
|
|
* it's going to remain 1-element for almost any setup) until we free context itself.
|
|
* References in it _are_ dropped - at the same time we free/drop aux stuff.
|
|
*/
|
|
|
|
static void audit_set_auditable(struct audit_context *ctx)
|
|
{
|
|
if (!ctx->prio) {
|
|
ctx->prio = 1;
|
|
ctx->current_state = AUDIT_STATE_RECORD;
|
|
}
|
|
}
|
|
|
|
static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
|
|
{
|
|
struct audit_tree_refs *p = ctx->trees;
|
|
int left = ctx->tree_count;
|
|
|
|
if (likely(left)) {
|
|
p->c[--left] = chunk;
|
|
ctx->tree_count = left;
|
|
return 1;
|
|
}
|
|
if (!p)
|
|
return 0;
|
|
p = p->next;
|
|
if (p) {
|
|
p->c[30] = chunk;
|
|
ctx->trees = p;
|
|
ctx->tree_count = 30;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int grow_tree_refs(struct audit_context *ctx)
|
|
{
|
|
struct audit_tree_refs *p = ctx->trees;
|
|
|
|
ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
|
|
if (!ctx->trees) {
|
|
ctx->trees = p;
|
|
return 0;
|
|
}
|
|
if (p)
|
|
p->next = ctx->trees;
|
|
else
|
|
ctx->first_trees = ctx->trees;
|
|
ctx->tree_count = 31;
|
|
return 1;
|
|
}
|
|
|
|
static void unroll_tree_refs(struct audit_context *ctx,
|
|
struct audit_tree_refs *p, int count)
|
|
{
|
|
struct audit_tree_refs *q;
|
|
int n;
|
|
|
|
if (!p) {
|
|
/* we started with empty chain */
|
|
p = ctx->first_trees;
|
|
count = 31;
|
|
/* if the very first allocation has failed, nothing to do */
|
|
if (!p)
|
|
return;
|
|
}
|
|
n = count;
|
|
for (q = p; q != ctx->trees; q = q->next, n = 31) {
|
|
while (n--) {
|
|
audit_put_chunk(q->c[n]);
|
|
q->c[n] = NULL;
|
|
}
|
|
}
|
|
while (n-- > ctx->tree_count) {
|
|
audit_put_chunk(q->c[n]);
|
|
q->c[n] = NULL;
|
|
}
|
|
ctx->trees = p;
|
|
ctx->tree_count = count;
|
|
}
|
|
|
|
static void free_tree_refs(struct audit_context *ctx)
|
|
{
|
|
struct audit_tree_refs *p, *q;
|
|
|
|
for (p = ctx->first_trees; p; p = q) {
|
|
q = p->next;
|
|
kfree(p);
|
|
}
|
|
}
|
|
|
|
static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
|
|
{
|
|
struct audit_tree_refs *p;
|
|
int n;
|
|
|
|
if (!tree)
|
|
return 0;
|
|
/* full ones */
|
|
for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
|
|
for (n = 0; n < 31; n++)
|
|
if (audit_tree_match(p->c[n], tree))
|
|
return 1;
|
|
}
|
|
/* partial */
|
|
if (p) {
|
|
for (n = ctx->tree_count; n < 31; n++)
|
|
if (audit_tree_match(p->c[n], tree))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int audit_compare_uid(kuid_t uid,
|
|
struct audit_names *name,
|
|
struct audit_field *f,
|
|
struct audit_context *ctx)
|
|
{
|
|
struct audit_names *n;
|
|
int rc;
|
|
|
|
if (name) {
|
|
rc = audit_uid_comparator(uid, f->op, name->uid);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
rc = audit_uid_comparator(uid, f->op, n->uid);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int audit_compare_gid(kgid_t gid,
|
|
struct audit_names *name,
|
|
struct audit_field *f,
|
|
struct audit_context *ctx)
|
|
{
|
|
struct audit_names *n;
|
|
int rc;
|
|
|
|
if (name) {
|
|
rc = audit_gid_comparator(gid, f->op, name->gid);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
rc = audit_gid_comparator(gid, f->op, n->gid);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int audit_field_compare(struct task_struct *tsk,
|
|
const struct cred *cred,
|
|
struct audit_field *f,
|
|
struct audit_context *ctx,
|
|
struct audit_names *name)
|
|
{
|
|
switch (f->val) {
|
|
/* process to file object comparisons */
|
|
case AUDIT_COMPARE_UID_TO_OBJ_UID:
|
|
return audit_compare_uid(cred->uid, name, f, ctx);
|
|
case AUDIT_COMPARE_GID_TO_OBJ_GID:
|
|
return audit_compare_gid(cred->gid, name, f, ctx);
|
|
case AUDIT_COMPARE_EUID_TO_OBJ_UID:
|
|
return audit_compare_uid(cred->euid, name, f, ctx);
|
|
case AUDIT_COMPARE_EGID_TO_OBJ_GID:
|
|
return audit_compare_gid(cred->egid, name, f, ctx);
|
|
case AUDIT_COMPARE_AUID_TO_OBJ_UID:
|
|
return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
|
|
case AUDIT_COMPARE_SUID_TO_OBJ_UID:
|
|
return audit_compare_uid(cred->suid, name, f, ctx);
|
|
case AUDIT_COMPARE_SGID_TO_OBJ_GID:
|
|
return audit_compare_gid(cred->sgid, name, f, ctx);
|
|
case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
|
|
return audit_compare_uid(cred->fsuid, name, f, ctx);
|
|
case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
|
|
return audit_compare_gid(cred->fsgid, name, f, ctx);
|
|
/* uid comparisons */
|
|
case AUDIT_COMPARE_UID_TO_AUID:
|
|
return audit_uid_comparator(cred->uid, f->op,
|
|
audit_get_loginuid(tsk));
|
|
case AUDIT_COMPARE_UID_TO_EUID:
|
|
return audit_uid_comparator(cred->uid, f->op, cred->euid);
|
|
case AUDIT_COMPARE_UID_TO_SUID:
|
|
return audit_uid_comparator(cred->uid, f->op, cred->suid);
|
|
case AUDIT_COMPARE_UID_TO_FSUID:
|
|
return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
|
|
/* auid comparisons */
|
|
case AUDIT_COMPARE_AUID_TO_EUID:
|
|
return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
|
|
cred->euid);
|
|
case AUDIT_COMPARE_AUID_TO_SUID:
|
|
return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
|
|
cred->suid);
|
|
case AUDIT_COMPARE_AUID_TO_FSUID:
|
|
return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
|
|
cred->fsuid);
|
|
/* euid comparisons */
|
|
case AUDIT_COMPARE_EUID_TO_SUID:
|
|
return audit_uid_comparator(cred->euid, f->op, cred->suid);
|
|
case AUDIT_COMPARE_EUID_TO_FSUID:
|
|
return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
|
|
/* suid comparisons */
|
|
case AUDIT_COMPARE_SUID_TO_FSUID:
|
|
return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
|
|
/* gid comparisons */
|
|
case AUDIT_COMPARE_GID_TO_EGID:
|
|
return audit_gid_comparator(cred->gid, f->op, cred->egid);
|
|
case AUDIT_COMPARE_GID_TO_SGID:
|
|
return audit_gid_comparator(cred->gid, f->op, cred->sgid);
|
|
case AUDIT_COMPARE_GID_TO_FSGID:
|
|
return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
|
|
/* egid comparisons */
|
|
case AUDIT_COMPARE_EGID_TO_SGID:
|
|
return audit_gid_comparator(cred->egid, f->op, cred->sgid);
|
|
case AUDIT_COMPARE_EGID_TO_FSGID:
|
|
return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
|
|
/* sgid comparison */
|
|
case AUDIT_COMPARE_SGID_TO_FSGID:
|
|
return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
|
|
default:
|
|
WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Determine if any context name data matches a rule's watch data */
|
|
/* Compare a task_struct with an audit_rule. Return 1 on match, 0
|
|
* otherwise.
|
|
*
|
|
* If task_creation is true, this is an explicit indication that we are
|
|
* filtering a task rule at task creation time. This and tsk == current are
|
|
* the only situations where tsk->cred may be accessed without an rcu read lock.
|
|
*/
|
|
static int audit_filter_rules(struct task_struct *tsk,
|
|
struct audit_krule *rule,
|
|
struct audit_context *ctx,
|
|
struct audit_names *name,
|
|
enum audit_state *state,
|
|
bool task_creation)
|
|
{
|
|
const struct cred *cred;
|
|
int i, need_sid = 1;
|
|
u32 sid;
|
|
unsigned int sessionid;
|
|
|
|
if (ctx && rule->prio <= ctx->prio)
|
|
return 0;
|
|
|
|
cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
|
|
|
|
for (i = 0; i < rule->field_count; i++) {
|
|
struct audit_field *f = &rule->fields[i];
|
|
struct audit_names *n;
|
|
int result = 0;
|
|
pid_t pid;
|
|
|
|
switch (f->type) {
|
|
case AUDIT_PID:
|
|
pid = task_tgid_nr(tsk);
|
|
result = audit_comparator(pid, f->op, f->val);
|
|
break;
|
|
case AUDIT_PPID:
|
|
if (ctx) {
|
|
if (!ctx->ppid)
|
|
ctx->ppid = task_ppid_nr(tsk);
|
|
result = audit_comparator(ctx->ppid, f->op, f->val);
|
|
}
|
|
break;
|
|
case AUDIT_EXE:
|
|
result = audit_exe_compare(tsk, rule->exe);
|
|
if (f->op == Audit_not_equal)
|
|
result = !result;
|
|
break;
|
|
case AUDIT_UID:
|
|
result = audit_uid_comparator(cred->uid, f->op, f->uid);
|
|
break;
|
|
case AUDIT_EUID:
|
|
result = audit_uid_comparator(cred->euid, f->op, f->uid);
|
|
break;
|
|
case AUDIT_SUID:
|
|
result = audit_uid_comparator(cred->suid, f->op, f->uid);
|
|
break;
|
|
case AUDIT_FSUID:
|
|
result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
|
|
break;
|
|
case AUDIT_GID:
|
|
result = audit_gid_comparator(cred->gid, f->op, f->gid);
|
|
if (f->op == Audit_equal) {
|
|
if (!result)
|
|
result = groups_search(cred->group_info, f->gid);
|
|
} else if (f->op == Audit_not_equal) {
|
|
if (result)
|
|
result = !groups_search(cred->group_info, f->gid);
|
|
}
|
|
break;
|
|
case AUDIT_EGID:
|
|
result = audit_gid_comparator(cred->egid, f->op, f->gid);
|
|
if (f->op == Audit_equal) {
|
|
if (!result)
|
|
result = groups_search(cred->group_info, f->gid);
|
|
} else if (f->op == Audit_not_equal) {
|
|
if (result)
|
|
result = !groups_search(cred->group_info, f->gid);
|
|
}
|
|
break;
|
|
case AUDIT_SGID:
|
|
result = audit_gid_comparator(cred->sgid, f->op, f->gid);
|
|
break;
|
|
case AUDIT_FSGID:
|
|
result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
|
|
break;
|
|
case AUDIT_SESSIONID:
|
|
sessionid = audit_get_sessionid(tsk);
|
|
result = audit_comparator(sessionid, f->op, f->val);
|
|
break;
|
|
case AUDIT_PERS:
|
|
result = audit_comparator(tsk->personality, f->op, f->val);
|
|
break;
|
|
case AUDIT_ARCH:
|
|
if (ctx)
|
|
result = audit_comparator(ctx->arch, f->op, f->val);
|
|
break;
|
|
|
|
case AUDIT_EXIT:
|
|
if (ctx && ctx->return_valid != AUDITSC_INVALID)
|
|
result = audit_comparator(ctx->return_code, f->op, f->val);
|
|
break;
|
|
case AUDIT_SUCCESS:
|
|
if (ctx && ctx->return_valid != AUDITSC_INVALID) {
|
|
if (f->val)
|
|
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
|
|
else
|
|
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
|
|
}
|
|
break;
|
|
case AUDIT_DEVMAJOR:
|
|
if (name) {
|
|
if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
|
|
audit_comparator(MAJOR(name->rdev), f->op, f->val))
|
|
++result;
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
|
|
audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_DEVMINOR:
|
|
if (name) {
|
|
if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
|
|
audit_comparator(MINOR(name->rdev), f->op, f->val))
|
|
++result;
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
|
|
audit_comparator(MINOR(n->rdev), f->op, f->val)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_INODE:
|
|
if (name)
|
|
result = audit_comparator(name->ino, f->op, f->val);
|
|
else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_comparator(n->ino, f->op, f->val)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_OBJ_UID:
|
|
if (name) {
|
|
result = audit_uid_comparator(name->uid, f->op, f->uid);
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_uid_comparator(n->uid, f->op, f->uid)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_OBJ_GID:
|
|
if (name) {
|
|
result = audit_gid_comparator(name->gid, f->op, f->gid);
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_gid_comparator(n->gid, f->op, f->gid)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_WATCH:
|
|
if (name) {
|
|
result = audit_watch_compare(rule->watch,
|
|
name->ino,
|
|
name->dev);
|
|
if (f->op == Audit_not_equal)
|
|
result = !result;
|
|
}
|
|
break;
|
|
case AUDIT_DIR:
|
|
if (ctx) {
|
|
result = match_tree_refs(ctx, rule->tree);
|
|
if (f->op == Audit_not_equal)
|
|
result = !result;
|
|
}
|
|
break;
|
|
case AUDIT_LOGINUID:
|
|
result = audit_uid_comparator(audit_get_loginuid(tsk),
|
|
f->op, f->uid);
|
|
break;
|
|
case AUDIT_LOGINUID_SET:
|
|
result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
|
|
break;
|
|
case AUDIT_SADDR_FAM:
|
|
if (ctx && ctx->sockaddr)
|
|
result = audit_comparator(ctx->sockaddr->ss_family,
|
|
f->op, f->val);
|
|
break;
|
|
case AUDIT_SUBJ_USER:
|
|
case AUDIT_SUBJ_ROLE:
|
|
case AUDIT_SUBJ_TYPE:
|
|
case AUDIT_SUBJ_SEN:
|
|
case AUDIT_SUBJ_CLR:
|
|
/* NOTE: this may return negative values indicating
|
|
a temporary error. We simply treat this as a
|
|
match for now to avoid losing information that
|
|
may be wanted. An error message will also be
|
|
logged upon error */
|
|
if (f->lsm_rule) {
|
|
if (need_sid) {
|
|
/* @tsk should always be equal to
|
|
* @current with the exception of
|
|
* fork()/copy_process() in which case
|
|
* the new @tsk creds are still a dup
|
|
* of @current's creds so we can still
|
|
* use security_current_getsecid_subj()
|
|
* here even though it always refs
|
|
* @current's creds
|
|
*/
|
|
security_current_getsecid_subj(&sid);
|
|
need_sid = 0;
|
|
}
|
|
result = security_audit_rule_match(sid, f->type,
|
|
f->op,
|
|
f->lsm_rule);
|
|
}
|
|
break;
|
|
case AUDIT_OBJ_USER:
|
|
case AUDIT_OBJ_ROLE:
|
|
case AUDIT_OBJ_TYPE:
|
|
case AUDIT_OBJ_LEV_LOW:
|
|
case AUDIT_OBJ_LEV_HIGH:
|
|
/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
|
|
also applies here */
|
|
if (f->lsm_rule) {
|
|
/* Find files that match */
|
|
if (name) {
|
|
result = security_audit_rule_match(
|
|
name->osid,
|
|
f->type,
|
|
f->op,
|
|
f->lsm_rule);
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (security_audit_rule_match(
|
|
n->osid,
|
|
f->type,
|
|
f->op,
|
|
f->lsm_rule)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Find ipc objects that match */
|
|
if (!ctx || ctx->type != AUDIT_IPC)
|
|
break;
|
|
if (security_audit_rule_match(ctx->ipc.osid,
|
|
f->type, f->op,
|
|
f->lsm_rule))
|
|
++result;
|
|
}
|
|
break;
|
|
case AUDIT_ARG0:
|
|
case AUDIT_ARG1:
|
|
case AUDIT_ARG2:
|
|
case AUDIT_ARG3:
|
|
if (ctx)
|
|
result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
|
|
break;
|
|
case AUDIT_FILTERKEY:
|
|
/* ignore this field for filtering */
|
|
result = 1;
|
|
break;
|
|
case AUDIT_PERM:
|
|
result = audit_match_perm(ctx, f->val);
|
|
if (f->op == Audit_not_equal)
|
|
result = !result;
|
|
break;
|
|
case AUDIT_FILETYPE:
|
|
result = audit_match_filetype(ctx, f->val);
|
|
if (f->op == Audit_not_equal)
|
|
result = !result;
|
|
break;
|
|
case AUDIT_FIELD_COMPARE:
|
|
result = audit_field_compare(tsk, cred, f, ctx, name);
|
|
break;
|
|
}
|
|
if (!result)
|
|
return 0;
|
|
}
|
|
|
|
if (ctx) {
|
|
if (rule->filterkey) {
|
|
kfree(ctx->filterkey);
|
|
ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
|
|
}
|
|
ctx->prio = rule->prio;
|
|
}
|
|
switch (rule->action) {
|
|
case AUDIT_NEVER:
|
|
*state = AUDIT_STATE_DISABLED;
|
|
break;
|
|
case AUDIT_ALWAYS:
|
|
*state = AUDIT_STATE_RECORD;
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* At process creation time, we can determine if system-call auditing is
|
|
* completely disabled for this task. Since we only have the task
|
|
* structure at this point, we can only check uid and gid.
|
|
*/
|
|
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
|
|
{
|
|
struct audit_entry *e;
|
|
enum audit_state state;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
|
|
if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
|
|
&state, true)) {
|
|
if (state == AUDIT_STATE_RECORD)
|
|
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
|
|
rcu_read_unlock();
|
|
return state;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return AUDIT_STATE_BUILD;
|
|
}
|
|
|
|
static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
|
|
{
|
|
int word, bit;
|
|
|
|
if (val > 0xffffffff)
|
|
return false;
|
|
|
|
word = AUDIT_WORD(val);
|
|
if (word >= AUDIT_BITMASK_SIZE)
|
|
return false;
|
|
|
|
bit = AUDIT_BIT(val);
|
|
|
|
return rule->mask[word] & bit;
|
|
}
|
|
|
|
/**
|
|
* __audit_filter_op - common filter helper for operations (syscall/uring/etc)
|
|
* @tsk: associated task
|
|
* @ctx: audit context
|
|
* @list: audit filter list
|
|
* @name: audit_name (can be NULL)
|
|
* @op: current syscall/uring_op
|
|
*
|
|
* Run the udit filters specified in @list against @tsk using @ctx,
|
|
* @name, and @op, as necessary; the caller is responsible for ensuring
|
|
* that the call is made while the RCU read lock is held. The @name
|
|
* parameter can be NULL, but all others must be specified.
|
|
* Returns 1/true if the filter finds a match, 0/false if none are found.
|
|
*/
|
|
static int __audit_filter_op(struct task_struct *tsk,
|
|
struct audit_context *ctx,
|
|
struct list_head *list,
|
|
struct audit_names *name,
|
|
unsigned long op)
|
|
{
|
|
struct audit_entry *e;
|
|
enum audit_state state;
|
|
|
|
list_for_each_entry_rcu(e, list, list) {
|
|
if (audit_in_mask(&e->rule, op) &&
|
|
audit_filter_rules(tsk, &e->rule, ctx, name,
|
|
&state, false)) {
|
|
ctx->current_state = state;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* audit_filter_uring - apply filters to an io_uring operation
|
|
* @tsk: associated task
|
|
* @ctx: audit context
|
|
*/
|
|
static void audit_filter_uring(struct task_struct *tsk,
|
|
struct audit_context *ctx)
|
|
{
|
|
if (auditd_test_task(tsk))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
|
|
NULL, ctx->uring_op);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* At syscall exit time, this filter is called if the audit_state is
|
|
* not low enough that auditing cannot take place, but is also not
|
|
* high enough that we already know we have to write an audit record
|
|
* (i.e., the state is AUDIT_STATE_BUILD).
|
|
*/
|
|
static void audit_filter_syscall(struct task_struct *tsk,
|
|
struct audit_context *ctx)
|
|
{
|
|
if (auditd_test_task(tsk))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
|
|
NULL, ctx->major);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* Given an audit_name check the inode hash table to see if they match.
|
|
* Called holding the rcu read lock to protect the use of audit_inode_hash
|
|
*/
|
|
static int audit_filter_inode_name(struct task_struct *tsk,
|
|
struct audit_names *n,
|
|
struct audit_context *ctx) {
|
|
int h = audit_hash_ino((u32)n->ino);
|
|
struct list_head *list = &audit_inode_hash[h];
|
|
|
|
return __audit_filter_op(tsk, ctx, list, n, ctx->major);
|
|
}
|
|
|
|
/* At syscall exit time, this filter is called if any audit_names have been
|
|
* collected during syscall processing. We only check rules in sublists at hash
|
|
* buckets applicable to the inode numbers in audit_names.
|
|
* Regarding audit_state, same rules apply as for audit_filter_syscall().
|
|
*/
|
|
void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
|
|
{
|
|
struct audit_names *n;
|
|
|
|
if (auditd_test_task(tsk))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_filter_inode_name(tsk, n, ctx))
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static inline void audit_proctitle_free(struct audit_context *context)
|
|
{
|
|
kfree(context->proctitle.value);
|
|
context->proctitle.value = NULL;
|
|
context->proctitle.len = 0;
|
|
}
|
|
|
|
static inline void audit_free_module(struct audit_context *context)
|
|
{
|
|
if (context->type == AUDIT_KERN_MODULE) {
|
|
kfree(context->module.name);
|
|
context->module.name = NULL;
|
|
}
|
|
}
|
|
static inline void audit_free_names(struct audit_context *context)
|
|
{
|
|
struct audit_names *n, *next;
|
|
|
|
list_for_each_entry_safe(n, next, &context->names_list, list) {
|
|
list_del(&n->list);
|
|
if (n->name)
|
|
putname(n->name);
|
|
if (n->should_free)
|
|
kfree(n);
|
|
}
|
|
context->name_count = 0;
|
|
path_put(&context->pwd);
|
|
context->pwd.dentry = NULL;
|
|
context->pwd.mnt = NULL;
|
|
}
|
|
|
|
static inline void audit_free_aux(struct audit_context *context)
|
|
{
|
|
struct audit_aux_data *aux;
|
|
|
|
while ((aux = context->aux)) {
|
|
context->aux = aux->next;
|
|
kfree(aux);
|
|
}
|
|
context->aux = NULL;
|
|
while ((aux = context->aux_pids)) {
|
|
context->aux_pids = aux->next;
|
|
kfree(aux);
|
|
}
|
|
context->aux_pids = NULL;
|
|
}
|
|
|
|
/**
|
|
* audit_reset_context - reset a audit_context structure
|
|
* @ctx: the audit_context to reset
|
|
*
|
|
* All fields in the audit_context will be reset to an initial state, all
|
|
* references held by fields will be dropped, and private memory will be
|
|
* released. When this function returns the audit_context will be suitable
|
|
* for reuse, so long as the passed context is not NULL or a dummy context.
|
|
*/
|
|
static void audit_reset_context(struct audit_context *ctx)
|
|
{
|
|
if (!ctx)
|
|
return;
|
|
|
|
/* if ctx is non-null, reset the "ctx->context" regardless */
|
|
ctx->context = AUDIT_CTX_UNUSED;
|
|
if (ctx->dummy)
|
|
return;
|
|
|
|
/*
|
|
* NOTE: It shouldn't matter in what order we release the fields, so
|
|
* release them in the order in which they appear in the struct;
|
|
* this gives us some hope of quickly making sure we are
|
|
* resetting the audit_context properly.
|
|
*
|
|
* Other things worth mentioning:
|
|
* - we don't reset "dummy"
|
|
* - we don't reset "state", we do reset "current_state"
|
|
* - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
|
|
* - much of this is likely overkill, but play it safe for now
|
|
* - we really need to work on improving the audit_context struct
|
|
*/
|
|
|
|
ctx->current_state = ctx->state;
|
|
ctx->serial = 0;
|
|
ctx->major = 0;
|
|
ctx->uring_op = 0;
|
|
ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
|
|
memset(ctx->argv, 0, sizeof(ctx->argv));
|
|
ctx->return_code = 0;
|
|
ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
|
|
ctx->return_valid = AUDITSC_INVALID;
|
|
audit_free_names(ctx);
|
|
if (ctx->state != AUDIT_STATE_RECORD) {
|
|
kfree(ctx->filterkey);
|
|
ctx->filterkey = NULL;
|
|
}
|
|
audit_free_aux(ctx);
|
|
kfree(ctx->sockaddr);
|
|
ctx->sockaddr = NULL;
|
|
ctx->sockaddr_len = 0;
|
|
ctx->ppid = 0;
|
|
ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
|
|
ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
|
|
ctx->personality = 0;
|
|
ctx->arch = 0;
|
|
ctx->target_pid = 0;
|
|
ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
|
|
ctx->target_sessionid = 0;
|
|
ctx->target_sid = 0;
|
|
ctx->target_comm[0] = '\0';
|
|
unroll_tree_refs(ctx, NULL, 0);
|
|
WARN_ON(!list_empty(&ctx->killed_trees));
|
|
audit_free_module(ctx);
|
|
ctx->fds[0] = -1;
|
|
ctx->type = 0; /* reset last for audit_free_*() */
|
|
}
|
|
|
|
static inline struct audit_context *audit_alloc_context(enum audit_state state)
|
|
{
|
|
struct audit_context *context;
|
|
|
|
context = kzalloc(sizeof(*context), GFP_KERNEL);
|
|
if (!context)
|
|
return NULL;
|
|
context->context = AUDIT_CTX_UNUSED;
|
|
context->state = state;
|
|
context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
|
|
INIT_LIST_HEAD(&context->killed_trees);
|
|
INIT_LIST_HEAD(&context->names_list);
|
|
context->fds[0] = -1;
|
|
context->return_valid = AUDITSC_INVALID;
|
|
return context;
|
|
}
|
|
|
|
/**
|
|
* audit_alloc - allocate an audit context block for a task
|
|
* @tsk: task
|
|
*
|
|
* Filter on the task information and allocate a per-task audit context
|
|
* if necessary. Doing so turns on system call auditing for the
|
|
* specified task. This is called from copy_process, so no lock is
|
|
* needed.
|
|
*/
|
|
int audit_alloc(struct task_struct *tsk)
|
|
{
|
|
struct audit_context *context;
|
|
enum audit_state state;
|
|
char *key = NULL;
|
|
|
|
if (likely(!audit_ever_enabled))
|
|
return 0;
|
|
|
|
state = audit_filter_task(tsk, &key);
|
|
if (state == AUDIT_STATE_DISABLED) {
|
|
clear_task_syscall_work(tsk, SYSCALL_AUDIT);
|
|
return 0;
|
|
}
|
|
|
|
if (!(context = audit_alloc_context(state))) {
|
|
kfree(key);
|
|
audit_log_lost("out of memory in audit_alloc");
|
|
return -ENOMEM;
|
|
}
|
|
context->filterkey = key;
|
|
|
|
audit_set_context(tsk, context);
|
|
set_task_syscall_work(tsk, SYSCALL_AUDIT);
|
|
return 0;
|
|
}
|
|
|
|
static inline void audit_free_context(struct audit_context *context)
|
|
{
|
|
/* resetting is extra work, but it is likely just noise */
|
|
audit_reset_context(context);
|
|
audit_proctitle_free(context);
|
|
free_tree_refs(context);
|
|
kfree(context->filterkey);
|
|
kfree(context);
|
|
}
|
|
|
|
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
|
|
kuid_t auid, kuid_t uid, unsigned int sessionid,
|
|
u32 sid, char *comm)
|
|
{
|
|
struct audit_buffer *ab;
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
int rc = 0;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
|
|
if (!ab)
|
|
return rc;
|
|
|
|
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
|
|
from_kuid(&init_user_ns, auid),
|
|
from_kuid(&init_user_ns, uid), sessionid);
|
|
if (sid) {
|
|
if (security_secid_to_secctx(sid, &ctx, &len)) {
|
|
audit_log_format(ab, " obj=(none)");
|
|
rc = 1;
|
|
} else {
|
|
audit_log_format(ab, " obj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
audit_log_format(ab, " ocomm=");
|
|
audit_log_untrustedstring(ab, comm);
|
|
audit_log_end(ab);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void audit_log_execve_info(struct audit_context *context,
|
|
struct audit_buffer **ab)
|
|
{
|
|
long len_max;
|
|
long len_rem;
|
|
long len_full;
|
|
long len_buf;
|
|
long len_abuf = 0;
|
|
long len_tmp;
|
|
bool require_data;
|
|
bool encode;
|
|
unsigned int iter;
|
|
unsigned int arg;
|
|
char *buf_head;
|
|
char *buf;
|
|
const char __user *p = (const char __user *)current->mm->arg_start;
|
|
|
|
/* NOTE: this buffer needs to be large enough to hold all the non-arg
|
|
* data we put in the audit record for this argument (see the
|
|
* code below) ... at this point in time 96 is plenty */
|
|
char abuf[96];
|
|
|
|
/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
|
|
* current value of 7500 is not as important as the fact that it
|
|
* is less than 8k, a setting of 7500 gives us plenty of wiggle
|
|
* room if we go over a little bit in the logging below */
|
|
WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
|
|
len_max = MAX_EXECVE_AUDIT_LEN;
|
|
|
|
/* scratch buffer to hold the userspace args */
|
|
buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
|
|
if (!buf_head) {
|
|
audit_panic("out of memory for argv string");
|
|
return;
|
|
}
|
|
buf = buf_head;
|
|
|
|
audit_log_format(*ab, "argc=%d", context->execve.argc);
|
|
|
|
len_rem = len_max;
|
|
len_buf = 0;
|
|
len_full = 0;
|
|
require_data = true;
|
|
encode = false;
|
|
iter = 0;
|
|
arg = 0;
|
|
do {
|
|
/* NOTE: we don't ever want to trust this value for anything
|
|
* serious, but the audit record format insists we
|
|
* provide an argument length for really long arguments,
|
|
* e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
|
|
* to use strncpy_from_user() to obtain this value for
|
|
* recording in the log, although we don't use it
|
|
* anywhere here to avoid a double-fetch problem */
|
|
if (len_full == 0)
|
|
len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
|
|
|
|
/* read more data from userspace */
|
|
if (require_data) {
|
|
/* can we make more room in the buffer? */
|
|
if (buf != buf_head) {
|
|
memmove(buf_head, buf, len_buf);
|
|
buf = buf_head;
|
|
}
|
|
|
|
/* fetch as much as we can of the argument */
|
|
len_tmp = strncpy_from_user(&buf_head[len_buf], p,
|
|
len_max - len_buf);
|
|
if (len_tmp == -EFAULT) {
|
|
/* unable to copy from userspace */
|
|
send_sig(SIGKILL, current, 0);
|
|
goto out;
|
|
} else if (len_tmp == (len_max - len_buf)) {
|
|
/* buffer is not large enough */
|
|
require_data = true;
|
|
/* NOTE: if we are going to span multiple
|
|
* buffers force the encoding so we stand
|
|
* a chance at a sane len_full value and
|
|
* consistent record encoding */
|
|
encode = true;
|
|
len_full = len_full * 2;
|
|
p += len_tmp;
|
|
} else {
|
|
require_data = false;
|
|
if (!encode)
|
|
encode = audit_string_contains_control(
|
|
buf, len_tmp);
|
|
/* try to use a trusted value for len_full */
|
|
if (len_full < len_max)
|
|
len_full = (encode ?
|
|
len_tmp * 2 : len_tmp);
|
|
p += len_tmp + 1;
|
|
}
|
|
len_buf += len_tmp;
|
|
buf_head[len_buf] = '\0';
|
|
|
|
/* length of the buffer in the audit record? */
|
|
len_abuf = (encode ? len_buf * 2 : len_buf + 2);
|
|
}
|
|
|
|
/* write as much as we can to the audit log */
|
|
if (len_buf >= 0) {
|
|
/* NOTE: some magic numbers here - basically if we
|
|
* can't fit a reasonable amount of data into the
|
|
* existing audit buffer, flush it and start with
|
|
* a new buffer */
|
|
if ((sizeof(abuf) + 8) > len_rem) {
|
|
len_rem = len_max;
|
|
audit_log_end(*ab);
|
|
*ab = audit_log_start(context,
|
|
GFP_KERNEL, AUDIT_EXECVE);
|
|
if (!*ab)
|
|
goto out;
|
|
}
|
|
|
|
/* create the non-arg portion of the arg record */
|
|
len_tmp = 0;
|
|
if (require_data || (iter > 0) ||
|
|
((len_abuf + sizeof(abuf)) > len_rem)) {
|
|
if (iter == 0) {
|
|
len_tmp += snprintf(&abuf[len_tmp],
|
|
sizeof(abuf) - len_tmp,
|
|
" a%d_len=%lu",
|
|
arg, len_full);
|
|
}
|
|
len_tmp += snprintf(&abuf[len_tmp],
|
|
sizeof(abuf) - len_tmp,
|
|
" a%d[%d]=", arg, iter++);
|
|
} else
|
|
len_tmp += snprintf(&abuf[len_tmp],
|
|
sizeof(abuf) - len_tmp,
|
|
" a%d=", arg);
|
|
WARN_ON(len_tmp >= sizeof(abuf));
|
|
abuf[sizeof(abuf) - 1] = '\0';
|
|
|
|
/* log the arg in the audit record */
|
|
audit_log_format(*ab, "%s", abuf);
|
|
len_rem -= len_tmp;
|
|
len_tmp = len_buf;
|
|
if (encode) {
|
|
if (len_abuf > len_rem)
|
|
len_tmp = len_rem / 2; /* encoding */
|
|
audit_log_n_hex(*ab, buf, len_tmp);
|
|
len_rem -= len_tmp * 2;
|
|
len_abuf -= len_tmp * 2;
|
|
} else {
|
|
if (len_abuf > len_rem)
|
|
len_tmp = len_rem - 2; /* quotes */
|
|
audit_log_n_string(*ab, buf, len_tmp);
|
|
len_rem -= len_tmp + 2;
|
|
/* don't subtract the "2" because we still need
|
|
* to add quotes to the remaining string */
|
|
len_abuf -= len_tmp;
|
|
}
|
|
len_buf -= len_tmp;
|
|
buf += len_tmp;
|
|
}
|
|
|
|
/* ready to move to the next argument? */
|
|
if ((len_buf == 0) && !require_data) {
|
|
arg++;
|
|
iter = 0;
|
|
len_full = 0;
|
|
require_data = true;
|
|
encode = false;
|
|
}
|
|
} while (arg < context->execve.argc);
|
|
|
|
/* NOTE: the caller handles the final audit_log_end() call */
|
|
|
|
out:
|
|
kfree(buf_head);
|
|
}
|
|
|
|
static void audit_log_cap(struct audit_buffer *ab, char *prefix,
|
|
kernel_cap_t *cap)
|
|
{
|
|
if (cap_isclear(*cap)) {
|
|
audit_log_format(ab, " %s=0", prefix);
|
|
return;
|
|
}
|
|
audit_log_format(ab, " %s=%016llx", prefix, cap->val);
|
|
}
|
|
|
|
static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
|
|
{
|
|
if (name->fcap_ver == -1) {
|
|
audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
|
|
return;
|
|
}
|
|
audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
|
|
audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
|
|
audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
|
|
name->fcap.fE, name->fcap_ver,
|
|
from_kuid(&init_user_ns, name->fcap.rootid));
|
|
}
|
|
|
|
static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
|
|
{
|
|
const struct audit_ntp_data *ntp = &context->time.ntp_data;
|
|
const struct timespec64 *tk = &context->time.tk_injoffset;
|
|
static const char * const ntp_name[] = {
|
|
"offset",
|
|
"freq",
|
|
"status",
|
|
"tai",
|
|
"tick",
|
|
"adjust",
|
|
};
|
|
int type;
|
|
|
|
if (context->type == AUDIT_TIME_ADJNTPVAL) {
|
|
for (type = 0; type < AUDIT_NTP_NVALS; type++) {
|
|
if (ntp->vals[type].newval != ntp->vals[type].oldval) {
|
|
if (!*ab) {
|
|
*ab = audit_log_start(context,
|
|
GFP_KERNEL,
|
|
AUDIT_TIME_ADJNTPVAL);
|
|
if (!*ab)
|
|
return;
|
|
}
|
|
audit_log_format(*ab, "op=%s old=%lli new=%lli",
|
|
ntp_name[type],
|
|
ntp->vals[type].oldval,
|
|
ntp->vals[type].newval);
|
|
audit_log_end(*ab);
|
|
*ab = NULL;
|
|
}
|
|
}
|
|
}
|
|
if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
|
|
if (!*ab) {
|
|
*ab = audit_log_start(context, GFP_KERNEL,
|
|
AUDIT_TIME_INJOFFSET);
|
|
if (!*ab)
|
|
return;
|
|
}
|
|
audit_log_format(*ab, "sec=%lli nsec=%li",
|
|
(long long)tk->tv_sec, tk->tv_nsec);
|
|
audit_log_end(*ab);
|
|
*ab = NULL;
|
|
}
|
|
}
|
|
|
|
static void show_special(struct audit_context *context, int *call_panic)
|
|
{
|
|
struct audit_buffer *ab;
|
|
int i;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, context->type);
|
|
if (!ab)
|
|
return;
|
|
|
|
switch (context->type) {
|
|
case AUDIT_SOCKETCALL: {
|
|
int nargs = context->socketcall.nargs;
|
|
|
|
audit_log_format(ab, "nargs=%d", nargs);
|
|
for (i = 0; i < nargs; i++)
|
|
audit_log_format(ab, " a%d=%lx", i,
|
|
context->socketcall.args[i]);
|
|
break; }
|
|
case AUDIT_IPC: {
|
|
u32 osid = context->ipc.osid;
|
|
|
|
audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
|
|
from_kuid(&init_user_ns, context->ipc.uid),
|
|
from_kgid(&init_user_ns, context->ipc.gid),
|
|
context->ipc.mode);
|
|
if (osid) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
|
|
if (security_secid_to_secctx(osid, &ctx, &len)) {
|
|
audit_log_format(ab, " osid=%u", osid);
|
|
*call_panic = 1;
|
|
} else {
|
|
audit_log_format(ab, " obj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
if (context->ipc.has_perm) {
|
|
audit_log_end(ab);
|
|
ab = audit_log_start(context, GFP_KERNEL,
|
|
AUDIT_IPC_SET_PERM);
|
|
if (unlikely(!ab))
|
|
return;
|
|
audit_log_format(ab,
|
|
"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
|
|
context->ipc.qbytes,
|
|
context->ipc.perm_uid,
|
|
context->ipc.perm_gid,
|
|
context->ipc.perm_mode);
|
|
}
|
|
break; }
|
|
case AUDIT_MQ_OPEN:
|
|
audit_log_format(ab,
|
|
"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
|
|
"mq_msgsize=%ld mq_curmsgs=%ld",
|
|
context->mq_open.oflag, context->mq_open.mode,
|
|
context->mq_open.attr.mq_flags,
|
|
context->mq_open.attr.mq_maxmsg,
|
|
context->mq_open.attr.mq_msgsize,
|
|
context->mq_open.attr.mq_curmsgs);
|
|
break;
|
|
case AUDIT_MQ_SENDRECV:
|
|
audit_log_format(ab,
|
|
"mqdes=%d msg_len=%zd msg_prio=%u "
|
|
"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
|
|
context->mq_sendrecv.mqdes,
|
|
context->mq_sendrecv.msg_len,
|
|
context->mq_sendrecv.msg_prio,
|
|
(long long) context->mq_sendrecv.abs_timeout.tv_sec,
|
|
context->mq_sendrecv.abs_timeout.tv_nsec);
|
|
break;
|
|
case AUDIT_MQ_NOTIFY:
|
|
audit_log_format(ab, "mqdes=%d sigev_signo=%d",
|
|
context->mq_notify.mqdes,
|
|
context->mq_notify.sigev_signo);
|
|
break;
|
|
case AUDIT_MQ_GETSETATTR: {
|
|
struct mq_attr *attr = &context->mq_getsetattr.mqstat;
|
|
|
|
audit_log_format(ab,
|
|
"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
|
|
"mq_curmsgs=%ld ",
|
|
context->mq_getsetattr.mqdes,
|
|
attr->mq_flags, attr->mq_maxmsg,
|
|
attr->mq_msgsize, attr->mq_curmsgs);
|
|
break; }
|
|
case AUDIT_CAPSET:
|
|
audit_log_format(ab, "pid=%d", context->capset.pid);
|
|
audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
|
|
audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
|
|
audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
|
|
audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
|
|
break;
|
|
case AUDIT_MMAP:
|
|
audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
|
|
context->mmap.flags);
|
|
break;
|
|
case AUDIT_OPENAT2:
|
|
audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
|
|
context->openat2.flags,
|
|
context->openat2.mode,
|
|
context->openat2.resolve);
|
|
break;
|
|
case AUDIT_EXECVE:
|
|
audit_log_execve_info(context, &ab);
|
|
break;
|
|
case AUDIT_KERN_MODULE:
|
|
audit_log_format(ab, "name=");
|
|
if (context->module.name) {
|
|
audit_log_untrustedstring(ab, context->module.name);
|
|
} else
|
|
audit_log_format(ab, "(null)");
|
|
|
|
break;
|
|
case AUDIT_TIME_ADJNTPVAL:
|
|
case AUDIT_TIME_INJOFFSET:
|
|
/* this call deviates from the rest, eating the buffer */
|
|
audit_log_time(context, &ab);
|
|
break;
|
|
}
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
static inline int audit_proctitle_rtrim(char *proctitle, int len)
|
|
{
|
|
char *end = proctitle + len - 1;
|
|
|
|
while (end > proctitle && !isprint(*end))
|
|
end--;
|
|
|
|
/* catch the case where proctitle is only 1 non-print character */
|
|
len = end - proctitle + 1;
|
|
len -= isprint(proctitle[len-1]) == 0;
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* audit_log_name - produce AUDIT_PATH record from struct audit_names
|
|
* @context: audit_context for the task
|
|
* @n: audit_names structure with reportable details
|
|
* @path: optional path to report instead of audit_names->name
|
|
* @record_num: record number to report when handling a list of names
|
|
* @call_panic: optional pointer to int that will be updated if secid fails
|
|
*/
|
|
static void audit_log_name(struct audit_context *context, struct audit_names *n,
|
|
const struct path *path, int record_num, int *call_panic)
|
|
{
|
|
struct audit_buffer *ab;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
|
|
if (!ab)
|
|
return;
|
|
|
|
audit_log_format(ab, "item=%d", record_num);
|
|
|
|
if (path)
|
|
audit_log_d_path(ab, " name=", path);
|
|
else if (n->name) {
|
|
switch (n->name_len) {
|
|
case AUDIT_NAME_FULL:
|
|
/* log the full path */
|
|
audit_log_format(ab, " name=");
|
|
audit_log_untrustedstring(ab, n->name->name);
|
|
break;
|
|
case 0:
|
|
/* name was specified as a relative path and the
|
|
* directory component is the cwd
|
|
*/
|
|
if (context->pwd.dentry && context->pwd.mnt)
|
|
audit_log_d_path(ab, " name=", &context->pwd);
|
|
else
|
|
audit_log_format(ab, " name=(null)");
|
|
break;
|
|
default:
|
|
/* log the name's directory component */
|
|
audit_log_format(ab, " name=");
|
|
audit_log_n_untrustedstring(ab, n->name->name,
|
|
n->name_len);
|
|
}
|
|
} else
|
|
audit_log_format(ab, " name=(null)");
|
|
|
|
if (n->ino != AUDIT_INO_UNSET)
|
|
audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
|
|
n->ino,
|
|
MAJOR(n->dev),
|
|
MINOR(n->dev),
|
|
n->mode,
|
|
from_kuid(&init_user_ns, n->uid),
|
|
from_kgid(&init_user_ns, n->gid),
|
|
MAJOR(n->rdev),
|
|
MINOR(n->rdev));
|
|
if (n->osid != 0) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
|
|
if (security_secid_to_secctx(
|
|
n->osid, &ctx, &len)) {
|
|
audit_log_format(ab, " osid=%u", n->osid);
|
|
if (call_panic)
|
|
*call_panic = 2;
|
|
} else {
|
|
audit_log_format(ab, " obj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
|
|
/* log the audit_names record type */
|
|
switch (n->type) {
|
|
case AUDIT_TYPE_NORMAL:
|
|
audit_log_format(ab, " nametype=NORMAL");
|
|
break;
|
|
case AUDIT_TYPE_PARENT:
|
|
audit_log_format(ab, " nametype=PARENT");
|
|
break;
|
|
case AUDIT_TYPE_CHILD_DELETE:
|
|
audit_log_format(ab, " nametype=DELETE");
|
|
break;
|
|
case AUDIT_TYPE_CHILD_CREATE:
|
|
audit_log_format(ab, " nametype=CREATE");
|
|
break;
|
|
default:
|
|
audit_log_format(ab, " nametype=UNKNOWN");
|
|
break;
|
|
}
|
|
|
|
audit_log_fcaps(ab, n);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
static void audit_log_proctitle(void)
|
|
{
|
|
int res;
|
|
char *buf;
|
|
char *msg = "(null)";
|
|
int len = strlen(msg);
|
|
struct audit_context *context = audit_context();
|
|
struct audit_buffer *ab;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
|
|
if (!ab)
|
|
return; /* audit_panic or being filtered */
|
|
|
|
audit_log_format(ab, "proctitle=");
|
|
|
|
/* Not cached */
|
|
if (!context->proctitle.value) {
|
|
buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
|
|
if (!buf)
|
|
goto out;
|
|
/* Historically called this from procfs naming */
|
|
res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
|
|
if (res == 0) {
|
|
kfree(buf);
|
|
goto out;
|
|
}
|
|
res = audit_proctitle_rtrim(buf, res);
|
|
if (res == 0) {
|
|
kfree(buf);
|
|
goto out;
|
|
}
|
|
context->proctitle.value = buf;
|
|
context->proctitle.len = res;
|
|
}
|
|
msg = context->proctitle.value;
|
|
len = context->proctitle.len;
|
|
out:
|
|
audit_log_n_untrustedstring(ab, msg, len);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
/**
|
|
* audit_log_uring - generate a AUDIT_URINGOP record
|
|
* @ctx: the audit context
|
|
*/
|
|
static void audit_log_uring(struct audit_context *ctx)
|
|
{
|
|
struct audit_buffer *ab;
|
|
const struct cred *cred;
|
|
|
|
ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
|
|
if (!ab)
|
|
return;
|
|
cred = current_cred();
|
|
audit_log_format(ab, "uring_op=%d", ctx->uring_op);
|
|
if (ctx->return_valid != AUDITSC_INVALID)
|
|
audit_log_format(ab, " success=%s exit=%ld",
|
|
(ctx->return_valid == AUDITSC_SUCCESS ?
|
|
"yes" : "no"),
|
|
ctx->return_code);
|
|
audit_log_format(ab,
|
|
" items=%d"
|
|
" ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
|
|
" fsuid=%u egid=%u sgid=%u fsgid=%u",
|
|
ctx->name_count,
|
|
task_ppid_nr(current), task_tgid_nr(current),
|
|
from_kuid(&init_user_ns, cred->uid),
|
|
from_kgid(&init_user_ns, cred->gid),
|
|
from_kuid(&init_user_ns, cred->euid),
|
|
from_kuid(&init_user_ns, cred->suid),
|
|
from_kuid(&init_user_ns, cred->fsuid),
|
|
from_kgid(&init_user_ns, cred->egid),
|
|
from_kgid(&init_user_ns, cred->sgid),
|
|
from_kgid(&init_user_ns, cred->fsgid));
|
|
audit_log_task_context(ab);
|
|
audit_log_key(ab, ctx->filterkey);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
static void audit_log_exit(void)
|
|
{
|
|
int i, call_panic = 0;
|
|
struct audit_context *context = audit_context();
|
|
struct audit_buffer *ab;
|
|
struct audit_aux_data *aux;
|
|
struct audit_names *n;
|
|
|
|
context->personality = current->personality;
|
|
|
|
switch (context->context) {
|
|
case AUDIT_CTX_SYSCALL:
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
|
|
if (!ab)
|
|
return;
|
|
audit_log_format(ab, "arch=%x syscall=%d",
|
|
context->arch, context->major);
|
|
if (context->personality != PER_LINUX)
|
|
audit_log_format(ab, " per=%lx", context->personality);
|
|
if (context->return_valid != AUDITSC_INVALID)
|
|
audit_log_format(ab, " success=%s exit=%ld",
|
|
(context->return_valid == AUDITSC_SUCCESS ?
|
|
"yes" : "no"),
|
|
context->return_code);
|
|
audit_log_format(ab,
|
|
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
|
|
context->argv[0],
|
|
context->argv[1],
|
|
context->argv[2],
|
|
context->argv[3],
|
|
context->name_count);
|
|
audit_log_task_info(ab);
|
|
audit_log_key(ab, context->filterkey);
|
|
audit_log_end(ab);
|
|
break;
|
|
case AUDIT_CTX_URING:
|
|
audit_log_uring(context);
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
for (aux = context->aux; aux; aux = aux->next) {
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, aux->type);
|
|
if (!ab)
|
|
continue; /* audit_panic has been called */
|
|
|
|
switch (aux->type) {
|
|
|
|
case AUDIT_BPRM_FCAPS: {
|
|
struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
|
|
|
|
audit_log_format(ab, "fver=%x", axs->fcap_ver);
|
|
audit_log_cap(ab, "fp", &axs->fcap.permitted);
|
|
audit_log_cap(ab, "fi", &axs->fcap.inheritable);
|
|
audit_log_format(ab, " fe=%d", axs->fcap.fE);
|
|
audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
|
|
audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
|
|
audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
|
|
audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
|
|
audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
|
|
audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
|
|
audit_log_cap(ab, "pe", &axs->new_pcap.effective);
|
|
audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
|
|
audit_log_format(ab, " frootid=%d",
|
|
from_kuid(&init_user_ns,
|
|
axs->fcap.rootid));
|
|
break; }
|
|
|
|
}
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
if (context->type)
|
|
show_special(context, &call_panic);
|
|
|
|
if (context->fds[0] >= 0) {
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
|
|
if (ab) {
|
|
audit_log_format(ab, "fd0=%d fd1=%d",
|
|
context->fds[0], context->fds[1]);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
if (context->sockaddr_len) {
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
|
|
if (ab) {
|
|
audit_log_format(ab, "saddr=");
|
|
audit_log_n_hex(ab, (void *)context->sockaddr,
|
|
context->sockaddr_len);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
for (aux = context->aux_pids; aux; aux = aux->next) {
|
|
struct audit_aux_data_pids *axs = (void *)aux;
|
|
|
|
for (i = 0; i < axs->pid_count; i++)
|
|
if (audit_log_pid_context(context, axs->target_pid[i],
|
|
axs->target_auid[i],
|
|
axs->target_uid[i],
|
|
axs->target_sessionid[i],
|
|
axs->target_sid[i],
|
|
axs->target_comm[i]))
|
|
call_panic = 1;
|
|
}
|
|
|
|
if (context->target_pid &&
|
|
audit_log_pid_context(context, context->target_pid,
|
|
context->target_auid, context->target_uid,
|
|
context->target_sessionid,
|
|
context->target_sid, context->target_comm))
|
|
call_panic = 1;
|
|
|
|
if (context->pwd.dentry && context->pwd.mnt) {
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
|
|
if (ab) {
|
|
audit_log_d_path(ab, "cwd=", &context->pwd);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
i = 0;
|
|
list_for_each_entry(n, &context->names_list, list) {
|
|
if (n->hidden)
|
|
continue;
|
|
audit_log_name(context, n, NULL, i++, &call_panic);
|
|
}
|
|
|
|
if (context->context == AUDIT_CTX_SYSCALL)
|
|
audit_log_proctitle();
|
|
|
|
/* Send end of event record to help user space know we are finished */
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
|
|
if (ab)
|
|
audit_log_end(ab);
|
|
if (call_panic)
|
|
audit_panic("error in audit_log_exit()");
|
|
}
|
|
|
|
/**
|
|
* __audit_free - free a per-task audit context
|
|
* @tsk: task whose audit context block to free
|
|
*
|
|
* Called from copy_process, do_exit, and the io_uring code
|
|
*/
|
|
void __audit_free(struct task_struct *tsk)
|
|
{
|
|
struct audit_context *context = tsk->audit_context;
|
|
|
|
if (!context)
|
|
return;
|
|
|
|
/* this may generate CONFIG_CHANGE records */
|
|
if (!list_empty(&context->killed_trees))
|
|
audit_kill_trees(context);
|
|
|
|
/* We are called either by do_exit() or the fork() error handling code;
|
|
* in the former case tsk == current and in the latter tsk is a
|
|
* random task_struct that doesn't have any meaningful data we
|
|
* need to log via audit_log_exit().
|
|
*/
|
|
if (tsk == current && !context->dummy) {
|
|
context->return_valid = AUDITSC_INVALID;
|
|
context->return_code = 0;
|
|
if (context->context == AUDIT_CTX_SYSCALL) {
|
|
audit_filter_syscall(tsk, context);
|
|
audit_filter_inodes(tsk, context);
|
|
if (context->current_state == AUDIT_STATE_RECORD)
|
|
audit_log_exit();
|
|
} else if (context->context == AUDIT_CTX_URING) {
|
|
/* TODO: verify this case is real and valid */
|
|
audit_filter_uring(tsk, context);
|
|
audit_filter_inodes(tsk, context);
|
|
if (context->current_state == AUDIT_STATE_RECORD)
|
|
audit_log_uring(context);
|
|
}
|
|
}
|
|
|
|
audit_set_context(tsk, NULL);
|
|
audit_free_context(context);
|
|
}
|
|
|
|
/**
|
|
* audit_return_fixup - fixup the return codes in the audit_context
|
|
* @ctx: the audit_context
|
|
* @success: true/false value to indicate if the operation succeeded or not
|
|
* @code: operation return code
|
|
*
|
|
* We need to fixup the return code in the audit logs if the actual return
|
|
* codes are later going to be fixed by the arch specific signal handlers.
|
|
*/
|
|
static void audit_return_fixup(struct audit_context *ctx,
|
|
int success, long code)
|
|
{
|
|
/*
|
|
* This is actually a test for:
|
|
* (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
|
|
* (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
|
|
*
|
|
* but is faster than a bunch of ||
|
|
*/
|
|
if (unlikely(code <= -ERESTARTSYS) &&
|
|
(code >= -ERESTART_RESTARTBLOCK) &&
|
|
(code != -ENOIOCTLCMD))
|
|
ctx->return_code = -EINTR;
|
|
else
|
|
ctx->return_code = code;
|
|
ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
|
|
}
|
|
|
|
/**
|
|
* __audit_uring_entry - prepare the kernel task's audit context for io_uring
|
|
* @op: the io_uring opcode
|
|
*
|
|
* This is similar to audit_syscall_entry() but is intended for use by io_uring
|
|
* operations. This function should only ever be called from
|
|
* audit_uring_entry() as we rely on the audit context checking present in that
|
|
* function.
|
|
*/
|
|
void __audit_uring_entry(u8 op)
|
|
{
|
|
struct audit_context *ctx = audit_context();
|
|
|
|
if (ctx->state == AUDIT_STATE_DISABLED)
|
|
return;
|
|
|
|
/*
|
|
* NOTE: It's possible that we can be called from the process' context
|
|
* before it returns to userspace, and before audit_syscall_exit()
|
|
* is called. In this case there is not much to do, just record
|
|
* the io_uring details and return.
|
|
*/
|
|
ctx->uring_op = op;
|
|
if (ctx->context == AUDIT_CTX_SYSCALL)
|
|
return;
|
|
|
|
ctx->dummy = !audit_n_rules;
|
|
if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
|
|
ctx->prio = 0;
|
|
|
|
ctx->context = AUDIT_CTX_URING;
|
|
ctx->current_state = ctx->state;
|
|
ktime_get_coarse_real_ts64(&ctx->ctime);
|
|
}
|
|
|
|
/**
|
|
* __audit_uring_exit - wrap up the kernel task's audit context after io_uring
|
|
* @success: true/false value to indicate if the operation succeeded or not
|
|
* @code: operation return code
|
|
*
|
|
* This is similar to audit_syscall_exit() but is intended for use by io_uring
|
|
* operations. This function should only ever be called from
|
|
* audit_uring_exit() as we rely on the audit context checking present in that
|
|
* function.
|
|
*/
|
|
void __audit_uring_exit(int success, long code)
|
|
{
|
|
struct audit_context *ctx = audit_context();
|
|
|
|
if (ctx->dummy) {
|
|
if (ctx->context != AUDIT_CTX_URING)
|
|
return;
|
|
goto out;
|
|
}
|
|
|
|
audit_return_fixup(ctx, success, code);
|
|
if (ctx->context == AUDIT_CTX_SYSCALL) {
|
|
/*
|
|
* NOTE: See the note in __audit_uring_entry() about the case
|
|
* where we may be called from process context before we
|
|
* return to userspace via audit_syscall_exit(). In this
|
|
* case we simply emit a URINGOP record and bail, the
|
|
* normal syscall exit handling will take care of
|
|
* everything else.
|
|
* It is also worth mentioning that when we are called,
|
|
* the current process creds may differ from the creds
|
|
* used during the normal syscall processing; keep that
|
|
* in mind if/when we move the record generation code.
|
|
*/
|
|
|
|
/*
|
|
* We need to filter on the syscall info here to decide if we
|
|
* should emit a URINGOP record. I know it seems odd but this
|
|
* solves the problem where users have a filter to block *all*
|
|
* syscall records in the "exit" filter; we want to preserve
|
|
* the behavior here.
|
|
*/
|
|
audit_filter_syscall(current, ctx);
|
|
if (ctx->current_state != AUDIT_STATE_RECORD)
|
|
audit_filter_uring(current, ctx);
|
|
audit_filter_inodes(current, ctx);
|
|
if (ctx->current_state != AUDIT_STATE_RECORD)
|
|
return;
|
|
|
|
audit_log_uring(ctx);
|
|
return;
|
|
}
|
|
|
|
/* this may generate CONFIG_CHANGE records */
|
|
if (!list_empty(&ctx->killed_trees))
|
|
audit_kill_trees(ctx);
|
|
|
|
/* run through both filters to ensure we set the filterkey properly */
|
|
audit_filter_uring(current, ctx);
|
|
audit_filter_inodes(current, ctx);
|
|
if (ctx->current_state != AUDIT_STATE_RECORD)
|
|
goto out;
|
|
audit_log_exit();
|
|
|
|
out:
|
|
audit_reset_context(ctx);
|
|
}
|
|
|
|
/**
|
|
* __audit_syscall_entry - fill in an audit record at syscall entry
|
|
* @major: major syscall type (function)
|
|
* @a1: additional syscall register 1
|
|
* @a2: additional syscall register 2
|
|
* @a3: additional syscall register 3
|
|
* @a4: additional syscall register 4
|
|
*
|
|
* Fill in audit context at syscall entry. This only happens if the
|
|
* audit context was created when the task was created and the state or
|
|
* filters demand the audit context be built. If the state from the
|
|
* per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
|
|
* then the record will be written at syscall exit time (otherwise, it
|
|
* will only be written if another part of the kernel requests that it
|
|
* be written).
|
|
*/
|
|
void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
|
|
unsigned long a3, unsigned long a4)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
enum audit_state state;
|
|
|
|
if (!audit_enabled || !context)
|
|
return;
|
|
|
|
WARN_ON(context->context != AUDIT_CTX_UNUSED);
|
|
WARN_ON(context->name_count);
|
|
if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
|
|
audit_panic("unrecoverable error in audit_syscall_entry()");
|
|
return;
|
|
}
|
|
|
|
state = context->state;
|
|
if (state == AUDIT_STATE_DISABLED)
|
|
return;
|
|
|
|
context->dummy = !audit_n_rules;
|
|
if (!context->dummy && state == AUDIT_STATE_BUILD) {
|
|
context->prio = 0;
|
|
if (auditd_test_task(current))
|
|
return;
|
|
}
|
|
|
|
context->arch = syscall_get_arch(current);
|
|
context->major = major;
|
|
context->argv[0] = a1;
|
|
context->argv[1] = a2;
|
|
context->argv[2] = a3;
|
|
context->argv[3] = a4;
|
|
context->context = AUDIT_CTX_SYSCALL;
|
|
context->current_state = state;
|
|
ktime_get_coarse_real_ts64(&context->ctime);
|
|
}
|
|
|
|
/**
|
|
* __audit_syscall_exit - deallocate audit context after a system call
|
|
* @success: success value of the syscall
|
|
* @return_code: return value of the syscall
|
|
*
|
|
* Tear down after system call. If the audit context has been marked as
|
|
* auditable (either because of the AUDIT_STATE_RECORD state from
|
|
* filtering, or because some other part of the kernel wrote an audit
|
|
* message), then write out the syscall information. In call cases,
|
|
* free the names stored from getname().
|
|
*/
|
|
void __audit_syscall_exit(int success, long return_code)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
if (!context || context->dummy ||
|
|
context->context != AUDIT_CTX_SYSCALL)
|
|
goto out;
|
|
|
|
/* this may generate CONFIG_CHANGE records */
|
|
if (!list_empty(&context->killed_trees))
|
|
audit_kill_trees(context);
|
|
|
|
audit_return_fixup(context, success, return_code);
|
|
/* run through both filters to ensure we set the filterkey properly */
|
|
audit_filter_syscall(current, context);
|
|
audit_filter_inodes(current, context);
|
|
if (context->current_state != AUDIT_STATE_RECORD)
|
|
goto out;
|
|
|
|
audit_log_exit();
|
|
|
|
out:
|
|
audit_reset_context(context);
|
|
}
|
|
|
|
static inline void handle_one(const struct inode *inode)
|
|
{
|
|
struct audit_context *context;
|
|
struct audit_tree_refs *p;
|
|
struct audit_chunk *chunk;
|
|
int count;
|
|
|
|
if (likely(!inode->i_fsnotify_marks))
|
|
return;
|
|
context = audit_context();
|
|
p = context->trees;
|
|
count = context->tree_count;
|
|
rcu_read_lock();
|
|
chunk = audit_tree_lookup(inode);
|
|
rcu_read_unlock();
|
|
if (!chunk)
|
|
return;
|
|
if (likely(put_tree_ref(context, chunk)))
|
|
return;
|
|
if (unlikely(!grow_tree_refs(context))) {
|
|
pr_warn("out of memory, audit has lost a tree reference\n");
|
|
audit_set_auditable(context);
|
|
audit_put_chunk(chunk);
|
|
unroll_tree_refs(context, p, count);
|
|
return;
|
|
}
|
|
put_tree_ref(context, chunk);
|
|
}
|
|
|
|
static void handle_path(const struct dentry *dentry)
|
|
{
|
|
struct audit_context *context;
|
|
struct audit_tree_refs *p;
|
|
const struct dentry *d, *parent;
|
|
struct audit_chunk *drop;
|
|
unsigned long seq;
|
|
int count;
|
|
|
|
context = audit_context();
|
|
p = context->trees;
|
|
count = context->tree_count;
|
|
retry:
|
|
drop = NULL;
|
|
d = dentry;
|
|
rcu_read_lock();
|
|
seq = read_seqbegin(&rename_lock);
|
|
for(;;) {
|
|
struct inode *inode = d_backing_inode(d);
|
|
|
|
if (inode && unlikely(inode->i_fsnotify_marks)) {
|
|
struct audit_chunk *chunk;
|
|
|
|
chunk = audit_tree_lookup(inode);
|
|
if (chunk) {
|
|
if (unlikely(!put_tree_ref(context, chunk))) {
|
|
drop = chunk;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
parent = d->d_parent;
|
|
if (parent == d)
|
|
break;
|
|
d = parent;
|
|
}
|
|
if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
|
|
rcu_read_unlock();
|
|
if (!drop) {
|
|
/* just a race with rename */
|
|
unroll_tree_refs(context, p, count);
|
|
goto retry;
|
|
}
|
|
audit_put_chunk(drop);
|
|
if (grow_tree_refs(context)) {
|
|
/* OK, got more space */
|
|
unroll_tree_refs(context, p, count);
|
|
goto retry;
|
|
}
|
|
/* too bad */
|
|
pr_warn("out of memory, audit has lost a tree reference\n");
|
|
unroll_tree_refs(context, p, count);
|
|
audit_set_auditable(context);
|
|
return;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static struct audit_names *audit_alloc_name(struct audit_context *context,
|
|
unsigned char type)
|
|
{
|
|
struct audit_names *aname;
|
|
|
|
if (context->name_count < AUDIT_NAMES) {
|
|
aname = &context->preallocated_names[context->name_count];
|
|
memset(aname, 0, sizeof(*aname));
|
|
} else {
|
|
aname = kzalloc(sizeof(*aname), GFP_NOFS);
|
|
if (!aname)
|
|
return NULL;
|
|
aname->should_free = true;
|
|
}
|
|
|
|
aname->ino = AUDIT_INO_UNSET;
|
|
aname->type = type;
|
|
list_add_tail(&aname->list, &context->names_list);
|
|
|
|
context->name_count++;
|
|
if (!context->pwd.dentry)
|
|
get_fs_pwd(current->fs, &context->pwd);
|
|
return aname;
|
|
}
|
|
|
|
/**
|
|
* __audit_reusename - fill out filename with info from existing entry
|
|
* @uptr: userland ptr to pathname
|
|
*
|
|
* Search the audit_names list for the current audit context. If there is an
|
|
* existing entry with a matching "uptr" then return the filename
|
|
* associated with that audit_name. If not, return NULL.
|
|
*/
|
|
struct filename *
|
|
__audit_reusename(const __user char *uptr)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
struct audit_names *n;
|
|
|
|
list_for_each_entry(n, &context->names_list, list) {
|
|
if (!n->name)
|
|
continue;
|
|
if (n->name->uptr == uptr) {
|
|
n->name->refcnt++;
|
|
return n->name;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __audit_getname - add a name to the list
|
|
* @name: name to add
|
|
*
|
|
* Add a name to the list of audit names for this context.
|
|
* Called from fs/namei.c:getname().
|
|
*/
|
|
void __audit_getname(struct filename *name)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
struct audit_names *n;
|
|
|
|
if (context->context == AUDIT_CTX_UNUSED)
|
|
return;
|
|
|
|
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
|
|
if (!n)
|
|
return;
|
|
|
|
n->name = name;
|
|
n->name_len = AUDIT_NAME_FULL;
|
|
name->aname = n;
|
|
name->refcnt++;
|
|
}
|
|
|
|
static inline int audit_copy_fcaps(struct audit_names *name,
|
|
const struct dentry *dentry)
|
|
{
|
|
struct cpu_vfs_cap_data caps;
|
|
int rc;
|
|
|
|
if (!dentry)
|
|
return 0;
|
|
|
|
rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
|
|
if (rc)
|
|
return rc;
|
|
|
|
name->fcap.permitted = caps.permitted;
|
|
name->fcap.inheritable = caps.inheritable;
|
|
name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
|
|
name->fcap.rootid = caps.rootid;
|
|
name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
|
|
VFS_CAP_REVISION_SHIFT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Copy inode data into an audit_names. */
|
|
static void audit_copy_inode(struct audit_names *name,
|
|
const struct dentry *dentry,
|
|
struct inode *inode, unsigned int flags)
|
|
{
|
|
name->ino = inode->i_ino;
|
|
name->dev = inode->i_sb->s_dev;
|
|
name->mode = inode->i_mode;
|
|
name->uid = inode->i_uid;
|
|
name->gid = inode->i_gid;
|
|
name->rdev = inode->i_rdev;
|
|
security_inode_getsecid(inode, &name->osid);
|
|
if (flags & AUDIT_INODE_NOEVAL) {
|
|
name->fcap_ver = -1;
|
|
return;
|
|
}
|
|
audit_copy_fcaps(name, dentry);
|
|
}
|
|
|
|
/**
|
|
* __audit_inode - store the inode and device from a lookup
|
|
* @name: name being audited
|
|
* @dentry: dentry being audited
|
|
* @flags: attributes for this particular entry
|
|
*/
|
|
void __audit_inode(struct filename *name, const struct dentry *dentry,
|
|
unsigned int flags)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
struct inode *inode = d_backing_inode(dentry);
|
|
struct audit_names *n;
|
|
bool parent = flags & AUDIT_INODE_PARENT;
|
|
struct audit_entry *e;
|
|
struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
|
|
int i;
|
|
|
|
if (context->context == AUDIT_CTX_UNUSED)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(e, list, list) {
|
|
for (i = 0; i < e->rule.field_count; i++) {
|
|
struct audit_field *f = &e->rule.fields[i];
|
|
|
|
if (f->type == AUDIT_FSTYPE
|
|
&& audit_comparator(inode->i_sb->s_magic,
|
|
f->op, f->val)
|
|
&& e->rule.action == AUDIT_NEVER) {
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!name)
|
|
goto out_alloc;
|
|
|
|
/*
|
|
* If we have a pointer to an audit_names entry already, then we can
|
|
* just use it directly if the type is correct.
|
|
*/
|
|
n = name->aname;
|
|
if (n) {
|
|
if (parent) {
|
|
if (n->type == AUDIT_TYPE_PARENT ||
|
|
n->type == AUDIT_TYPE_UNKNOWN)
|
|
goto out;
|
|
} else {
|
|
if (n->type != AUDIT_TYPE_PARENT)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry_reverse(n, &context->names_list, list) {
|
|
if (n->ino) {
|
|
/* valid inode number, use that for the comparison */
|
|
if (n->ino != inode->i_ino ||
|
|
n->dev != inode->i_sb->s_dev)
|
|
continue;
|
|
} else if (n->name) {
|
|
/* inode number has not been set, check the name */
|
|
if (strcmp(n->name->name, name->name))
|
|
continue;
|
|
} else
|
|
/* no inode and no name (?!) ... this is odd ... */
|
|
continue;
|
|
|
|
/* match the correct record type */
|
|
if (parent) {
|
|
if (n->type == AUDIT_TYPE_PARENT ||
|
|
n->type == AUDIT_TYPE_UNKNOWN)
|
|
goto out;
|
|
} else {
|
|
if (n->type != AUDIT_TYPE_PARENT)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out_alloc:
|
|
/* unable to find an entry with both a matching name and type */
|
|
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
|
|
if (!n)
|
|
return;
|
|
if (name) {
|
|
n->name = name;
|
|
name->refcnt++;
|
|
}
|
|
|
|
out:
|
|
if (parent) {
|
|
n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
|
|
n->type = AUDIT_TYPE_PARENT;
|
|
if (flags & AUDIT_INODE_HIDDEN)
|
|
n->hidden = true;
|
|
} else {
|
|
n->name_len = AUDIT_NAME_FULL;
|
|
n->type = AUDIT_TYPE_NORMAL;
|
|
}
|
|
handle_path(dentry);
|
|
audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
|
|
}
|
|
|
|
void __audit_file(const struct file *file)
|
|
{
|
|
__audit_inode(NULL, file->f_path.dentry, 0);
|
|
}
|
|
|
|
/**
|
|
* __audit_inode_child - collect inode info for created/removed objects
|
|
* @parent: inode of dentry parent
|
|
* @dentry: dentry being audited
|
|
* @type: AUDIT_TYPE_* value that we're looking for
|
|
*
|
|
* For syscalls that create or remove filesystem objects, audit_inode
|
|
* can only collect information for the filesystem object's parent.
|
|
* This call updates the audit context with the child's information.
|
|
* Syscalls that create a new filesystem object must be hooked after
|
|
* the object is created. Syscalls that remove a filesystem object
|
|
* must be hooked prior, in order to capture the target inode during
|
|
* unsuccessful attempts.
|
|
*/
|
|
void __audit_inode_child(struct inode *parent,
|
|
const struct dentry *dentry,
|
|
const unsigned char type)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
struct inode *inode = d_backing_inode(dentry);
|
|
const struct qstr *dname = &dentry->d_name;
|
|
struct audit_names *n, *found_parent = NULL, *found_child = NULL;
|
|
struct audit_entry *e;
|
|
struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
|
|
int i;
|
|
|
|
if (context->context == AUDIT_CTX_UNUSED)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(e, list, list) {
|
|
for (i = 0; i < e->rule.field_count; i++) {
|
|
struct audit_field *f = &e->rule.fields[i];
|
|
|
|
if (f->type == AUDIT_FSTYPE
|
|
&& audit_comparator(parent->i_sb->s_magic,
|
|
f->op, f->val)
|
|
&& e->rule.action == AUDIT_NEVER) {
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (inode)
|
|
handle_one(inode);
|
|
|
|
/* look for a parent entry first */
|
|
list_for_each_entry(n, &context->names_list, list) {
|
|
if (!n->name ||
|
|
(n->type != AUDIT_TYPE_PARENT &&
|
|
n->type != AUDIT_TYPE_UNKNOWN))
|
|
continue;
|
|
|
|
if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
|
|
!audit_compare_dname_path(dname,
|
|
n->name->name, n->name_len)) {
|
|
if (n->type == AUDIT_TYPE_UNKNOWN)
|
|
n->type = AUDIT_TYPE_PARENT;
|
|
found_parent = n;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* is there a matching child entry? */
|
|
list_for_each_entry(n, &context->names_list, list) {
|
|
/* can only match entries that have a name */
|
|
if (!n->name ||
|
|
(n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
|
|
continue;
|
|
|
|
if (!strcmp(dname->name, n->name->name) ||
|
|
!audit_compare_dname_path(dname, n->name->name,
|
|
found_parent ?
|
|
found_parent->name_len :
|
|
AUDIT_NAME_FULL)) {
|
|
if (n->type == AUDIT_TYPE_UNKNOWN)
|
|
n->type = type;
|
|
found_child = n;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found_parent) {
|
|
/* create a new, "anonymous" parent record */
|
|
n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
|
|
if (!n)
|
|
return;
|
|
audit_copy_inode(n, NULL, parent, 0);
|
|
}
|
|
|
|
if (!found_child) {
|
|
found_child = audit_alloc_name(context, type);
|
|
if (!found_child)
|
|
return;
|
|
|
|
/* Re-use the name belonging to the slot for a matching parent
|
|
* directory. All names for this context are relinquished in
|
|
* audit_free_names() */
|
|
if (found_parent) {
|
|
found_child->name = found_parent->name;
|
|
found_child->name_len = AUDIT_NAME_FULL;
|
|
found_child->name->refcnt++;
|
|
}
|
|
}
|
|
|
|
if (inode)
|
|
audit_copy_inode(found_child, dentry, inode, 0);
|
|
else
|
|
found_child->ino = AUDIT_INO_UNSET;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__audit_inode_child);
|
|
|
|
/**
|
|
* auditsc_get_stamp - get local copies of audit_context values
|
|
* @ctx: audit_context for the task
|
|
* @t: timespec64 to store time recorded in the audit_context
|
|
* @serial: serial value that is recorded in the audit_context
|
|
*
|
|
* Also sets the context as auditable.
|
|
*/
|
|
int auditsc_get_stamp(struct audit_context *ctx,
|
|
struct timespec64 *t, unsigned int *serial)
|
|
{
|
|
if (ctx->context == AUDIT_CTX_UNUSED)
|
|
return 0;
|
|
if (!ctx->serial)
|
|
ctx->serial = audit_serial();
|
|
t->tv_sec = ctx->ctime.tv_sec;
|
|
t->tv_nsec = ctx->ctime.tv_nsec;
|
|
*serial = ctx->serial;
|
|
if (!ctx->prio) {
|
|
ctx->prio = 1;
|
|
ctx->current_state = AUDIT_STATE_RECORD;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_open - record audit data for a POSIX MQ open
|
|
* @oflag: open flag
|
|
* @mode: mode bits
|
|
* @attr: queue attributes
|
|
*
|
|
*/
|
|
void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
if (attr)
|
|
memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
|
|
else
|
|
memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
|
|
|
|
context->mq_open.oflag = oflag;
|
|
context->mq_open.mode = mode;
|
|
|
|
context->type = AUDIT_MQ_OPEN;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
|
|
* @mqdes: MQ descriptor
|
|
* @msg_len: Message length
|
|
* @msg_prio: Message priority
|
|
* @abs_timeout: Message timeout in absolute time
|
|
*
|
|
*/
|
|
void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
|
|
const struct timespec64 *abs_timeout)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
|
|
|
|
if (abs_timeout)
|
|
memcpy(p, abs_timeout, sizeof(*p));
|
|
else
|
|
memset(p, 0, sizeof(*p));
|
|
|
|
context->mq_sendrecv.mqdes = mqdes;
|
|
context->mq_sendrecv.msg_len = msg_len;
|
|
context->mq_sendrecv.msg_prio = msg_prio;
|
|
|
|
context->type = AUDIT_MQ_SENDRECV;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_notify - record audit data for a POSIX MQ notify
|
|
* @mqdes: MQ descriptor
|
|
* @notification: Notification event
|
|
*
|
|
*/
|
|
|
|
void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
if (notification)
|
|
context->mq_notify.sigev_signo = notification->sigev_signo;
|
|
else
|
|
context->mq_notify.sigev_signo = 0;
|
|
|
|
context->mq_notify.mqdes = mqdes;
|
|
context->type = AUDIT_MQ_NOTIFY;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
|
|
* @mqdes: MQ descriptor
|
|
* @mqstat: MQ flags
|
|
*
|
|
*/
|
|
void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->mq_getsetattr.mqdes = mqdes;
|
|
context->mq_getsetattr.mqstat = *mqstat;
|
|
context->type = AUDIT_MQ_GETSETATTR;
|
|
}
|
|
|
|
/**
|
|
* __audit_ipc_obj - record audit data for ipc object
|
|
* @ipcp: ipc permissions
|
|
*
|
|
*/
|
|
void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->ipc.uid = ipcp->uid;
|
|
context->ipc.gid = ipcp->gid;
|
|
context->ipc.mode = ipcp->mode;
|
|
context->ipc.has_perm = 0;
|
|
security_ipc_getsecid(ipcp, &context->ipc.osid);
|
|
context->type = AUDIT_IPC;
|
|
}
|
|
|
|
/**
|
|
* __audit_ipc_set_perm - record audit data for new ipc permissions
|
|
* @qbytes: msgq bytes
|
|
* @uid: msgq user id
|
|
* @gid: msgq group id
|
|
* @mode: msgq mode (permissions)
|
|
*
|
|
* Called only after audit_ipc_obj().
|
|
*/
|
|
void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->ipc.qbytes = qbytes;
|
|
context->ipc.perm_uid = uid;
|
|
context->ipc.perm_gid = gid;
|
|
context->ipc.perm_mode = mode;
|
|
context->ipc.has_perm = 1;
|
|
}
|
|
|
|
void __audit_bprm(struct linux_binprm *bprm)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->type = AUDIT_EXECVE;
|
|
context->execve.argc = bprm->argc;
|
|
}
|
|
|
|
|
|
/**
|
|
* __audit_socketcall - record audit data for sys_socketcall
|
|
* @nargs: number of args, which should not be more than AUDITSC_ARGS.
|
|
* @args: args array
|
|
*
|
|
*/
|
|
int __audit_socketcall(int nargs, unsigned long *args)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
|
|
return -EINVAL;
|
|
context->type = AUDIT_SOCKETCALL;
|
|
context->socketcall.nargs = nargs;
|
|
memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __audit_fd_pair - record audit data for pipe and socketpair
|
|
* @fd1: the first file descriptor
|
|
* @fd2: the second file descriptor
|
|
*
|
|
*/
|
|
void __audit_fd_pair(int fd1, int fd2)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->fds[0] = fd1;
|
|
context->fds[1] = fd2;
|
|
}
|
|
|
|
/**
|
|
* __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
|
|
* @len: data length in user space
|
|
* @a: data address in kernel space
|
|
*
|
|
* Returns 0 for success or NULL context or < 0 on error.
|
|
*/
|
|
int __audit_sockaddr(int len, void *a)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
if (!context->sockaddr) {
|
|
void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
|
|
|
|
if (!p)
|
|
return -ENOMEM;
|
|
context->sockaddr = p;
|
|
}
|
|
|
|
context->sockaddr_len = len;
|
|
memcpy(context->sockaddr, a, len);
|
|
return 0;
|
|
}
|
|
|
|
void __audit_ptrace(struct task_struct *t)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->target_pid = task_tgid_nr(t);
|
|
context->target_auid = audit_get_loginuid(t);
|
|
context->target_uid = task_uid(t);
|
|
context->target_sessionid = audit_get_sessionid(t);
|
|
security_task_getsecid_obj(t, &context->target_sid);
|
|
memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
|
|
}
|
|
|
|
/**
|
|
* audit_signal_info_syscall - record signal info for syscalls
|
|
* @t: task being signaled
|
|
*
|
|
* If the audit subsystem is being terminated, record the task (pid)
|
|
* and uid that is doing that.
|
|
*/
|
|
int audit_signal_info_syscall(struct task_struct *t)
|
|
{
|
|
struct audit_aux_data_pids *axp;
|
|
struct audit_context *ctx = audit_context();
|
|
kuid_t t_uid = task_uid(t);
|
|
|
|
if (!audit_signals || audit_dummy_context())
|
|
return 0;
|
|
|
|
/* optimize the common case by putting first signal recipient directly
|
|
* in audit_context */
|
|
if (!ctx->target_pid) {
|
|
ctx->target_pid = task_tgid_nr(t);
|
|
ctx->target_auid = audit_get_loginuid(t);
|
|
ctx->target_uid = t_uid;
|
|
ctx->target_sessionid = audit_get_sessionid(t);
|
|
security_task_getsecid_obj(t, &ctx->target_sid);
|
|
memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
|
|
return 0;
|
|
}
|
|
|
|
axp = (void *)ctx->aux_pids;
|
|
if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
|
|
axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
|
|
if (!axp)
|
|
return -ENOMEM;
|
|
|
|
axp->d.type = AUDIT_OBJ_PID;
|
|
axp->d.next = ctx->aux_pids;
|
|
ctx->aux_pids = (void *)axp;
|
|
}
|
|
BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
|
|
|
|
axp->target_pid[axp->pid_count] = task_tgid_nr(t);
|
|
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
|
|
axp->target_uid[axp->pid_count] = t_uid;
|
|
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
|
|
security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
|
|
memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
|
|
axp->pid_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
|
|
* @bprm: pointer to the bprm being processed
|
|
* @new: the proposed new credentials
|
|
* @old: the old credentials
|
|
*
|
|
* Simply check if the proc already has the caps given by the file and if not
|
|
* store the priv escalation info for later auditing at the end of the syscall
|
|
*
|
|
* -Eric
|
|
*/
|
|
int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
|
|
const struct cred *new, const struct cred *old)
|
|
{
|
|
struct audit_aux_data_bprm_fcaps *ax;
|
|
struct audit_context *context = audit_context();
|
|
struct cpu_vfs_cap_data vcaps;
|
|
|
|
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
|
|
if (!ax)
|
|
return -ENOMEM;
|
|
|
|
ax->d.type = AUDIT_BPRM_FCAPS;
|
|
ax->d.next = context->aux;
|
|
context->aux = (void *)ax;
|
|
|
|
get_vfs_caps_from_disk(&nop_mnt_idmap,
|
|
bprm->file->f_path.dentry, &vcaps);
|
|
|
|
ax->fcap.permitted = vcaps.permitted;
|
|
ax->fcap.inheritable = vcaps.inheritable;
|
|
ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
|
|
ax->fcap.rootid = vcaps.rootid;
|
|
ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
|
|
|
|
ax->old_pcap.permitted = old->cap_permitted;
|
|
ax->old_pcap.inheritable = old->cap_inheritable;
|
|
ax->old_pcap.effective = old->cap_effective;
|
|
ax->old_pcap.ambient = old->cap_ambient;
|
|
|
|
ax->new_pcap.permitted = new->cap_permitted;
|
|
ax->new_pcap.inheritable = new->cap_inheritable;
|
|
ax->new_pcap.effective = new->cap_effective;
|
|
ax->new_pcap.ambient = new->cap_ambient;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __audit_log_capset - store information about the arguments to the capset syscall
|
|
* @new: the new credentials
|
|
* @old: the old (current) credentials
|
|
*
|
|
* Record the arguments userspace sent to sys_capset for later printing by the
|
|
* audit system if applicable
|
|
*/
|
|
void __audit_log_capset(const struct cred *new, const struct cred *old)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->capset.pid = task_tgid_nr(current);
|
|
context->capset.cap.effective = new->cap_effective;
|
|
context->capset.cap.inheritable = new->cap_effective;
|
|
context->capset.cap.permitted = new->cap_permitted;
|
|
context->capset.cap.ambient = new->cap_ambient;
|
|
context->type = AUDIT_CAPSET;
|
|
}
|
|
|
|
void __audit_mmap_fd(int fd, int flags)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->mmap.fd = fd;
|
|
context->mmap.flags = flags;
|
|
context->type = AUDIT_MMAP;
|
|
}
|
|
|
|
void __audit_openat2_how(struct open_how *how)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->openat2.flags = how->flags;
|
|
context->openat2.mode = how->mode;
|
|
context->openat2.resolve = how->resolve;
|
|
context->type = AUDIT_OPENAT2;
|
|
}
|
|
|
|
void __audit_log_kern_module(char *name)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
context->module.name = kstrdup(name, GFP_KERNEL);
|
|
if (!context->module.name)
|
|
audit_log_lost("out of memory in __audit_log_kern_module");
|
|
context->type = AUDIT_KERN_MODULE;
|
|
}
|
|
|
|
void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
|
|
{
|
|
/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
|
|
switch (friar->hdr.type) {
|
|
case FAN_RESPONSE_INFO_NONE:
|
|
audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
|
|
"resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
|
|
response, FAN_RESPONSE_INFO_NONE);
|
|
break;
|
|
case FAN_RESPONSE_INFO_AUDIT_RULE:
|
|
audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
|
|
"resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
|
|
response, friar->hdr.type, friar->rule_number,
|
|
friar->subj_trust, friar->obj_trust);
|
|
}
|
|
}
|
|
|
|
void __audit_tk_injoffset(struct timespec64 offset)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
|
|
/* only set type if not already set by NTP */
|
|
if (!context->type)
|
|
context->type = AUDIT_TIME_INJOFFSET;
|
|
memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
|
|
}
|
|
|
|
void __audit_ntp_log(const struct audit_ntp_data *ad)
|
|
{
|
|
struct audit_context *context = audit_context();
|
|
int type;
|
|
|
|
for (type = 0; type < AUDIT_NTP_NVALS; type++)
|
|
if (ad->vals[type].newval != ad->vals[type].oldval) {
|
|
/* unconditionally set type, overwriting TK */
|
|
context->type = AUDIT_TIME_ADJNTPVAL;
|
|
memcpy(&context->time.ntp_data, ad, sizeof(*ad));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
|
|
enum audit_nfcfgop op, gfp_t gfp)
|
|
{
|
|
struct audit_buffer *ab;
|
|
char comm[sizeof(current->comm)];
|
|
|
|
ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
|
|
if (!ab)
|
|
return;
|
|
audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
|
|
name, af, nentries, audit_nfcfgs[op].s);
|
|
|
|
audit_log_format(ab, " pid=%u", task_pid_nr(current));
|
|
audit_log_task_context(ab); /* subj= */
|
|
audit_log_format(ab, " comm=");
|
|
audit_log_untrustedstring(ab, get_task_comm(comm, current));
|
|
audit_log_end(ab);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
|
|
|
|
static void audit_log_task(struct audit_buffer *ab)
|
|
{
|
|
kuid_t auid, uid;
|
|
kgid_t gid;
|
|
unsigned int sessionid;
|
|
char comm[sizeof(current->comm)];
|
|
|
|
auid = audit_get_loginuid(current);
|
|
sessionid = audit_get_sessionid(current);
|
|
current_uid_gid(&uid, &gid);
|
|
|
|
audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
|
|
from_kuid(&init_user_ns, auid),
|
|
from_kuid(&init_user_ns, uid),
|
|
from_kgid(&init_user_ns, gid),
|
|
sessionid);
|
|
audit_log_task_context(ab);
|
|
audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
|
|
audit_log_untrustedstring(ab, get_task_comm(comm, current));
|
|
audit_log_d_path_exe(ab, current->mm);
|
|
}
|
|
|
|
/**
|
|
* audit_core_dumps - record information about processes that end abnormally
|
|
* @signr: signal value
|
|
*
|
|
* If a process ends with a core dump, something fishy is going on and we
|
|
* should record the event for investigation.
|
|
*/
|
|
void audit_core_dumps(long signr)
|
|
{
|
|
struct audit_buffer *ab;
|
|
|
|
if (!audit_enabled)
|
|
return;
|
|
|
|
if (signr == SIGQUIT) /* don't care for those */
|
|
return;
|
|
|
|
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
|
|
if (unlikely(!ab))
|
|
return;
|
|
audit_log_task(ab);
|
|
audit_log_format(ab, " sig=%ld res=1", signr);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
/**
|
|
* audit_seccomp - record information about a seccomp action
|
|
* @syscall: syscall number
|
|
* @signr: signal value
|
|
* @code: the seccomp action
|
|
*
|
|
* Record the information associated with a seccomp action. Event filtering for
|
|
* seccomp actions that are not to be logged is done in seccomp_log().
|
|
* Therefore, this function forces auditing independent of the audit_enabled
|
|
* and dummy context state because seccomp actions should be logged even when
|
|
* audit is not in use.
|
|
*/
|
|
void audit_seccomp(unsigned long syscall, long signr, int code)
|
|
{
|
|
struct audit_buffer *ab;
|
|
|
|
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
|
|
if (unlikely(!ab))
|
|
return;
|
|
audit_log_task(ab);
|
|
audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
|
|
signr, syscall_get_arch(current), syscall,
|
|
in_compat_syscall(), KSTK_EIP(current), code);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
void audit_seccomp_actions_logged(const char *names, const char *old_names,
|
|
int res)
|
|
{
|
|
struct audit_buffer *ab;
|
|
|
|
if (!audit_enabled)
|
|
return;
|
|
|
|
ab = audit_log_start(audit_context(), GFP_KERNEL,
|
|
AUDIT_CONFIG_CHANGE);
|
|
if (unlikely(!ab))
|
|
return;
|
|
|
|
audit_log_format(ab,
|
|
"op=seccomp-logging actions=%s old-actions=%s res=%d",
|
|
names, old_names, res);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
struct list_head *audit_killed_trees(void)
|
|
{
|
|
struct audit_context *ctx = audit_context();
|
|
if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
|
|
return NULL;
|
|
return &ctx->killed_trees;
|
|
}
|