950f0d50ee
If log recovery decides that an intent item is corrupt and wants to abort the mount, capture a hexdump of the corrupt log item in the kernel log for further analysis. Some of the log item code already did this, so we're fixing the rest to do it consistently. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
783 lines
22 KiB
C
783 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_extfree_item.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_log_recover.h"
|
|
|
|
struct kmem_cache *xfs_efi_cache;
|
|
struct kmem_cache *xfs_efd_cache;
|
|
|
|
static const struct xfs_item_ops xfs_efi_item_ops;
|
|
|
|
static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_efi_log_item, efi_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efi_item_free(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
kmem_free(efip->efi_item.li_lv_shadow);
|
|
if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
|
|
kmem_free(efip);
|
|
else
|
|
kmem_cache_free(xfs_efi_cache, efip);
|
|
}
|
|
|
|
/*
|
|
* Freeing the efi requires that we remove it from the AIL if it has already
|
|
* been placed there. However, the EFI may not yet have been placed in the AIL
|
|
* when called by xfs_efi_release() from EFD processing due to the ordering of
|
|
* committed vs unpin operations in bulk insert operations. Hence the reference
|
|
* count to ensure only the last caller frees the EFI.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_release(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
ASSERT(atomic_read(&efip->efi_refcount) > 0);
|
|
if (!atomic_dec_and_test(&efip->efi_refcount))
|
|
return;
|
|
|
|
xfs_trans_ail_delete(&efip->efi_item, 0);
|
|
xfs_efi_item_free(efip);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efi_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
|
|
*nvecs += 1;
|
|
*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efi log item. We use only 1 iovec, and we point that
|
|
* at the efi_log_format structure embedded in the efi item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efi item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(atomic_read(&efip->efi_next_extent) ==
|
|
efip->efi_format.efi_nextents);
|
|
|
|
efip->efi_format.efi_type = XFS_LI_EFI;
|
|
efip->efi_format.efi_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
|
|
&efip->efi_format,
|
|
xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
|
|
}
|
|
|
|
|
|
/*
|
|
* The unpin operation is the last place an EFI is manipulated in the log. It is
|
|
* either inserted in the AIL or aborted in the event of a log I/O error. In
|
|
* either case, the EFI transaction has been successfully committed to make it
|
|
* this far. Therefore, we expect whoever committed the EFI to either construct
|
|
* and commit the EFD or drop the EFD's reference in the event of error. Simply
|
|
* drop the log's EFI reference now that the log is done with it.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
xfs_efi_release(efip);
|
|
}
|
|
|
|
/*
|
|
* The EFI has been either committed or aborted if the transaction has been
|
|
* cancelled. If the transaction was cancelled, an EFD isn't going to be
|
|
* constructed and thus we free the EFI here directly.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
xfs_efi_release(EFI_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize an efi item with the given number of extents.
|
|
*/
|
|
STATIC struct xfs_efi_log_item *
|
|
xfs_efi_init(
|
|
struct xfs_mount *mp,
|
|
uint nextents)
|
|
|
|
{
|
|
struct xfs_efi_log_item *efip;
|
|
|
|
ASSERT(nextents > 0);
|
|
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
|
|
efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
} else {
|
|
efip = kmem_cache_zalloc(xfs_efi_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
}
|
|
|
|
xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
|
|
efip->efi_format.efi_nextents = nextents;
|
|
efip->efi_format.efi_id = (uintptr_t)(void *)efip;
|
|
atomic_set(&efip->efi_next_extent, 0);
|
|
atomic_set(&efip->efi_refcount, 2);
|
|
|
|
return efip;
|
|
}
|
|
|
|
/*
|
|
* Copy an EFI format buffer from the given buf, and into the destination
|
|
* EFI format structure.
|
|
* The given buffer can be in 32 bit or 64 bit form (which has different padding),
|
|
* one of which will be the native format for this kernel.
|
|
* It will handle the conversion of formats if necessary.
|
|
*/
|
|
STATIC int
|
|
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
|
|
{
|
|
xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
|
|
uint i;
|
|
uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
|
|
uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
|
|
uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
|
|
|
|
if (buf->i_len == len) {
|
|
memcpy(dst_efi_fmt, src_efi_fmt,
|
|
offsetof(struct xfs_efi_log_format, efi_extents));
|
|
for (i = 0; i < src_efi_fmt->efi_nextents; i++)
|
|
memcpy(&dst_efi_fmt->efi_extents[i],
|
|
&src_efi_fmt->efi_extents[i],
|
|
sizeof(struct xfs_extent));
|
|
return 0;
|
|
} else if (buf->i_len == len32) {
|
|
xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_32->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_32->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
} else if (buf->i_len == len64) {
|
|
xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_64->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_64->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
}
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
|
|
buf->i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_efd_log_item, efd_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_free(struct xfs_efd_log_item *efdp)
|
|
{
|
|
kmem_free(efdp->efd_item.li_lv_shadow);
|
|
if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
|
|
kmem_free(efdp);
|
|
else
|
|
kmem_cache_free(xfs_efd_cache, efdp);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
|
|
*nvecs += 1;
|
|
*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efd log item. We use only 1 iovec, and we point that
|
|
* at the efd_log_format structure embedded in the efd item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efd item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
|
|
|
|
efdp->efd_format.efd_type = XFS_LI_EFD;
|
|
efdp->efd_format.efd_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
|
|
&efdp->efd_format,
|
|
xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
|
|
}
|
|
|
|
/*
|
|
* The EFD is either committed or aborted if the transaction is cancelled. If
|
|
* the transaction is cancelled, drop our reference to the EFI and free the EFD.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
|
|
xfs_efi_release(efdp->efd_efip);
|
|
xfs_efd_item_free(efdp);
|
|
}
|
|
|
|
static struct xfs_log_item *
|
|
xfs_efd_item_intent(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
return &EFD_ITEM(lip)->efd_efip->efi_item;
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_efd_item_ops = {
|
|
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
|
|
XFS_ITEM_INTENT_DONE,
|
|
.iop_size = xfs_efd_item_size,
|
|
.iop_format = xfs_efd_item_format,
|
|
.iop_release = xfs_efd_item_release,
|
|
.iop_intent = xfs_efd_item_intent,
|
|
};
|
|
|
|
/*
|
|
* Allocate an "extent free done" log item that will hold nextents worth of
|
|
* extents. The caller must use all nextents extents, because we are not
|
|
* flexible about this at all.
|
|
*/
|
|
static struct xfs_efd_log_item *
|
|
xfs_trans_get_efd(
|
|
struct xfs_trans *tp,
|
|
struct xfs_efi_log_item *efip,
|
|
unsigned int nextents)
|
|
{
|
|
struct xfs_efd_log_item *efdp;
|
|
|
|
ASSERT(nextents > 0);
|
|
|
|
if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
|
|
efdp = kzalloc(xfs_efd_log_item_sizeof(nextents),
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
} else {
|
|
efdp = kmem_cache_zalloc(xfs_efd_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
}
|
|
|
|
xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
|
|
&xfs_efd_item_ops);
|
|
efdp->efd_efip = efip;
|
|
efdp->efd_format.efd_nextents = nextents;
|
|
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
|
|
|
|
xfs_trans_add_item(tp, &efdp->efd_item);
|
|
return efdp;
|
|
}
|
|
|
|
/*
|
|
* Free an extent and log it to the EFD. Note that the transaction is marked
|
|
* dirty regardless of whether the extent free succeeds or fails to support the
|
|
* EFI/EFD lifecycle rules.
|
|
*/
|
|
static int
|
|
xfs_trans_free_extent(
|
|
struct xfs_trans *tp,
|
|
struct xfs_efd_log_item *efdp,
|
|
xfs_fsblock_t start_block,
|
|
xfs_extlen_t ext_len,
|
|
const struct xfs_owner_info *oinfo,
|
|
bool skip_discard)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_extent *extp;
|
|
uint next_extent;
|
|
xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block);
|
|
xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp,
|
|
start_block);
|
|
int error;
|
|
|
|
trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
|
|
|
|
error = __xfs_free_extent(tp, start_block, ext_len,
|
|
oinfo, XFS_AG_RESV_NONE, skip_discard);
|
|
/*
|
|
* Mark the transaction dirty, even on error. This ensures the
|
|
* transaction is aborted, which:
|
|
*
|
|
* 1.) releases the EFI and frees the EFD
|
|
* 2.) shuts down the filesystem
|
|
*/
|
|
tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
|
|
set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
|
|
|
|
next_extent = efdp->efd_next_extent;
|
|
ASSERT(next_extent < efdp->efd_format.efd_nextents);
|
|
extp = &(efdp->efd_format.efd_extents[next_extent]);
|
|
extp->ext_start = start_block;
|
|
extp->ext_len = ext_len;
|
|
efdp->efd_next_extent++;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Sort bmap items by AG. */
|
|
static int
|
|
xfs_extent_free_diff_items(
|
|
void *priv,
|
|
const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct xfs_mount *mp = priv;
|
|
struct xfs_extent_free_item *ra;
|
|
struct xfs_extent_free_item *rb;
|
|
|
|
ra = container_of(a, struct xfs_extent_free_item, xefi_list);
|
|
rb = container_of(b, struct xfs_extent_free_item, xefi_list);
|
|
return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
|
|
XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
|
|
}
|
|
|
|
/* Log a free extent to the intent item. */
|
|
STATIC void
|
|
xfs_extent_free_log_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_efi_log_item *efip,
|
|
struct xfs_extent_free_item *free)
|
|
{
|
|
uint next_extent;
|
|
struct xfs_extent *extp;
|
|
|
|
tp->t_flags |= XFS_TRANS_DIRTY;
|
|
set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
|
|
|
|
/*
|
|
* atomic_inc_return gives us the value after the increment;
|
|
* we want to use it as an array index so we need to subtract 1 from
|
|
* it.
|
|
*/
|
|
next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
|
|
ASSERT(next_extent < efip->efi_format.efi_nextents);
|
|
extp = &efip->efi_format.efi_extents[next_extent];
|
|
extp->ext_start = free->xefi_startblock;
|
|
extp->ext_len = free->xefi_blockcount;
|
|
}
|
|
|
|
static struct xfs_log_item *
|
|
xfs_extent_free_create_intent(
|
|
struct xfs_trans *tp,
|
|
struct list_head *items,
|
|
unsigned int count,
|
|
bool sort)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_efi_log_item *efip = xfs_efi_init(mp, count);
|
|
struct xfs_extent_free_item *free;
|
|
|
|
ASSERT(count > 0);
|
|
|
|
xfs_trans_add_item(tp, &efip->efi_item);
|
|
if (sort)
|
|
list_sort(mp, items, xfs_extent_free_diff_items);
|
|
list_for_each_entry(free, items, xefi_list)
|
|
xfs_extent_free_log_item(tp, efip, free);
|
|
return &efip->efi_item;
|
|
}
|
|
|
|
/* Get an EFD so we can process all the free extents. */
|
|
static struct xfs_log_item *
|
|
xfs_extent_free_create_done(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *intent,
|
|
unsigned int count)
|
|
{
|
|
return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
|
|
}
|
|
|
|
/* Process a free extent. */
|
|
STATIC int
|
|
xfs_extent_free_finish_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *done,
|
|
struct list_head *item,
|
|
struct xfs_btree_cur **state)
|
|
{
|
|
struct xfs_owner_info oinfo = { };
|
|
struct xfs_extent_free_item *free;
|
|
int error;
|
|
|
|
free = container_of(item, struct xfs_extent_free_item, xefi_list);
|
|
oinfo.oi_owner = free->xefi_owner;
|
|
if (free->xefi_flags & XFS_EFI_ATTR_FORK)
|
|
oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
|
|
if (free->xefi_flags & XFS_EFI_BMBT_BLOCK)
|
|
oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
|
|
error = xfs_trans_free_extent(tp, EFD_ITEM(done),
|
|
free->xefi_startblock,
|
|
free->xefi_blockcount,
|
|
&oinfo, free->xefi_flags & XFS_EFI_SKIP_DISCARD);
|
|
kmem_cache_free(xfs_extfree_item_cache, free);
|
|
return error;
|
|
}
|
|
|
|
/* Abort all pending EFIs. */
|
|
STATIC void
|
|
xfs_extent_free_abort_intent(
|
|
struct xfs_log_item *intent)
|
|
{
|
|
xfs_efi_release(EFI_ITEM(intent));
|
|
}
|
|
|
|
/* Cancel a free extent. */
|
|
STATIC void
|
|
xfs_extent_free_cancel_item(
|
|
struct list_head *item)
|
|
{
|
|
struct xfs_extent_free_item *free;
|
|
|
|
free = container_of(item, struct xfs_extent_free_item, xefi_list);
|
|
kmem_cache_free(xfs_extfree_item_cache, free);
|
|
}
|
|
|
|
const struct xfs_defer_op_type xfs_extent_free_defer_type = {
|
|
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
|
|
.create_intent = xfs_extent_free_create_intent,
|
|
.abort_intent = xfs_extent_free_abort_intent,
|
|
.create_done = xfs_extent_free_create_done,
|
|
.finish_item = xfs_extent_free_finish_item,
|
|
.cancel_item = xfs_extent_free_cancel_item,
|
|
};
|
|
|
|
/*
|
|
* AGFL blocks are accounted differently in the reserve pools and are not
|
|
* inserted into the busy extent list.
|
|
*/
|
|
STATIC int
|
|
xfs_agfl_free_finish_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *done,
|
|
struct list_head *item,
|
|
struct xfs_btree_cur **state)
|
|
{
|
|
struct xfs_owner_info oinfo = { };
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(done);
|
|
struct xfs_extent_free_item *free;
|
|
struct xfs_extent *extp;
|
|
struct xfs_buf *agbp;
|
|
int error;
|
|
xfs_agnumber_t agno;
|
|
xfs_agblock_t agbno;
|
|
uint next_extent;
|
|
struct xfs_perag *pag;
|
|
|
|
free = container_of(item, struct xfs_extent_free_item, xefi_list);
|
|
ASSERT(free->xefi_blockcount == 1);
|
|
agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
|
|
agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
|
|
oinfo.oi_owner = free->xefi_owner;
|
|
|
|
trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
|
|
|
|
pag = xfs_perag_get(mp, agno);
|
|
error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
|
|
if (!error)
|
|
error = xfs_free_agfl_block(tp, agno, agbno, agbp, &oinfo);
|
|
xfs_perag_put(pag);
|
|
|
|
/*
|
|
* Mark the transaction dirty, even on error. This ensures the
|
|
* transaction is aborted, which:
|
|
*
|
|
* 1.) releases the EFI and frees the EFD
|
|
* 2.) shuts down the filesystem
|
|
*/
|
|
tp->t_flags |= XFS_TRANS_DIRTY;
|
|
set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
|
|
|
|
next_extent = efdp->efd_next_extent;
|
|
ASSERT(next_extent < efdp->efd_format.efd_nextents);
|
|
extp = &(efdp->efd_format.efd_extents[next_extent]);
|
|
extp->ext_start = free->xefi_startblock;
|
|
extp->ext_len = free->xefi_blockcount;
|
|
efdp->efd_next_extent++;
|
|
|
|
kmem_cache_free(xfs_extfree_item_cache, free);
|
|
return error;
|
|
}
|
|
|
|
/* sub-type with special handling for AGFL deferred frees */
|
|
const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
|
|
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
|
|
.create_intent = xfs_extent_free_create_intent,
|
|
.abort_intent = xfs_extent_free_abort_intent,
|
|
.create_done = xfs_extent_free_create_done,
|
|
.finish_item = xfs_agfl_free_finish_item,
|
|
.cancel_item = xfs_extent_free_cancel_item,
|
|
};
|
|
|
|
/* Is this recovered EFI ok? */
|
|
static inline bool
|
|
xfs_efi_validate_ext(
|
|
struct xfs_mount *mp,
|
|
struct xfs_extent *extp)
|
|
{
|
|
return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
|
|
}
|
|
|
|
/*
|
|
* Process an extent free intent item that was recovered from
|
|
* the log. We need to free the extents that it describes.
|
|
*/
|
|
STATIC int
|
|
xfs_efi_item_recover(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *capture_list)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
struct xfs_mount *mp = lip->li_log->l_mp;
|
|
struct xfs_efd_log_item *efdp;
|
|
struct xfs_trans *tp;
|
|
struct xfs_extent *extp;
|
|
int i;
|
|
int error = 0;
|
|
|
|
/*
|
|
* First check the validity of the extents described by the
|
|
* EFI. If any are bad, then assume that all are bad and
|
|
* just toss the EFI.
|
|
*/
|
|
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
|
|
if (!xfs_efi_validate_ext(mp,
|
|
&efip->efi_format.efi_extents[i])) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
&efip->efi_format,
|
|
sizeof(efip->efi_format));
|
|
return -EFSCORRUPTED;
|
|
}
|
|
}
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
|
|
if (error)
|
|
return error;
|
|
efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
|
|
|
|
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
|
|
extp = &efip->efi_format.efi_extents[i];
|
|
error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
|
|
extp->ext_len,
|
|
&XFS_RMAP_OINFO_ANY_OWNER, false);
|
|
if (error == -EFSCORRUPTED)
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
extp, sizeof(*extp));
|
|
if (error)
|
|
goto abort_error;
|
|
|
|
}
|
|
|
|
return xfs_defer_ops_capture_and_commit(tp, capture_list);
|
|
|
|
abort_error:
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_efi_item_match(
|
|
struct xfs_log_item *lip,
|
|
uint64_t intent_id)
|
|
{
|
|
return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
|
|
}
|
|
|
|
/* Relog an intent item to push the log tail forward. */
|
|
static struct xfs_log_item *
|
|
xfs_efi_item_relog(
|
|
struct xfs_log_item *intent,
|
|
struct xfs_trans *tp)
|
|
{
|
|
struct xfs_efd_log_item *efdp;
|
|
struct xfs_efi_log_item *efip;
|
|
struct xfs_extent *extp;
|
|
unsigned int count;
|
|
|
|
count = EFI_ITEM(intent)->efi_format.efi_nextents;
|
|
extp = EFI_ITEM(intent)->efi_format.efi_extents;
|
|
|
|
tp->t_flags |= XFS_TRANS_DIRTY;
|
|
efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
|
|
efdp->efd_next_extent = count;
|
|
memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
|
|
set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
|
|
|
|
efip = xfs_efi_init(tp->t_mountp, count);
|
|
memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
|
|
atomic_set(&efip->efi_next_extent, count);
|
|
xfs_trans_add_item(tp, &efip->efi_item);
|
|
set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
|
|
return &efip->efi_item;
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_efi_item_ops = {
|
|
.flags = XFS_ITEM_INTENT,
|
|
.iop_size = xfs_efi_item_size,
|
|
.iop_format = xfs_efi_item_format,
|
|
.iop_unpin = xfs_efi_item_unpin,
|
|
.iop_release = xfs_efi_item_release,
|
|
.iop_recover = xfs_efi_item_recover,
|
|
.iop_match = xfs_efi_item_match,
|
|
.iop_relog = xfs_efi_item_relog,
|
|
};
|
|
|
|
/*
|
|
* This routine is called to create an in-core extent free intent
|
|
* item from the efi format structure which was logged on disk.
|
|
* It allocates an in-core efi, copies the extents from the format
|
|
* structure into it, and adds the efi to the AIL with the given
|
|
* LSN.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_efi_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_mount *mp = log->l_mp;
|
|
struct xfs_efi_log_item *efip;
|
|
struct xfs_efi_log_format *efi_formatp;
|
|
int error;
|
|
|
|
efi_formatp = item->ri_buf[0].i_addr;
|
|
|
|
if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
|
|
error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
|
|
if (error) {
|
|
xfs_efi_item_free(efip);
|
|
return error;
|
|
}
|
|
atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
|
|
/*
|
|
* Insert the intent into the AIL directly and drop one reference so
|
|
* that finishing or canceling the work will drop the other.
|
|
*/
|
|
xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
|
|
xfs_efi_release(efip);
|
|
return 0;
|
|
}
|
|
|
|
const struct xlog_recover_item_ops xlog_efi_item_ops = {
|
|
.item_type = XFS_LI_EFI,
|
|
.commit_pass2 = xlog_recover_efi_commit_pass2,
|
|
};
|
|
|
|
/*
|
|
* This routine is called when an EFD format structure is found in a committed
|
|
* transaction in the log. Its purpose is to cancel the corresponding EFI if it
|
|
* was still in the log. To do this it searches the AIL for the EFI with an id
|
|
* equal to that in the EFD format structure. If we find it we drop the EFD
|
|
* reference, which removes the EFI from the AIL and frees it.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_efd_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_efd_log_format *efd_formatp;
|
|
int buflen = item->ri_buf[0].i_len;
|
|
|
|
efd_formatp = item->ri_buf[0].i_addr;
|
|
|
|
if (buflen < sizeof(struct xfs_efd_log_format)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
|
|
efd_formatp, buflen);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
|
|
efd_formatp->efd_nextents) &&
|
|
item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
|
|
efd_formatp->efd_nextents)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
|
|
efd_formatp, buflen);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
|
|
return 0;
|
|
}
|
|
|
|
const struct xlog_recover_item_ops xlog_efd_item_ops = {
|
|
.item_type = XFS_LI_EFD,
|
|
.commit_pass2 = xlog_recover_efd_commit_pass2,
|
|
};
|