David Brownell fa0a8c71f3 [MTD] m25p80 handles more chips, uses JEDEC ids and small eraseblocks
Update chip ID tables in m25p80 to handle more SPI flash chips, matching
datasheets.  All of these can use the same core operations and are newer
chips that support the JEDEC "read id" instruction:

 - Atmel AT25 and AT26 (seven chips)
 - Spansion S25SL (five chips)
 - SST 25VF (four chips)
 - ST M25, M45 (five more chips)
 - Winbond W25X series (seven chips)

That JEDEC instruction is now used, either to support a sanity check on the
platform data holding board configuration data, or to determine chip type
when it's not included in platform data.  In fact, boards that don't need a
standard partition table may not need that platform data any more.

For chips that support 4KiB erase units, use that smaller block size instead
of the larger size (usually 64KiB); it's less wasteful.  (Tested on W25X80.)

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2007-06-28 22:37:36 +01:00

283 lines
10 KiB
Plaintext

# drivers/mtd/maps/Kconfig
# $Id: Kconfig,v 1.18 2005/11/07 11:14:24 gleixner Exp $
menu "Self-contained MTD device drivers"
depends on MTD!=n
config MTD_PMC551
tristate "Ramix PMC551 PCI Mezzanine RAM card support"
depends on PCI
---help---
This provides a MTD device driver for the Ramix PMC551 RAM PCI card
from Ramix Inc. <http://www.ramix.com/products/memory/pmc551.html>.
These devices come in memory configurations from 32M - 1G. If you
have one, you probably want to enable this.
If this driver is compiled as a module you get the ability to select
the size of the aperture window pointing into the devices memory.
What this means is that if you have a 1G card, normally the kernel
will use a 1G memory map as its view of the device. As a module,
you can select a 1M window into the memory and the driver will
"slide" the window around the PMC551's memory. This was
particularly useful on the 2.2 kernels on PPC architectures as there
was limited kernel space to deal with.
config MTD_PMC551_BUGFIX
bool "PMC551 256M DRAM Bugfix"
depends on MTD_PMC551
help
Some of Ramix's PMC551 boards with 256M configurations have invalid
column and row mux values. This option will fix them, but will
break other memory configurations. If unsure say N.
config MTD_PMC551_DEBUG
bool "PMC551 Debugging"
depends on MTD_PMC551
help
This option makes the PMC551 more verbose during its operation and
is only really useful if you are developing on this driver or
suspect a possible hardware or driver bug. If unsure say N.
config MTD_MS02NV
tristate "DEC MS02-NV NVRAM module support"
depends on MACH_DECSTATION
help
This is an MTD driver for the DEC's MS02-NV (54-20948-01) battery
backed-up NVRAM module. The module was originally meant as an NFS
accelerator. Say Y here if you have a DECstation 5000/2x0 or a
DECsystem 5900 equipped with such a module.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/kbuild/modules.txt>.
The module will be called ms02-nv.ko.
config MTD_DATAFLASH
tristate "Support for AT45xxx DataFlash"
depends on SPI_MASTER && EXPERIMENTAL
help
This enables access to AT45xxx DataFlash chips, using SPI.
Sometimes DataFlash chips are packaged inside MMC-format
cards; at this writing, the MMC stack won't handle those.
config MTD_DATAFLASH26
tristate "AT91RM9200 DataFlash AT26xxx"
depends on MTD && ARCH_AT91RM9200 && AT91_SPI
help
This enables access to the DataFlash chip (AT26xxx) on an
AT91RM9200-based board.
If you have such a board and such a DataFlash, say 'Y'.
config MTD_M25P80
tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)"
depends on SPI_MASTER && EXPERIMENTAL
help
This enables access to most modern SPI flash chips, used for
program and data storage. Series supported include Atmel AT26DF,
Spansion S25SL, SST 25VF, ST M25P, and Winbond W25X. Other chips
are supported as well. See the driver source for the current list,
or to add other chips.
Note that the original DataFlash chips (AT45 series, not AT26DF),
need an entirely different driver.
Set up your spi devices with the right board-specific platform data,
if you want to specify device partitioning or to use a device which
doesn't support the JEDEC ID instruction.
config MTD_SLRAM
tristate "Uncached system RAM"
help
If your CPU cannot cache all of the physical memory in your machine,
you can still use it for storage or swap by using this driver to
present it to the system as a Memory Technology Device.
config MTD_PHRAM
tristate "Physical system RAM"
help
This is a re-implementation of the slram driver above.
Use this driver to access physical memory that the kernel proper
doesn't have access to, memory beyond the mem=xxx limit, nvram,
memory on the video card, etc...
config MTD_LART
tristate "28F160xx flash driver for LART"
depends on SA1100_LART
help
This enables the flash driver for LART. Please note that you do
not need any mapping/chip driver for LART. This one does it all
for you, so go disable all of those if you enabled some of them (:
config MTD_MTDRAM
tristate "Test driver using RAM"
help
This enables a test MTD device driver which uses vmalloc() to
provide storage. You probably want to say 'N' unless you're
testing stuff.
config MTDRAM_TOTAL_SIZE
int "MTDRAM device size in KiB"
depends on MTD_MTDRAM
default "4096"
help
This allows you to configure the total size of the MTD device
emulated by the MTDRAM driver. If the MTDRAM driver is built
as a module, it is also possible to specify this as a parameter when
loading the module.
config MTDRAM_ERASE_SIZE
int "MTDRAM erase block size in KiB"
depends on MTD_MTDRAM
default "128"
help
This allows you to configure the size of the erase blocks in the
device emulated by the MTDRAM driver. If the MTDRAM driver is built
as a module, it is also possible to specify this as a parameter when
loading the module.
#If not a module (I don't want to test it as a module)
config MTDRAM_ABS_POS
hex "SRAM Hexadecimal Absolute position or 0"
depends on MTD_MTDRAM=y
default "0"
help
If you have system RAM accessible by the CPU but not used by Linux
in normal operation, you can give the physical address at which the
available RAM starts, and the MTDRAM driver will use it instead of
allocating space from Linux's available memory. Otherwise, leave
this set to zero. Most people will want to leave this as zero.
config MTD_BLOCK2MTD
tristate "MTD using block device"
depends on BLOCK
help
This driver allows a block device to appear as an MTD. It would
generally be used in the following cases:
Using Compact Flash as an MTD, these usually present themselves to
the system as an ATA drive.
Testing MTD users (eg JFFS2) on large media and media that might
be removed during a write (using the floppy drive).
comment "Disk-On-Chip Device Drivers"
config MTD_DOC2000
tristate "M-Systems Disk-On-Chip 2000 and Millennium (DEPRECATED)"
select MTD_DOCPROBE
select MTD_NAND_IDS
---help---
This provides an MTD device driver for the M-Systems DiskOnChip
2000 and Millennium devices. Originally designed for the DiskOnChip
2000, it also now includes support for the DiskOnChip Millennium.
If you have problems with this driver and the DiskOnChip Millennium,
you may wish to try the alternative Millennium driver below. To use
the alternative driver, you will need to undefine DOC_SINGLE_DRIVER
in the <file:drivers/mtd/devices/docprobe.c> source code.
If you use this device, you probably also want to enable the NFTL
'NAND Flash Translation Layer' option below, which is used to
emulate a block device by using a kind of file system on the flash
chips.
NOTE: This driver is deprecated and will probably be removed soon.
Please try the new DiskOnChip driver under "NAND Flash Device
Drivers".
config MTD_DOC2001
tristate "M-Systems Disk-On-Chip Millennium-only alternative driver (DEPRECATED)"
select MTD_DOCPROBE
select MTD_NAND_IDS
---help---
This provides an alternative MTD device driver for the M-Systems
DiskOnChip Millennium devices. Use this if you have problems with
the combined DiskOnChip 2000 and Millennium driver above. To get
the DiskOnChip probe code to load and use this driver instead of
the other one, you will need to undefine DOC_SINGLE_DRIVER near
the beginning of <file:drivers/mtd/devices/docprobe.c>.
If you use this device, you probably also want to enable the NFTL
'NAND Flash Translation Layer' option below, which is used to
emulate a block device by using a kind of file system on the flash
chips.
NOTE: This driver is deprecated and will probably be removed soon.
Please try the new DiskOnChip driver under "NAND Flash Device
Drivers".
config MTD_DOC2001PLUS
tristate "M-Systems Disk-On-Chip Millennium Plus"
select MTD_DOCPROBE
select MTD_NAND_IDS
---help---
This provides an MTD device driver for the M-Systems DiskOnChip
Millennium Plus devices.
If you use this device, you probably also want to enable the INFTL
'Inverse NAND Flash Translation Layer' option below, which is used
to emulate a block device by using a kind of file system on the
flash chips.
NOTE: This driver will soon be replaced by the new DiskOnChip driver
under "NAND Flash Device Drivers" (currently that driver does not
support all Millennium Plus devices).
config MTD_DOCPROBE
tristate
select MTD_DOCECC
config MTD_DOCECC
tristate
config MTD_DOCPROBE_ADVANCED
bool "Advanced detection options for DiskOnChip"
depends on MTD_DOCPROBE
help
This option allows you to specify nonstandard address at which to
probe for a DiskOnChip, or to change the detection options. You
are unlikely to need any of this unless you are using LinuxBIOS.
Say 'N'.
config MTD_DOCPROBE_ADDRESS
hex "Physical address of DiskOnChip" if MTD_DOCPROBE_ADVANCED
depends on MTD_DOCPROBE
default "0x0000" if MTD_DOCPROBE_ADVANCED
default "0" if !MTD_DOCPROBE_ADVANCED
---help---
By default, the probe for DiskOnChip devices will look for a
DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
This option allows you to specify a single address at which to probe
for the device, which is useful if you have other devices in that
range which get upset when they are probed.
(Note that on PowerPC, the normal probe will only check at
0xE4000000.)
Normally, you should leave this set to zero, to allow the probe at
the normal addresses.
config MTD_DOCPROBE_HIGH
bool "Probe high addresses"
depends on MTD_DOCPROBE_ADVANCED
help
By default, the probe for DiskOnChip devices will look for a
DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
This option changes to make it probe between 0xFFFC8000 and
0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be
useful to you. Say 'N'.
config MTD_DOCPROBE_55AA
bool "Probe for 0x55 0xAA BIOS Extension Signature"
depends on MTD_DOCPROBE_ADVANCED
help
Check for the 0x55 0xAA signature of a DiskOnChip, and do not
continue with probing if it is absent. The signature will always be
present for a DiskOnChip 2000 or a normal DiskOnChip Millennium.
Only if you have overwritten the first block of a DiskOnChip
Millennium will it be absent. Enable this option if you are using
LinuxBIOS or if you need to recover a DiskOnChip Millennium on which
you have managed to wipe the first block.
endmenu