linux/fs/bcachefs/extents.c
Kent Overstreet db636adb2e bcachefs: Compression fixes
regressions from switching disk space accounting to be in compressed
sectors

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:13 -04:00

1795 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
*
* Code for managing the extent btree and dynamically updating the writeback
* dirty sector count.
*/
#include "bcachefs.h"
#include "bkey_methods.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "checksum.h"
#include "debug.h"
#include "dirent.h"
#include "disk_groups.h"
#include "error.h"
#include "extents.h"
#include "inode.h"
#include "journal.h"
#include "replicas.h"
#include "super.h"
#include "super-io.h"
#include "trace.h"
#include "util.h"
#include "xattr.h"
unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k)
{
struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k);
const struct bch_extent_ptr *ptr;
unsigned nr_ptrs = 0;
bkey_for_each_ptr(p, ptr)
nr_ptrs++;
return nr_ptrs;
}
unsigned bch2_bkey_nr_dirty_ptrs(struct bkey_s_c k)
{
unsigned nr_ptrs = 0;
switch (k.k->type) {
case KEY_TYPE_btree_ptr:
case KEY_TYPE_extent: {
struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k);
const struct bch_extent_ptr *ptr;
bkey_for_each_ptr(p, ptr)
nr_ptrs += !ptr->cached;
BUG_ON(!nr_ptrs);
break;
}
case KEY_TYPE_reservation:
nr_ptrs = bkey_s_c_to_reservation(k).v->nr_replicas;
break;
}
return nr_ptrs;
}
static unsigned bch2_extent_ptr_durability(struct bch_fs *c,
struct extent_ptr_decoded p)
{
unsigned i, durability = 0;
struct bch_dev *ca;
if (p.ptr.cached)
return 0;
ca = bch_dev_bkey_exists(c, p.ptr.dev);
if (ca->mi.state != BCH_MEMBER_STATE_FAILED)
durability = max_t(unsigned, durability, ca->mi.durability);
for (i = 0; i < p.ec_nr; i++) {
struct stripe *s =
genradix_ptr(&c->stripes[0], p.idx);
if (WARN_ON(!s))
continue;
durability = max_t(unsigned, durability, s->nr_redundant);
}
return durability;
}
unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
unsigned durability = 0;
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
durability += bch2_extent_ptr_durability(c, p);
return durability;
}
static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f,
unsigned dev)
{
struct bch_dev_io_failures *i;
for (i = f->devs; i < f->devs + f->nr; i++)
if (i->dev == dev)
return i;
return NULL;
}
void bch2_mark_io_failure(struct bch_io_failures *failed,
struct extent_ptr_decoded *p)
{
struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev);
if (!f) {
BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
f = &failed->devs[failed->nr++];
f->dev = p->ptr.dev;
f->idx = p->idx;
f->nr_failed = 1;
f->nr_retries = 0;
} else if (p->idx != f->idx) {
f->idx = p->idx;
f->nr_failed = 1;
f->nr_retries = 0;
} else {
f->nr_failed++;
}
}
/*
* returns true if p1 is better than p2:
*/
static inline bool ptr_better(struct bch_fs *c,
const struct extent_ptr_decoded p1,
const struct extent_ptr_decoded p2)
{
if (likely(!p1.idx && !p2.idx)) {
struct bch_dev *dev1 = bch_dev_bkey_exists(c, p1.ptr.dev);
struct bch_dev *dev2 = bch_dev_bkey_exists(c, p2.ptr.dev);
u64 l1 = atomic64_read(&dev1->cur_latency[READ]);
u64 l2 = atomic64_read(&dev2->cur_latency[READ]);
/* Pick at random, biased in favor of the faster device: */
return bch2_rand_range(l1 + l2) > l1;
}
if (force_reconstruct_read(c))
return p1.idx > p2.idx;
return p1.idx < p2.idx;
}
/*
* This picks a non-stale pointer, preferably from a device other than @avoid.
* Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
* other devices, it will still pick a pointer from avoid.
*/
int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k,
struct bch_io_failures *failed,
struct extent_ptr_decoded *pick)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
struct bch_dev_io_failures *f;
struct bch_dev *ca;
int ret = 0;
if (k.k->type == KEY_TYPE_error)
return -EIO;
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
ca = bch_dev_bkey_exists(c, p.ptr.dev);
/*
* If there are any dirty pointers it's an error if we can't
* read:
*/
if (!ret && !p.ptr.cached)
ret = -EIO;
if (p.ptr.cached && ptr_stale(ca, &p.ptr))
continue;
f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL;
if (f)
p.idx = f->nr_failed < f->nr_retries
? f->idx
: f->idx + 1;
if (!p.idx &&
!bch2_dev_is_readable(ca))
p.idx++;
if (force_reconstruct_read(c) &&
!p.idx && p.ec_nr)
p.idx++;
if (p.idx >= p.ec_nr + 1)
continue;
if (ret > 0 && !ptr_better(c, p, *pick))
continue;
*pick = p;
ret = 1;
}
return ret;
}
void bch2_bkey_append_ptr(struct bkey_i *k,
struct bch_extent_ptr ptr)
{
EBUG_ON(bch2_bkey_has_device(bkey_i_to_s_c(k), ptr.dev));
switch (k->k.type) {
case KEY_TYPE_btree_ptr:
case KEY_TYPE_extent:
EBUG_ON(bkey_val_u64s(&k->k) >= BKEY_EXTENT_VAL_U64s_MAX);
ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
memcpy((void *) &k->v + bkey_val_bytes(&k->k),
&ptr,
sizeof(ptr));
k->u64s++;
break;
default:
BUG();
}
}
void bch2_bkey_drop_device(struct bkey_s k, unsigned dev)
{
struct bch_extent_ptr *ptr;
bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev);
}
/* extent specific utility code */
const struct bch_extent_ptr *
bch2_extent_has_device(struct bkey_s_c_extent e, unsigned dev)
{
const struct bch_extent_ptr *ptr;
extent_for_each_ptr(e, ptr)
if (ptr->dev == dev)
return ptr;
return NULL;
}
const struct bch_extent_ptr *
bch2_extent_has_group(struct bch_fs *c, struct bkey_s_c_extent e, unsigned group)
{
const struct bch_extent_ptr *ptr;
extent_for_each_ptr(e, ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
if (ca->mi.group &&
ca->mi.group - 1 == group)
return ptr;
}
return NULL;
}
const struct bch_extent_ptr *
bch2_extent_has_target(struct bch_fs *c, struct bkey_s_c_extent e, unsigned target)
{
const struct bch_extent_ptr *ptr;
extent_for_each_ptr(e, ptr)
if (bch2_dev_in_target(c, ptr->dev, target) &&
(!ptr->cached ||
!ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)))
return ptr;
return NULL;
}
unsigned bch2_extent_is_compressed(struct bkey_s_c k)
{
unsigned ret = 0;
switch (k.k->type) {
case KEY_TYPE_extent: {
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
extent_for_each_ptr_decode(e, p, entry)
if (!p.ptr.cached &&
p.crc.compression_type != BCH_COMPRESSION_NONE)
ret += p.crc.compressed_size;
}
}
return ret;
}
bool bch2_extent_matches_ptr(struct bch_fs *c, struct bkey_s_c_extent e,
struct bch_extent_ptr m, u64 offset)
{
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
extent_for_each_ptr_decode(e, p, entry)
if (p.ptr.dev == m.dev &&
p.ptr.gen == m.gen &&
(s64) p.ptr.offset + p.crc.offset - bkey_start_offset(e.k) ==
(s64) m.offset - offset)
return true;
return false;
}
static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs,
union bch_extent_entry *entry)
{
union bch_extent_entry *i = ptrs.start;
if (i == entry)
return NULL;
while (extent_entry_next(i) != entry)
i = extent_entry_next(i);
return i;
}
union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k,
struct bch_extent_ptr *ptr)
{
struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
union bch_extent_entry *dst, *src, *prev;
bool drop_crc = true;
EBUG_ON(ptr < &ptrs.start->ptr ||
ptr >= &ptrs.end->ptr);
EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
src = extent_entry_next(to_entry(ptr));
if (src != ptrs.end &&
!extent_entry_is_crc(src))
drop_crc = false;
dst = to_entry(ptr);
while ((prev = extent_entry_prev(ptrs, dst))) {
if (extent_entry_is_ptr(prev))
break;
if (extent_entry_is_crc(prev)) {
if (drop_crc)
dst = prev;
break;
}
dst = prev;
}
memmove_u64s_down(dst, src,
(u64 *) ptrs.end - (u64 *) src);
k.k->u64s -= (u64 *) src - (u64 *) dst;
return dst;
}
static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
struct bch_extent_crc_unpacked n)
{
return !u.compression_type &&
u.csum_type &&
u.uncompressed_size > u.live_size &&
bch2_csum_type_is_encryption(u.csum_type) ==
bch2_csum_type_is_encryption(n.csum_type);
}
bool bch2_can_narrow_extent_crcs(struct bkey_s_c_extent e,
struct bch_extent_crc_unpacked n)
{
struct bch_extent_crc_unpacked crc;
const union bch_extent_entry *i;
if (!n.csum_type)
return false;
extent_for_each_crc(e, crc, i)
if (can_narrow_crc(crc, n))
return true;
return false;
}
/*
* We're writing another replica for this extent, so while we've got the data in
* memory we'll be computing a new checksum for the currently live data.
*
* If there are other replicas we aren't moving, and they are checksummed but
* not compressed, we can modify them to point to only the data that is
* currently live (so that readers won't have to bounce) while we've got the
* checksum we need:
*/
bool bch2_extent_narrow_crcs(struct bkey_i_extent *e,
struct bch_extent_crc_unpacked n)
{
struct bch_extent_crc_unpacked u;
struct extent_ptr_decoded p;
union bch_extent_entry *i;
bool ret = false;
/* Find a checksum entry that covers only live data: */
if (!n.csum_type) {
extent_for_each_crc(extent_i_to_s(e), u, i)
if (!u.compression_type &&
u.csum_type &&
u.live_size == u.uncompressed_size) {
n = u;
goto found;
}
return false;
}
found:
BUG_ON(n.compression_type);
BUG_ON(n.offset);
BUG_ON(n.live_size != e->k.size);
restart_narrow_pointers:
extent_for_each_ptr_decode(extent_i_to_s(e), p, i)
if (can_narrow_crc(p.crc, n)) {
bch2_bkey_drop_ptr(extent_i_to_s(e).s, &i->ptr);
p.ptr.offset += p.crc.offset;
p.crc = n;
bch2_extent_ptr_decoded_append(e, &p);
ret = true;
goto restart_narrow_pointers;
}
return ret;
}
/* returns true if not equal */
static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
struct bch_extent_crc_unpacked r)
{
return (l.csum_type != r.csum_type ||
l.compression_type != r.compression_type ||
l.compressed_size != r.compressed_size ||
l.uncompressed_size != r.uncompressed_size ||
l.offset != r.offset ||
l.live_size != r.live_size ||
l.nonce != r.nonce ||
bch2_crc_cmp(l.csum, r.csum));
}
void bch2_ptr_swab(const struct bkey_format *f, struct bkey_packed *k)
{
union bch_extent_entry *entry;
u64 *d = (u64 *) bkeyp_val(f, k);
unsigned i;
for (i = 0; i < bkeyp_val_u64s(f, k); i++)
d[i] = swab64(d[i]);
for (entry = (union bch_extent_entry *) d;
entry < (union bch_extent_entry *) (d + bkeyp_val_u64s(f, k));
entry = extent_entry_next(entry)) {
switch (extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_ptr:
break;
case BCH_EXTENT_ENTRY_crc32:
entry->crc32.csum = swab32(entry->crc32.csum);
break;
case BCH_EXTENT_ENTRY_crc64:
entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
break;
case BCH_EXTENT_ENTRY_crc128:
entry->crc128.csum.hi = (__force __le64)
swab64((__force u64) entry->crc128.csum.hi);
entry->crc128.csum.lo = (__force __le64)
swab64((__force u64) entry->crc128.csum.lo);
break;
case BCH_EXTENT_ENTRY_stripe_ptr:
break;
}
}
}
static const char *extent_ptr_invalid(const struct bch_fs *c,
struct bkey_s_c k,
const struct bch_extent_ptr *ptr,
unsigned size_ondisk,
bool metadata)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const struct bch_extent_ptr *ptr2;
struct bch_dev *ca;
if (ptr->dev >= c->sb.nr_devices ||
!c->devs[ptr->dev])
return "pointer to invalid device";
ca = bch_dev_bkey_exists(c, ptr->dev);
if (!ca)
return "pointer to invalid device";
bkey_for_each_ptr(ptrs, ptr2)
if (ptr != ptr2 && ptr->dev == ptr2->dev)
return "multiple pointers to same device";
if (ptr->offset + size_ondisk > bucket_to_sector(ca, ca->mi.nbuckets))
return "offset past end of device";
if (ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket))
return "offset before first bucket";
if (bucket_remainder(ca, ptr->offset) +
size_ondisk > ca->mi.bucket_size)
return "spans multiple buckets";
return NULL;
}
static void bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct bch_extent_crc_unpacked crc;
const struct bch_extent_ptr *ptr;
const struct bch_extent_stripe_ptr *ec;
struct bch_dev *ca;
bool first = true;
bkey_extent_entry_for_each(ptrs, entry) {
if (!first)
pr_buf(out, " ");
switch (__extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_ptr:
ptr = entry_to_ptr(entry);
ca = ptr->dev < c->sb.nr_devices && c->devs[ptr->dev]
? bch_dev_bkey_exists(c, ptr->dev)
: NULL;
pr_buf(out, "ptr: %u:%llu gen %u%s%s", ptr->dev,
(u64) ptr->offset, ptr->gen,
ptr->cached ? " cached" : "",
ca && ptr_stale(ca, ptr)
? " stale" : "");
break;
case BCH_EXTENT_ENTRY_crc32:
case BCH_EXTENT_ENTRY_crc64:
case BCH_EXTENT_ENTRY_crc128:
crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
pr_buf(out, "crc: c_size %u size %u offset %u nonce %u csum %u compress %u",
crc.compressed_size,
crc.uncompressed_size,
crc.offset, crc.nonce,
crc.csum_type,
crc.compression_type);
break;
case BCH_EXTENT_ENTRY_stripe_ptr:
ec = &entry->stripe_ptr;
pr_buf(out, "ec: idx %llu block %u",
(u64) ec->idx, ec->block);
break;
default:
pr_buf(out, "(invalid extent entry %.16llx)", *((u64 *) entry));
return;
}
first = false;
}
}
/* Btree ptrs */
const char *bch2_btree_ptr_invalid(const struct bch_fs *c, struct bkey_s_c k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
const struct bch_extent_ptr *ptr;
const char *reason;
if (bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX)
return "value too big";
bkey_extent_entry_for_each(ptrs, entry) {
if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX)
return "invalid extent entry type";
if (!extent_entry_is_ptr(entry))
return "has non ptr field";
}
bkey_for_each_ptr(ptrs, ptr) {
reason = extent_ptr_invalid(c, k, ptr,
c->opts.btree_node_size,
true);
if (reason)
return reason;
}
return NULL;
}
void bch2_btree_ptr_debugcheck(struct bch_fs *c, struct btree *b,
struct bkey_s_c k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const struct bch_extent_ptr *ptr;
unsigned seq;
const char *err;
char buf[160];
struct bucket_mark mark;
struct bch_dev *ca;
unsigned replicas = 0;
bool bad;
bkey_for_each_ptr(ptrs, ptr) {
ca = bch_dev_bkey_exists(c, ptr->dev);
replicas++;
if (!test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags))
continue;
err = "stale";
if (ptr_stale(ca, ptr))
goto err;
do {
seq = read_seqcount_begin(&c->gc_pos_lock);
mark = ptr_bucket_mark(ca, ptr);
bad = gc_pos_cmp(c->gc_pos, gc_pos_btree_node(b)) > 0 &&
(mark.data_type != BCH_DATA_BTREE ||
mark.dirty_sectors < c->opts.btree_node_size);
} while (read_seqcount_retry(&c->gc_pos_lock, seq));
err = "inconsistent";
if (bad)
goto err;
}
if (!test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) &&
!bch2_bkey_replicas_marked(c, k, false)) {
bch2_bkey_val_to_text(&PBUF(buf), c, k);
bch2_fs_bug(c,
"btree key bad (replicas not marked in superblock):\n%s",
buf);
return;
}
return;
err:
bch2_bkey_val_to_text(&PBUF(buf), c, k);
bch2_fs_bug(c, "%s btree pointer %s: bucket %zi gen %i mark %08x",
err, buf, PTR_BUCKET_NR(ca, ptr),
mark.gen, (unsigned) mark.v.counter);
}
void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k)
{
const char *invalid;
bkey_ptrs_to_text(out, c, k);
invalid = bch2_btree_ptr_invalid(c, k);
if (invalid)
pr_buf(out, " invalid: %s", invalid);
}
/* Extents */
bool __bch2_cut_front(struct bpos where, struct bkey_s k)
{
u64 len = 0;
if (bkey_cmp(where, bkey_start_pos(k.k)) <= 0)
return false;
EBUG_ON(bkey_cmp(where, k.k->p) > 0);
len = k.k->p.offset - where.offset;
BUG_ON(len > k.k->size);
/*
* Don't readjust offset if the key size is now 0, because that could
* cause offset to point to the next bucket:
*/
if (!len)
k.k->type = KEY_TYPE_deleted;
else if (bkey_extent_is_data(k.k)) {
struct bkey_s_extent e = bkey_s_to_extent(k);
union bch_extent_entry *entry;
bool seen_crc = false;
extent_for_each_entry(e, entry) {
switch (extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_ptr:
if (!seen_crc)
entry->ptr.offset += e.k->size - len;
break;
case BCH_EXTENT_ENTRY_crc32:
entry->crc32.offset += e.k->size - len;
break;
case BCH_EXTENT_ENTRY_crc64:
entry->crc64.offset += e.k->size - len;
break;
case BCH_EXTENT_ENTRY_crc128:
entry->crc128.offset += e.k->size - len;
break;
case BCH_EXTENT_ENTRY_stripe_ptr:
break;
}
if (extent_entry_is_crc(entry))
seen_crc = true;
}
}
k.k->size = len;
return true;
}
bool bch2_cut_back(struct bpos where, struct bkey *k)
{
u64 len = 0;
if (bkey_cmp(where, k->p) >= 0)
return false;
EBUG_ON(bkey_cmp(where, bkey_start_pos(k)) < 0);
len = where.offset - bkey_start_offset(k);
BUG_ON(len > k->size);
k->p = where;
k->size = len;
if (!len)
k->type = KEY_TYPE_deleted;
return true;
}
/**
* bch_key_resize - adjust size of @k
*
* bkey_start_offset(k) will be preserved, modifies where the extent ends
*/
void bch2_key_resize(struct bkey *k,
unsigned new_size)
{
k->p.offset -= k->size;
k->p.offset += new_size;
k->size = new_size;
}
static bool extent_i_save(struct btree *b, struct bkey_packed *dst,
struct bkey_i *src)
{
struct bkey_format *f = &b->format;
struct bkey_i *dst_unpacked;
struct bkey_packed tmp;
if ((dst_unpacked = packed_to_bkey(dst)))
dst_unpacked->k = src->k;
else if (bch2_bkey_pack_key(&tmp, &src->k, f))
memcpy_u64s(dst, &tmp, f->key_u64s);
else
return false;
memcpy_u64s(bkeyp_val(f, dst), &src->v, bkey_val_u64s(&src->k));
return true;
}
struct extent_insert_state {
struct btree_insert *trans;
struct btree_insert_entry *insert;
struct bpos committed;
/* for deleting: */
struct bkey_i whiteout;
bool update_journal;
bool update_btree;
bool deleting;
};
static bool bch2_extent_merge_inline(struct bch_fs *,
struct btree_iter *,
struct bkey_packed *,
struct bkey_packed *,
bool);
static void verify_extent_nonoverlapping(struct btree *b,
struct btree_node_iter *_iter,
struct bkey_i *insert)
{
#ifdef CONFIG_BCACHEFS_DEBUG
struct btree_node_iter iter;
struct bkey_packed *k;
struct bkey uk;
iter = *_iter;
k = bch2_btree_node_iter_prev_filter(&iter, b, KEY_TYPE_discard);
BUG_ON(k &&
(uk = bkey_unpack_key(b, k),
bkey_cmp(uk.p, bkey_start_pos(&insert->k)) > 0));
iter = *_iter;
k = bch2_btree_node_iter_peek_filter(&iter, b, KEY_TYPE_discard);
#if 0
BUG_ON(k &&
(uk = bkey_unpack_key(b, k),
bkey_cmp(insert->k.p, bkey_start_pos(&uk))) > 0);
#else
if (k &&
(uk = bkey_unpack_key(b, k),
bkey_cmp(insert->k.p, bkey_start_pos(&uk))) > 0) {
char buf1[100];
char buf2[100];
bch2_bkey_to_text(&PBUF(buf1), &insert->k);
bch2_bkey_to_text(&PBUF(buf2), &uk);
bch2_dump_btree_node(b);
panic("insert > next :\n"
"insert %s\n"
"next %s\n",
buf1, buf2);
}
#endif
#endif
}
static void verify_modified_extent(struct btree_iter *iter,
struct bkey_packed *k)
{
bch2_btree_iter_verify(iter, iter->l[0].b);
bch2_verify_insert_pos(iter->l[0].b, k, k, k->u64s);
}
static void extent_bset_insert(struct bch_fs *c, struct btree_iter *iter,
struct bkey_i *insert)
{
struct btree_iter_level *l = &iter->l[0];
struct btree_node_iter node_iter;
struct bkey_packed *k;
BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(c, l->b));
EBUG_ON(bkey_deleted(&insert->k) || !insert->k.size);
verify_extent_nonoverlapping(l->b, &l->iter, insert);
node_iter = l->iter;
k = bch2_btree_node_iter_prev_filter(&node_iter, l->b, KEY_TYPE_discard);
if (k && !bkey_written(l->b, k) &&
bch2_extent_merge_inline(c, iter, k, bkey_to_packed(insert), true))
return;
node_iter = l->iter;
k = bch2_btree_node_iter_peek_filter(&node_iter, l->b, KEY_TYPE_discard);
if (k && !bkey_written(l->b, k) &&
bch2_extent_merge_inline(c, iter, bkey_to_packed(insert), k, false))
return;
k = bch2_btree_node_iter_bset_pos(&l->iter, l->b, bset_tree_last(l->b));
bch2_bset_insert(l->b, &l->iter, k, insert, 0);
bch2_btree_node_iter_fix(iter, l->b, &l->iter, k, 0, k->u64s);
bch2_btree_iter_verify(iter, l->b);
}
static void extent_insert_committed(struct extent_insert_state *s)
{
struct bch_fs *c = s->trans->c;
struct btree_iter *iter = s->insert->iter;
struct bkey_i *insert = s->insert->k;
BKEY_PADDED(k) split;
EBUG_ON(bkey_cmp(insert->k.p, s->committed) < 0);
EBUG_ON(bkey_cmp(s->committed, bkey_start_pos(&insert->k)) < 0);
bkey_copy(&split.k, insert);
if (s->deleting)
split.k.k.type = KEY_TYPE_discard;
bch2_cut_back(s->committed, &split.k.k);
if (!bkey_cmp(s->committed, iter->pos))
return;
bch2_btree_iter_set_pos_same_leaf(iter, s->committed);
if (s->update_btree) {
if (debug_check_bkeys(c))
bch2_bkey_debugcheck(c, iter->l[0].b,
bkey_i_to_s_c(&split.k));
EBUG_ON(bkey_deleted(&split.k.k) || !split.k.k.size);
extent_bset_insert(c, iter, &split.k);
}
if (s->update_journal) {
bkey_copy(&split.k, !s->deleting ? insert : &s->whiteout);
if (s->deleting)
split.k.k.type = KEY_TYPE_discard;
bch2_cut_back(s->committed, &split.k.k);
EBUG_ON(bkey_deleted(&split.k.k) || !split.k.k.size);
bch2_btree_journal_key(s->trans, iter, &split.k);
}
bch2_cut_front(s->committed, insert);
insert->k.needs_whiteout = false;
}
void bch2_extent_trim_atomic(struct bkey_i *k, struct btree_iter *iter)
{
struct btree *b = iter->l[0].b;
BUG_ON(iter->uptodate > BTREE_ITER_NEED_PEEK);
bch2_cut_back(b->key.k.p, &k->k);
BUG_ON(bkey_cmp(bkey_start_pos(&k->k), b->data->min_key) < 0);
}
enum btree_insert_ret
bch2_extent_can_insert(struct btree_insert *trans,
struct btree_insert_entry *insert,
unsigned *u64s)
{
struct btree_iter_level *l = &insert->iter->l[0];
struct btree_node_iter node_iter = l->iter;
enum bch_extent_overlap overlap;
struct bkey_packed *_k;
struct bkey unpacked;
struct bkey_s_c k;
int sectors;
BUG_ON(trans->flags & BTREE_INSERT_ATOMIC &&
!bch2_extent_is_atomic(&insert->k->k, insert->iter));
/*
* We avoid creating whiteouts whenever possible when deleting, but
* those optimizations mean we may potentially insert two whiteouts
* instead of one (when we overlap with the front of one extent and the
* back of another):
*/
if (bkey_whiteout(&insert->k->k))
*u64s += BKEY_U64s;
_k = bch2_btree_node_iter_peek_filter(&node_iter, l->b,
KEY_TYPE_discard);
if (!_k)
return BTREE_INSERT_OK;
k = bkey_disassemble(l->b, _k, &unpacked);
overlap = bch2_extent_overlap(&insert->k->k, k.k);
/* account for having to split existing extent: */
if (overlap == BCH_EXTENT_OVERLAP_MIDDLE)
*u64s += _k->u64s;
if (overlap == BCH_EXTENT_OVERLAP_MIDDLE &&
(sectors = bch2_extent_is_compressed(k))) {
int flags = BCH_DISK_RESERVATION_BTREE_LOCKS_HELD;
if (trans->flags & BTREE_INSERT_NOFAIL)
flags |= BCH_DISK_RESERVATION_NOFAIL;
switch (bch2_disk_reservation_add(trans->c,
trans->disk_res,
sectors, flags)) {
case 0:
break;
case -ENOSPC:
return BTREE_INSERT_ENOSPC;
case -EINTR:
return BTREE_INSERT_NEED_GC_LOCK;
default:
BUG();
}
}
return BTREE_INSERT_OK;
}
static void
extent_squash(struct extent_insert_state *s, struct bkey_i *insert,
struct bkey_packed *_k, struct bkey_s k,
enum bch_extent_overlap overlap)
{
struct bch_fs *c = s->trans->c;
struct btree_iter *iter = s->insert->iter;
struct btree_iter_level *l = &iter->l[0];
switch (overlap) {
case BCH_EXTENT_OVERLAP_FRONT:
/* insert overlaps with start of k: */
__bch2_cut_front(insert->k.p, k);
BUG_ON(bkey_deleted(k.k));
extent_save(l->b, _k, k.k);
verify_modified_extent(iter, _k);
break;
case BCH_EXTENT_OVERLAP_BACK:
/* insert overlaps with end of k: */
bch2_cut_back(bkey_start_pos(&insert->k), k.k);
BUG_ON(bkey_deleted(k.k));
extent_save(l->b, _k, k.k);
/*
* As the auxiliary tree is indexed by the end of the
* key and we've just changed the end, update the
* auxiliary tree.
*/
bch2_bset_fix_invalidated_key(l->b, _k);
bch2_btree_node_iter_fix(iter, l->b, &l->iter,
_k, _k->u64s, _k->u64s);
verify_modified_extent(iter, _k);
break;
case BCH_EXTENT_OVERLAP_ALL: {
/* The insert key completely covers k, invalidate k */
if (!bkey_whiteout(k.k))
btree_account_key_drop(l->b, _k);
k.k->size = 0;
k.k->type = KEY_TYPE_deleted;
if (_k >= btree_bset_last(l->b)->start) {
unsigned u64s = _k->u64s;
bch2_bset_delete(l->b, _k, _k->u64s);
bch2_btree_node_iter_fix(iter, l->b, &l->iter,
_k, u64s, 0);
bch2_btree_iter_verify(iter, l->b);
} else {
extent_save(l->b, _k, k.k);
bch2_btree_node_iter_fix(iter, l->b, &l->iter,
_k, _k->u64s, _k->u64s);
verify_modified_extent(iter, _k);
}
break;
}
case BCH_EXTENT_OVERLAP_MIDDLE: {
BKEY_PADDED(k) split;
/*
* The insert key falls 'in the middle' of k
* The insert key splits k in 3:
* - start only in k, preserve
* - middle common section, invalidate in k
* - end only in k, preserve
*
* We update the old key to preserve the start,
* insert will be the new common section,
* we manually insert the end that we are preserving.
*
* modify k _before_ doing the insert (which will move
* what k points to)
*/
bkey_reassemble(&split.k, k.s_c);
split.k.k.needs_whiteout |= bkey_written(l->b, _k);
bch2_cut_back(bkey_start_pos(&insert->k), &split.k.k);
BUG_ON(bkey_deleted(&split.k.k));
__bch2_cut_front(insert->k.p, k);
BUG_ON(bkey_deleted(k.k));
extent_save(l->b, _k, k.k);
verify_modified_extent(iter, _k);
extent_bset_insert(c, iter, &split.k);
break;
}
}
}
static void __bch2_insert_fixup_extent(struct extent_insert_state *s)
{
struct btree_iter *iter = s->insert->iter;
struct btree_iter_level *l = &iter->l[0];
struct bkey_packed *_k;
struct bkey unpacked;
struct bkey_i *insert = s->insert->k;
while (bkey_cmp(s->committed, insert->k.p) < 0 &&
(_k = bch2_btree_node_iter_peek_filter(&l->iter, l->b,
KEY_TYPE_discard))) {
struct bkey_s k = __bkey_disassemble(l->b, _k, &unpacked);
enum bch_extent_overlap overlap = bch2_extent_overlap(&insert->k, k.k);
EBUG_ON(bkey_cmp(iter->pos, k.k->p) >= 0);
if (bkey_cmp(bkey_start_pos(k.k), insert->k.p) >= 0)
break;
s->committed = bpos_min(s->insert->k->k.p, k.k->p);
if (!bkey_whiteout(k.k))
s->update_journal = true;
if (!s->update_journal) {
bch2_cut_front(s->committed, insert);
bch2_cut_front(s->committed, &s->whiteout);
bch2_btree_iter_set_pos_same_leaf(iter, s->committed);
goto next;
}
/*
* When deleting, if possible just do it by switching the type
* of the key we're deleting, instead of creating and inserting
* a new whiteout:
*/
if (s->deleting &&
!s->update_btree &&
!bkey_cmp(insert->k.p, k.k->p) &&
!bkey_cmp(bkey_start_pos(&insert->k), bkey_start_pos(k.k))) {
if (!bkey_whiteout(k.k)) {
btree_account_key_drop(l->b, _k);
_k->type = KEY_TYPE_discard;
reserve_whiteout(l->b, _k);
}
break;
}
if (k.k->needs_whiteout || bkey_written(l->b, _k)) {
insert->k.needs_whiteout = true;
s->update_btree = true;
}
if (s->update_btree &&
overlap == BCH_EXTENT_OVERLAP_ALL &&
bkey_whiteout(k.k) &&
k.k->needs_whiteout) {
unreserve_whiteout(l->b, _k);
_k->needs_whiteout = false;
}
extent_squash(s, insert, _k, k, overlap);
if (!s->update_btree)
bch2_cut_front(s->committed, insert);
next:
if (overlap == BCH_EXTENT_OVERLAP_FRONT ||
overlap == BCH_EXTENT_OVERLAP_MIDDLE)
break;
}
if (bkey_cmp(s->committed, insert->k.p) < 0)
s->committed = bpos_min(s->insert->k->k.p, l->b->key.k.p);
/*
* may have skipped past some deleted extents greater than the insert
* key, before we got to a non deleted extent and knew we could bail out
* rewind the iterator a bit if necessary:
*/
{
struct btree_node_iter node_iter = l->iter;
while ((_k = bch2_btree_node_iter_prev_all(&node_iter, l->b)) &&
bkey_cmp_left_packed(l->b, _k, &s->committed) > 0)
l->iter = node_iter;
}
}
/**
* bch_extent_insert_fixup - insert a new extent and deal with overlaps
*
* this may result in not actually doing the insert, or inserting some subset
* of the insert key. For cmpxchg operations this is where that logic lives.
*
* All subsets of @insert that need to be inserted are inserted using
* bch2_btree_insert_and_journal(). If @b or @res fills up, this function
* returns false, setting @iter->pos for the prefix of @insert that actually got
* inserted.
*
* BSET INVARIANTS: this function is responsible for maintaining all the
* invariants for bsets of extents in memory. things get really hairy with 0
* size extents
*
* within one bset:
*
* bkey_start_pos(bkey_next(k)) >= k
* or bkey_start_offset(bkey_next(k)) >= k->offset
*
* i.e. strict ordering, no overlapping extents.
*
* multiple bsets (i.e. full btree node):
*
* ∀ k, j
* k.size != 0 ∧ j.size != 0 →
* ¬ (k > bkey_start_pos(j) ∧ k < j)
*
* i.e. no two overlapping keys _of nonzero size_
*
* We can't realistically maintain this invariant for zero size keys because of
* the key merging done in bch2_btree_insert_key() - for two mergeable keys k, j
* there may be another 0 size key between them in another bset, and it will
* thus overlap with the merged key.
*
* In addition, the end of iter->pos indicates how much has been processed.
* If the end of iter->pos is not the same as the end of insert, then
* key insertion needs to continue/be retried.
*/
enum btree_insert_ret
bch2_insert_fixup_extent(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct btree_iter *iter = insert->iter;
struct btree *b = iter->l[0].b;
struct extent_insert_state s = {
.trans = trans,
.insert = insert,
.committed = iter->pos,
.whiteout = *insert->k,
.update_journal = !bkey_whiteout(&insert->k->k),
.update_btree = !bkey_whiteout(&insert->k->k),
.deleting = bkey_whiteout(&insert->k->k),
};
EBUG_ON(iter->level);
EBUG_ON(!insert->k->k.size);
/*
* As we process overlapping extents, we advance @iter->pos both to
* signal to our caller (btree_insert_key()) how much of @insert->k has
* been inserted, and also to keep @iter->pos consistent with
* @insert->k and the node iterator that we're advancing:
*/
EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k->k)));
__bch2_insert_fixup_extent(&s);
extent_insert_committed(&s);
EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k->k)));
EBUG_ON(bkey_cmp(iter->pos, s.committed));
if (insert->k->k.size) {
/* got to the end of this leaf node */
BUG_ON(bkey_cmp(iter->pos, b->key.k.p));
return BTREE_INSERT_NEED_TRAVERSE;
}
return BTREE_INSERT_OK;
}
const char *bch2_extent_invalid(const struct bch_fs *c, struct bkey_s_c k)
{
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const union bch_extent_entry *entry;
struct bch_extent_crc_unpacked crc;
const struct bch_extent_ptr *ptr;
unsigned size_ondisk = e.k->size;
const char *reason;
unsigned nonce = UINT_MAX;
if (bkey_val_u64s(e.k) > BKEY_EXTENT_VAL_U64s_MAX)
return "value too big";
extent_for_each_entry(e, entry) {
if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX)
return "invalid extent entry type";
switch (extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_ptr:
ptr = entry_to_ptr(entry);
reason = extent_ptr_invalid(c, e.s_c, &entry->ptr,
size_ondisk, false);
if (reason)
return reason;
break;
case BCH_EXTENT_ENTRY_crc32:
case BCH_EXTENT_ENTRY_crc64:
case BCH_EXTENT_ENTRY_crc128:
crc = bch2_extent_crc_unpack(e.k, entry_to_crc(entry));
if (crc.offset + e.k->size >
crc.uncompressed_size)
return "checksum offset + key size > uncompressed size";
size_ondisk = crc.compressed_size;
if (!bch2_checksum_type_valid(c, crc.csum_type))
return "invalid checksum type";
if (crc.compression_type >= BCH_COMPRESSION_NR)
return "invalid compression type";
if (bch2_csum_type_is_encryption(crc.csum_type)) {
if (nonce == UINT_MAX)
nonce = crc.offset + crc.nonce;
else if (nonce != crc.offset + crc.nonce)
return "incorrect nonce";
}
break;
case BCH_EXTENT_ENTRY_stripe_ptr:
break;
}
}
return NULL;
}
void bch2_extent_debugcheck(struct bch_fs *c, struct btree *b,
struct bkey_s_c k)
{
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const struct bch_extent_ptr *ptr;
struct bch_dev *ca;
struct bucket_mark mark;
unsigned seq, stale;
char buf[160];
bool bad;
unsigned replicas = 0;
/*
* XXX: we should be doing most/all of these checks at startup time,
* where we check bch2_bkey_invalid() in btree_node_read_done()
*
* But note that we can't check for stale pointers or incorrect gc marks
* until after journal replay is done (it might be an extent that's
* going to get overwritten during replay)
*/
extent_for_each_ptr(e, ptr) {
ca = bch_dev_bkey_exists(c, ptr->dev);
replicas++;
/*
* If journal replay hasn't finished, we might be seeing keys
* that will be overwritten by the time journal replay is done:
*/
if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
continue;
stale = 0;
do {
seq = read_seqcount_begin(&c->gc_pos_lock);
mark = ptr_bucket_mark(ca, ptr);
/* between mark and bucket gen */
smp_rmb();
stale = ptr_stale(ca, ptr);
bch2_fs_bug_on(stale && !ptr->cached, c,
"stale dirty pointer");
bch2_fs_bug_on(stale > 96, c,
"key too stale: %i",
stale);
if (stale)
break;
bad = gc_pos_cmp(c->gc_pos, gc_pos_btree_node(b)) > 0 &&
(mark.data_type != BCH_DATA_USER ||
!(ptr->cached
? mark.cached_sectors
: mark.dirty_sectors));
} while (read_seqcount_retry(&c->gc_pos_lock, seq));
if (bad)
goto bad_ptr;
}
if (replicas > BCH_REPLICAS_MAX) {
bch2_bkey_val_to_text(&PBUF(buf), c, e.s_c);
bch2_fs_bug(c,
"extent key bad (too many replicas: %u): %s",
replicas, buf);
return;
}
if (!test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) &&
!bch2_bkey_replicas_marked(c, e.s_c, false)) {
bch2_bkey_val_to_text(&PBUF(buf), c, e.s_c);
bch2_fs_bug(c,
"extent key bad (replicas not marked in superblock):\n%s",
buf);
return;
}
return;
bad_ptr:
bch2_bkey_val_to_text(&PBUF(buf), c, e.s_c);
bch2_fs_bug(c, "extent pointer bad gc mark: %s:\nbucket %zu "
"gen %i type %u", buf,
PTR_BUCKET_NR(ca, ptr), mark.gen, mark.data_type);
}
void bch2_extent_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k)
{
const char *invalid;
bkey_ptrs_to_text(out, c, k);
invalid = bch2_extent_invalid(c, k);
if (invalid)
pr_buf(out, " invalid: %s", invalid);
}
static void bch2_extent_crc_init(union bch_extent_crc *crc,
struct bch_extent_crc_unpacked new)
{
#define common_fields(_crc) \
.csum_type = _crc.csum_type, \
.compression_type = _crc.compression_type, \
._compressed_size = _crc.compressed_size - 1, \
._uncompressed_size = _crc.uncompressed_size - 1, \
.offset = _crc.offset
if (bch_crc_bytes[new.csum_type] <= 4 &&
new.uncompressed_size <= CRC32_SIZE_MAX &&
new.nonce <= CRC32_NONCE_MAX) {
crc->crc32 = (struct bch_extent_crc32) {
.type = 1 << BCH_EXTENT_ENTRY_crc32,
common_fields(new),
.csum = *((__le32 *) &new.csum.lo),
};
return;
}
if (bch_crc_bytes[new.csum_type] <= 10 &&
new.uncompressed_size <= CRC64_SIZE_MAX &&
new.nonce <= CRC64_NONCE_MAX) {
crc->crc64 = (struct bch_extent_crc64) {
.type = 1 << BCH_EXTENT_ENTRY_crc64,
common_fields(new),
.nonce = new.nonce,
.csum_lo = new.csum.lo,
.csum_hi = *((__le16 *) &new.csum.hi),
};
return;
}
if (bch_crc_bytes[new.csum_type] <= 16 &&
new.uncompressed_size <= CRC128_SIZE_MAX &&
new.nonce <= CRC128_NONCE_MAX) {
crc->crc128 = (struct bch_extent_crc128) {
.type = 1 << BCH_EXTENT_ENTRY_crc128,
common_fields(new),
.nonce = new.nonce,
.csum = new.csum,
};
return;
}
#undef common_fields
BUG();
}
void bch2_extent_crc_append(struct bkey_i_extent *e,
struct bch_extent_crc_unpacked new)
{
bch2_extent_crc_init((void *) extent_entry_last(extent_i_to_s(e)), new);
__extent_entry_push(e);
}
static inline void __extent_entry_insert(struct bkey_i_extent *e,
union bch_extent_entry *dst,
union bch_extent_entry *new)
{
union bch_extent_entry *end = extent_entry_last(extent_i_to_s(e));
memmove_u64s_up((u64 *) dst + extent_entry_u64s(new),
dst, (u64 *) end - (u64 *) dst);
e->k.u64s += extent_entry_u64s(new);
memcpy_u64s_small(dst, new, extent_entry_u64s(new));
}
void bch2_extent_ptr_decoded_append(struct bkey_i_extent *e,
struct extent_ptr_decoded *p)
{
struct bch_extent_crc_unpacked crc = bch2_extent_crc_unpack(&e->k, NULL);
union bch_extent_entry *pos;
unsigned i;
if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
pos = e->v.start;
goto found;
}
extent_for_each_crc(extent_i_to_s(e), crc, pos)
if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
pos = extent_entry_next(pos);
goto found;
}
bch2_extent_crc_append(e, p->crc);
pos = extent_entry_last(extent_i_to_s(e));
found:
p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
__extent_entry_insert(e, pos, to_entry(&p->ptr));
for (i = 0; i < p->ec_nr; i++) {
p->ec[i].type = 1 << BCH_EXTENT_ENTRY_stripe_ptr;
__extent_entry_insert(e, pos, to_entry(&p->ec[i]));
}
}
/*
* bch_extent_normalize - clean up an extent, dropping stale pointers etc.
*
* Returns true if @k should be dropped entirely
*
* For existing keys, only called when btree nodes are being rewritten, not when
* they're merely being compacted/resorted in memory.
*/
bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
{
struct bch_extent_ptr *ptr;
bch2_bkey_drop_ptrs(k, ptr,
ptr->cached &&
ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr));
/* will only happen if all pointers were cached: */
if (!bkey_val_u64s(k.k))
k.k->type = KEY_TYPE_deleted;
return false;
}
void bch2_extent_mark_replicas_cached(struct bch_fs *c,
struct bkey_s_extent e,
unsigned target,
unsigned nr_desired_replicas)
{
union bch_extent_entry *entry;
struct extent_ptr_decoded p;
int extra = bch2_bkey_durability(c, e.s_c) - nr_desired_replicas;
if (target && extra > 0)
extent_for_each_ptr_decode(e, p, entry) {
int n = bch2_extent_ptr_durability(c, p);
if (n && n <= extra &&
!bch2_dev_in_target(c, p.ptr.dev, target)) {
entry->ptr.cached = true;
extra -= n;
}
}
if (extra > 0)
extent_for_each_ptr_decode(e, p, entry) {
int n = bch2_extent_ptr_durability(c, p);
if (n && n <= extra) {
entry->ptr.cached = true;
extra -= n;
}
}
}
enum merge_result bch2_extent_merge(struct bch_fs *c,
struct bkey_i *l, struct bkey_i *r)
{
struct bkey_s_extent el = bkey_i_to_s_extent(l);
struct bkey_s_extent er = bkey_i_to_s_extent(r);
union bch_extent_entry *en_l, *en_r;
if (bkey_val_u64s(&l->k) != bkey_val_u64s(&r->k))
return BCH_MERGE_NOMERGE;
extent_for_each_entry(el, en_l) {
struct bch_extent_ptr *lp, *rp;
struct bch_dev *ca;
en_r = vstruct_idx(er.v, (u64 *) en_l - el.v->_data);
if ((extent_entry_type(en_l) !=
extent_entry_type(en_r)) ||
!extent_entry_is_ptr(en_l))
return BCH_MERGE_NOMERGE;
lp = &en_l->ptr;
rp = &en_r->ptr;
if (lp->offset + el.k->size != rp->offset ||
lp->dev != rp->dev ||
lp->gen != rp->gen)
return BCH_MERGE_NOMERGE;
/* We don't allow extents to straddle buckets: */
ca = bch_dev_bkey_exists(c, lp->dev);
if (PTR_BUCKET_NR(ca, lp) != PTR_BUCKET_NR(ca, rp))
return BCH_MERGE_NOMERGE;
}
l->k.needs_whiteout |= r->k.needs_whiteout;
/* Keys with no pointers aren't restricted to one bucket and could
* overflow KEY_SIZE
*/
if ((u64) l->k.size + r->k.size > KEY_SIZE_MAX) {
bch2_key_resize(&l->k, KEY_SIZE_MAX);
bch2_cut_front(l->k.p, r);
return BCH_MERGE_PARTIAL;
}
bch2_key_resize(&l->k, l->k.size + r->k.size);
return BCH_MERGE_MERGE;
}
/*
* When merging an extent that we're inserting into a btree node, the new merged
* extent could overlap with an existing 0 size extent - if we don't fix that,
* it'll break the btree node iterator so this code finds those 0 size extents
* and shifts them out of the way.
*
* Also unpacks and repacks.
*/
static bool bch2_extent_merge_inline(struct bch_fs *c,
struct btree_iter *iter,
struct bkey_packed *l,
struct bkey_packed *r,
bool back_merge)
{
struct btree *b = iter->l[0].b;
struct btree_node_iter *node_iter = &iter->l[0].iter;
BKEY_PADDED(k) li, ri;
struct bkey_packed *m = back_merge ? l : r;
struct bkey_i *mi = back_merge ? &li.k : &ri.k;
struct bset_tree *t = bch2_bkey_to_bset(b, m);
enum merge_result ret;
EBUG_ON(bkey_written(b, m));
/*
* We need to save copies of both l and r, because we might get a
* partial merge (which modifies both) and then fails to repack
*/
bch2_bkey_unpack(b, &li.k, l);
bch2_bkey_unpack(b, &ri.k, r);
ret = bch2_bkey_merge(c, &li.k, &ri.k);
if (ret == BCH_MERGE_NOMERGE)
return false;
/*
* check if we overlap with deleted extents - would break the sort
* order:
*/
if (back_merge) {
struct bkey_packed *n = bkey_next(m);
if (n != btree_bkey_last(b, t) &&
bkey_cmp_left_packed(b, n, &li.k.k.p) <= 0 &&
bkey_deleted(n))
return false;
} else if (ret == BCH_MERGE_MERGE) {
struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
if (prev &&
bkey_cmp_left_packed_byval(b, prev,
bkey_start_pos(&li.k.k)) > 0)
return false;
}
if (ret == BCH_MERGE_PARTIAL) {
if (!extent_i_save(b, m, mi))
return false;
if (!back_merge)
bkey_copy(packed_to_bkey(l), &li.k);
else
bkey_copy(packed_to_bkey(r), &ri.k);
} else {
if (!extent_i_save(b, m, &li.k))
return false;
}
bch2_bset_fix_invalidated_key(b, m);
bch2_btree_node_iter_fix(iter, b, node_iter,
m, m->u64s, m->u64s);
verify_modified_extent(iter, m);
return ret == BCH_MERGE_MERGE;
}
int bch2_check_range_allocated(struct bch_fs *c, struct bpos pos, u64 size)
{
struct btree_iter iter;
struct bpos end = pos;
struct bkey_s_c k;
int ret = 0;
end.offset += size;
for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, pos,
BTREE_ITER_SLOTS, k) {
if (bkey_cmp(bkey_start_pos(k.k), end) >= 0)
break;
if (!bch2_extent_is_fully_allocated(k)) {
ret = -ENOSPC;
break;
}
}
bch2_btree_iter_unlock(&iter);
return ret;
}
/* KEY_TYPE_reservation: */
const char *bch2_reservation_invalid(const struct bch_fs *c, struct bkey_s_c k)
{
struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
if (bkey_val_bytes(k.k) != sizeof(struct bch_reservation))
return "incorrect value size";
if (!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX)
return "invalid nr_replicas";
return NULL;
}
void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k)
{
struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
pr_buf(out, "generation %u replicas %u",
le32_to_cpu(r.v->generation),
r.v->nr_replicas);
}
enum merge_result bch2_reservation_merge(struct bch_fs *c,
struct bkey_i *l, struct bkey_i *r)
{
struct bkey_i_reservation *li = bkey_i_to_reservation(l);
struct bkey_i_reservation *ri = bkey_i_to_reservation(r);
if (li->v.generation != ri->v.generation ||
li->v.nr_replicas != ri->v.nr_replicas)
return BCH_MERGE_NOMERGE;
l->k.needs_whiteout |= r->k.needs_whiteout;
/* Keys with no pointers aren't restricted to one bucket and could
* overflow KEY_SIZE
*/
if ((u64) l->k.size + r->k.size > KEY_SIZE_MAX) {
bch2_key_resize(&l->k, KEY_SIZE_MAX);
bch2_cut_front(l->k.p, r);
return BCH_MERGE_PARTIAL;
}
bch2_key_resize(&l->k, l->k.size + r->k.size);
return BCH_MERGE_MERGE;
}