0001725d0f
Many KVM selftests take command line arguments which are supposed to be positive (>0) or non-negative (>=0). Some tests do these validation and some missed adding the check. Add atoi_positive() and atoi_non_negative() to validate inputs in selftests before proceeding to use those values. Signed-off-by: Vipin Sharma <vipinsh@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20221103191719.1559407-7-vipinsh@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
295 lines
7.7 KiB
C
295 lines
7.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define _GNU_SOURCE
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <pthread.h>
|
|
#include <semaphore.h>
|
|
#include <sys/types.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include "kvm_util.h"
|
|
#include "test_util.h"
|
|
#include "guest_modes.h"
|
|
#include "processor.h"
|
|
|
|
static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride)
|
|
{
|
|
uint64_t gpa;
|
|
|
|
for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
|
|
*((volatile uint64_t *)gpa) = gpa;
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
struct vcpu_info {
|
|
struct kvm_vcpu *vcpu;
|
|
uint64_t start_gpa;
|
|
uint64_t end_gpa;
|
|
};
|
|
|
|
static int nr_vcpus;
|
|
static atomic_t rendezvous;
|
|
|
|
static void rendezvous_with_boss(void)
|
|
{
|
|
int orig = atomic_read(&rendezvous);
|
|
|
|
if (orig > 0) {
|
|
atomic_dec_and_test(&rendezvous);
|
|
while (atomic_read(&rendezvous) > 0)
|
|
cpu_relax();
|
|
} else {
|
|
atomic_inc(&rendezvous);
|
|
while (atomic_read(&rendezvous) < 0)
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static void run_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu_run(vcpu);
|
|
ASSERT_EQ(get_ucall(vcpu, NULL), UCALL_DONE);
|
|
}
|
|
|
|
static void *vcpu_worker(void *data)
|
|
{
|
|
struct vcpu_info *info = data;
|
|
struct kvm_vcpu *vcpu = info->vcpu;
|
|
struct kvm_vm *vm = vcpu->vm;
|
|
struct kvm_sregs sregs;
|
|
struct kvm_regs regs;
|
|
|
|
vcpu_args_set(vcpu, 3, info->start_gpa, info->end_gpa, vm->page_size);
|
|
|
|
/* Snapshot regs before the first run. */
|
|
vcpu_regs_get(vcpu, ®s);
|
|
rendezvous_with_boss();
|
|
|
|
run_vcpu(vcpu);
|
|
rendezvous_with_boss();
|
|
vcpu_regs_set(vcpu, ®s);
|
|
vcpu_sregs_get(vcpu, &sregs);
|
|
#ifdef __x86_64__
|
|
/* Toggle CR0.WP to trigger a MMU context reset. */
|
|
sregs.cr0 ^= X86_CR0_WP;
|
|
#endif
|
|
vcpu_sregs_set(vcpu, &sregs);
|
|
rendezvous_with_boss();
|
|
|
|
run_vcpu(vcpu);
|
|
rendezvous_with_boss();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static pthread_t *spawn_workers(struct kvm_vm *vm, struct kvm_vcpu **vcpus,
|
|
uint64_t start_gpa, uint64_t end_gpa)
|
|
{
|
|
struct vcpu_info *info;
|
|
uint64_t gpa, nr_bytes;
|
|
pthread_t *threads;
|
|
int i;
|
|
|
|
threads = malloc(nr_vcpus * sizeof(*threads));
|
|
TEST_ASSERT(threads, "Failed to allocate vCPU threads");
|
|
|
|
info = malloc(nr_vcpus * sizeof(*info));
|
|
TEST_ASSERT(info, "Failed to allocate vCPU gpa ranges");
|
|
|
|
nr_bytes = ((end_gpa - start_gpa) / nr_vcpus) &
|
|
~((uint64_t)vm->page_size - 1);
|
|
TEST_ASSERT(nr_bytes, "C'mon, no way you have %d CPUs", nr_vcpus);
|
|
|
|
for (i = 0, gpa = start_gpa; i < nr_vcpus; i++, gpa += nr_bytes) {
|
|
info[i].vcpu = vcpus[i];
|
|
info[i].start_gpa = gpa;
|
|
info[i].end_gpa = gpa + nr_bytes;
|
|
pthread_create(&threads[i], NULL, vcpu_worker, &info[i]);
|
|
}
|
|
return threads;
|
|
}
|
|
|
|
static void rendezvous_with_vcpus(struct timespec *time, const char *name)
|
|
{
|
|
int i, rendezvoused;
|
|
|
|
pr_info("Waiting for vCPUs to finish %s...\n", name);
|
|
|
|
rendezvoused = atomic_read(&rendezvous);
|
|
for (i = 0; abs(rendezvoused) != 1; i++) {
|
|
usleep(100);
|
|
if (!(i & 0x3f))
|
|
pr_info("\r%d vCPUs haven't rendezvoused...",
|
|
abs(rendezvoused) - 1);
|
|
rendezvoused = atomic_read(&rendezvous);
|
|
}
|
|
|
|
clock_gettime(CLOCK_MONOTONIC, time);
|
|
|
|
/* Release the vCPUs after getting the time of the previous action. */
|
|
pr_info("\rAll vCPUs finished %s, releasing...\n", name);
|
|
if (rendezvoused > 0)
|
|
atomic_set(&rendezvous, -nr_vcpus - 1);
|
|
else
|
|
atomic_set(&rendezvous, nr_vcpus + 1);
|
|
}
|
|
|
|
static void calc_default_nr_vcpus(void)
|
|
{
|
|
cpu_set_t possible_mask;
|
|
int r;
|
|
|
|
r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask);
|
|
TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)",
|
|
errno, strerror(errno));
|
|
|
|
nr_vcpus = CPU_COUNT(&possible_mask) * 3/4;
|
|
TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?");
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
/*
|
|
* Skip the first 4gb and slot0. slot0 maps <1gb and is used to back
|
|
* the guest's code, stack, and page tables. Because selftests creates
|
|
* an IRQCHIP, a.k.a. a local APIC, KVM creates an internal memslot
|
|
* just below the 4gb boundary. This test could create memory at
|
|
* 1gb-3gb,but it's simpler to skip straight to 4gb.
|
|
*/
|
|
const uint64_t start_gpa = SZ_4G;
|
|
const int first_slot = 1;
|
|
|
|
struct timespec time_start, time_run1, time_reset, time_run2;
|
|
uint64_t max_gpa, gpa, slot_size, max_mem, i;
|
|
int max_slots, slot, opt, fd;
|
|
bool hugepages = false;
|
|
struct kvm_vcpu **vcpus;
|
|
pthread_t *threads;
|
|
struct kvm_vm *vm;
|
|
void *mem;
|
|
|
|
/*
|
|
* Default to 2gb so that maxing out systems with MAXPHADDR=46, which
|
|
* are quite common for x86, requires changing only max_mem (KVM allows
|
|
* 32k memslots, 32k * 2gb == ~64tb of guest memory).
|
|
*/
|
|
slot_size = SZ_2G;
|
|
|
|
max_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
|
|
TEST_ASSERT(max_slots > first_slot, "KVM is broken");
|
|
|
|
/* All KVM MMUs should be able to survive a 128gb guest. */
|
|
max_mem = 128ull * SZ_1G;
|
|
|
|
calc_default_nr_vcpus();
|
|
|
|
while ((opt = getopt(argc, argv, "c:h:m:s:H")) != -1) {
|
|
switch (opt) {
|
|
case 'c':
|
|
nr_vcpus = atoi_positive("Number of vCPUs", optarg);
|
|
break;
|
|
case 'm':
|
|
max_mem = 1ull * atoi_positive("Memory size", optarg) * SZ_1G;
|
|
break;
|
|
case 's':
|
|
slot_size = 1ull * atoi_positive("Slot size", optarg) * SZ_1G;
|
|
break;
|
|
case 'H':
|
|
hugepages = true;
|
|
break;
|
|
case 'h':
|
|
default:
|
|
printf("usage: %s [-c nr_vcpus] [-m max_mem_in_gb] [-s slot_size_in_gb] [-H]\n", argv[0]);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
vcpus = malloc(nr_vcpus * sizeof(*vcpus));
|
|
TEST_ASSERT(vcpus, "Failed to allocate vCPU array");
|
|
|
|
vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus);
|
|
|
|
max_gpa = vm->max_gfn << vm->page_shift;
|
|
TEST_ASSERT(max_gpa > (4 * slot_size), "MAXPHYADDR <4gb ");
|
|
|
|
fd = kvm_memfd_alloc(slot_size, hugepages);
|
|
mem = mmap(NULL, slot_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
|
TEST_ASSERT(mem != MAP_FAILED, "mmap() failed");
|
|
|
|
TEST_ASSERT(!madvise(mem, slot_size, MADV_NOHUGEPAGE), "madvise() failed");
|
|
|
|
/* Pre-fault the memory to avoid taking mmap_sem on guest page faults. */
|
|
for (i = 0; i < slot_size; i += vm->page_size)
|
|
((uint8_t *)mem)[i] = 0xaa;
|
|
|
|
gpa = 0;
|
|
for (slot = first_slot; slot < max_slots; slot++) {
|
|
gpa = start_gpa + ((slot - first_slot) * slot_size);
|
|
if (gpa + slot_size > max_gpa)
|
|
break;
|
|
|
|
if ((gpa - start_gpa) >= max_mem)
|
|
break;
|
|
|
|
vm_set_user_memory_region(vm, slot, 0, gpa, slot_size, mem);
|
|
|
|
#ifdef __x86_64__
|
|
/* Identity map memory in the guest using 1gb pages. */
|
|
for (i = 0; i < slot_size; i += SZ_1G)
|
|
__virt_pg_map(vm, gpa + i, gpa + i, PG_LEVEL_1G);
|
|
#else
|
|
for (i = 0; i < slot_size; i += vm->page_size)
|
|
virt_pg_map(vm, gpa + i, gpa + i);
|
|
#endif
|
|
}
|
|
|
|
atomic_set(&rendezvous, nr_vcpus + 1);
|
|
threads = spawn_workers(vm, vcpus, start_gpa, gpa);
|
|
|
|
free(vcpus);
|
|
vcpus = NULL;
|
|
|
|
pr_info("Running with %lugb of guest memory and %u vCPUs\n",
|
|
(gpa - start_gpa) / SZ_1G, nr_vcpus);
|
|
|
|
rendezvous_with_vcpus(&time_start, "spawning");
|
|
rendezvous_with_vcpus(&time_run1, "run 1");
|
|
rendezvous_with_vcpus(&time_reset, "reset");
|
|
rendezvous_with_vcpus(&time_run2, "run 2");
|
|
|
|
time_run2 = timespec_sub(time_run2, time_reset);
|
|
time_reset = timespec_sub(time_reset, time_run1);
|
|
time_run1 = timespec_sub(time_run1, time_start);
|
|
|
|
pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 = %ld.%.9lds\n",
|
|
time_run1.tv_sec, time_run1.tv_nsec,
|
|
time_reset.tv_sec, time_reset.tv_nsec,
|
|
time_run2.tv_sec, time_run2.tv_nsec);
|
|
|
|
/*
|
|
* Delete even numbered slots (arbitrary) and unmap the first half of
|
|
* the backing (also arbitrary) to verify KVM correctly drops all
|
|
* references to the removed regions.
|
|
*/
|
|
for (slot = (slot - 1) & ~1ull; slot >= first_slot; slot -= 2)
|
|
vm_set_user_memory_region(vm, slot, 0, 0, 0, NULL);
|
|
|
|
munmap(mem, slot_size / 2);
|
|
|
|
/* Sanity check that the vCPUs actually ran. */
|
|
for (i = 0; i < nr_vcpus; i++)
|
|
pthread_join(threads[i], NULL);
|
|
|
|
/*
|
|
* Deliberately exit without deleting the remaining memslots or closing
|
|
* kvm_fd to test cleanup via mmu_notifier.release.
|
|
*/
|
|
}
|