Seems to me that this timer will only get started on platforms that say they don't want it? Signed-off-by: Tony Breeds <tony@bakeyournoodle.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Gabriel Paubert <paubert@iram.es> Cc: Zachary Amsden <zach@vmware.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			404 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			404 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/kernel/time/ntp.c
 | |
|  *
 | |
|  * NTP state machine interfaces and logic.
 | |
|  *
 | |
|  * This code was mainly moved from kernel/timer.c and kernel/time.c
 | |
|  * Please see those files for relevant copyright info and historical
 | |
|  * changelogs.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/capability.h>
 | |
| #include <asm/div64.h>
 | |
| #include <asm/timex.h>
 | |
| 
 | |
| /*
 | |
|  * Timekeeping variables
 | |
|  */
 | |
| unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */
 | |
| unsigned long tick_nsec;			/* ACTHZ period (nsec) */
 | |
| static u64 tick_length, tick_length_base;
 | |
| 
 | |
| #define MAX_TICKADJ		500		/* microsecs */
 | |
| #define MAX_TICKADJ_SCALED	(((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
 | |
| 				  TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
 | |
| 
 | |
| /*
 | |
|  * phase-lock loop variables
 | |
|  */
 | |
| /* TIME_ERROR prevents overwriting the CMOS clock */
 | |
| static int time_state = TIME_OK;	/* clock synchronization status	*/
 | |
| int time_status = STA_UNSYNC;		/* clock status bits		*/
 | |
| static s64 time_offset;		/* time adjustment (ns)		*/
 | |
| static long time_constant = 2;		/* pll time constant		*/
 | |
| long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
 | |
| long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
 | |
| long time_freq;				/* frequency offset (scaled ppm)*/
 | |
| static long time_reftime;		/* time at last adjustment (s)	*/
 | |
| long time_adjust;
 | |
| 
 | |
| #define CLOCK_TICK_OVERFLOW	(LATCH * HZ - CLOCK_TICK_RATE)
 | |
| #define CLOCK_TICK_ADJUST	(((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
 | |
| 					(s64)CLOCK_TICK_RATE)
 | |
| 
 | |
| static void ntp_update_frequency(void)
 | |
| {
 | |
| 	u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 | |
| 				<< TICK_LENGTH_SHIFT;
 | |
| 	second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
 | |
| 	second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
 | |
| 
 | |
| 	tick_length_base = second_length;
 | |
| 
 | |
| 	do_div(second_length, HZ);
 | |
| 	tick_nsec = second_length >> TICK_LENGTH_SHIFT;
 | |
| 
 | |
| 	do_div(tick_length_base, NTP_INTERVAL_FREQ);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ntp_clear - Clears the NTP state variables
 | |
|  *
 | |
|  * Must be called while holding a write on the xtime_lock
 | |
|  */
 | |
| void ntp_clear(void)
 | |
| {
 | |
| 	time_adjust = 0;		/* stop active adjtime() */
 | |
| 	time_status |= STA_UNSYNC;
 | |
| 	time_maxerror = NTP_PHASE_LIMIT;
 | |
| 	time_esterror = NTP_PHASE_LIMIT;
 | |
| 
 | |
| 	ntp_update_frequency();
 | |
| 
 | |
| 	tick_length = tick_length_base;
 | |
| 	time_offset = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this routine handles the overflow of the microsecond field
 | |
|  *
 | |
|  * The tricky bits of code to handle the accurate clock support
 | |
|  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 | |
|  * They were originally developed for SUN and DEC kernels.
 | |
|  * All the kudos should go to Dave for this stuff.
 | |
|  */
 | |
| void second_overflow(void)
 | |
| {
 | |
| 	long time_adj;
 | |
| 
 | |
| 	/* Bump the maxerror field */
 | |
| 	time_maxerror += MAXFREQ >> SHIFT_USEC;
 | |
| 	if (time_maxerror > NTP_PHASE_LIMIT) {
 | |
| 		time_maxerror = NTP_PHASE_LIMIT;
 | |
| 		time_status |= STA_UNSYNC;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Leap second processing. If in leap-insert state at the end of the
 | |
| 	 * day, the system clock is set back one second; if in leap-delete
 | |
| 	 * state, the system clock is set ahead one second. The microtime()
 | |
| 	 * routine or external clock driver will insure that reported time is
 | |
| 	 * always monotonic. The ugly divides should be replaced.
 | |
| 	 */
 | |
| 	switch (time_state) {
 | |
| 	case TIME_OK:
 | |
| 		if (time_status & STA_INS)
 | |
| 			time_state = TIME_INS;
 | |
| 		else if (time_status & STA_DEL)
 | |
| 			time_state = TIME_DEL;
 | |
| 		break;
 | |
| 	case TIME_INS:
 | |
| 		if (xtime.tv_sec % 86400 == 0) {
 | |
| 			xtime.tv_sec--;
 | |
| 			wall_to_monotonic.tv_sec++;
 | |
| 			time_state = TIME_OOP;
 | |
| 			printk(KERN_NOTICE "Clock: inserting leap second "
 | |
| 					"23:59:60 UTC\n");
 | |
| 		}
 | |
| 		break;
 | |
| 	case TIME_DEL:
 | |
| 		if ((xtime.tv_sec + 1) % 86400 == 0) {
 | |
| 			xtime.tv_sec++;
 | |
| 			wall_to_monotonic.tv_sec--;
 | |
| 			time_state = TIME_WAIT;
 | |
| 			printk(KERN_NOTICE "Clock: deleting leap second "
 | |
| 					"23:59:59 UTC\n");
 | |
| 		}
 | |
| 		break;
 | |
| 	case TIME_OOP:
 | |
| 		time_state = TIME_WAIT;
 | |
| 		break;
 | |
| 	case TIME_WAIT:
 | |
| 		if (!(time_status & (STA_INS | STA_DEL)))
 | |
| 		time_state = TIME_OK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the phase adjustment for the next second. The offset is
 | |
| 	 * reduced by a fixed factor times the time constant.
 | |
| 	 */
 | |
| 	tick_length = tick_length_base;
 | |
| 	time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
 | |
| 	time_offset -= time_adj;
 | |
| 	tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
 | |
| 
 | |
| 	if (unlikely(time_adjust)) {
 | |
| 		if (time_adjust > MAX_TICKADJ) {
 | |
| 			time_adjust -= MAX_TICKADJ;
 | |
| 			tick_length += MAX_TICKADJ_SCALED;
 | |
| 		} else if (time_adjust < -MAX_TICKADJ) {
 | |
| 			time_adjust += MAX_TICKADJ;
 | |
| 			tick_length -= MAX_TICKADJ_SCALED;
 | |
| 		} else {
 | |
| 			tick_length += (s64)(time_adjust * NSEC_PER_USEC /
 | |
| 					NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
 | |
| 			time_adjust = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return how long ticks are at the moment, that is, how much time
 | |
|  * update_wall_time_one_tick will add to xtime next time we call it
 | |
|  * (assuming no calls to do_adjtimex in the meantime).
 | |
|  * The return value is in fixed-point nanoseconds shifted by the
 | |
|  * specified number of bits to the right of the binary point.
 | |
|  * This function has no side-effects.
 | |
|  */
 | |
| u64 current_tick_length(void)
 | |
| {
 | |
| 	return tick_length;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_CMOS_UPDATE
 | |
| 
 | |
| /* Disable the cmos update - used by virtualization and embedded */
 | |
| int no_sync_cmos_clock  __read_mostly;
 | |
| 
 | |
| static void sync_cmos_clock(unsigned long dummy);
 | |
| 
 | |
| static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
 | |
| 
 | |
| static void sync_cmos_clock(unsigned long dummy)
 | |
| {
 | |
| 	struct timespec now, next;
 | |
| 	int fail = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have an externally synchronized Linux clock, then update
 | |
| 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
 | |
| 	 * called as close as possible to 500 ms before the new second starts.
 | |
| 	 * This code is run on a timer.  If the clock is set, that timer
 | |
| 	 * may not expire at the correct time.  Thus, we adjust...
 | |
| 	 */
 | |
| 	if (!ntp_synced())
 | |
| 		/*
 | |
| 		 * Not synced, exit, do not restart a timer (if one is
 | |
| 		 * running, let it run out).
 | |
| 		 */
 | |
| 		return;
 | |
| 
 | |
| 	getnstimeofday(&now);
 | |
| 	if (abs(xtime.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
 | |
| 		fail = update_persistent_clock(now);
 | |
| 
 | |
| 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec;
 | |
| 	if (next.tv_nsec <= 0)
 | |
| 		next.tv_nsec += NSEC_PER_SEC;
 | |
| 
 | |
| 	if (!fail)
 | |
| 		next.tv_sec = 659;
 | |
| 	else
 | |
| 		next.tv_sec = 0;
 | |
| 
 | |
| 	if (next.tv_nsec >= NSEC_PER_SEC) {
 | |
| 		next.tv_sec++;
 | |
| 		next.tv_nsec -= NSEC_PER_SEC;
 | |
| 	}
 | |
| 	mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
 | |
| }
 | |
| 
 | |
| static void notify_cmos_timer(void)
 | |
| {
 | |
| 	if (!no_sync_cmos_clock)
 | |
| 		mod_timer(&sync_cmos_timer, jiffies + 1);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void notify_cmos_timer(void) { }
 | |
| #endif
 | |
| 
 | |
| /* adjtimex mainly allows reading (and writing, if superuser) of
 | |
|  * kernel time-keeping variables. used by xntpd.
 | |
|  */
 | |
| int do_adjtimex(struct timex *txc)
 | |
| {
 | |
| 	long mtemp, save_adjust, rem;
 | |
| 	s64 freq_adj, temp64;
 | |
| 	int result;
 | |
| 
 | |
| 	/* In order to modify anything, you gotta be super-user! */
 | |
| 	if (txc->modes && !capable(CAP_SYS_TIME))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* Now we validate the data before disabling interrupts */
 | |
| 
 | |
| 	if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
 | |
| 	  /* singleshot must not be used with any other mode bits */
 | |
| 		if (txc->modes != ADJ_OFFSET_SINGLESHOT)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
 | |
| 	  /* adjustment Offset limited to +- .512 seconds */
 | |
| 		if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	/* if the quartz is off by more than 10% something is VERY wrong ! */
 | |
| 	if (txc->modes & ADJ_TICK)
 | |
| 		if (txc->tick <  900000/USER_HZ ||
 | |
| 		    txc->tick > 1100000/USER_HZ)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	write_seqlock_irq(&xtime_lock);
 | |
| 	result = time_state;	/* mostly `TIME_OK' */
 | |
| 
 | |
| 	/* Save for later - semantics of adjtime is to return old value */
 | |
| 	save_adjust = time_adjust;
 | |
| 
 | |
| #if 0	/* STA_CLOCKERR is never set yet */
 | |
| 	time_status &= ~STA_CLOCKERR;		/* reset STA_CLOCKERR */
 | |
| #endif
 | |
| 	/* If there are input parameters, then process them */
 | |
| 	if (txc->modes)
 | |
| 	{
 | |
| 	    if (txc->modes & ADJ_STATUS)	/* only set allowed bits */
 | |
| 		time_status =  (txc->status & ~STA_RONLY) |
 | |
| 			      (time_status & STA_RONLY);
 | |
| 
 | |
| 	    if (txc->modes & ADJ_FREQUENCY) {	/* p. 22 */
 | |
| 		if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
 | |
| 		    result = -EINVAL;
 | |
| 		    goto leave;
 | |
| 		}
 | |
| 		time_freq = ((s64)txc->freq * NSEC_PER_USEC)
 | |
| 				>> (SHIFT_USEC - SHIFT_NSEC);
 | |
| 	    }
 | |
| 
 | |
| 	    if (txc->modes & ADJ_MAXERROR) {
 | |
| 		if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
 | |
| 		    result = -EINVAL;
 | |
| 		    goto leave;
 | |
| 		}
 | |
| 		time_maxerror = txc->maxerror;
 | |
| 	    }
 | |
| 
 | |
| 	    if (txc->modes & ADJ_ESTERROR) {
 | |
| 		if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
 | |
| 		    result = -EINVAL;
 | |
| 		    goto leave;
 | |
| 		}
 | |
| 		time_esterror = txc->esterror;
 | |
| 	    }
 | |
| 
 | |
| 	    if (txc->modes & ADJ_TIMECONST) {	/* p. 24 */
 | |
| 		if (txc->constant < 0) {	/* NTP v4 uses values > 6 */
 | |
| 		    result = -EINVAL;
 | |
| 		    goto leave;
 | |
| 		}
 | |
| 		time_constant = min(txc->constant + 4, (long)MAXTC);
 | |
| 	    }
 | |
| 
 | |
| 	    if (txc->modes & ADJ_OFFSET) {	/* values checked earlier */
 | |
| 		if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
 | |
| 		    /* adjtime() is independent from ntp_adjtime() */
 | |
| 		    time_adjust = txc->offset;
 | |
| 		}
 | |
| 		else if (time_status & STA_PLL) {
 | |
| 		    time_offset = txc->offset * NSEC_PER_USEC;
 | |
| 
 | |
| 		    /*
 | |
| 		     * Scale the phase adjustment and
 | |
| 		     * clamp to the operating range.
 | |
| 		     */
 | |
| 		    time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
 | |
| 		    time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
 | |
| 
 | |
| 		    /*
 | |
| 		     * Select whether the frequency is to be controlled
 | |
| 		     * and in which mode (PLL or FLL). Clamp to the operating
 | |
| 		     * range. Ugly multiply/divide should be replaced someday.
 | |
| 		     */
 | |
| 
 | |
| 		    if (time_status & STA_FREQHOLD || time_reftime == 0)
 | |
| 		        time_reftime = xtime.tv_sec;
 | |
| 		    mtemp = xtime.tv_sec - time_reftime;
 | |
| 		    time_reftime = xtime.tv_sec;
 | |
| 
 | |
| 		    freq_adj = time_offset * mtemp;
 | |
| 		    freq_adj = shift_right(freq_adj, time_constant * 2 +
 | |
| 					   (SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
 | |
| 		    if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
 | |
| 			temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL);
 | |
| 			if (time_offset < 0) {
 | |
| 			    temp64 = -temp64;
 | |
| 			    do_div(temp64, mtemp);
 | |
| 			    freq_adj -= temp64;
 | |
| 			} else {
 | |
| 			    do_div(temp64, mtemp);
 | |
| 			    freq_adj += temp64;
 | |
| 			}
 | |
| 		    }
 | |
| 		    freq_adj += time_freq;
 | |
| 		    freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
 | |
| 		    time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
 | |
| 		    time_offset = div_long_long_rem_signed(time_offset,
 | |
| 							   NTP_INTERVAL_FREQ,
 | |
| 							   &rem);
 | |
| 		    time_offset <<= SHIFT_UPDATE;
 | |
| 		} /* STA_PLL */
 | |
| 	    } /* txc->modes & ADJ_OFFSET */
 | |
| 	    if (txc->modes & ADJ_TICK)
 | |
| 		tick_usec = txc->tick;
 | |
| 
 | |
| 	    if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 | |
| 		    ntp_update_frequency();
 | |
| 	} /* txc->modes */
 | |
| leave:	if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
 | |
| 		result = TIME_ERROR;
 | |
| 
 | |
| 	if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
 | |
| 		txc->offset = save_adjust;
 | |
| 	else
 | |
| 		txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
 | |
| 	    			NTP_INTERVAL_FREQ / 1000;
 | |
| 	txc->freq	   = (time_freq / NSEC_PER_USEC) <<
 | |
| 				(SHIFT_USEC - SHIFT_NSEC);
 | |
| 	txc->maxerror	   = time_maxerror;
 | |
| 	txc->esterror	   = time_esterror;
 | |
| 	txc->status	   = time_status;
 | |
| 	txc->constant	   = time_constant;
 | |
| 	txc->precision	   = 1;
 | |
| 	txc->tolerance	   = MAXFREQ;
 | |
| 	txc->tick	   = tick_usec;
 | |
| 
 | |
| 	/* PPS is not implemented, so these are zero */
 | |
| 	txc->ppsfreq	   = 0;
 | |
| 	txc->jitter	   = 0;
 | |
| 	txc->shift	   = 0;
 | |
| 	txc->stabil	   = 0;
 | |
| 	txc->jitcnt	   = 0;
 | |
| 	txc->calcnt	   = 0;
 | |
| 	txc->errcnt	   = 0;
 | |
| 	txc->stbcnt	   = 0;
 | |
| 	write_sequnlock_irq(&xtime_lock);
 | |
| 	do_gettimeofday(&txc->time);
 | |
| 	notify_cmos_timer();
 | |
| 	return(result);
 | |
| }
 |