linux/fs/bcachefs/alloc_background.c
Kent Overstreet bf5a261c7a bcachefs: Assorted fixes for clang
clang had a few more warnings about enum conversion, and also didn't
like the opts.c initializer.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:10:09 -04:00

2180 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "backpointers.h"
#include "btree_cache.h"
#include "btree_io.h"
#include "btree_key_cache.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_gc.h"
#include "btree_write_buffer.h"
#include "buckets.h"
#include "buckets_waiting_for_journal.h"
#include "clock.h"
#include "debug.h"
#include "ec.h"
#include "error.h"
#include "lru.h"
#include "recovery.h"
#include "trace.h"
#include "varint.h"
#include <linux/kthread.h>
#include <linux/math64.h>
#include <linux/random.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <linux/sched/task.h>
#include <linux/sort.h>
/* Persistent alloc info: */
static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = {
#define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8,
BCH_ALLOC_FIELDS_V1()
#undef x
};
struct bkey_alloc_unpacked {
u64 journal_seq;
u8 gen;
u8 oldest_gen;
u8 data_type;
bool need_discard:1;
bool need_inc_gen:1;
#define x(_name, _bits) u##_bits _name;
BCH_ALLOC_FIELDS_V2()
#undef x
};
static inline u64 alloc_field_v1_get(const struct bch_alloc *a,
const void **p, unsigned field)
{
unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
u64 v;
if (!(a->fields & (1 << field)))
return 0;
switch (bytes) {
case 1:
v = *((const u8 *) *p);
break;
case 2:
v = le16_to_cpup(*p);
break;
case 4:
v = le32_to_cpup(*p);
break;
case 8:
v = le64_to_cpup(*p);
break;
default:
BUG();
}
*p += bytes;
return v;
}
static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out,
struct bkey_s_c k)
{
const struct bch_alloc *in = bkey_s_c_to_alloc(k).v;
const void *d = in->data;
unsigned idx = 0;
out->gen = in->gen;
#define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++);
BCH_ALLOC_FIELDS_V1()
#undef x
}
static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out,
struct bkey_s_c k)
{
struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k);
const u8 *in = a.v->data;
const u8 *end = bkey_val_end(a);
unsigned fieldnr = 0;
int ret;
u64 v;
out->gen = a.v->gen;
out->oldest_gen = a.v->oldest_gen;
out->data_type = a.v->data_type;
#define x(_name, _bits) \
if (fieldnr < a.v->nr_fields) { \
ret = bch2_varint_decode_fast(in, end, &v); \
if (ret < 0) \
return ret; \
in += ret; \
} else { \
v = 0; \
} \
out->_name = v; \
if (v != out->_name) \
return -1; \
fieldnr++;
BCH_ALLOC_FIELDS_V2()
#undef x
return 0;
}
static int bch2_alloc_unpack_v3(struct bkey_alloc_unpacked *out,
struct bkey_s_c k)
{
struct bkey_s_c_alloc_v3 a = bkey_s_c_to_alloc_v3(k);
const u8 *in = a.v->data;
const u8 *end = bkey_val_end(a);
unsigned fieldnr = 0;
int ret;
u64 v;
out->gen = a.v->gen;
out->oldest_gen = a.v->oldest_gen;
out->data_type = a.v->data_type;
out->need_discard = BCH_ALLOC_V3_NEED_DISCARD(a.v);
out->need_inc_gen = BCH_ALLOC_V3_NEED_INC_GEN(a.v);
out->journal_seq = le64_to_cpu(a.v->journal_seq);
#define x(_name, _bits) \
if (fieldnr < a.v->nr_fields) { \
ret = bch2_varint_decode_fast(in, end, &v); \
if (ret < 0) \
return ret; \
in += ret; \
} else { \
v = 0; \
} \
out->_name = v; \
if (v != out->_name) \
return -1; \
fieldnr++;
BCH_ALLOC_FIELDS_V2()
#undef x
return 0;
}
static struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k)
{
struct bkey_alloc_unpacked ret = { .gen = 0 };
switch (k.k->type) {
case KEY_TYPE_alloc:
bch2_alloc_unpack_v1(&ret, k);
break;
case KEY_TYPE_alloc_v2:
bch2_alloc_unpack_v2(&ret, k);
break;
case KEY_TYPE_alloc_v3:
bch2_alloc_unpack_v3(&ret, k);
break;
}
return ret;
}
static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a)
{
unsigned i, bytes = offsetof(struct bch_alloc, data);
for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++)
if (a->fields & (1 << i))
bytes += BCH_ALLOC_V1_FIELD_BYTES[i];
return DIV_ROUND_UP(bytes, sizeof(u64));
}
int bch2_alloc_v1_invalid(const struct bch_fs *c, struct bkey_s_c k,
enum bkey_invalid_flags flags,
struct printbuf *err)
{
struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
/* allow for unknown fields */
if (bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v)) {
prt_printf(err, "incorrect value size (%zu < %u)",
bkey_val_u64s(a.k), bch_alloc_v1_val_u64s(a.v));
return -BCH_ERR_invalid_bkey;
}
return 0;
}
int bch2_alloc_v2_invalid(const struct bch_fs *c, struct bkey_s_c k,
enum bkey_invalid_flags flags,
struct printbuf *err)
{
struct bkey_alloc_unpacked u;
if (bch2_alloc_unpack_v2(&u, k)) {
prt_printf(err, "unpack error");
return -BCH_ERR_invalid_bkey;
}
return 0;
}
int bch2_alloc_v3_invalid(const struct bch_fs *c, struct bkey_s_c k,
enum bkey_invalid_flags flags,
struct printbuf *err)
{
struct bkey_alloc_unpacked u;
if (bch2_alloc_unpack_v3(&u, k)) {
prt_printf(err, "unpack error");
return -BCH_ERR_invalid_bkey;
}
return 0;
}
int bch2_alloc_v4_invalid(const struct bch_fs *c, struct bkey_s_c k,
enum bkey_invalid_flags flags, struct printbuf *err)
{
struct bkey_s_c_alloc_v4 a = bkey_s_c_to_alloc_v4(k);
int rw = flags & WRITE;
if (alloc_v4_u64s(a.v) > bkey_val_u64s(k.k)) {
prt_printf(err, "bad val size (%u > %lu)",
alloc_v4_u64s(a.v), bkey_val_u64s(k.k));
return -BCH_ERR_invalid_bkey;
}
if (!BCH_ALLOC_V4_BACKPOINTERS_START(a.v) &&
BCH_ALLOC_V4_NR_BACKPOINTERS(a.v)) {
prt_printf(err, "invalid backpointers_start");
return -BCH_ERR_invalid_bkey;
}
if (rw == WRITE &&
!(flags & BKEY_INVALID_JOURNAL) &&
c->curr_recovery_pass > BCH_RECOVERY_PASS_check_btree_backpointers) {
unsigned i, bp_len = 0;
for (i = 0; i < BCH_ALLOC_V4_NR_BACKPOINTERS(a.v); i++)
bp_len += alloc_v4_backpointers_c(a.v)[i].bucket_len;
if (bp_len > a.v->dirty_sectors) {
prt_printf(err, "too many backpointers");
return -BCH_ERR_invalid_bkey;
}
}
if (rw == WRITE) {
if (alloc_data_type(*a.v, a.v->data_type) != a.v->data_type) {
prt_printf(err, "invalid data type (got %u should be %u)",
a.v->data_type, alloc_data_type(*a.v, a.v->data_type));
return -BCH_ERR_invalid_bkey;
}
switch (a.v->data_type) {
case BCH_DATA_free:
case BCH_DATA_need_gc_gens:
case BCH_DATA_need_discard:
if (a.v->dirty_sectors ||
a.v->cached_sectors ||
a.v->stripe) {
prt_printf(err, "empty data type free but have data");
return -BCH_ERR_invalid_bkey;
}
break;
case BCH_DATA_sb:
case BCH_DATA_journal:
case BCH_DATA_btree:
case BCH_DATA_user:
case BCH_DATA_parity:
if (!a.v->dirty_sectors) {
prt_printf(err, "data_type %s but dirty_sectors==0",
bch2_data_types[a.v->data_type]);
return -BCH_ERR_invalid_bkey;
}
break;
case BCH_DATA_cached:
if (!a.v->cached_sectors ||
a.v->dirty_sectors ||
a.v->stripe) {
prt_printf(err, "data type inconsistency");
return -BCH_ERR_invalid_bkey;
}
if (!a.v->io_time[READ] &&
c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_to_lru_refs) {
prt_printf(err, "cached bucket with read_time == 0");
return -BCH_ERR_invalid_bkey;
}
break;
case BCH_DATA_stripe:
if (!a.v->stripe) {
prt_printf(err, "data_type %s but stripe==0",
bch2_data_types[a.v->data_type]);
return -BCH_ERR_invalid_bkey;
}
break;
}
}
return 0;
}
static inline u64 swab40(u64 x)
{
return (((x & 0x00000000ffULL) << 32)|
((x & 0x000000ff00ULL) << 16)|
((x & 0x0000ff0000ULL) >> 0)|
((x & 0x00ff000000ULL) >> 16)|
((x & 0xff00000000ULL) >> 32));
}
void bch2_alloc_v4_swab(struct bkey_s k)
{
struct bch_alloc_v4 *a = bkey_s_to_alloc_v4(k).v;
struct bch_backpointer *bp, *bps;
a->journal_seq = swab64(a->journal_seq);
a->flags = swab32(a->flags);
a->dirty_sectors = swab32(a->dirty_sectors);
a->cached_sectors = swab32(a->cached_sectors);
a->io_time[0] = swab64(a->io_time[0]);
a->io_time[1] = swab64(a->io_time[1]);
a->stripe = swab32(a->stripe);
a->nr_external_backpointers = swab32(a->nr_external_backpointers);
bps = alloc_v4_backpointers(a);
for (bp = bps; bp < bps + BCH_ALLOC_V4_NR_BACKPOINTERS(a); bp++) {
bp->bucket_offset = swab40(bp->bucket_offset);
bp->bucket_len = swab32(bp->bucket_len);
bch2_bpos_swab(&bp->pos);
}
}
void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
{
struct bch_alloc_v4 _a;
const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &_a);
unsigned i;
prt_newline(out);
printbuf_indent_add(out, 2);
prt_printf(out, "gen %u oldest_gen %u data_type %s",
a->gen, a->oldest_gen,
a->data_type < BCH_DATA_NR
? bch2_data_types[a->data_type]
: "(invalid data type)");
prt_newline(out);
prt_printf(out, "journal_seq %llu", a->journal_seq);
prt_newline(out);
prt_printf(out, "need_discard %llu", BCH_ALLOC_V4_NEED_DISCARD(a));
prt_newline(out);
prt_printf(out, "need_inc_gen %llu", BCH_ALLOC_V4_NEED_INC_GEN(a));
prt_newline(out);
prt_printf(out, "dirty_sectors %u", a->dirty_sectors);
prt_newline(out);
prt_printf(out, "cached_sectors %u", a->cached_sectors);
prt_newline(out);
prt_printf(out, "stripe %u", a->stripe);
prt_newline(out);
prt_printf(out, "stripe_redundancy %u", a->stripe_redundancy);
prt_newline(out);
prt_printf(out, "io_time[READ] %llu", a->io_time[READ]);
prt_newline(out);
prt_printf(out, "io_time[WRITE] %llu", a->io_time[WRITE]);
prt_newline(out);
prt_printf(out, "fragmentation %llu", a->fragmentation_lru);
prt_newline(out);
prt_printf(out, "bp_start %llu", BCH_ALLOC_V4_BACKPOINTERS_START(a));
prt_newline(out);
if (BCH_ALLOC_V4_NR_BACKPOINTERS(a)) {
struct bkey_s_c_alloc_v4 a_raw = bkey_s_c_to_alloc_v4(k);
const struct bch_backpointer *bps = alloc_v4_backpointers_c(a_raw.v);
prt_printf(out, "backpointers: %llu", BCH_ALLOC_V4_NR_BACKPOINTERS(a_raw.v));
printbuf_indent_add(out, 2);
for (i = 0; i < BCH_ALLOC_V4_NR_BACKPOINTERS(a_raw.v); i++) {
prt_newline(out);
bch2_backpointer_to_text(out, &bps[i]);
}
printbuf_indent_sub(out, 2);
}
printbuf_indent_sub(out, 2);
}
void __bch2_alloc_to_v4(struct bkey_s_c k, struct bch_alloc_v4 *out)
{
if (k.k->type == KEY_TYPE_alloc_v4) {
void *src, *dst;
*out = *bkey_s_c_to_alloc_v4(k).v;
src = alloc_v4_backpointers(out);
SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s);
dst = alloc_v4_backpointers(out);
if (src < dst)
memset(src, 0, dst - src);
SET_BCH_ALLOC_V4_NR_BACKPOINTERS(out, 0);
} else {
struct bkey_alloc_unpacked u = bch2_alloc_unpack(k);
*out = (struct bch_alloc_v4) {
.journal_seq = u.journal_seq,
.flags = u.need_discard,
.gen = u.gen,
.oldest_gen = u.oldest_gen,
.data_type = u.data_type,
.stripe_redundancy = u.stripe_redundancy,
.dirty_sectors = u.dirty_sectors,
.cached_sectors = u.cached_sectors,
.io_time[READ] = u.read_time,
.io_time[WRITE] = u.write_time,
.stripe = u.stripe,
};
SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s);
}
}
static noinline struct bkey_i_alloc_v4 *
__bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k)
{
struct bkey_i_alloc_v4 *ret;
ret = bch2_trans_kmalloc(trans, max(bkey_bytes(k.k), sizeof(struct bkey_i_alloc_v4)));
if (IS_ERR(ret))
return ret;
if (k.k->type == KEY_TYPE_alloc_v4) {
void *src, *dst;
bkey_reassemble(&ret->k_i, k);
src = alloc_v4_backpointers(&ret->v);
SET_BCH_ALLOC_V4_BACKPOINTERS_START(&ret->v, BCH_ALLOC_V4_U64s);
dst = alloc_v4_backpointers(&ret->v);
if (src < dst)
memset(src, 0, dst - src);
SET_BCH_ALLOC_V4_NR_BACKPOINTERS(&ret->v, 0);
set_alloc_v4_u64s(ret);
} else {
bkey_alloc_v4_init(&ret->k_i);
ret->k.p = k.k->p;
bch2_alloc_to_v4(k, &ret->v);
}
return ret;
}
static inline struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut_inlined(struct btree_trans *trans, struct bkey_s_c k)
{
struct bkey_s_c_alloc_v4 a;
if (likely(k.k->type == KEY_TYPE_alloc_v4) &&
((a = bkey_s_c_to_alloc_v4(k), true) &&
BCH_ALLOC_V4_NR_BACKPOINTERS(a.v) == 0))
return bch2_bkey_make_mut_noupdate_typed(trans, k, alloc_v4);
return __bch2_alloc_to_v4_mut(trans, k);
}
struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k)
{
return bch2_alloc_to_v4_mut_inlined(trans, k);
}
struct bkey_i_alloc_v4 *
bch2_trans_start_alloc_update(struct btree_trans *trans, struct btree_iter *iter,
struct bpos pos)
{
struct bkey_s_c k;
struct bkey_i_alloc_v4 *a;
int ret;
k = bch2_bkey_get_iter(trans, iter, BTREE_ID_alloc, pos,
BTREE_ITER_WITH_UPDATES|
BTREE_ITER_CACHED|
BTREE_ITER_INTENT);
ret = bkey_err(k);
if (unlikely(ret))
return ERR_PTR(ret);
a = bch2_alloc_to_v4_mut_inlined(trans, k);
ret = PTR_ERR_OR_ZERO(a);
if (unlikely(ret))
goto err;
return a;
err:
bch2_trans_iter_exit(trans, iter);
return ERR_PTR(ret);
}
static struct bpos alloc_gens_pos(struct bpos pos, unsigned *offset)
{
*offset = pos.offset & KEY_TYPE_BUCKET_GENS_MASK;
pos.offset >>= KEY_TYPE_BUCKET_GENS_BITS;
return pos;
}
static struct bpos bucket_gens_pos_to_alloc(struct bpos pos, unsigned offset)
{
pos.offset <<= KEY_TYPE_BUCKET_GENS_BITS;
pos.offset += offset;
return pos;
}
static unsigned alloc_gen(struct bkey_s_c k, unsigned offset)
{
return k.k->type == KEY_TYPE_bucket_gens
? bkey_s_c_to_bucket_gens(k).v->gens[offset]
: 0;
}
int bch2_bucket_gens_invalid(const struct bch_fs *c, struct bkey_s_c k,
enum bkey_invalid_flags flags,
struct printbuf *err)
{
if (bkey_val_bytes(k.k) != sizeof(struct bch_bucket_gens)) {
prt_printf(err, "bad val size (%lu != %zu)",
bkey_val_bytes(k.k), sizeof(struct bch_bucket_gens));
return -BCH_ERR_invalid_bkey;
}
return 0;
}
void bch2_bucket_gens_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
{
struct bkey_s_c_bucket_gens g = bkey_s_c_to_bucket_gens(k);
unsigned i;
for (i = 0; i < ARRAY_SIZE(g.v->gens); i++) {
if (i)
prt_char(out, ' ');
prt_printf(out, "%u", g.v->gens[i]);
}
}
int bch2_bucket_gens_init(struct bch_fs *c)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bch_alloc_v4 a;
struct bkey_i_bucket_gens g;
bool have_bucket_gens_key = false;
unsigned offset;
struct bpos pos;
u8 gen;
int ret;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_PREFETCH, k, ret) {
/*
* Not a fsck error because this is checked/repaired by
* bch2_check_alloc_key() which runs later:
*/
if (!bch2_dev_bucket_exists(c, k.k->p))
continue;
gen = bch2_alloc_to_v4(k, &a)->gen;
pos = alloc_gens_pos(iter.pos, &offset);
if (have_bucket_gens_key && bkey_cmp(iter.pos, pos)) {
ret = commit_do(&trans, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_LAZY_RW,
__bch2_btree_insert(&trans, BTREE_ID_bucket_gens, &g.k_i, 0));
if (ret)
break;
have_bucket_gens_key = false;
}
if (!have_bucket_gens_key) {
bkey_bucket_gens_init(&g.k_i);
g.k.p = pos;
have_bucket_gens_key = true;
}
g.v.gens[offset] = gen;
}
bch2_trans_iter_exit(&trans, &iter);
if (have_bucket_gens_key && !ret)
ret = commit_do(&trans, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_LAZY_RW,
__bch2_btree_insert(&trans, BTREE_ID_bucket_gens, &g.k_i, 0));
bch2_trans_exit(&trans);
if (ret)
bch_err_fn(c, ret);
return ret;
}
int bch2_alloc_read(struct bch_fs *c)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bch_dev *ca;
int ret;
down_read(&c->gc_lock);
bch2_trans_init(&trans, c, 0, 0);
if (c->sb.version_upgrade_complete >= bcachefs_metadata_version_bucket_gens) {
const struct bch_bucket_gens *g;
u64 b;
for_each_btree_key(&trans, iter, BTREE_ID_bucket_gens, POS_MIN,
BTREE_ITER_PREFETCH, k, ret) {
u64 start = bucket_gens_pos_to_alloc(k.k->p, 0).offset;
u64 end = bucket_gens_pos_to_alloc(bpos_nosnap_successor(k.k->p), 0).offset;
if (k.k->type != KEY_TYPE_bucket_gens)
continue;
g = bkey_s_c_to_bucket_gens(k).v;
/*
* Not a fsck error because this is checked/repaired by
* bch2_check_alloc_key() which runs later:
*/
if (!bch2_dev_exists2(c, k.k->p.inode))
continue;
ca = bch_dev_bkey_exists(c, k.k->p.inode);
for (b = max_t(u64, ca->mi.first_bucket, start);
b < min_t(u64, ca->mi.nbuckets, end);
b++)
*bucket_gen(ca, b) = g->gens[b & KEY_TYPE_BUCKET_GENS_MASK];
}
bch2_trans_iter_exit(&trans, &iter);
} else {
struct bch_alloc_v4 a;
for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_PREFETCH, k, ret) {
/*
* Not a fsck error because this is checked/repaired by
* bch2_check_alloc_key() which runs later:
*/
if (!bch2_dev_bucket_exists(c, k.k->p))
continue;
ca = bch_dev_bkey_exists(c, k.k->p.inode);
*bucket_gen(ca, k.k->p.offset) = bch2_alloc_to_v4(k, &a)->gen;
}
bch2_trans_iter_exit(&trans, &iter);
}
bch2_trans_exit(&trans);
up_read(&c->gc_lock);
if (ret)
bch_err_fn(c, ret);
return ret;
}
/* Free space/discard btree: */
static int bch2_bucket_do_index(struct btree_trans *trans,
struct bkey_s_c alloc_k,
const struct bch_alloc_v4 *a,
bool set)
{
struct bch_fs *c = trans->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, alloc_k.k->p.inode);
struct btree_iter iter;
struct bkey_s_c old;
struct bkey_i *k;
enum btree_id btree;
enum bch_bkey_type old_type = !set ? KEY_TYPE_set : KEY_TYPE_deleted;
enum bch_bkey_type new_type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
struct printbuf buf = PRINTBUF;
int ret;
if (a->data_type != BCH_DATA_free &&
a->data_type != BCH_DATA_need_discard)
return 0;
k = bch2_trans_kmalloc_nomemzero(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.type = new_type;
switch (a->data_type) {
case BCH_DATA_free:
btree = BTREE_ID_freespace;
k->k.p = alloc_freespace_pos(alloc_k.k->p, *a);
bch2_key_resize(&k->k, 1);
break;
case BCH_DATA_need_discard:
btree = BTREE_ID_need_discard;
k->k.p = alloc_k.k->p;
break;
default:
return 0;
}
old = bch2_bkey_get_iter(trans, &iter, btree,
bkey_start_pos(&k->k),
BTREE_ITER_INTENT);
ret = bkey_err(old);
if (ret)
return ret;
if (ca->mi.freespace_initialized &&
c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_info &&
bch2_trans_inconsistent_on(old.k->type != old_type, trans,
"incorrect key when %s %s:%llu:%llu:0 (got %s should be %s)\n"
" for %s",
set ? "setting" : "clearing",
bch2_btree_ids[btree],
iter.pos.inode,
iter.pos.offset,
bch2_bkey_types[old.k->type],
bch2_bkey_types[old_type],
(bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) {
ret = -EIO;
goto err;
}
ret = bch2_trans_update(trans, &iter, k, 0);
err:
bch2_trans_iter_exit(trans, &iter);
printbuf_exit(&buf);
return ret;
}
static noinline int bch2_bucket_gen_update(struct btree_trans *trans,
struct bpos bucket, u8 gen)
{
struct btree_iter iter;
unsigned offset;
struct bpos pos = alloc_gens_pos(bucket, &offset);
struct bkey_i_bucket_gens *g;
struct bkey_s_c k;
int ret;
g = bch2_trans_kmalloc(trans, sizeof(*g));
ret = PTR_ERR_OR_ZERO(g);
if (ret)
return ret;
k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_bucket_gens, pos,
BTREE_ITER_INTENT|
BTREE_ITER_WITH_UPDATES);
ret = bkey_err(k);
if (ret)
return ret;
if (k.k->type != KEY_TYPE_bucket_gens) {
bkey_bucket_gens_init(&g->k_i);
g->k.p = iter.pos;
} else {
bkey_reassemble(&g->k_i, k);
}
g->v.gens[offset] = gen;
ret = bch2_trans_update(trans, &iter, &g->k_i, 0);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int bch2_trans_mark_alloc(struct btree_trans *trans,
enum btree_id btree_id, unsigned level,
struct bkey_s_c old, struct bkey_i *new,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct bch_alloc_v4 old_a_convert, *new_a;
const struct bch_alloc_v4 *old_a;
u64 old_lru, new_lru;
int ret = 0;
/*
* Deletion only happens in the device removal path, with
* BTREE_TRIGGER_NORUN:
*/
BUG_ON(new->k.type != KEY_TYPE_alloc_v4);
old_a = bch2_alloc_to_v4(old, &old_a_convert);
new_a = &bkey_i_to_alloc_v4(new)->v;
new_a->data_type = alloc_data_type(*new_a, new_a->data_type);
if (new_a->dirty_sectors > old_a->dirty_sectors ||
new_a->cached_sectors > old_a->cached_sectors) {
new_a->io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now));
new_a->io_time[WRITE]= max_t(u64, 1, atomic64_read(&c->io_clock[WRITE].now));
SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, true);
SET_BCH_ALLOC_V4_NEED_DISCARD(new_a, true);
}
if (data_type_is_empty(new_a->data_type) &&
BCH_ALLOC_V4_NEED_INC_GEN(new_a) &&
!bch2_bucket_is_open_safe(c, new->k.p.inode, new->k.p.offset)) {
new_a->gen++;
SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, false);
}
if (old_a->data_type != new_a->data_type ||
(new_a->data_type == BCH_DATA_free &&
alloc_freespace_genbits(*old_a) != alloc_freespace_genbits(*new_a))) {
ret = bch2_bucket_do_index(trans, old, old_a, false) ?:
bch2_bucket_do_index(trans, bkey_i_to_s_c(new), new_a, true);
if (ret)
return ret;
}
if (new_a->data_type == BCH_DATA_cached &&
!new_a->io_time[READ])
new_a->io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now));
old_lru = alloc_lru_idx_read(*old_a);
new_lru = alloc_lru_idx_read(*new_a);
if (old_lru != new_lru) {
ret = bch2_lru_change(trans, new->k.p.inode,
bucket_to_u64(new->k.p),
old_lru, new_lru);
if (ret)
return ret;
}
new_a->fragmentation_lru = alloc_lru_idx_fragmentation(*new_a,
bch_dev_bkey_exists(c, new->k.p.inode));
if (old_a->fragmentation_lru != new_a->fragmentation_lru) {
ret = bch2_lru_change(trans,
BCH_LRU_FRAGMENTATION_START,
bucket_to_u64(new->k.p),
old_a->fragmentation_lru, new_a->fragmentation_lru);
if (ret)
return ret;
}
if (old_a->gen != new_a->gen) {
ret = bch2_bucket_gen_update(trans, new->k.p, new_a->gen);
if (ret)
return ret;
}
return 0;
}
/*
* This synthesizes deleted extents for holes, similar to BTREE_ITER_SLOTS for
* extents style btrees, but works on non-extents btrees:
*/
static struct bkey_s_c bch2_get_key_or_hole(struct btree_iter *iter, struct bpos end, struct bkey *hole)
{
struct bkey_s_c k = bch2_btree_iter_peek_slot(iter);
if (bkey_err(k))
return k;
if (k.k->type) {
return k;
} else {
struct btree_iter iter2;
struct bpos next;
bch2_trans_copy_iter(&iter2, iter);
if (!bpos_eq(iter->path->l[0].b->key.k.p, SPOS_MAX))
end = bkey_min(end, bpos_nosnap_successor(iter->path->l[0].b->key.k.p));
end = bkey_min(end, POS(iter->pos.inode, iter->pos.offset + U32_MAX - 1));
/*
* btree node min/max is a closed interval, upto takes a half
* open interval:
*/
k = bch2_btree_iter_peek_upto(&iter2, end);
next = iter2.pos;
bch2_trans_iter_exit(iter->trans, &iter2);
BUG_ON(next.offset >= iter->pos.offset + U32_MAX);
if (bkey_err(k))
return k;
bkey_init(hole);
hole->p = iter->pos;
bch2_key_resize(hole, next.offset - iter->pos.offset);
return (struct bkey_s_c) { hole, NULL };
}
}
static bool next_bucket(struct bch_fs *c, struct bpos *bucket)
{
struct bch_dev *ca;
unsigned iter;
if (bch2_dev_bucket_exists(c, *bucket))
return true;
if (bch2_dev_exists2(c, bucket->inode)) {
ca = bch_dev_bkey_exists(c, bucket->inode);
if (bucket->offset < ca->mi.first_bucket) {
bucket->offset = ca->mi.first_bucket;
return true;
}
bucket->inode++;
bucket->offset = 0;
}
rcu_read_lock();
iter = bucket->inode;
ca = __bch2_next_dev(c, &iter, NULL);
if (ca)
*bucket = POS(ca->dev_idx, ca->mi.first_bucket);
rcu_read_unlock();
return ca != NULL;
}
static struct bkey_s_c bch2_get_key_or_real_bucket_hole(struct btree_iter *iter, struct bkey *hole)
{
struct bch_fs *c = iter->trans->c;
struct bkey_s_c k;
again:
k = bch2_get_key_or_hole(iter, POS_MAX, hole);
if (bkey_err(k))
return k;
if (!k.k->type) {
struct bpos bucket = bkey_start_pos(k.k);
if (!bch2_dev_bucket_exists(c, bucket)) {
if (!next_bucket(c, &bucket))
return bkey_s_c_null;
bch2_btree_iter_set_pos(iter, bucket);
goto again;
}
if (!bch2_dev_bucket_exists(c, k.k->p)) {
struct bch_dev *ca = bch_dev_bkey_exists(c, bucket.inode);
bch2_key_resize(hole, ca->mi.nbuckets - bucket.offset);
}
}
return k;
}
static noinline_for_stack
int bch2_check_alloc_key(struct btree_trans *trans,
struct bkey_s_c alloc_k,
struct btree_iter *alloc_iter,
struct btree_iter *discard_iter,
struct btree_iter *freespace_iter,
struct btree_iter *bucket_gens_iter)
{
struct bch_fs *c = trans->c;
struct bch_dev *ca;
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a;
unsigned discard_key_type, freespace_key_type;
unsigned gens_offset;
struct bkey_s_c k;
struct printbuf buf = PRINTBUF;
int ret;
if (fsck_err_on(!bch2_dev_bucket_exists(c, alloc_k.k->p), c,
"alloc key for invalid device:bucket %llu:%llu",
alloc_k.k->p.inode, alloc_k.k->p.offset))
return bch2_btree_delete_at(trans, alloc_iter, 0);
ca = bch_dev_bkey_exists(c, alloc_k.k->p.inode);
if (!ca->mi.freespace_initialized)
return 0;
a = bch2_alloc_to_v4(alloc_k, &a_convert);
discard_key_type = a->data_type == BCH_DATA_need_discard ? KEY_TYPE_set : 0;
bch2_btree_iter_set_pos(discard_iter, alloc_k.k->p);
k = bch2_btree_iter_peek_slot(discard_iter);
ret = bkey_err(k);
if (ret)
goto err;
if (k.k->type != discard_key_type &&
(c->opts.reconstruct_alloc ||
fsck_err(c, "incorrect key in need_discard btree (got %s should be %s)\n"
" %s",
bch2_bkey_types[k.k->type],
bch2_bkey_types[discard_key_type],
(bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)))) {
struct bkey_i *update =
bch2_trans_kmalloc(trans, sizeof(*update));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
goto err;
bkey_init(&update->k);
update->k.type = discard_key_type;
update->k.p = discard_iter->pos;
ret = bch2_trans_update(trans, discard_iter, update, 0);
if (ret)
goto err;
}
freespace_key_type = a->data_type == BCH_DATA_free ? KEY_TYPE_set : 0;
bch2_btree_iter_set_pos(freespace_iter, alloc_freespace_pos(alloc_k.k->p, *a));
k = bch2_btree_iter_peek_slot(freespace_iter);
ret = bkey_err(k);
if (ret)
goto err;
if (k.k->type != freespace_key_type &&
(c->opts.reconstruct_alloc ||
fsck_err(c, "incorrect key in freespace btree (got %s should be %s)\n"
" %s",
bch2_bkey_types[k.k->type],
bch2_bkey_types[freespace_key_type],
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)))) {
struct bkey_i *update =
bch2_trans_kmalloc(trans, sizeof(*update));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
goto err;
bkey_init(&update->k);
update->k.type = freespace_key_type;
update->k.p = freespace_iter->pos;
bch2_key_resize(&update->k, 1);
ret = bch2_trans_update(trans, freespace_iter, update, 0);
if (ret)
goto err;
}
bch2_btree_iter_set_pos(bucket_gens_iter, alloc_gens_pos(alloc_k.k->p, &gens_offset));
k = bch2_btree_iter_peek_slot(bucket_gens_iter);
ret = bkey_err(k);
if (ret)
goto err;
if (a->gen != alloc_gen(k, gens_offset) &&
(c->opts.reconstruct_alloc ||
fsck_err(c, "incorrect gen in bucket_gens btree (got %u should be %u)\n"
" %s",
alloc_gen(k, gens_offset), a->gen,
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)))) {
struct bkey_i_bucket_gens *g =
bch2_trans_kmalloc(trans, sizeof(*g));
ret = PTR_ERR_OR_ZERO(g);
if (ret)
goto err;
if (k.k->type == KEY_TYPE_bucket_gens) {
bkey_reassemble(&g->k_i, k);
} else {
bkey_bucket_gens_init(&g->k_i);
g->k.p = alloc_gens_pos(alloc_k.k->p, &gens_offset);
}
g->v.gens[gens_offset] = a->gen;
ret = bch2_trans_update(trans, bucket_gens_iter, &g->k_i, 0);
if (ret)
goto err;
}
err:
fsck_err:
printbuf_exit(&buf);
return ret;
}
static noinline_for_stack
int bch2_check_alloc_hole_freespace(struct btree_trans *trans,
struct bpos start,
struct bpos *end,
struct btree_iter *freespace_iter)
{
struct bch_fs *c = trans->c;
struct bch_dev *ca;
struct bkey_s_c k;
struct printbuf buf = PRINTBUF;
int ret;
ca = bch_dev_bkey_exists(c, start.inode);
if (!ca->mi.freespace_initialized)
return 0;
bch2_btree_iter_set_pos(freespace_iter, start);
k = bch2_btree_iter_peek_slot(freespace_iter);
ret = bkey_err(k);
if (ret)
goto err;
*end = bkey_min(k.k->p, *end);
if (k.k->type != KEY_TYPE_set &&
(c->opts.reconstruct_alloc ||
fsck_err(c, "hole in alloc btree missing in freespace btree\n"
" device %llu buckets %llu-%llu",
freespace_iter->pos.inode,
freespace_iter->pos.offset,
end->offset))) {
struct bkey_i *update =
bch2_trans_kmalloc(trans, sizeof(*update));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
goto err;
bkey_init(&update->k);
update->k.type = KEY_TYPE_set;
update->k.p = freespace_iter->pos;
bch2_key_resize(&update->k,
min_t(u64, U32_MAX, end->offset -
freespace_iter->pos.offset));
ret = bch2_trans_update(trans, freespace_iter, update, 0);
if (ret)
goto err;
}
err:
fsck_err:
printbuf_exit(&buf);
return ret;
}
static noinline_for_stack
int bch2_check_alloc_hole_bucket_gens(struct btree_trans *trans,
struct bpos start,
struct bpos *end,
struct btree_iter *bucket_gens_iter)
{
struct bch_fs *c = trans->c;
struct bkey_s_c k;
struct printbuf buf = PRINTBUF;
unsigned i, gens_offset, gens_end_offset;
int ret;
if (c->sb.version < bcachefs_metadata_version_bucket_gens)
return 0;
bch2_btree_iter_set_pos(bucket_gens_iter, alloc_gens_pos(start, &gens_offset));
k = bch2_btree_iter_peek_slot(bucket_gens_iter);
ret = bkey_err(k);
if (ret)
goto err;
if (bkey_cmp(alloc_gens_pos(start, &gens_offset),
alloc_gens_pos(*end, &gens_end_offset)))
gens_end_offset = KEY_TYPE_BUCKET_GENS_NR;
if (k.k->type == KEY_TYPE_bucket_gens) {
struct bkey_i_bucket_gens g;
bool need_update = false;
bkey_reassemble(&g.k_i, k);
for (i = gens_offset; i < gens_end_offset; i++) {
if (fsck_err_on(g.v.gens[i], c,
"hole in alloc btree at %llu:%llu with nonzero gen in bucket_gens btree (%u)",
bucket_gens_pos_to_alloc(k.k->p, i).inode,
bucket_gens_pos_to_alloc(k.k->p, i).offset,
g.v.gens[i])) {
g.v.gens[i] = 0;
need_update = true;
}
}
if (need_update) {
struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(g));
ret = PTR_ERR_OR_ZERO(k);
if (ret)
goto err;
memcpy(k, &g, sizeof(g));
ret = bch2_trans_update(trans, bucket_gens_iter, k, 0);
if (ret)
goto err;
}
}
*end = bkey_min(*end, bucket_gens_pos_to_alloc(bpos_nosnap_successor(k.k->p), 0));
err:
fsck_err:
printbuf_exit(&buf);
return ret;
}
static noinline_for_stack int __bch2_check_discard_freespace_key(struct btree_trans *trans,
struct btree_iter *iter)
{
struct bch_fs *c = trans->c;
struct btree_iter alloc_iter;
struct bkey_s_c alloc_k;
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a;
u64 genbits;
struct bpos pos;
enum bch_data_type state = iter->btree_id == BTREE_ID_need_discard
? BCH_DATA_need_discard
: BCH_DATA_free;
struct printbuf buf = PRINTBUF;
int ret;
pos = iter->pos;
pos.offset &= ~(~0ULL << 56);
genbits = iter->pos.offset & (~0ULL << 56);
alloc_k = bch2_bkey_get_iter(trans, &alloc_iter, BTREE_ID_alloc, pos, 0);
ret = bkey_err(alloc_k);
if (ret)
return ret;
if (fsck_err_on(!bch2_dev_bucket_exists(c, pos), c,
"entry in %s btree for nonexistant dev:bucket %llu:%llu",
bch2_btree_ids[iter->btree_id], pos.inode, pos.offset))
goto delete;
a = bch2_alloc_to_v4(alloc_k, &a_convert);
if (fsck_err_on(a->data_type != state ||
(state == BCH_DATA_free &&
genbits != alloc_freespace_genbits(*a)), c,
"%s\n incorrectly set at %s:%llu:%llu:0 (free %u, genbits %llu should be %llu)",
(bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf),
bch2_btree_ids[iter->btree_id],
iter->pos.inode,
iter->pos.offset,
a->data_type == state,
genbits >> 56, alloc_freespace_genbits(*a) >> 56))
goto delete;
out:
fsck_err:
set_btree_iter_dontneed(&alloc_iter);
bch2_trans_iter_exit(trans, &alloc_iter);
printbuf_exit(&buf);
return ret;
delete:
ret = bch2_btree_delete_extent_at(trans, iter,
iter->btree_id == BTREE_ID_freespace ? 1 : 0, 0) ?:
bch2_trans_commit(trans, NULL, NULL,
BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW);
goto out;
}
static int bch2_check_discard_freespace_key(struct btree_trans *trans,
struct btree_iter *iter,
struct bpos end)
{
if (!btree_id_is_extents(iter->btree_id)) {
return __bch2_check_discard_freespace_key(trans, iter);
} else {
int ret = 0;
while (!bkey_eq(iter->pos, end) &&
!(ret = btree_trans_too_many_iters(trans) ?:
__bch2_check_discard_freespace_key(trans, iter)))
bch2_btree_iter_set_pos(iter, bpos_nosnap_successor(iter->pos));
return ret;
}
}
/*
* We've already checked that generation numbers in the bucket_gens btree are
* valid for buckets that exist; this just checks for keys for nonexistent
* buckets.
*/
static noinline_for_stack
int bch2_check_bucket_gens_key(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
struct bkey_i_bucket_gens g;
struct bch_dev *ca;
u64 start = bucket_gens_pos_to_alloc(k.k->p, 0).offset;
u64 end = bucket_gens_pos_to_alloc(bpos_nosnap_successor(k.k->p), 0).offset;
u64 b;
bool need_update = false, dev_exists;
struct printbuf buf = PRINTBUF;
int ret = 0;
BUG_ON(k.k->type != KEY_TYPE_bucket_gens);
bkey_reassemble(&g.k_i, k);
/* if no bch_dev, skip out whether we repair or not */
dev_exists = bch2_dev_exists2(c, k.k->p.inode);
if (!dev_exists) {
if (fsck_err_on(!dev_exists, c,
"bucket_gens key for invalid device:\n %s",
(bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
ret = bch2_btree_delete_at(trans, iter, 0);
}
goto out;
}
ca = bch_dev_bkey_exists(c, k.k->p.inode);
if (fsck_err_on(end <= ca->mi.first_bucket ||
start >= ca->mi.nbuckets, c,
"bucket_gens key for invalid buckets:\n %s",
(bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
ret = bch2_btree_delete_at(trans, iter, 0);
goto out;
}
for (b = start; b < ca->mi.first_bucket; b++)
if (fsck_err_on(g.v.gens[b & KEY_TYPE_BUCKET_GENS_MASK], c,
"bucket_gens key has nonzero gen for invalid bucket")) {
g.v.gens[b & KEY_TYPE_BUCKET_GENS_MASK] = 0;
need_update = true;
}
for (b = ca->mi.nbuckets; b < end; b++)
if (fsck_err_on(g.v.gens[b & KEY_TYPE_BUCKET_GENS_MASK], c,
"bucket_gens key has nonzero gen for invalid bucket")) {
g.v.gens[b & KEY_TYPE_BUCKET_GENS_MASK] = 0;
need_update = true;
}
if (need_update) {
struct bkey_i *k;
k = bch2_trans_kmalloc(trans, sizeof(g));
ret = PTR_ERR_OR_ZERO(k);
if (ret)
goto out;
memcpy(k, &g, sizeof(g));
ret = bch2_trans_update(trans, iter, k, 0);
}
out:
fsck_err:
printbuf_exit(&buf);
return ret;
}
int bch2_check_alloc_info(struct bch_fs *c)
{
struct btree_trans trans;
struct btree_iter iter, discard_iter, freespace_iter, bucket_gens_iter;
struct bkey hole;
struct bkey_s_c k;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_PREFETCH);
bch2_trans_iter_init(&trans, &discard_iter, BTREE_ID_need_discard, POS_MIN,
BTREE_ITER_PREFETCH);
bch2_trans_iter_init(&trans, &freespace_iter, BTREE_ID_freespace, POS_MIN,
BTREE_ITER_PREFETCH);
bch2_trans_iter_init(&trans, &bucket_gens_iter, BTREE_ID_bucket_gens, POS_MIN,
BTREE_ITER_PREFETCH);
while (1) {
struct bpos next;
bch2_trans_begin(&trans);
k = bch2_get_key_or_real_bucket_hole(&iter, &hole);
ret = bkey_err(k);
if (ret)
goto bkey_err;
if (!k.k)
break;
if (k.k->type) {
next = bpos_nosnap_successor(k.k->p);
ret = bch2_check_alloc_key(&trans,
k, &iter,
&discard_iter,
&freespace_iter,
&bucket_gens_iter);
if (ret)
goto bkey_err;
} else {
next = k.k->p;
ret = bch2_check_alloc_hole_freespace(&trans,
bkey_start_pos(k.k),
&next,
&freespace_iter) ?:
bch2_check_alloc_hole_bucket_gens(&trans,
bkey_start_pos(k.k),
&next,
&bucket_gens_iter);
if (ret)
goto bkey_err;
}
ret = bch2_trans_commit(&trans, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_LAZY_RW);
if (ret)
goto bkey_err;
bch2_btree_iter_set_pos(&iter, next);
bkey_err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
break;
}
bch2_trans_iter_exit(&trans, &bucket_gens_iter);
bch2_trans_iter_exit(&trans, &freespace_iter);
bch2_trans_iter_exit(&trans, &discard_iter);
bch2_trans_iter_exit(&trans, &iter);
if (ret < 0)
goto err;
ret = for_each_btree_key2(&trans, iter,
BTREE_ID_need_discard, POS_MIN,
BTREE_ITER_PREFETCH, k,
bch2_check_discard_freespace_key(&trans, &iter, k.k->p)) ?:
for_each_btree_key2(&trans, iter,
BTREE_ID_freespace, POS_MIN,
BTREE_ITER_PREFETCH, k,
bch2_check_discard_freespace_key(&trans, &iter, k.k->p)) ?:
for_each_btree_key_commit(&trans, iter,
BTREE_ID_bucket_gens, POS_MIN,
BTREE_ITER_PREFETCH, k,
NULL, NULL, BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW,
bch2_check_bucket_gens_key(&trans, &iter, k));
err:
bch2_trans_exit(&trans);
if (ret)
bch_err_fn(c, ret);
return ret;
}
static int bch2_check_alloc_to_lru_ref(struct btree_trans *trans,
struct btree_iter *alloc_iter)
{
struct bch_fs *c = trans->c;
struct btree_iter lru_iter;
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a;
struct bkey_s_c alloc_k, lru_k;
struct printbuf buf = PRINTBUF;
int ret;
alloc_k = bch2_btree_iter_peek(alloc_iter);
if (!alloc_k.k)
return 0;
ret = bkey_err(alloc_k);
if (ret)
return ret;
a = bch2_alloc_to_v4(alloc_k, &a_convert);
if (a->data_type != BCH_DATA_cached)
return 0;
lru_k = bch2_bkey_get_iter(trans, &lru_iter, BTREE_ID_lru,
lru_pos(alloc_k.k->p.inode,
bucket_to_u64(alloc_k.k->p),
a->io_time[READ]), 0);
ret = bkey_err(lru_k);
if (ret)
return ret;
if (fsck_err_on(!a->io_time[READ], c,
"cached bucket with read_time 0\n"
" %s",
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)) ||
fsck_err_on(lru_k.k->type != KEY_TYPE_set, c,
"missing lru entry\n"
" %s",
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) {
u64 read_time = a->io_time[READ] ?:
atomic64_read(&c->io_clock[READ].now);
ret = bch2_lru_set(trans,
alloc_k.k->p.inode,
bucket_to_u64(alloc_k.k->p),
read_time);
if (ret)
goto err;
if (a->io_time[READ] != read_time) {
struct bkey_i_alloc_v4 *a_mut =
bch2_alloc_to_v4_mut(trans, alloc_k);
ret = PTR_ERR_OR_ZERO(a_mut);
if (ret)
goto err;
a_mut->v.io_time[READ] = read_time;
ret = bch2_trans_update(trans, alloc_iter,
&a_mut->k_i, BTREE_TRIGGER_NORUN);
if (ret)
goto err;
}
}
err:
fsck_err:
bch2_trans_iter_exit(trans, &lru_iter);
printbuf_exit(&buf);
return ret;
}
int bch2_check_alloc_to_lru_refs(struct bch_fs *c)
{
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
ret = bch2_trans_run(c,
for_each_btree_key_commit(&trans, iter, BTREE_ID_alloc,
POS_MIN, BTREE_ITER_PREFETCH, k,
NULL, NULL, BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW,
bch2_check_alloc_to_lru_ref(&trans, &iter)));
if (ret)
bch_err_fn(c, ret);
return ret;
}
static int bch2_discard_one_bucket(struct btree_trans *trans,
struct btree_iter *need_discard_iter,
struct bpos *discard_pos_done,
u64 *seen,
u64 *open,
u64 *need_journal_commit,
u64 *discarded)
{
struct bch_fs *c = trans->c;
struct bpos pos = need_discard_iter->pos;
struct btree_iter iter = { NULL };
struct bkey_s_c k;
struct bch_dev *ca;
struct bkey_i_alloc_v4 *a;
struct printbuf buf = PRINTBUF;
int ret = 0;
ca = bch_dev_bkey_exists(c, pos.inode);
if (!percpu_ref_tryget(&ca->io_ref)) {
bch2_btree_iter_set_pos(need_discard_iter, POS(pos.inode + 1, 0));
return 0;
}
if (bch2_bucket_is_open_safe(c, pos.inode, pos.offset)) {
(*open)++;
goto out;
}
if (bch2_bucket_needs_journal_commit(&c->buckets_waiting_for_journal,
c->journal.flushed_seq_ondisk,
pos.inode, pos.offset)) {
(*need_journal_commit)++;
goto out;
}
k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_alloc,
need_discard_iter->pos,
BTREE_ITER_CACHED);
ret = bkey_err(k);
if (ret)
goto out;
a = bch2_alloc_to_v4_mut(trans, k);
ret = PTR_ERR_OR_ZERO(a);
if (ret)
goto out;
if (BCH_ALLOC_V4_NEED_INC_GEN(&a->v)) {
a->v.gen++;
SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false);
goto write;
}
if (a->v.journal_seq > c->journal.flushed_seq_ondisk) {
if (c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_info) {
bch2_trans_inconsistent(trans,
"clearing need_discard but journal_seq %llu > flushed_seq %llu\n"
"%s",
a->v.journal_seq,
c->journal.flushed_seq_ondisk,
(bch2_bkey_val_to_text(&buf, c, k), buf.buf));
ret = -EIO;
}
goto out;
}
if (a->v.data_type != BCH_DATA_need_discard) {
if (c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_info) {
bch2_trans_inconsistent(trans,
"bucket incorrectly set in need_discard btree\n"
"%s",
(bch2_bkey_val_to_text(&buf, c, k), buf.buf));
ret = -EIO;
}
goto out;
}
if (!bkey_eq(*discard_pos_done, iter.pos) &&
ca->mi.discard && !c->opts.nochanges) {
/*
* This works without any other locks because this is the only
* thread that removes items from the need_discard tree
*/
bch2_trans_unlock(trans);
blkdev_issue_discard(ca->disk_sb.bdev,
k.k->p.offset * ca->mi.bucket_size,
ca->mi.bucket_size,
GFP_KERNEL);
*discard_pos_done = iter.pos;
ret = bch2_trans_relock_notrace(trans);
if (ret)
goto out;
}
SET_BCH_ALLOC_V4_NEED_DISCARD(&a->v, false);
a->v.data_type = alloc_data_type(a->v, a->v.data_type);
write:
ret = bch2_trans_update(trans, &iter, &a->k_i, 0) ?:
bch2_trans_commit(trans, NULL, NULL,
BCH_WATERMARK_btree|
BTREE_INSERT_NOFAIL);
if (ret)
goto out;
this_cpu_inc(c->counters[BCH_COUNTER_bucket_discard]);
(*discarded)++;
out:
(*seen)++;
bch2_trans_iter_exit(trans, &iter);
percpu_ref_put(&ca->io_ref);
printbuf_exit(&buf);
return ret;
}
static void bch2_do_discards_work(struct work_struct *work)
{
struct bch_fs *c = container_of(work, struct bch_fs, discard_work);
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
u64 seen = 0, open = 0, need_journal_commit = 0, discarded = 0;
struct bpos discard_pos_done = POS_MAX;
int ret;
bch2_trans_init(&trans, c, 0, 0);
/*
* We're doing the commit in bch2_discard_one_bucket instead of using
* for_each_btree_key_commit() so that we can increment counters after
* successful commit:
*/
ret = for_each_btree_key2(&trans, iter,
BTREE_ID_need_discard, POS_MIN, 0, k,
bch2_discard_one_bucket(&trans, &iter, &discard_pos_done,
&seen,
&open,
&need_journal_commit,
&discarded));
bch2_trans_exit(&trans);
if (need_journal_commit * 2 > seen)
bch2_journal_flush_async(&c->journal, NULL);
bch2_write_ref_put(c, BCH_WRITE_REF_discard);
trace_discard_buckets(c, seen, open, need_journal_commit, discarded,
bch2_err_str(ret));
}
void bch2_do_discards(struct bch_fs *c)
{
if (bch2_write_ref_tryget(c, BCH_WRITE_REF_discard) &&
!queue_work(c->write_ref_wq, &c->discard_work))
bch2_write_ref_put(c, BCH_WRITE_REF_discard);
}
static int invalidate_one_bucket(struct btree_trans *trans,
struct btree_iter *lru_iter,
struct bkey_s_c lru_k,
s64 *nr_to_invalidate)
{
struct bch_fs *c = trans->c;
struct btree_iter alloc_iter = { NULL };
struct bkey_i_alloc_v4 *a = NULL;
struct printbuf buf = PRINTBUF;
struct bpos bucket = u64_to_bucket(lru_k.k->p.offset);
unsigned cached_sectors;
int ret = 0;
if (*nr_to_invalidate <= 0)
return 1;
if (!bch2_dev_bucket_exists(c, bucket)) {
prt_str(&buf, "lru entry points to invalid bucket");
goto err;
}
if (bch2_bucket_is_open_safe(c, bucket.inode, bucket.offset))
return 0;
a = bch2_trans_start_alloc_update(trans, &alloc_iter, bucket);
ret = PTR_ERR_OR_ZERO(a);
if (ret)
goto out;
/* We expect harmless races here due to the btree write buffer: */
if (lru_pos_time(lru_iter->pos) != alloc_lru_idx_read(a->v))
goto out;
BUG_ON(a->v.data_type != BCH_DATA_cached);
if (!a->v.cached_sectors)
bch_err(c, "invalidating empty bucket, confused");
cached_sectors = a->v.cached_sectors;
SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false);
a->v.gen++;
a->v.data_type = 0;
a->v.dirty_sectors = 0;
a->v.cached_sectors = 0;
a->v.io_time[READ] = atomic64_read(&c->io_clock[READ].now);
a->v.io_time[WRITE] = atomic64_read(&c->io_clock[WRITE].now);
ret = bch2_trans_update(trans, &alloc_iter, &a->k_i,
BTREE_TRIGGER_BUCKET_INVALIDATE) ?:
bch2_trans_commit(trans, NULL, NULL,
BCH_WATERMARK_btree|
BTREE_INSERT_NOFAIL);
if (ret)
goto out;
trace_and_count(c, bucket_invalidate, c, bucket.inode, bucket.offset, cached_sectors);
--*nr_to_invalidate;
out:
bch2_trans_iter_exit(trans, &alloc_iter);
printbuf_exit(&buf);
return ret;
err:
prt_str(&buf, "\n lru key: ");
bch2_bkey_val_to_text(&buf, c, lru_k);
prt_str(&buf, "\n lru entry: ");
bch2_lru_pos_to_text(&buf, lru_iter->pos);
prt_str(&buf, "\n alloc key: ");
if (!a)
bch2_bpos_to_text(&buf, bucket);
else
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&a->k_i));
bch_err(c, "%s", buf.buf);
if (c->curr_recovery_pass > BCH_RECOVERY_PASS_check_lrus) {
bch2_inconsistent_error(c);
ret = -EINVAL;
}
goto out;
}
static void bch2_do_invalidates_work(struct work_struct *work)
{
struct bch_fs *c = container_of(work, struct bch_fs, invalidate_work);
struct bch_dev *ca;
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
unsigned i;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
ret = bch2_btree_write_buffer_flush(&trans);
if (ret)
goto err;
for_each_member_device(ca, c, i) {
s64 nr_to_invalidate =
should_invalidate_buckets(ca, bch2_dev_usage_read(ca));
ret = for_each_btree_key2_upto(&trans, iter, BTREE_ID_lru,
lru_pos(ca->dev_idx, 0, 0),
lru_pos(ca->dev_idx, U64_MAX, LRU_TIME_MAX),
BTREE_ITER_INTENT, k,
invalidate_one_bucket(&trans, &iter, k, &nr_to_invalidate));
if (ret < 0) {
percpu_ref_put(&ca->ref);
break;
}
}
err:
bch2_trans_exit(&trans);
bch2_write_ref_put(c, BCH_WRITE_REF_invalidate);
}
void bch2_do_invalidates(struct bch_fs *c)
{
if (bch2_write_ref_tryget(c, BCH_WRITE_REF_invalidate) &&
!queue_work(c->write_ref_wq, &c->invalidate_work))
bch2_write_ref_put(c, BCH_WRITE_REF_invalidate);
}
static int bch2_dev_freespace_init(struct bch_fs *c, struct bch_dev *ca,
unsigned long *last_updated)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bkey hole;
struct bpos end = POS(ca->dev_idx, ca->mi.nbuckets);
struct bch_member *m;
int ret;
bch2_trans_init(&trans, c, 0, 0);
bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc,
POS(ca->dev_idx, ca->mi.first_bucket),
BTREE_ITER_PREFETCH);
/*
* Scan the alloc btree for every bucket on @ca, and add buckets to the
* freespace/need_discard/need_gc_gens btrees as needed:
*/
while (1) {
if (*last_updated + HZ * 10 < jiffies) {
bch_info(ca, "%s: currently at %llu/%llu",
__func__, iter.pos.offset, ca->mi.nbuckets);
*last_updated = jiffies;
}
bch2_trans_begin(&trans);
if (bkey_ge(iter.pos, end)) {
ret = 0;
break;
}
k = bch2_get_key_or_hole(&iter, end, &hole);
ret = bkey_err(k);
if (ret)
goto bkey_err;
if (k.k->type) {
/*
* We process live keys in the alloc btree one at a
* time:
*/
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert);
ret = bch2_bucket_do_index(&trans, k, a, true) ?:
bch2_trans_commit(&trans, NULL, NULL,
BTREE_INSERT_LAZY_RW|
BTREE_INSERT_NOFAIL);
if (ret)
goto bkey_err;
bch2_btree_iter_advance(&iter);
} else {
struct bkey_i *freespace;
freespace = bch2_trans_kmalloc(&trans, sizeof(*freespace));
ret = PTR_ERR_OR_ZERO(freespace);
if (ret)
goto bkey_err;
bkey_init(&freespace->k);
freespace->k.type = KEY_TYPE_set;
freespace->k.p = k.k->p;
freespace->k.size = k.k->size;
ret = __bch2_btree_insert(&trans, BTREE_ID_freespace, freespace, 0) ?:
bch2_trans_commit(&trans, NULL, NULL,
BTREE_INSERT_LAZY_RW|
BTREE_INSERT_NOFAIL);
if (ret)
goto bkey_err;
bch2_btree_iter_set_pos(&iter, k.k->p);
}
bkey_err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
break;
}
bch2_trans_iter_exit(&trans, &iter);
bch2_trans_exit(&trans);
if (ret < 0) {
bch_err(ca, "error initializing free space: %s", bch2_err_str(ret));
return ret;
}
mutex_lock(&c->sb_lock);
m = bch2_sb_get_members(c->disk_sb.sb)->members + ca->dev_idx;
SET_BCH_MEMBER_FREESPACE_INITIALIZED(m, true);
mutex_unlock(&c->sb_lock);
return 0;
}
int bch2_fs_freespace_init(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
int ret = 0;
bool doing_init = false;
unsigned long last_updated = jiffies;
/*
* We can crash during the device add path, so we need to check this on
* every mount:
*/
for_each_member_device(ca, c, i) {
if (ca->mi.freespace_initialized)
continue;
if (!doing_init) {
bch_info(c, "initializing freespace");
doing_init = true;
}
ret = bch2_dev_freespace_init(c, ca, &last_updated);
if (ret) {
percpu_ref_put(&ca->ref);
bch_err_fn(c, ret);
return ret;
}
}
if (doing_init) {
mutex_lock(&c->sb_lock);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
bch_verbose(c, "done initializing freespace");
}
return 0;
}
/* Bucket IO clocks: */
int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev,
size_t bucket_nr, int rw)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct bkey_i_alloc_v4 *a;
u64 now;
int ret = 0;
a = bch2_trans_start_alloc_update(trans, &iter, POS(dev, bucket_nr));
ret = PTR_ERR_OR_ZERO(a);
if (ret)
return ret;
now = atomic64_read(&c->io_clock[rw].now);
if (a->v.io_time[rw] == now)
goto out;
a->v.io_time[rw] = now;
ret = bch2_trans_update(trans, &iter, &a->k_i, 0) ?:
bch2_trans_commit(trans, NULL, NULL, 0);
out:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/* Startup/shutdown (ro/rw): */
void bch2_recalc_capacity(struct bch_fs *c)
{
struct bch_dev *ca;
u64 capacity = 0, reserved_sectors = 0, gc_reserve;
unsigned bucket_size_max = 0;
unsigned long ra_pages = 0;
unsigned i;
lockdep_assert_held(&c->state_lock);
for_each_online_member(ca, c, i) {
struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi;
ra_pages += bdi->ra_pages;
}
bch2_set_ra_pages(c, ra_pages);
for_each_rw_member(ca, c, i) {
u64 dev_reserve = 0;
/*
* We need to reserve buckets (from the number
* of currently available buckets) against
* foreground writes so that mainly copygc can
* make forward progress.
*
* We need enough to refill the various reserves
* from scratch - copygc will use its entire
* reserve all at once, then run against when
* its reserve is refilled (from the formerly
* available buckets).
*
* This reserve is just used when considering if
* allocations for foreground writes must wait -
* not -ENOSPC calculations.
*/
dev_reserve += ca->nr_btree_reserve * 2;
dev_reserve += ca->mi.nbuckets >> 6; /* copygc reserve */
dev_reserve += 1; /* btree write point */
dev_reserve += 1; /* copygc write point */
dev_reserve += 1; /* rebalance write point */
dev_reserve *= ca->mi.bucket_size;
capacity += bucket_to_sector(ca, ca->mi.nbuckets -
ca->mi.first_bucket);
reserved_sectors += dev_reserve * 2;
bucket_size_max = max_t(unsigned, bucket_size_max,
ca->mi.bucket_size);
}
gc_reserve = c->opts.gc_reserve_bytes
? c->opts.gc_reserve_bytes >> 9
: div64_u64(capacity * c->opts.gc_reserve_percent, 100);
reserved_sectors = max(gc_reserve, reserved_sectors);
reserved_sectors = min(reserved_sectors, capacity);
c->capacity = capacity - reserved_sectors;
c->bucket_size_max = bucket_size_max;
/* Wake up case someone was waiting for buckets */
closure_wake_up(&c->freelist_wait);
}
static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
{
struct open_bucket *ob;
bool ret = false;
for (ob = c->open_buckets;
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
ob++) {
spin_lock(&ob->lock);
if (ob->valid && !ob->on_partial_list &&
ob->dev == ca->dev_idx)
ret = true;
spin_unlock(&ob->lock);
}
return ret;
}
/* device goes ro: */
void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
{
unsigned i;
/* First, remove device from allocation groups: */
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
clear_bit(ca->dev_idx, c->rw_devs[i].d);
/*
* Capacity is calculated based off of devices in allocation groups:
*/
bch2_recalc_capacity(c);
bch2_open_buckets_stop(c, ca, false);
/*
* Wake up threads that were blocked on allocation, so they can notice
* the device can no longer be removed and the capacity has changed:
*/
closure_wake_up(&c->freelist_wait);
/*
* journal_res_get() can block waiting for free space in the journal -
* it needs to notice there may not be devices to allocate from anymore:
*/
wake_up(&c->journal.wait);
/* Now wait for any in flight writes: */
closure_wait_event(&c->open_buckets_wait,
!bch2_dev_has_open_write_point(c, ca));
}
/* device goes rw: */
void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
if (ca->mi.data_allowed & (1 << i))
set_bit(ca->dev_idx, c->rw_devs[i].d);
}
void bch2_fs_allocator_background_init(struct bch_fs *c)
{
spin_lock_init(&c->freelist_lock);
INIT_WORK(&c->discard_work, bch2_do_discards_work);
INIT_WORK(&c->invalidate_work, bch2_do_invalidates_work);
}