1e81f89b02
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
3061 lines
76 KiB
C
3061 lines
76 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Some low level IO code, and hacks for various block layer limitations
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_background.h"
|
|
#include "alloc_foreground.h"
|
|
#include "bkey_buf.h"
|
|
#include "bset.h"
|
|
#include "btree_update.h"
|
|
#include "buckets.h"
|
|
#include "checksum.h"
|
|
#include "compress.h"
|
|
#include "clock.h"
|
|
#include "data_update.h"
|
|
#include "debug.h"
|
|
#include "disk_groups.h"
|
|
#include "ec.h"
|
|
#include "error.h"
|
|
#include "extent_update.h"
|
|
#include "inode.h"
|
|
#include "io.h"
|
|
#include "journal.h"
|
|
#include "keylist.h"
|
|
#include "move.h"
|
|
#include "nocow_locking.h"
|
|
#include "rebalance.h"
|
|
#include "subvolume.h"
|
|
#include "super.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
const char *bch2_blk_status_to_str(blk_status_t status)
|
|
{
|
|
if (status == BLK_STS_REMOVED)
|
|
return "device removed";
|
|
return blk_status_to_str(status);
|
|
}
|
|
|
|
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
|
|
|
|
static bool bch2_target_congested(struct bch_fs *c, u16 target)
|
|
{
|
|
const struct bch_devs_mask *devs;
|
|
unsigned d, nr = 0, total = 0;
|
|
u64 now = local_clock(), last;
|
|
s64 congested;
|
|
struct bch_dev *ca;
|
|
|
|
if (!target)
|
|
return false;
|
|
|
|
rcu_read_lock();
|
|
devs = bch2_target_to_mask(c, target) ?:
|
|
&c->rw_devs[BCH_DATA_user];
|
|
|
|
for_each_set_bit(d, devs->d, BCH_SB_MEMBERS_MAX) {
|
|
ca = rcu_dereference(c->devs[d]);
|
|
if (!ca)
|
|
continue;
|
|
|
|
congested = atomic_read(&ca->congested);
|
|
last = READ_ONCE(ca->congested_last);
|
|
if (time_after64(now, last))
|
|
congested -= (now - last) >> 12;
|
|
|
|
total += max(congested, 0LL);
|
|
nr++;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return bch2_rand_range(nr * CONGESTED_MAX) < total;
|
|
}
|
|
|
|
static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
|
|
u64 now, int rw)
|
|
{
|
|
u64 latency_capable =
|
|
ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
|
|
/* ideally we'd be taking into account the device's variance here: */
|
|
u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
|
|
s64 latency_over = io_latency - latency_threshold;
|
|
|
|
if (latency_threshold && latency_over > 0) {
|
|
/*
|
|
* bump up congested by approximately latency_over * 4 /
|
|
* latency_threshold - we don't need much accuracy here so don't
|
|
* bother with the divide:
|
|
*/
|
|
if (atomic_read(&ca->congested) < CONGESTED_MAX)
|
|
atomic_add(latency_over >>
|
|
max_t(int, ilog2(latency_threshold) - 2, 0),
|
|
&ca->congested);
|
|
|
|
ca->congested_last = now;
|
|
} else if (atomic_read(&ca->congested) > 0) {
|
|
atomic_dec(&ca->congested);
|
|
}
|
|
}
|
|
|
|
void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
|
|
{
|
|
atomic64_t *latency = &ca->cur_latency[rw];
|
|
u64 now = local_clock();
|
|
u64 io_latency = time_after64(now, submit_time)
|
|
? now - submit_time
|
|
: 0;
|
|
u64 old, new, v = atomic64_read(latency);
|
|
|
|
do {
|
|
old = v;
|
|
|
|
/*
|
|
* If the io latency was reasonably close to the current
|
|
* latency, skip doing the update and atomic operation - most of
|
|
* the time:
|
|
*/
|
|
if (abs((int) (old - io_latency)) < (old >> 1) &&
|
|
now & ~(~0U << 5))
|
|
break;
|
|
|
|
new = ewma_add(old, io_latency, 5);
|
|
} while ((v = atomic64_cmpxchg(latency, old, new)) != old);
|
|
|
|
bch2_congested_acct(ca, io_latency, now, rw);
|
|
|
|
__bch2_time_stats_update(&ca->io_latency[rw], submit_time, now);
|
|
}
|
|
|
|
#else
|
|
|
|
static bool bch2_target_congested(struct bch_fs *c, u16 target)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Allocate, free from mempool: */
|
|
|
|
void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
|
|
{
|
|
struct bvec_iter_all iter;
|
|
struct bio_vec *bv;
|
|
|
|
bio_for_each_segment_all(bv, bio, iter)
|
|
if (bv->bv_page != ZERO_PAGE(0))
|
|
mempool_free(bv->bv_page, &c->bio_bounce_pages);
|
|
bio->bi_vcnt = 0;
|
|
}
|
|
|
|
static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
|
|
{
|
|
struct page *page;
|
|
|
|
if (likely(!*using_mempool)) {
|
|
page = alloc_page(GFP_NOFS);
|
|
if (unlikely(!page)) {
|
|
mutex_lock(&c->bio_bounce_pages_lock);
|
|
*using_mempool = true;
|
|
goto pool_alloc;
|
|
|
|
}
|
|
} else {
|
|
pool_alloc:
|
|
page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
|
|
size_t size)
|
|
{
|
|
bool using_mempool = false;
|
|
|
|
while (size) {
|
|
struct page *page = __bio_alloc_page_pool(c, &using_mempool);
|
|
unsigned len = min_t(size_t, PAGE_SIZE, size);
|
|
|
|
BUG_ON(!bio_add_page(bio, page, len, 0));
|
|
size -= len;
|
|
}
|
|
|
|
if (using_mempool)
|
|
mutex_unlock(&c->bio_bounce_pages_lock);
|
|
}
|
|
|
|
/* Extent update path: */
|
|
|
|
int bch2_sum_sector_overwrites(struct btree_trans *trans,
|
|
struct btree_iter *extent_iter,
|
|
struct bkey_i *new,
|
|
bool *usage_increasing,
|
|
s64 *i_sectors_delta,
|
|
s64 *disk_sectors_delta)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c old;
|
|
unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
|
|
bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
|
|
int ret = 0;
|
|
|
|
*usage_increasing = false;
|
|
*i_sectors_delta = 0;
|
|
*disk_sectors_delta = 0;
|
|
|
|
bch2_trans_copy_iter(&iter, extent_iter);
|
|
|
|
for_each_btree_key_upto_continue_norestart(iter,
|
|
new->k.p, BTREE_ITER_SLOTS, old, ret) {
|
|
s64 sectors = min(new->k.p.offset, old.k->p.offset) -
|
|
max(bkey_start_offset(&new->k),
|
|
bkey_start_offset(old.k));
|
|
|
|
*i_sectors_delta += sectors *
|
|
(bkey_extent_is_allocation(&new->k) -
|
|
bkey_extent_is_allocation(old.k));
|
|
|
|
*disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
|
|
*disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
|
|
? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
|
|
: 0;
|
|
|
|
if (!*usage_increasing &&
|
|
(new->k.p.snapshot != old.k->p.snapshot ||
|
|
new_replicas > bch2_bkey_replicas(c, old) ||
|
|
(!new_compressed && bch2_bkey_sectors_compressed(old))))
|
|
*usage_increasing = true;
|
|
|
|
if (bkey_ge(old.k->p, new->k.p))
|
|
break;
|
|
}
|
|
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
return ret;
|
|
}
|
|
|
|
static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
|
|
struct btree_iter *extent_iter,
|
|
u64 new_i_size,
|
|
s64 i_sectors_delta)
|
|
{
|
|
struct btree_iter iter;
|
|
struct bkey_i *k;
|
|
struct bkey_i_inode_v3 *inode;
|
|
unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL;
|
|
int ret;
|
|
|
|
k = bch2_bkey_get_mut_noupdate(trans, &iter, BTREE_ID_inodes,
|
|
SPOS(0,
|
|
extent_iter->pos.inode,
|
|
extent_iter->snapshot),
|
|
BTREE_ITER_CACHED);
|
|
ret = PTR_ERR_OR_ZERO(k);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
if (unlikely(k->k.type != KEY_TYPE_inode_v3)) {
|
|
k = bch2_inode_to_v3(trans, k);
|
|
ret = PTR_ERR_OR_ZERO(k);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
}
|
|
|
|
inode = bkey_i_to_inode_v3(k);
|
|
|
|
if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_I_SIZE_DIRTY) &&
|
|
new_i_size > le64_to_cpu(inode->v.bi_size)) {
|
|
inode->v.bi_size = cpu_to_le64(new_i_size);
|
|
inode_update_flags = 0;
|
|
}
|
|
|
|
if (i_sectors_delta) {
|
|
le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
|
|
inode_update_flags = 0;
|
|
}
|
|
|
|
if (inode->k.p.snapshot != iter.snapshot) {
|
|
inode->k.p.snapshot = iter.snapshot;
|
|
inode_update_flags = 0;
|
|
}
|
|
|
|
ret = bch2_trans_update(trans, &iter, &inode->k_i,
|
|
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
|
|
inode_update_flags);
|
|
err:
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
return ret;
|
|
}
|
|
|
|
int bch2_extent_update(struct btree_trans *trans,
|
|
subvol_inum inum,
|
|
struct btree_iter *iter,
|
|
struct bkey_i *k,
|
|
struct disk_reservation *disk_res,
|
|
u64 new_i_size,
|
|
s64 *i_sectors_delta_total,
|
|
bool check_enospc)
|
|
{
|
|
struct bpos next_pos;
|
|
bool usage_increasing;
|
|
s64 i_sectors_delta = 0, disk_sectors_delta = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* This traverses us the iterator without changing iter->path->pos to
|
|
* search_key() (which is pos + 1 for extents): we want there to be a
|
|
* path already traversed at iter->pos because
|
|
* bch2_trans_extent_update() will use it to attempt extent merging
|
|
*/
|
|
ret = __bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = bch2_extent_trim_atomic(trans, iter, k);
|
|
if (ret)
|
|
return ret;
|
|
|
|
next_pos = k->k.p;
|
|
|
|
ret = bch2_sum_sector_overwrites(trans, iter, k,
|
|
&usage_increasing,
|
|
&i_sectors_delta,
|
|
&disk_sectors_delta);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (disk_res &&
|
|
disk_sectors_delta > (s64) disk_res->sectors) {
|
|
ret = bch2_disk_reservation_add(trans->c, disk_res,
|
|
disk_sectors_delta - disk_res->sectors,
|
|
!check_enospc || !usage_increasing
|
|
? BCH_DISK_RESERVATION_NOFAIL : 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Note:
|
|
* We always have to do an inode update - even when i_size/i_sectors
|
|
* aren't changing - for fsync to work properly; fsync relies on
|
|
* inode->bi_journal_seq which is updated by the trigger code:
|
|
*/
|
|
ret = bch2_extent_update_i_size_sectors(trans, iter,
|
|
min(k->k.p.offset << 9, new_i_size),
|
|
i_sectors_delta) ?:
|
|
bch2_trans_update(trans, iter, k, 0) ?:
|
|
bch2_trans_commit(trans, disk_res, NULL,
|
|
BTREE_INSERT_NOCHECK_RW|
|
|
BTREE_INSERT_NOFAIL);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
if (i_sectors_delta_total)
|
|
*i_sectors_delta_total += i_sectors_delta;
|
|
bch2_btree_iter_set_pos(iter, next_pos);
|
|
return 0;
|
|
}
|
|
|
|
/* Overwrites whatever was present with zeroes: */
|
|
int bch2_extent_fallocate(struct btree_trans *trans,
|
|
subvol_inum inum,
|
|
struct btree_iter *iter,
|
|
unsigned sectors,
|
|
struct bch_io_opts opts,
|
|
s64 *i_sectors_delta,
|
|
struct write_point_specifier write_point)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct disk_reservation disk_res = { 0 };
|
|
struct closure cl;
|
|
struct open_buckets open_buckets;
|
|
struct bkey_s_c k;
|
|
struct bkey_buf old, new;
|
|
unsigned sectors_allocated;
|
|
bool have_reservation = false;
|
|
bool unwritten = opts.nocow &&
|
|
c->sb.version >= bcachefs_metadata_version_unwritten_extents;
|
|
int ret;
|
|
|
|
bch2_bkey_buf_init(&old);
|
|
bch2_bkey_buf_init(&new);
|
|
closure_init_stack(&cl);
|
|
open_buckets.nr = 0;
|
|
retry:
|
|
sectors_allocated = 0;
|
|
|
|
k = bch2_btree_iter_peek_slot(iter);
|
|
ret = bkey_err(k);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sectors = min_t(u64, sectors, k.k->p.offset - iter->pos.offset);
|
|
|
|
if (!have_reservation) {
|
|
unsigned new_replicas =
|
|
max(0, (int) opts.data_replicas -
|
|
(int) bch2_bkey_nr_ptrs_fully_allocated(k));
|
|
/*
|
|
* Get a disk reservation before (in the nocow case) calling
|
|
* into the allocator:
|
|
*/
|
|
ret = bch2_disk_reservation_get(c, &disk_res, sectors, new_replicas, 0);
|
|
if (unlikely(ret))
|
|
goto out;
|
|
|
|
bch2_bkey_buf_reassemble(&old, c, k);
|
|
}
|
|
|
|
if (have_reservation) {
|
|
if (!bch2_extents_match(k, bkey_i_to_s_c(old.k)))
|
|
goto out;
|
|
|
|
bch2_key_resize(&new.k->k, sectors);
|
|
} else if (!unwritten) {
|
|
struct bkey_i_reservation *reservation;
|
|
|
|
bch2_bkey_buf_realloc(&new, c, sizeof(*reservation) / sizeof(u64));
|
|
reservation = bkey_reservation_init(new.k);
|
|
reservation->k.p = iter->pos;
|
|
bch2_key_resize(&reservation->k, sectors);
|
|
reservation->v.nr_replicas = opts.data_replicas;
|
|
} else {
|
|
struct bkey_i_extent *e;
|
|
struct bch_devs_list devs_have;
|
|
struct write_point *wp;
|
|
struct bch_extent_ptr *ptr;
|
|
|
|
devs_have.nr = 0;
|
|
|
|
bch2_bkey_buf_realloc(&new, c, BKEY_EXTENT_U64s_MAX);
|
|
|
|
e = bkey_extent_init(new.k);
|
|
e->k.p = iter->pos;
|
|
|
|
ret = bch2_alloc_sectors_start_trans(trans,
|
|
opts.foreground_target,
|
|
false,
|
|
write_point,
|
|
&devs_have,
|
|
opts.data_replicas,
|
|
opts.data_replicas,
|
|
BCH_WATERMARK_normal, 0, &cl, &wp);
|
|
if (ret) {
|
|
bch2_trans_unlock(trans);
|
|
closure_sync(&cl);
|
|
if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
|
|
goto retry;
|
|
return ret;
|
|
}
|
|
|
|
sectors = min(sectors, wp->sectors_free);
|
|
sectors_allocated = sectors;
|
|
|
|
bch2_key_resize(&e->k, sectors);
|
|
|
|
bch2_open_bucket_get(c, wp, &open_buckets);
|
|
bch2_alloc_sectors_append_ptrs(c, wp, &e->k_i, sectors, false);
|
|
bch2_alloc_sectors_done(c, wp);
|
|
|
|
extent_for_each_ptr(extent_i_to_s(e), ptr)
|
|
ptr->unwritten = true;
|
|
}
|
|
|
|
have_reservation = true;
|
|
|
|
ret = bch2_extent_update(trans, inum, iter, new.k, &disk_res,
|
|
0, i_sectors_delta, true);
|
|
out:
|
|
if ((atomic_read(&cl.remaining) & CLOSURE_REMAINING_MASK) != 1) {
|
|
bch2_trans_unlock(trans);
|
|
closure_sync(&cl);
|
|
}
|
|
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
|
|
bch2_trans_begin(trans);
|
|
goto retry;
|
|
}
|
|
|
|
if (!ret && sectors_allocated)
|
|
bch2_increment_clock(c, sectors_allocated, WRITE);
|
|
|
|
bch2_open_buckets_put(c, &open_buckets);
|
|
bch2_disk_reservation_put(c, &disk_res);
|
|
bch2_bkey_buf_exit(&new, c);
|
|
bch2_bkey_buf_exit(&old, c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns -BCH_ERR_transacton_restart if we had to drop locks:
|
|
*/
|
|
int bch2_fpunch_at(struct btree_trans *trans, struct btree_iter *iter,
|
|
subvol_inum inum, u64 end,
|
|
s64 *i_sectors_delta)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
|
|
struct bpos end_pos = POS(inum.inum, end);
|
|
struct bkey_s_c k;
|
|
int ret = 0, ret2 = 0;
|
|
u32 snapshot;
|
|
|
|
while (!ret ||
|
|
bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
|
|
struct disk_reservation disk_res =
|
|
bch2_disk_reservation_init(c, 0);
|
|
struct bkey_i delete;
|
|
|
|
if (ret)
|
|
ret2 = ret;
|
|
|
|
bch2_trans_begin(trans);
|
|
|
|
ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot);
|
|
if (ret)
|
|
continue;
|
|
|
|
bch2_btree_iter_set_snapshot(iter, snapshot);
|
|
|
|
/*
|
|
* peek_upto() doesn't have ideal semantics for extents:
|
|
*/
|
|
k = bch2_btree_iter_peek_upto(iter, end_pos);
|
|
if (!k.k)
|
|
break;
|
|
|
|
ret = bkey_err(k);
|
|
if (ret)
|
|
continue;
|
|
|
|
bkey_init(&delete.k);
|
|
delete.k.p = iter->pos;
|
|
|
|
/* create the biggest key we can */
|
|
bch2_key_resize(&delete.k, max_sectors);
|
|
bch2_cut_back(end_pos, &delete);
|
|
|
|
ret = bch2_extent_update(trans, inum, iter, &delete,
|
|
&disk_res, 0, i_sectors_delta, false);
|
|
bch2_disk_reservation_put(c, &disk_res);
|
|
}
|
|
|
|
return ret ?: ret2;
|
|
}
|
|
|
|
int bch2_fpunch(struct bch_fs *c, subvol_inum inum, u64 start, u64 end,
|
|
s64 *i_sectors_delta)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter iter;
|
|
int ret;
|
|
|
|
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024);
|
|
bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents,
|
|
POS(inum.inum, start),
|
|
BTREE_ITER_INTENT);
|
|
|
|
ret = bch2_fpunch_at(&trans, &iter, inum, end, i_sectors_delta);
|
|
|
|
bch2_trans_iter_exit(&trans, &iter);
|
|
bch2_trans_exit(&trans);
|
|
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_write_index_default(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bkey_buf sk;
|
|
struct keylist *keys = &op->insert_keys;
|
|
struct bkey_i *k = bch2_keylist_front(keys);
|
|
struct btree_trans trans;
|
|
struct btree_iter iter;
|
|
subvol_inum inum = {
|
|
.subvol = op->subvol,
|
|
.inum = k->k.p.inode,
|
|
};
|
|
int ret;
|
|
|
|
BUG_ON(!inum.subvol);
|
|
|
|
bch2_bkey_buf_init(&sk);
|
|
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024);
|
|
|
|
do {
|
|
bch2_trans_begin(&trans);
|
|
|
|
k = bch2_keylist_front(keys);
|
|
bch2_bkey_buf_copy(&sk, c, k);
|
|
|
|
ret = bch2_subvolume_get_snapshot(&trans, inum.subvol,
|
|
&sk.k->k.p.snapshot);
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
continue;
|
|
if (ret)
|
|
break;
|
|
|
|
bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents,
|
|
bkey_start_pos(&sk.k->k),
|
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
|
|
|
|
ret = bch2_extent_update(&trans, inum, &iter, sk.k,
|
|
&op->res,
|
|
op->new_i_size, &op->i_sectors_delta,
|
|
op->flags & BCH_WRITE_CHECK_ENOSPC);
|
|
bch2_trans_iter_exit(&trans, &iter);
|
|
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
continue;
|
|
if (ret)
|
|
break;
|
|
|
|
if (bkey_ge(iter.pos, k->k.p))
|
|
bch2_keylist_pop_front(&op->insert_keys);
|
|
else
|
|
bch2_cut_front(iter.pos, k);
|
|
} while (!bch2_keylist_empty(keys));
|
|
|
|
bch2_trans_exit(&trans);
|
|
bch2_bkey_buf_exit(&sk, c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Writes */
|
|
|
|
void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
|
|
enum bch_data_type type,
|
|
const struct bkey_i *k,
|
|
bool nocow)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bch_write_bio *n;
|
|
struct bch_dev *ca;
|
|
|
|
BUG_ON(c->opts.nochanges);
|
|
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX ||
|
|
!c->devs[ptr->dev]);
|
|
|
|
ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
|
|
if (to_entry(ptr + 1) < ptrs.end) {
|
|
n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
|
|
GFP_NOFS, &ca->replica_set));
|
|
|
|
n->bio.bi_end_io = wbio->bio.bi_end_io;
|
|
n->bio.bi_private = wbio->bio.bi_private;
|
|
n->parent = wbio;
|
|
n->split = true;
|
|
n->bounce = false;
|
|
n->put_bio = true;
|
|
n->bio.bi_opf = wbio->bio.bi_opf;
|
|
bio_inc_remaining(&wbio->bio);
|
|
} else {
|
|
n = wbio;
|
|
n->split = false;
|
|
}
|
|
|
|
n->c = c;
|
|
n->dev = ptr->dev;
|
|
n->have_ioref = nocow || bch2_dev_get_ioref(ca,
|
|
type == BCH_DATA_btree ? READ : WRITE);
|
|
n->nocow = nocow;
|
|
n->submit_time = local_clock();
|
|
n->inode_offset = bkey_start_offset(&k->k);
|
|
n->bio.bi_iter.bi_sector = ptr->offset;
|
|
|
|
if (likely(n->have_ioref)) {
|
|
this_cpu_add(ca->io_done->sectors[WRITE][type],
|
|
bio_sectors(&n->bio));
|
|
|
|
bio_set_dev(&n->bio, ca->disk_sb.bdev);
|
|
|
|
if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
|
|
bio_endio(&n->bio);
|
|
continue;
|
|
}
|
|
|
|
submit_bio(&n->bio);
|
|
} else {
|
|
n->bio.bi_status = BLK_STS_REMOVED;
|
|
bio_endio(&n->bio);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __bch2_write(struct bch_write_op *);
|
|
|
|
static void bch2_write_done(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
|
|
bch2_disk_reservation_put(c, &op->res);
|
|
if (!(op->flags & BCH_WRITE_MOVE))
|
|
bch2_write_ref_put(c, BCH_WRITE_REF_write);
|
|
bch2_keylist_free(&op->insert_keys, op->inline_keys);
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
|
|
|
|
EBUG_ON(cl->parent);
|
|
closure_debug_destroy(cl);
|
|
if (op->end_io)
|
|
op->end_io(op);
|
|
}
|
|
|
|
static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
|
|
{
|
|
struct keylist *keys = &op->insert_keys;
|
|
struct bch_extent_ptr *ptr;
|
|
struct bkey_i *src, *dst = keys->keys, *n;
|
|
|
|
for (src = keys->keys; src != keys->top; src = n) {
|
|
n = bkey_next(src);
|
|
|
|
if (bkey_extent_is_direct_data(&src->k)) {
|
|
bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
|
|
test_bit(ptr->dev, op->failed.d));
|
|
|
|
if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
|
|
return -EIO;
|
|
}
|
|
|
|
if (dst != src)
|
|
memmove_u64s_down(dst, src, src->k.u64s);
|
|
dst = bkey_next(dst);
|
|
}
|
|
|
|
keys->top = dst;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bch_write_index - after a write, update index to point to new data
|
|
*/
|
|
static void __bch2_write_index(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct keylist *keys = &op->insert_keys;
|
|
struct bkey_i *k;
|
|
unsigned dev;
|
|
int ret = 0;
|
|
|
|
if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
|
|
ret = bch2_write_drop_io_error_ptrs(op);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* probably not the ideal place to hook this in, but I don't
|
|
* particularly want to plumb io_opts all the way through the btree
|
|
* update stack right now
|
|
*/
|
|
for_each_keylist_key(keys, k)
|
|
bch2_rebalance_add_key(c, bkey_i_to_s_c(k), &op->opts);
|
|
|
|
if (!bch2_keylist_empty(keys)) {
|
|
u64 sectors_start = keylist_sectors(keys);
|
|
|
|
ret = !(op->flags & BCH_WRITE_MOVE)
|
|
? bch2_write_index_default(op)
|
|
: bch2_data_update_index_update(op);
|
|
|
|
BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
|
|
BUG_ON(keylist_sectors(keys) && !ret);
|
|
|
|
op->written += sectors_start - keylist_sectors(keys);
|
|
|
|
if (ret && !bch2_err_matches(ret, EROFS)) {
|
|
struct bkey_i *k = bch2_keylist_front(&op->insert_keys);
|
|
|
|
bch_err_inum_offset_ratelimited(c,
|
|
k->k.p.inode, k->k.p.offset << 9,
|
|
"write error while doing btree update: %s",
|
|
bch2_err_str(ret));
|
|
}
|
|
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
out:
|
|
/* If some a bucket wasn't written, we can't erasure code it: */
|
|
for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
|
|
bch2_open_bucket_write_error(c, &op->open_buckets, dev);
|
|
|
|
bch2_open_buckets_put(c, &op->open_buckets);
|
|
return;
|
|
err:
|
|
keys->top = keys->keys;
|
|
op->error = ret;
|
|
op->flags |= BCH_WRITE_DONE;
|
|
goto out;
|
|
}
|
|
|
|
static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
|
|
{
|
|
if (state != wp->state) {
|
|
u64 now = ktime_get_ns();
|
|
|
|
if (wp->last_state_change &&
|
|
time_after64(now, wp->last_state_change))
|
|
wp->time[wp->state] += now - wp->last_state_change;
|
|
wp->state = state;
|
|
wp->last_state_change = now;
|
|
}
|
|
}
|
|
|
|
static inline void wp_update_state(struct write_point *wp, bool running)
|
|
{
|
|
enum write_point_state state;
|
|
|
|
state = running ? WRITE_POINT_running :
|
|
!list_empty(&wp->writes) ? WRITE_POINT_waiting_io
|
|
: WRITE_POINT_stopped;
|
|
|
|
__wp_update_state(wp, state);
|
|
}
|
|
|
|
static void bch2_write_index(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct write_point *wp = op->wp;
|
|
struct workqueue_struct *wq = index_update_wq(op);
|
|
unsigned long flags;
|
|
|
|
if ((op->flags & BCH_WRITE_DONE) &&
|
|
(op->flags & BCH_WRITE_MOVE))
|
|
bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
|
|
|
|
spin_lock_irqsave(&wp->writes_lock, flags);
|
|
if (wp->state == WRITE_POINT_waiting_io)
|
|
__wp_update_state(wp, WRITE_POINT_waiting_work);
|
|
list_add_tail(&op->wp_list, &wp->writes);
|
|
spin_unlock_irqrestore (&wp->writes_lock, flags);
|
|
|
|
queue_work(wq, &wp->index_update_work);
|
|
}
|
|
|
|
static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
|
|
{
|
|
op->wp = wp;
|
|
|
|
if (wp->state == WRITE_POINT_stopped) {
|
|
spin_lock_irq(&wp->writes_lock);
|
|
__wp_update_state(wp, WRITE_POINT_waiting_io);
|
|
spin_unlock_irq(&wp->writes_lock);
|
|
}
|
|
}
|
|
|
|
void bch2_write_point_do_index_updates(struct work_struct *work)
|
|
{
|
|
struct write_point *wp =
|
|
container_of(work, struct write_point, index_update_work);
|
|
struct bch_write_op *op;
|
|
|
|
while (1) {
|
|
spin_lock_irq(&wp->writes_lock);
|
|
op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
|
|
if (op)
|
|
list_del(&op->wp_list);
|
|
wp_update_state(wp, op != NULL);
|
|
spin_unlock_irq(&wp->writes_lock);
|
|
|
|
if (!op)
|
|
break;
|
|
|
|
op->flags |= BCH_WRITE_IN_WORKER;
|
|
|
|
__bch2_write_index(op);
|
|
|
|
if (!(op->flags & BCH_WRITE_DONE))
|
|
__bch2_write(op);
|
|
else
|
|
bch2_write_done(&op->cl);
|
|
}
|
|
}
|
|
|
|
static void bch2_write_endio(struct bio *bio)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_write_bio *wbio = to_wbio(bio);
|
|
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
|
|
struct bch_fs *c = wbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
|
|
|
|
if (bch2_dev_inum_io_err_on(bio->bi_status, ca,
|
|
op->pos.inode,
|
|
wbio->inode_offset << 9,
|
|
"data write error: %s",
|
|
bch2_blk_status_to_str(bio->bi_status))) {
|
|
set_bit(wbio->dev, op->failed.d);
|
|
op->flags |= BCH_WRITE_IO_ERROR;
|
|
}
|
|
|
|
if (wbio->nocow)
|
|
set_bit(wbio->dev, op->devs_need_flush->d);
|
|
|
|
if (wbio->have_ioref) {
|
|
bch2_latency_acct(ca, wbio->submit_time, WRITE);
|
|
percpu_ref_put(&ca->io_ref);
|
|
}
|
|
|
|
if (wbio->bounce)
|
|
bch2_bio_free_pages_pool(c, bio);
|
|
|
|
if (wbio->put_bio)
|
|
bio_put(bio);
|
|
|
|
if (parent)
|
|
bio_endio(&parent->bio);
|
|
else
|
|
closure_put(cl);
|
|
}
|
|
|
|
static void init_append_extent(struct bch_write_op *op,
|
|
struct write_point *wp,
|
|
struct bversion version,
|
|
struct bch_extent_crc_unpacked crc)
|
|
{
|
|
struct bkey_i_extent *e;
|
|
|
|
op->pos.offset += crc.uncompressed_size;
|
|
|
|
e = bkey_extent_init(op->insert_keys.top);
|
|
e->k.p = op->pos;
|
|
e->k.size = crc.uncompressed_size;
|
|
e->k.version = version;
|
|
|
|
if (crc.csum_type ||
|
|
crc.compression_type ||
|
|
crc.nonce)
|
|
bch2_extent_crc_append(&e->k_i, crc);
|
|
|
|
bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
|
|
op->flags & BCH_WRITE_CACHED);
|
|
|
|
bch2_keylist_push(&op->insert_keys);
|
|
}
|
|
|
|
static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
|
|
struct write_point *wp,
|
|
struct bio *src,
|
|
bool *page_alloc_failed,
|
|
void *buf)
|
|
{
|
|
struct bch_write_bio *wbio;
|
|
struct bio *bio;
|
|
unsigned output_available =
|
|
min(wp->sectors_free << 9, src->bi_iter.bi_size);
|
|
unsigned pages = DIV_ROUND_UP(output_available +
|
|
(buf
|
|
? ((unsigned long) buf & (PAGE_SIZE - 1))
|
|
: 0), PAGE_SIZE);
|
|
|
|
pages = min(pages, BIO_MAX_VECS);
|
|
|
|
bio = bio_alloc_bioset(NULL, pages, 0,
|
|
GFP_NOFS, &c->bio_write);
|
|
wbio = wbio_init(bio);
|
|
wbio->put_bio = true;
|
|
/* copy WRITE_SYNC flag */
|
|
wbio->bio.bi_opf = src->bi_opf;
|
|
|
|
if (buf) {
|
|
bch2_bio_map(bio, buf, output_available);
|
|
return bio;
|
|
}
|
|
|
|
wbio->bounce = true;
|
|
|
|
/*
|
|
* We can't use mempool for more than c->sb.encoded_extent_max
|
|
* worth of pages, but we'd like to allocate more if we can:
|
|
*/
|
|
bch2_bio_alloc_pages_pool(c, bio,
|
|
min_t(unsigned, output_available,
|
|
c->opts.encoded_extent_max));
|
|
|
|
if (bio->bi_iter.bi_size < output_available)
|
|
*page_alloc_failed =
|
|
bch2_bio_alloc_pages(bio,
|
|
output_available -
|
|
bio->bi_iter.bi_size,
|
|
GFP_NOFS) != 0;
|
|
|
|
return bio;
|
|
}
|
|
|
|
static int bch2_write_rechecksum(struct bch_fs *c,
|
|
struct bch_write_op *op,
|
|
unsigned new_csum_type)
|
|
{
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bch_extent_crc_unpacked new_crc;
|
|
int ret;
|
|
|
|
/* bch2_rechecksum_bio() can't encrypt or decrypt data: */
|
|
|
|
if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
|
|
bch2_csum_type_is_encryption(new_csum_type))
|
|
new_csum_type = op->crc.csum_type;
|
|
|
|
ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
|
|
NULL, &new_crc,
|
|
op->crc.offset, op->crc.live_size,
|
|
new_csum_type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bio_advance(bio, op->crc.offset << 9);
|
|
bio->bi_iter.bi_size = op->crc.live_size << 9;
|
|
op->crc = new_crc;
|
|
return 0;
|
|
}
|
|
|
|
static int bch2_write_decrypt(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct nonce nonce = extent_nonce(op->version, op->crc);
|
|
struct bch_csum csum;
|
|
int ret;
|
|
|
|
if (!bch2_csum_type_is_encryption(op->crc.csum_type))
|
|
return 0;
|
|
|
|
/*
|
|
* If we need to decrypt data in the write path, we'll no longer be able
|
|
* to verify the existing checksum (poly1305 mac, in this case) after
|
|
* it's decrypted - this is the last point we'll be able to reverify the
|
|
* checksum:
|
|
*/
|
|
csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
|
|
if (bch2_crc_cmp(op->crc.csum, csum))
|
|
return -EIO;
|
|
|
|
ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
|
|
op->crc.csum_type = 0;
|
|
op->crc.csum = (struct bch_csum) { 0, 0 };
|
|
return ret;
|
|
}
|
|
|
|
static enum prep_encoded_ret {
|
|
PREP_ENCODED_OK,
|
|
PREP_ENCODED_ERR,
|
|
PREP_ENCODED_CHECKSUM_ERR,
|
|
PREP_ENCODED_DO_WRITE,
|
|
} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bio *bio = &op->wbio.bio;
|
|
|
|
if (!(op->flags & BCH_WRITE_DATA_ENCODED))
|
|
return PREP_ENCODED_OK;
|
|
|
|
BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
|
|
|
|
/* Can we just write the entire extent as is? */
|
|
if (op->crc.uncompressed_size == op->crc.live_size &&
|
|
op->crc.compressed_size <= wp->sectors_free &&
|
|
(op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
|
|
op->incompressible)) {
|
|
if (!crc_is_compressed(op->crc) &&
|
|
op->csum_type != op->crc.csum_type &&
|
|
bch2_write_rechecksum(c, op, op->csum_type) &&
|
|
!c->opts.no_data_io)
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
return PREP_ENCODED_DO_WRITE;
|
|
}
|
|
|
|
/*
|
|
* If the data is compressed and we couldn't write the entire extent as
|
|
* is, we have to decompress it:
|
|
*/
|
|
if (crc_is_compressed(op->crc)) {
|
|
struct bch_csum csum;
|
|
|
|
if (bch2_write_decrypt(op))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
/* Last point we can still verify checksum: */
|
|
csum = bch2_checksum_bio(c, op->crc.csum_type,
|
|
extent_nonce(op->version, op->crc),
|
|
bio);
|
|
if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
|
|
return PREP_ENCODED_ERR;
|
|
}
|
|
|
|
/*
|
|
* No longer have compressed data after this point - data might be
|
|
* encrypted:
|
|
*/
|
|
|
|
/*
|
|
* If the data is checksummed and we're only writing a subset,
|
|
* rechecksum and adjust bio to point to currently live data:
|
|
*/
|
|
if ((op->crc.live_size != op->crc.uncompressed_size ||
|
|
op->crc.csum_type != op->csum_type) &&
|
|
bch2_write_rechecksum(c, op, op->csum_type) &&
|
|
!c->opts.no_data_io)
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
/*
|
|
* If we want to compress the data, it has to be decrypted:
|
|
*/
|
|
if ((op->compression_opt ||
|
|
bch2_csum_type_is_encryption(op->crc.csum_type) !=
|
|
bch2_csum_type_is_encryption(op->csum_type)) &&
|
|
bch2_write_decrypt(op))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
return PREP_ENCODED_OK;
|
|
}
|
|
|
|
static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
|
|
struct bio **_dst)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bio *src = &op->wbio.bio, *dst = src;
|
|
struct bvec_iter saved_iter;
|
|
void *ec_buf;
|
|
unsigned total_output = 0, total_input = 0;
|
|
bool bounce = false;
|
|
bool page_alloc_failed = false;
|
|
int ret, more = 0;
|
|
|
|
BUG_ON(!bio_sectors(src));
|
|
|
|
ec_buf = bch2_writepoint_ec_buf(c, wp);
|
|
|
|
switch (bch2_write_prep_encoded_data(op, wp)) {
|
|
case PREP_ENCODED_OK:
|
|
break;
|
|
case PREP_ENCODED_ERR:
|
|
ret = -EIO;
|
|
goto err;
|
|
case PREP_ENCODED_CHECKSUM_ERR:
|
|
goto csum_err;
|
|
case PREP_ENCODED_DO_WRITE:
|
|
/* XXX look for bug here */
|
|
if (ec_buf) {
|
|
dst = bch2_write_bio_alloc(c, wp, src,
|
|
&page_alloc_failed,
|
|
ec_buf);
|
|
bio_copy_data(dst, src);
|
|
bounce = true;
|
|
}
|
|
init_append_extent(op, wp, op->version, op->crc);
|
|
goto do_write;
|
|
}
|
|
|
|
if (ec_buf ||
|
|
op->compression_opt ||
|
|
(op->csum_type &&
|
|
!(op->flags & BCH_WRITE_PAGES_STABLE)) ||
|
|
(bch2_csum_type_is_encryption(op->csum_type) &&
|
|
!(op->flags & BCH_WRITE_PAGES_OWNED))) {
|
|
dst = bch2_write_bio_alloc(c, wp, src,
|
|
&page_alloc_failed,
|
|
ec_buf);
|
|
bounce = true;
|
|
}
|
|
|
|
saved_iter = dst->bi_iter;
|
|
|
|
do {
|
|
struct bch_extent_crc_unpacked crc = { 0 };
|
|
struct bversion version = op->version;
|
|
size_t dst_len, src_len;
|
|
|
|
if (page_alloc_failed &&
|
|
dst->bi_iter.bi_size < (wp->sectors_free << 9) &&
|
|
dst->bi_iter.bi_size < c->opts.encoded_extent_max)
|
|
break;
|
|
|
|
BUG_ON(op->compression_opt &&
|
|
(op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
bch2_csum_type_is_encryption(op->crc.csum_type));
|
|
BUG_ON(op->compression_opt && !bounce);
|
|
|
|
crc.compression_type = op->incompressible
|
|
? BCH_COMPRESSION_TYPE_incompressible
|
|
: op->compression_opt
|
|
? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
|
|
op->compression_opt)
|
|
: 0;
|
|
if (!crc_is_compressed(crc)) {
|
|
dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
|
|
dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
|
|
|
|
if (op->csum_type)
|
|
dst_len = min_t(unsigned, dst_len,
|
|
c->opts.encoded_extent_max);
|
|
|
|
if (bounce) {
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
bio_copy_data(dst, src);
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
}
|
|
|
|
src_len = dst_len;
|
|
}
|
|
|
|
BUG_ON(!src_len || !dst_len);
|
|
|
|
if (bch2_csum_type_is_encryption(op->csum_type)) {
|
|
if (bversion_zero(version)) {
|
|
version.lo = atomic64_inc_return(&c->key_version);
|
|
} else {
|
|
crc.nonce = op->nonce;
|
|
op->nonce += src_len >> 9;
|
|
}
|
|
}
|
|
|
|
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
!crc_is_compressed(crc) &&
|
|
bch2_csum_type_is_encryption(op->crc.csum_type) ==
|
|
bch2_csum_type_is_encryption(op->csum_type)) {
|
|
u8 compression_type = crc.compression_type;
|
|
u16 nonce = crc.nonce;
|
|
/*
|
|
* Note: when we're using rechecksum(), we need to be
|
|
* checksumming @src because it has all the data our
|
|
* existing checksum covers - if we bounced (because we
|
|
* were trying to compress), @dst will only have the
|
|
* part of the data the new checksum will cover.
|
|
*
|
|
* But normally we want to be checksumming post bounce,
|
|
* because part of the reason for bouncing is so the
|
|
* data can't be modified (by userspace) while it's in
|
|
* flight.
|
|
*/
|
|
if (bch2_rechecksum_bio(c, src, version, op->crc,
|
|
&crc, &op->crc,
|
|
src_len >> 9,
|
|
bio_sectors(src) - (src_len >> 9),
|
|
op->csum_type))
|
|
goto csum_err;
|
|
/*
|
|
* rchecksum_bio sets compression_type on crc from op->crc,
|
|
* this isn't always correct as sometimes we're changing
|
|
* an extent from uncompressed to incompressible.
|
|
*/
|
|
crc.compression_type = compression_type;
|
|
crc.nonce = nonce;
|
|
} else {
|
|
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
bch2_rechecksum_bio(c, src, version, op->crc,
|
|
NULL, &op->crc,
|
|
src_len >> 9,
|
|
bio_sectors(src) - (src_len >> 9),
|
|
op->crc.csum_type))
|
|
goto csum_err;
|
|
|
|
crc.compressed_size = dst_len >> 9;
|
|
crc.uncompressed_size = src_len >> 9;
|
|
crc.live_size = src_len >> 9;
|
|
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
ret = bch2_encrypt_bio(c, op->csum_type,
|
|
extent_nonce(version, crc), dst);
|
|
if (ret)
|
|
goto err;
|
|
|
|
crc.csum = bch2_checksum_bio(c, op->csum_type,
|
|
extent_nonce(version, crc), dst);
|
|
crc.csum_type = op->csum_type;
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
}
|
|
|
|
init_append_extent(op, wp, version, crc);
|
|
|
|
if (dst != src)
|
|
bio_advance(dst, dst_len);
|
|
bio_advance(src, src_len);
|
|
total_output += dst_len;
|
|
total_input += src_len;
|
|
} while (dst->bi_iter.bi_size &&
|
|
src->bi_iter.bi_size &&
|
|
wp->sectors_free &&
|
|
!bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX));
|
|
|
|
more = src->bi_iter.bi_size != 0;
|
|
|
|
dst->bi_iter = saved_iter;
|
|
|
|
if (dst == src && more) {
|
|
BUG_ON(total_output != total_input);
|
|
|
|
dst = bio_split(src, total_input >> 9,
|
|
GFP_NOFS, &c->bio_write);
|
|
wbio_init(dst)->put_bio = true;
|
|
/* copy WRITE_SYNC flag */
|
|
dst->bi_opf = src->bi_opf;
|
|
}
|
|
|
|
dst->bi_iter.bi_size = total_output;
|
|
do_write:
|
|
*_dst = dst;
|
|
return more;
|
|
csum_err:
|
|
bch_err(c, "error verifying existing checksum while rewriting existing data (memory corruption?)");
|
|
ret = -EIO;
|
|
err:
|
|
if (to_wbio(dst)->bounce)
|
|
bch2_bio_free_pages_pool(c, dst);
|
|
if (to_wbio(dst)->put_bio)
|
|
bio_put(dst);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool bch2_extent_is_writeable(struct bch_write_op *op,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bkey_s_c_extent e;
|
|
struct extent_ptr_decoded p;
|
|
const union bch_extent_entry *entry;
|
|
unsigned replicas = 0;
|
|
|
|
if (k.k->type != KEY_TYPE_extent)
|
|
return false;
|
|
|
|
e = bkey_s_c_to_extent(k);
|
|
extent_for_each_ptr_decode(e, p, entry) {
|
|
if (p.crc.csum_type ||
|
|
crc_is_compressed(p.crc) ||
|
|
p.has_ec)
|
|
return false;
|
|
|
|
replicas += bch2_extent_ptr_durability(c, &p);
|
|
}
|
|
|
|
return replicas >= op->opts.data_replicas;
|
|
}
|
|
|
|
static inline void bch2_nocow_write_unlock(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bkey_i *k;
|
|
|
|
for_each_keylist_key(&op->insert_keys, k) {
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
|
|
|
|
bkey_for_each_ptr(ptrs, ptr)
|
|
bch2_bucket_nocow_unlock(&c->nocow_locks,
|
|
PTR_BUCKET_POS(c, ptr),
|
|
BUCKET_NOCOW_LOCK_UPDATE);
|
|
}
|
|
}
|
|
|
|
static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_i *orig,
|
|
struct bkey_s_c k,
|
|
u64 new_i_size)
|
|
{
|
|
struct bkey_i *new;
|
|
struct bkey_ptrs ptrs;
|
|
struct bch_extent_ptr *ptr;
|
|
int ret;
|
|
|
|
if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
|
|
/* trace this */
|
|
return 0;
|
|
}
|
|
|
|
new = bch2_bkey_make_mut_noupdate(trans, k);
|
|
ret = PTR_ERR_OR_ZERO(new);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bch2_cut_front(bkey_start_pos(&orig->k), new);
|
|
bch2_cut_back(orig->k.p, new);
|
|
|
|
ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
|
|
bkey_for_each_ptr(ptrs, ptr)
|
|
ptr->unwritten = 0;
|
|
|
|
/*
|
|
* Note that we're not calling bch2_subvol_get_snapshot() in this path -
|
|
* that was done when we kicked off the write, and here it's important
|
|
* that we update the extent that we wrote to - even if a snapshot has
|
|
* since been created. The write is still outstanding, so we're ok
|
|
* w.r.t. snapshot atomicity:
|
|
*/
|
|
return bch2_extent_update_i_size_sectors(trans, iter,
|
|
min(new->k.p.offset << 9, new_i_size), 0) ?:
|
|
bch2_trans_update(trans, iter, new,
|
|
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
|
|
}
|
|
|
|
static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct btree_trans trans;
|
|
struct btree_iter iter;
|
|
struct bkey_i *orig;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
|
|
for_each_keylist_key(&op->insert_keys, orig) {
|
|
ret = for_each_btree_key_upto_commit(&trans, iter, BTREE_ID_extents,
|
|
bkey_start_pos(&orig->k), orig->k.p,
|
|
BTREE_ITER_INTENT, k,
|
|
NULL, NULL, BTREE_INSERT_NOFAIL, ({
|
|
bch2_nocow_write_convert_one_unwritten(&trans, &iter, orig, k, op->new_i_size);
|
|
}));
|
|
|
|
if (ret && !bch2_err_matches(ret, EROFS)) {
|
|
struct bkey_i *k = bch2_keylist_front(&op->insert_keys);
|
|
|
|
bch_err_inum_offset_ratelimited(c,
|
|
k->k.p.inode, k->k.p.offset << 9,
|
|
"write error while doing btree update: %s",
|
|
bch2_err_str(ret));
|
|
}
|
|
|
|
if (ret) {
|
|
op->error = ret;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bch2_trans_exit(&trans);
|
|
}
|
|
|
|
static void __bch2_nocow_write_done(struct bch_write_op *op)
|
|
{
|
|
bch2_nocow_write_unlock(op);
|
|
|
|
if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
|
|
op->error = -EIO;
|
|
} else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
|
|
bch2_nocow_write_convert_unwritten(op);
|
|
}
|
|
|
|
static void bch2_nocow_write_done(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
|
|
__bch2_nocow_write_done(op);
|
|
bch2_write_done(cl);
|
|
}
|
|
|
|
static void bch2_nocow_write(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct btree_trans trans;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
struct bkey_ptrs_c ptrs;
|
|
const struct bch_extent_ptr *ptr;
|
|
struct {
|
|
struct bpos b;
|
|
unsigned gen;
|
|
struct nocow_lock_bucket *l;
|
|
} buckets[BCH_REPLICAS_MAX];
|
|
unsigned nr_buckets = 0;
|
|
u32 snapshot;
|
|
int ret, i;
|
|
|
|
if (op->flags & BCH_WRITE_MOVE)
|
|
return;
|
|
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
retry:
|
|
bch2_trans_begin(&trans);
|
|
|
|
ret = bch2_subvolume_get_snapshot(&trans, op->subvol, &snapshot);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
|
|
bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents,
|
|
SPOS(op->pos.inode, op->pos.offset, snapshot),
|
|
BTREE_ITER_SLOTS);
|
|
while (1) {
|
|
struct bio *bio = &op->wbio.bio;
|
|
|
|
nr_buckets = 0;
|
|
|
|
k = bch2_btree_iter_peek_slot(&iter);
|
|
ret = bkey_err(k);
|
|
if (ret)
|
|
break;
|
|
|
|
/* fall back to normal cow write path? */
|
|
if (unlikely(k.k->p.snapshot != snapshot ||
|
|
!bch2_extent_is_writeable(op, k)))
|
|
break;
|
|
|
|
if (bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
k.k->u64s))
|
|
break;
|
|
|
|
/* Get iorefs before dropping btree locks: */
|
|
ptrs = bch2_bkey_ptrs_c(k);
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
buckets[nr_buckets].b = PTR_BUCKET_POS(c, ptr);
|
|
buckets[nr_buckets].gen = ptr->gen;
|
|
buckets[nr_buckets].l =
|
|
bucket_nocow_lock(&c->nocow_locks,
|
|
bucket_to_u64(buckets[nr_buckets].b));
|
|
|
|
prefetch(buckets[nr_buckets].l);
|
|
|
|
if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE)))
|
|
goto err_get_ioref;
|
|
|
|
nr_buckets++;
|
|
|
|
if (ptr->unwritten)
|
|
op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
|
|
}
|
|
|
|
/* Unlock before taking nocow locks, doing IO: */
|
|
bkey_reassemble(op->insert_keys.top, k);
|
|
bch2_trans_unlock(&trans);
|
|
|
|
bch2_cut_front(op->pos, op->insert_keys.top);
|
|
if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
|
|
bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
|
|
|
|
for (i = 0; i < nr_buckets; i++) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, buckets[i].b.inode);
|
|
struct nocow_lock_bucket *l = buckets[i].l;
|
|
bool stale;
|
|
|
|
__bch2_bucket_nocow_lock(&c->nocow_locks, l,
|
|
bucket_to_u64(buckets[i].b),
|
|
BUCKET_NOCOW_LOCK_UPDATE);
|
|
|
|
rcu_read_lock();
|
|
stale = gen_after(*bucket_gen(ca, buckets[i].b.offset), buckets[i].gen);
|
|
rcu_read_unlock();
|
|
|
|
if (unlikely(stale))
|
|
goto err_bucket_stale;
|
|
}
|
|
|
|
bio = &op->wbio.bio;
|
|
if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
|
|
bio = bio_split(bio, k.k->p.offset - op->pos.offset,
|
|
GFP_KERNEL, &c->bio_write);
|
|
wbio_init(bio)->put_bio = true;
|
|
bio->bi_opf = op->wbio.bio.bi_opf;
|
|
} else {
|
|
op->flags |= BCH_WRITE_DONE;
|
|
}
|
|
|
|
op->pos.offset += bio_sectors(bio);
|
|
op->written += bio_sectors(bio);
|
|
|
|
bio->bi_end_io = bch2_write_endio;
|
|
bio->bi_private = &op->cl;
|
|
bio->bi_opf |= REQ_OP_WRITE;
|
|
closure_get(&op->cl);
|
|
bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
|
|
op->insert_keys.top, true);
|
|
|
|
bch2_keylist_push(&op->insert_keys);
|
|
if (op->flags & BCH_WRITE_DONE)
|
|
break;
|
|
bch2_btree_iter_advance(&iter);
|
|
}
|
|
out:
|
|
bch2_trans_iter_exit(&trans, &iter);
|
|
err:
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
goto retry;
|
|
|
|
if (ret) {
|
|
bch_err_inum_offset_ratelimited(c,
|
|
op->pos.inode,
|
|
op->pos.offset << 9,
|
|
"%s: btree lookup error %s",
|
|
__func__, bch2_err_str(ret));
|
|
op->error = ret;
|
|
op->flags |= BCH_WRITE_DONE;
|
|
}
|
|
|
|
bch2_trans_exit(&trans);
|
|
|
|
/* fallback to cow write path? */
|
|
if (!(op->flags & BCH_WRITE_DONE)) {
|
|
closure_sync(&op->cl);
|
|
__bch2_nocow_write_done(op);
|
|
op->insert_keys.top = op->insert_keys.keys;
|
|
} else if (op->flags & BCH_WRITE_SYNC) {
|
|
closure_sync(&op->cl);
|
|
bch2_nocow_write_done(&op->cl);
|
|
} else {
|
|
/*
|
|
* XXX
|
|
* needs to run out of process context because ei_quota_lock is
|
|
* a mutex
|
|
*/
|
|
continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
|
|
}
|
|
return;
|
|
err_get_ioref:
|
|
for (i = 0; i < nr_buckets; i++)
|
|
percpu_ref_put(&bch_dev_bkey_exists(c, buckets[i].b.inode)->io_ref);
|
|
|
|
/* Fall back to COW path: */
|
|
goto out;
|
|
err_bucket_stale:
|
|
while (--i >= 0)
|
|
bch2_bucket_nocow_unlock(&c->nocow_locks,
|
|
buckets[i].b,
|
|
BUCKET_NOCOW_LOCK_UPDATE);
|
|
for (i = 0; i < nr_buckets; i++)
|
|
percpu_ref_put(&bch_dev_bkey_exists(c, buckets[i].b.inode)->io_ref);
|
|
|
|
/* We can retry this: */
|
|
ret = -BCH_ERR_transaction_restart;
|
|
goto out;
|
|
}
|
|
|
|
static void __bch2_write(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct write_point *wp = NULL;
|
|
struct bio *bio = NULL;
|
|
unsigned nofs_flags;
|
|
int ret;
|
|
|
|
nofs_flags = memalloc_nofs_save();
|
|
|
|
if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
|
|
bch2_nocow_write(op);
|
|
if (op->flags & BCH_WRITE_DONE)
|
|
goto out_nofs_restore;
|
|
}
|
|
again:
|
|
memset(&op->failed, 0, sizeof(op->failed));
|
|
|
|
do {
|
|
struct bkey_i *key_to_write;
|
|
unsigned key_to_write_offset = op->insert_keys.top_p -
|
|
op->insert_keys.keys_p;
|
|
|
|
/* +1 for possible cache device: */
|
|
if (op->open_buckets.nr + op->nr_replicas + 1 >
|
|
ARRAY_SIZE(op->open_buckets.v))
|
|
break;
|
|
|
|
if (bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX))
|
|
break;
|
|
|
|
/*
|
|
* The copygc thread is now global, which means it's no longer
|
|
* freeing up space on specific disks, which means that
|
|
* allocations for specific disks may hang arbitrarily long:
|
|
*/
|
|
ret = bch2_trans_do(c, NULL, NULL, 0,
|
|
bch2_alloc_sectors_start_trans(&trans,
|
|
op->target,
|
|
op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
|
|
op->write_point,
|
|
&op->devs_have,
|
|
op->nr_replicas,
|
|
op->nr_replicas_required,
|
|
op->watermark,
|
|
op->flags,
|
|
(op->flags & (BCH_WRITE_ALLOC_NOWAIT|
|
|
BCH_WRITE_ONLY_SPECIFIED_DEVS))
|
|
? NULL : &op->cl, &wp));
|
|
if (unlikely(ret)) {
|
|
if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
|
|
break;
|
|
|
|
goto err;
|
|
}
|
|
|
|
EBUG_ON(!wp);
|
|
|
|
bch2_open_bucket_get(c, wp, &op->open_buckets);
|
|
ret = bch2_write_extent(op, wp, &bio);
|
|
|
|
bch2_alloc_sectors_done_inlined(c, wp);
|
|
err:
|
|
if (ret <= 0) {
|
|
op->flags |= BCH_WRITE_DONE;
|
|
|
|
if (ret < 0) {
|
|
op->error = ret;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bio->bi_end_io = bch2_write_endio;
|
|
bio->bi_private = &op->cl;
|
|
bio->bi_opf |= REQ_OP_WRITE;
|
|
|
|
closure_get(bio->bi_private);
|
|
|
|
key_to_write = (void *) (op->insert_keys.keys_p +
|
|
key_to_write_offset);
|
|
|
|
bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
|
|
key_to_write, false);
|
|
} while (ret);
|
|
|
|
/*
|
|
* Sync or no?
|
|
*
|
|
* If we're running asynchronously, wne may still want to block
|
|
* synchronously here if we weren't able to submit all of the IO at
|
|
* once, as that signals backpressure to the caller.
|
|
*/
|
|
if ((op->flags & BCH_WRITE_SYNC) ||
|
|
(!(op->flags & BCH_WRITE_DONE) &&
|
|
!(op->flags & BCH_WRITE_IN_WORKER))) {
|
|
closure_sync(&op->cl);
|
|
__bch2_write_index(op);
|
|
|
|
if (!(op->flags & BCH_WRITE_DONE))
|
|
goto again;
|
|
bch2_write_done(&op->cl);
|
|
} else {
|
|
bch2_write_queue(op, wp);
|
|
continue_at(&op->cl, bch2_write_index, NULL);
|
|
}
|
|
out_nofs_restore:
|
|
memalloc_nofs_restore(nofs_flags);
|
|
}
|
|
|
|
static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
|
|
{
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bvec_iter iter;
|
|
struct bkey_i_inline_data *id;
|
|
unsigned sectors;
|
|
int ret;
|
|
|
|
op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
|
|
op->flags |= BCH_WRITE_DONE;
|
|
|
|
bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
|
|
|
|
ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_U64s + DIV_ROUND_UP(data_len, 8));
|
|
if (ret) {
|
|
op->error = ret;
|
|
goto err;
|
|
}
|
|
|
|
sectors = bio_sectors(bio);
|
|
op->pos.offset += sectors;
|
|
|
|
id = bkey_inline_data_init(op->insert_keys.top);
|
|
id->k.p = op->pos;
|
|
id->k.version = op->version;
|
|
id->k.size = sectors;
|
|
|
|
iter = bio->bi_iter;
|
|
iter.bi_size = data_len;
|
|
memcpy_from_bio(id->v.data, bio, iter);
|
|
|
|
while (data_len & 7)
|
|
id->v.data[data_len++] = '\0';
|
|
set_bkey_val_bytes(&id->k, data_len);
|
|
bch2_keylist_push(&op->insert_keys);
|
|
|
|
__bch2_write_index(op);
|
|
err:
|
|
bch2_write_done(&op->cl);
|
|
}
|
|
|
|
/**
|
|
* bch_write - handle a write to a cache device or flash only volume
|
|
*
|
|
* This is the starting point for any data to end up in a cache device; it could
|
|
* be from a normal write, or a writeback write, or a write to a flash only
|
|
* volume - it's also used by the moving garbage collector to compact data in
|
|
* mostly empty buckets.
|
|
*
|
|
* It first writes the data to the cache, creating a list of keys to be inserted
|
|
* (if the data won't fit in a single open bucket, there will be multiple keys);
|
|
* after the data is written it calls bch_journal, and after the keys have been
|
|
* added to the next journal write they're inserted into the btree.
|
|
*
|
|
* If op->discard is true, instead of inserting the data it invalidates the
|
|
* region of the cache represented by op->bio and op->inode.
|
|
*/
|
|
void bch2_write(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bch_fs *c = op->c;
|
|
unsigned data_len;
|
|
|
|
EBUG_ON(op->cl.parent);
|
|
BUG_ON(!op->nr_replicas);
|
|
BUG_ON(!op->write_point.v);
|
|
BUG_ON(bkey_eq(op->pos, POS_MAX));
|
|
|
|
op->start_time = local_clock();
|
|
bch2_keylist_init(&op->insert_keys, op->inline_keys);
|
|
wbio_init(bio)->put_bio = false;
|
|
|
|
if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
|
|
bch_err_inum_offset_ratelimited(c,
|
|
op->pos.inode,
|
|
op->pos.offset << 9,
|
|
"misaligned write");
|
|
op->error = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
if (c->opts.nochanges) {
|
|
op->error = -BCH_ERR_erofs_no_writes;
|
|
goto err;
|
|
}
|
|
|
|
if (!(op->flags & BCH_WRITE_MOVE) &&
|
|
!bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
|
|
op->error = -BCH_ERR_erofs_no_writes;
|
|
goto err;
|
|
}
|
|
|
|
this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
|
|
bch2_increment_clock(c, bio_sectors(bio), WRITE);
|
|
|
|
data_len = min_t(u64, bio->bi_iter.bi_size,
|
|
op->new_i_size - (op->pos.offset << 9));
|
|
|
|
if (c->opts.inline_data &&
|
|
data_len <= min(block_bytes(c) / 2, 1024U)) {
|
|
bch2_write_data_inline(op, data_len);
|
|
return;
|
|
}
|
|
|
|
__bch2_write(op);
|
|
return;
|
|
err:
|
|
bch2_disk_reservation_put(c, &op->res);
|
|
|
|
closure_debug_destroy(&op->cl);
|
|
if (op->end_io)
|
|
op->end_io(op);
|
|
}
|
|
|
|
static const char * const bch2_write_flags[] = {
|
|
#define x(f) #f,
|
|
BCH_WRITE_FLAGS()
|
|
#undef x
|
|
NULL
|
|
};
|
|
|
|
void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
|
|
{
|
|
prt_str(out, "pos: ");
|
|
bch2_bpos_to_text(out, op->pos);
|
|
prt_newline(out);
|
|
printbuf_indent_add(out, 2);
|
|
|
|
prt_str(out, "started: ");
|
|
bch2_pr_time_units(out, local_clock() - op->start_time);
|
|
prt_newline(out);
|
|
|
|
prt_str(out, "flags: ");
|
|
prt_bitflags(out, bch2_write_flags, op->flags);
|
|
prt_newline(out);
|
|
|
|
prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl));
|
|
prt_newline(out);
|
|
|
|
printbuf_indent_sub(out, 2);
|
|
}
|
|
|
|
/* Cache promotion on read */
|
|
|
|
struct promote_op {
|
|
struct rcu_head rcu;
|
|
u64 start_time;
|
|
|
|
struct rhash_head hash;
|
|
struct bpos pos;
|
|
|
|
struct data_update write;
|
|
struct bio_vec bi_inline_vecs[0]; /* must be last */
|
|
};
|
|
|
|
static const struct rhashtable_params bch_promote_params = {
|
|
.head_offset = offsetof(struct promote_op, hash),
|
|
.key_offset = offsetof(struct promote_op, pos),
|
|
.key_len = sizeof(struct bpos),
|
|
};
|
|
|
|
static inline bool should_promote(struct bch_fs *c, struct bkey_s_c k,
|
|
struct bpos pos,
|
|
struct bch_io_opts opts,
|
|
unsigned flags)
|
|
{
|
|
if (!(flags & BCH_READ_MAY_PROMOTE))
|
|
return false;
|
|
|
|
if (!opts.promote_target)
|
|
return false;
|
|
|
|
if (bch2_bkey_has_target(c, k, opts.promote_target))
|
|
return false;
|
|
|
|
if (bkey_extent_is_unwritten(k))
|
|
return false;
|
|
|
|
if (bch2_target_congested(c, opts.promote_target)) {
|
|
/* XXX trace this */
|
|
return false;
|
|
}
|
|
|
|
if (rhashtable_lookup_fast(&c->promote_table, &pos,
|
|
bch_promote_params))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void promote_free(struct bch_fs *c, struct promote_op *op)
|
|
{
|
|
int ret;
|
|
|
|
bch2_data_update_exit(&op->write);
|
|
|
|
ret = rhashtable_remove_fast(&c->promote_table, &op->hash,
|
|
bch_promote_params);
|
|
BUG_ON(ret);
|
|
bch2_write_ref_put(c, BCH_WRITE_REF_promote);
|
|
kfree_rcu(op, rcu);
|
|
}
|
|
|
|
static void promote_done(struct bch_write_op *wop)
|
|
{
|
|
struct promote_op *op =
|
|
container_of(wop, struct promote_op, write.op);
|
|
struct bch_fs *c = op->write.op.c;
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_data_promote],
|
|
op->start_time);
|
|
promote_free(c, op);
|
|
}
|
|
|
|
static void promote_start(struct promote_op *op, struct bch_read_bio *rbio)
|
|
{
|
|
struct bio *bio = &op->write.op.wbio.bio;
|
|
|
|
trace_and_count(op->write.op.c, read_promote, &rbio->bio);
|
|
|
|
/* we now own pages: */
|
|
BUG_ON(!rbio->bounce);
|
|
BUG_ON(rbio->bio.bi_vcnt > bio->bi_max_vecs);
|
|
|
|
memcpy(bio->bi_io_vec, rbio->bio.bi_io_vec,
|
|
sizeof(struct bio_vec) * rbio->bio.bi_vcnt);
|
|
swap(bio->bi_vcnt, rbio->bio.bi_vcnt);
|
|
|
|
bch2_data_update_read_done(&op->write, rbio->pick.crc);
|
|
}
|
|
|
|
static struct promote_op *__promote_alloc(struct btree_trans *trans,
|
|
enum btree_id btree_id,
|
|
struct bkey_s_c k,
|
|
struct bpos pos,
|
|
struct extent_ptr_decoded *pick,
|
|
struct bch_io_opts opts,
|
|
unsigned sectors,
|
|
struct bch_read_bio **rbio)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct promote_op *op = NULL;
|
|
struct bio *bio;
|
|
unsigned pages = DIV_ROUND_UP(sectors, PAGE_SECTORS);
|
|
int ret;
|
|
|
|
if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_promote))
|
|
return NULL;
|
|
|
|
op = kzalloc(sizeof(*op) + sizeof(struct bio_vec) * pages, GFP_NOFS);
|
|
if (!op)
|
|
goto err;
|
|
|
|
op->start_time = local_clock();
|
|
op->pos = pos;
|
|
|
|
/*
|
|
* We don't use the mempool here because extents that aren't
|
|
* checksummed or compressed can be too big for the mempool:
|
|
*/
|
|
*rbio = kzalloc(sizeof(struct bch_read_bio) +
|
|
sizeof(struct bio_vec) * pages,
|
|
GFP_NOFS);
|
|
if (!*rbio)
|
|
goto err;
|
|
|
|
rbio_init(&(*rbio)->bio, opts);
|
|
bio_init(&(*rbio)->bio, NULL, (*rbio)->bio.bi_inline_vecs, pages, 0);
|
|
|
|
if (bch2_bio_alloc_pages(&(*rbio)->bio, sectors << 9,
|
|
GFP_NOFS))
|
|
goto err;
|
|
|
|
(*rbio)->bounce = true;
|
|
(*rbio)->split = true;
|
|
(*rbio)->kmalloc = true;
|
|
|
|
if (rhashtable_lookup_insert_fast(&c->promote_table, &op->hash,
|
|
bch_promote_params))
|
|
goto err;
|
|
|
|
bio = &op->write.op.wbio.bio;
|
|
bio_init(bio, NULL, bio->bi_inline_vecs, pages, 0);
|
|
|
|
ret = bch2_data_update_init(trans, NULL, &op->write,
|
|
writepoint_hashed((unsigned long) current),
|
|
opts,
|
|
(struct data_update_opts) {
|
|
.target = opts.promote_target,
|
|
.extra_replicas = 1,
|
|
.write_flags = BCH_WRITE_ALLOC_NOWAIT|BCH_WRITE_CACHED,
|
|
},
|
|
btree_id, k);
|
|
/*
|
|
* possible errors: -BCH_ERR_nocow_lock_blocked,
|
|
* -BCH_ERR_ENOSPC_disk_reservation:
|
|
*/
|
|
if (ret) {
|
|
ret = rhashtable_remove_fast(&c->promote_table, &op->hash,
|
|
bch_promote_params);
|
|
BUG_ON(ret);
|
|
goto err;
|
|
}
|
|
|
|
op->write.op.end_io = promote_done;
|
|
|
|
return op;
|
|
err:
|
|
if (*rbio)
|
|
bio_free_pages(&(*rbio)->bio);
|
|
kfree(*rbio);
|
|
*rbio = NULL;
|
|
kfree(op);
|
|
bch2_write_ref_put(c, BCH_WRITE_REF_promote);
|
|
return NULL;
|
|
}
|
|
|
|
noinline
|
|
static struct promote_op *promote_alloc(struct btree_trans *trans,
|
|
struct bvec_iter iter,
|
|
struct bkey_s_c k,
|
|
struct extent_ptr_decoded *pick,
|
|
struct bch_io_opts opts,
|
|
unsigned flags,
|
|
struct bch_read_bio **rbio,
|
|
bool *bounce,
|
|
bool *read_full)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
bool promote_full = *read_full || READ_ONCE(c->promote_whole_extents);
|
|
/* data might have to be decompressed in the write path: */
|
|
unsigned sectors = promote_full
|
|
? max(pick->crc.compressed_size, pick->crc.live_size)
|
|
: bvec_iter_sectors(iter);
|
|
struct bpos pos = promote_full
|
|
? bkey_start_pos(k.k)
|
|
: POS(k.k->p.inode, iter.bi_sector);
|
|
struct promote_op *promote;
|
|
|
|
if (!should_promote(c, k, pos, opts, flags))
|
|
return NULL;
|
|
|
|
promote = __promote_alloc(trans,
|
|
k.k->type == KEY_TYPE_reflink_v
|
|
? BTREE_ID_reflink
|
|
: BTREE_ID_extents,
|
|
k, pos, pick, opts, sectors, rbio);
|
|
if (!promote)
|
|
return NULL;
|
|
|
|
*bounce = true;
|
|
*read_full = promote_full;
|
|
return promote;
|
|
}
|
|
|
|
/* Read */
|
|
|
|
#define READ_RETRY_AVOID 1
|
|
#define READ_RETRY 2
|
|
#define READ_ERR 3
|
|
|
|
enum rbio_context {
|
|
RBIO_CONTEXT_NULL,
|
|
RBIO_CONTEXT_HIGHPRI,
|
|
RBIO_CONTEXT_UNBOUND,
|
|
};
|
|
|
|
static inline struct bch_read_bio *
|
|
bch2_rbio_parent(struct bch_read_bio *rbio)
|
|
{
|
|
return rbio->split ? rbio->parent : rbio;
|
|
}
|
|
|
|
__always_inline
|
|
static void bch2_rbio_punt(struct bch_read_bio *rbio, work_func_t fn,
|
|
enum rbio_context context,
|
|
struct workqueue_struct *wq)
|
|
{
|
|
if (context <= rbio->context) {
|
|
fn(&rbio->work);
|
|
} else {
|
|
rbio->work.func = fn;
|
|
rbio->context = context;
|
|
queue_work(wq, &rbio->work);
|
|
}
|
|
}
|
|
|
|
static inline struct bch_read_bio *bch2_rbio_free(struct bch_read_bio *rbio)
|
|
{
|
|
BUG_ON(rbio->bounce && !rbio->split);
|
|
|
|
if (rbio->promote)
|
|
promote_free(rbio->c, rbio->promote);
|
|
rbio->promote = NULL;
|
|
|
|
if (rbio->bounce)
|
|
bch2_bio_free_pages_pool(rbio->c, &rbio->bio);
|
|
|
|
if (rbio->split) {
|
|
struct bch_read_bio *parent = rbio->parent;
|
|
|
|
if (rbio->kmalloc)
|
|
kfree(rbio);
|
|
else
|
|
bio_put(&rbio->bio);
|
|
|
|
rbio = parent;
|
|
}
|
|
|
|
return rbio;
|
|
}
|
|
|
|
/*
|
|
* Only called on a top level bch_read_bio to complete an entire read request,
|
|
* not a split:
|
|
*/
|
|
static void bch2_rbio_done(struct bch_read_bio *rbio)
|
|
{
|
|
if (rbio->start_time)
|
|
bch2_time_stats_update(&rbio->c->times[BCH_TIME_data_read],
|
|
rbio->start_time);
|
|
bio_endio(&rbio->bio);
|
|
}
|
|
|
|
static void bch2_read_retry_nodecode(struct bch_fs *c, struct bch_read_bio *rbio,
|
|
struct bvec_iter bvec_iter,
|
|
struct bch_io_failures *failed,
|
|
unsigned flags)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter iter;
|
|
struct bkey_buf sk;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
flags &= ~BCH_READ_LAST_FRAGMENT;
|
|
flags |= BCH_READ_MUST_CLONE;
|
|
|
|
bch2_bkey_buf_init(&sk);
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
|
|
bch2_trans_iter_init(&trans, &iter, rbio->data_btree,
|
|
rbio->read_pos, BTREE_ITER_SLOTS);
|
|
retry:
|
|
rbio->bio.bi_status = 0;
|
|
|
|
k = bch2_btree_iter_peek_slot(&iter);
|
|
if (bkey_err(k))
|
|
goto err;
|
|
|
|
bch2_bkey_buf_reassemble(&sk, c, k);
|
|
k = bkey_i_to_s_c(sk.k);
|
|
bch2_trans_unlock(&trans);
|
|
|
|
if (!bch2_bkey_matches_ptr(c, k,
|
|
rbio->pick.ptr,
|
|
rbio->data_pos.offset -
|
|
rbio->pick.crc.offset)) {
|
|
/* extent we wanted to read no longer exists: */
|
|
rbio->hole = true;
|
|
goto out;
|
|
}
|
|
|
|
ret = __bch2_read_extent(&trans, rbio, bvec_iter,
|
|
rbio->read_pos,
|
|
rbio->data_btree,
|
|
k, 0, failed, flags);
|
|
if (ret == READ_RETRY)
|
|
goto retry;
|
|
if (ret)
|
|
goto err;
|
|
out:
|
|
bch2_rbio_done(rbio);
|
|
bch2_trans_iter_exit(&trans, &iter);
|
|
bch2_trans_exit(&trans);
|
|
bch2_bkey_buf_exit(&sk, c);
|
|
return;
|
|
err:
|
|
rbio->bio.bi_status = BLK_STS_IOERR;
|
|
goto out;
|
|
}
|
|
|
|
static void bch2_rbio_retry(struct work_struct *work)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(work, struct bch_read_bio, work);
|
|
struct bch_fs *c = rbio->c;
|
|
struct bvec_iter iter = rbio->bvec_iter;
|
|
unsigned flags = rbio->flags;
|
|
subvol_inum inum = {
|
|
.subvol = rbio->subvol,
|
|
.inum = rbio->read_pos.inode,
|
|
};
|
|
struct bch_io_failures failed = { .nr = 0 };
|
|
|
|
trace_and_count(c, read_retry, &rbio->bio);
|
|
|
|
if (rbio->retry == READ_RETRY_AVOID)
|
|
bch2_mark_io_failure(&failed, &rbio->pick);
|
|
|
|
rbio->bio.bi_status = 0;
|
|
|
|
rbio = bch2_rbio_free(rbio);
|
|
|
|
flags |= BCH_READ_IN_RETRY;
|
|
flags &= ~BCH_READ_MAY_PROMOTE;
|
|
|
|
if (flags & BCH_READ_NODECODE) {
|
|
bch2_read_retry_nodecode(c, rbio, iter, &failed, flags);
|
|
} else {
|
|
flags &= ~BCH_READ_LAST_FRAGMENT;
|
|
flags |= BCH_READ_MUST_CLONE;
|
|
|
|
__bch2_read(c, rbio, iter, inum, &failed, flags);
|
|
}
|
|
}
|
|
|
|
static void bch2_rbio_error(struct bch_read_bio *rbio, int retry,
|
|
blk_status_t error)
|
|
{
|
|
rbio->retry = retry;
|
|
|
|
if (rbio->flags & BCH_READ_IN_RETRY)
|
|
return;
|
|
|
|
if (retry == READ_ERR) {
|
|
rbio = bch2_rbio_free(rbio);
|
|
|
|
rbio->bio.bi_status = error;
|
|
bch2_rbio_done(rbio);
|
|
} else {
|
|
bch2_rbio_punt(rbio, bch2_rbio_retry,
|
|
RBIO_CONTEXT_UNBOUND, system_unbound_wq);
|
|
}
|
|
}
|
|
|
|
static int __bch2_rbio_narrow_crcs(struct btree_trans *trans,
|
|
struct bch_read_bio *rbio)
|
|
{
|
|
struct bch_fs *c = rbio->c;
|
|
u64 data_offset = rbio->data_pos.offset - rbio->pick.crc.offset;
|
|
struct bch_extent_crc_unpacked new_crc;
|
|
struct btree_iter iter;
|
|
struct bkey_i *new;
|
|
struct bkey_s_c k;
|
|
int ret = 0;
|
|
|
|
if (crc_is_compressed(rbio->pick.crc))
|
|
return 0;
|
|
|
|
k = bch2_bkey_get_iter(trans, &iter, rbio->data_btree, rbio->data_pos,
|
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
|
|
if ((ret = bkey_err(k)))
|
|
goto out;
|
|
|
|
if (bversion_cmp(k.k->version, rbio->version) ||
|
|
!bch2_bkey_matches_ptr(c, k, rbio->pick.ptr, data_offset))
|
|
goto out;
|
|
|
|
/* Extent was merged? */
|
|
if (bkey_start_offset(k.k) < data_offset ||
|
|
k.k->p.offset > data_offset + rbio->pick.crc.uncompressed_size)
|
|
goto out;
|
|
|
|
if (bch2_rechecksum_bio(c, &rbio->bio, rbio->version,
|
|
rbio->pick.crc, NULL, &new_crc,
|
|
bkey_start_offset(k.k) - data_offset, k.k->size,
|
|
rbio->pick.crc.csum_type)) {
|
|
bch_err(c, "error verifying existing checksum while narrowing checksum (memory corruption?)");
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* going to be temporarily appending another checksum entry:
|
|
*/
|
|
new = bch2_trans_kmalloc(trans, bkey_bytes(k.k) +
|
|
sizeof(struct bch_extent_crc128));
|
|
if ((ret = PTR_ERR_OR_ZERO(new)))
|
|
goto out;
|
|
|
|
bkey_reassemble(new, k);
|
|
|
|
if (!bch2_bkey_narrow_crcs(new, new_crc))
|
|
goto out;
|
|
|
|
ret = bch2_trans_update(trans, &iter, new,
|
|
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
|
|
out:
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
return ret;
|
|
}
|
|
|
|
static noinline void bch2_rbio_narrow_crcs(struct bch_read_bio *rbio)
|
|
{
|
|
bch2_trans_do(rbio->c, NULL, NULL, BTREE_INSERT_NOFAIL,
|
|
__bch2_rbio_narrow_crcs(&trans, rbio));
|
|
}
|
|
|
|
/* Inner part that may run in process context */
|
|
static void __bch2_read_endio(struct work_struct *work)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(work, struct bch_read_bio, work);
|
|
struct bch_fs *c = rbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev);
|
|
struct bio *src = &rbio->bio;
|
|
struct bio *dst = &bch2_rbio_parent(rbio)->bio;
|
|
struct bvec_iter dst_iter = rbio->bvec_iter;
|
|
struct bch_extent_crc_unpacked crc = rbio->pick.crc;
|
|
struct nonce nonce = extent_nonce(rbio->version, crc);
|
|
unsigned nofs_flags;
|
|
struct bch_csum csum;
|
|
int ret;
|
|
|
|
nofs_flags = memalloc_nofs_save();
|
|
|
|
/* Reset iterator for checksumming and copying bounced data: */
|
|
if (rbio->bounce) {
|
|
src->bi_iter.bi_size = crc.compressed_size << 9;
|
|
src->bi_iter.bi_idx = 0;
|
|
src->bi_iter.bi_bvec_done = 0;
|
|
} else {
|
|
src->bi_iter = rbio->bvec_iter;
|
|
}
|
|
|
|
csum = bch2_checksum_bio(c, crc.csum_type, nonce, src);
|
|
if (bch2_crc_cmp(csum, rbio->pick.crc.csum) && !c->opts.no_data_io)
|
|
goto csum_err;
|
|
|
|
/*
|
|
* XXX
|
|
* We need to rework the narrow_crcs path to deliver the read completion
|
|
* first, and then punt to a different workqueue, otherwise we're
|
|
* holding up reads while doing btree updates which is bad for memory
|
|
* reclaim.
|
|
*/
|
|
if (unlikely(rbio->narrow_crcs))
|
|
bch2_rbio_narrow_crcs(rbio);
|
|
|
|
if (rbio->flags & BCH_READ_NODECODE)
|
|
goto nodecode;
|
|
|
|
/* Adjust crc to point to subset of data we want: */
|
|
crc.offset += rbio->offset_into_extent;
|
|
crc.live_size = bvec_iter_sectors(rbio->bvec_iter);
|
|
|
|
if (crc_is_compressed(crc)) {
|
|
ret = bch2_encrypt_bio(c, crc.csum_type, nonce, src);
|
|
if (ret)
|
|
goto decrypt_err;
|
|
|
|
if (bch2_bio_uncompress(c, src, dst, dst_iter, crc) &&
|
|
!c->opts.no_data_io)
|
|
goto decompression_err;
|
|
} else {
|
|
/* don't need to decrypt the entire bio: */
|
|
nonce = nonce_add(nonce, crc.offset << 9);
|
|
bio_advance(src, crc.offset << 9);
|
|
|
|
BUG_ON(src->bi_iter.bi_size < dst_iter.bi_size);
|
|
src->bi_iter.bi_size = dst_iter.bi_size;
|
|
|
|
ret = bch2_encrypt_bio(c, crc.csum_type, nonce, src);
|
|
if (ret)
|
|
goto decrypt_err;
|
|
|
|
if (rbio->bounce) {
|
|
struct bvec_iter src_iter = src->bi_iter;
|
|
|
|
bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
|
|
}
|
|
}
|
|
|
|
if (rbio->promote) {
|
|
/*
|
|
* Re encrypt data we decrypted, so it's consistent with
|
|
* rbio->crc:
|
|
*/
|
|
ret = bch2_encrypt_bio(c, crc.csum_type, nonce, src);
|
|
if (ret)
|
|
goto decrypt_err;
|
|
|
|
promote_start(rbio->promote, rbio);
|
|
rbio->promote = NULL;
|
|
}
|
|
nodecode:
|
|
if (likely(!(rbio->flags & BCH_READ_IN_RETRY))) {
|
|
rbio = bch2_rbio_free(rbio);
|
|
bch2_rbio_done(rbio);
|
|
}
|
|
out:
|
|
memalloc_nofs_restore(nofs_flags);
|
|
return;
|
|
csum_err:
|
|
/*
|
|
* Checksum error: if the bio wasn't bounced, we may have been
|
|
* reading into buffers owned by userspace (that userspace can
|
|
* scribble over) - retry the read, bouncing it this time:
|
|
*/
|
|
if (!rbio->bounce && (rbio->flags & BCH_READ_USER_MAPPED)) {
|
|
rbio->flags |= BCH_READ_MUST_BOUNCE;
|
|
bch2_rbio_error(rbio, READ_RETRY, BLK_STS_IOERR);
|
|
goto out;
|
|
}
|
|
|
|
bch_err_inum_offset_ratelimited(ca,
|
|
rbio->read_pos.inode,
|
|
rbio->read_pos.offset << 9,
|
|
"data checksum error: expected %0llx:%0llx got %0llx:%0llx (type %s)",
|
|
rbio->pick.crc.csum.hi, rbio->pick.crc.csum.lo,
|
|
csum.hi, csum.lo, bch2_csum_types[crc.csum_type]);
|
|
bch2_io_error(ca);
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
|
|
goto out;
|
|
decompression_err:
|
|
bch_err_inum_offset_ratelimited(c, rbio->read_pos.inode,
|
|
rbio->read_pos.offset << 9,
|
|
"decompression error");
|
|
bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR);
|
|
goto out;
|
|
decrypt_err:
|
|
bch_err_inum_offset_ratelimited(c, rbio->read_pos.inode,
|
|
rbio->read_pos.offset << 9,
|
|
"decrypt error");
|
|
bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR);
|
|
goto out;
|
|
}
|
|
|
|
static void bch2_read_endio(struct bio *bio)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(bio, struct bch_read_bio, bio);
|
|
struct bch_fs *c = rbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev);
|
|
struct workqueue_struct *wq = NULL;
|
|
enum rbio_context context = RBIO_CONTEXT_NULL;
|
|
|
|
if (rbio->have_ioref) {
|
|
bch2_latency_acct(ca, rbio->submit_time, READ);
|
|
percpu_ref_put(&ca->io_ref);
|
|
}
|
|
|
|
if (!rbio->split)
|
|
rbio->bio.bi_end_io = rbio->end_io;
|
|
|
|
if (bch2_dev_inum_io_err_on(bio->bi_status, ca,
|
|
rbio->read_pos.inode,
|
|
rbio->read_pos.offset,
|
|
"data read error: %s",
|
|
bch2_blk_status_to_str(bio->bi_status))) {
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, bio->bi_status);
|
|
return;
|
|
}
|
|
|
|
if (((rbio->flags & BCH_READ_RETRY_IF_STALE) && race_fault()) ||
|
|
ptr_stale(ca, &rbio->pick.ptr)) {
|
|
trace_and_count(c, read_reuse_race, &rbio->bio);
|
|
|
|
if (rbio->flags & BCH_READ_RETRY_IF_STALE)
|
|
bch2_rbio_error(rbio, READ_RETRY, BLK_STS_AGAIN);
|
|
else
|
|
bch2_rbio_error(rbio, READ_ERR, BLK_STS_AGAIN);
|
|
return;
|
|
}
|
|
|
|
if (rbio->narrow_crcs ||
|
|
rbio->promote ||
|
|
crc_is_compressed(rbio->pick.crc) ||
|
|
bch2_csum_type_is_encryption(rbio->pick.crc.csum_type))
|
|
context = RBIO_CONTEXT_UNBOUND, wq = system_unbound_wq;
|
|
else if (rbio->pick.crc.csum_type)
|
|
context = RBIO_CONTEXT_HIGHPRI, wq = system_highpri_wq;
|
|
|
|
bch2_rbio_punt(rbio, __bch2_read_endio, context, wq);
|
|
}
|
|
|
|
int __bch2_read_indirect_extent(struct btree_trans *trans,
|
|
unsigned *offset_into_extent,
|
|
struct bkey_buf *orig_k)
|
|
{
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
u64 reflink_offset;
|
|
int ret;
|
|
|
|
reflink_offset = le64_to_cpu(bkey_i_to_reflink_p(orig_k->k)->v.idx) +
|
|
*offset_into_extent;
|
|
|
|
k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_reflink,
|
|
POS(0, reflink_offset), 0);
|
|
ret = bkey_err(k);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (k.k->type != KEY_TYPE_reflink_v &&
|
|
k.k->type != KEY_TYPE_indirect_inline_data) {
|
|
bch_err_inum_offset_ratelimited(trans->c,
|
|
orig_k->k->k.p.inode,
|
|
orig_k->k->k.p.offset << 9,
|
|
"%llu len %u points to nonexistent indirect extent %llu",
|
|
orig_k->k->k.p.offset,
|
|
orig_k->k->k.size,
|
|
reflink_offset);
|
|
bch2_inconsistent_error(trans->c);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
*offset_into_extent = iter.pos.offset - bkey_start_offset(k.k);
|
|
bch2_bkey_buf_reassemble(orig_k, trans->c, k);
|
|
err:
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
return ret;
|
|
}
|
|
|
|
static noinline void read_from_stale_dirty_pointer(struct btree_trans *trans,
|
|
struct bkey_s_c k,
|
|
struct bch_extent_ptr ptr)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr.dev);
|
|
struct btree_iter iter;
|
|
struct printbuf buf = PRINTBUF;
|
|
int ret;
|
|
|
|
bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc,
|
|
PTR_BUCKET_POS(c, &ptr),
|
|
BTREE_ITER_CACHED);
|
|
|
|
prt_printf(&buf, "Attempting to read from stale dirty pointer:");
|
|
printbuf_indent_add(&buf, 2);
|
|
prt_newline(&buf);
|
|
|
|
bch2_bkey_val_to_text(&buf, c, k);
|
|
prt_newline(&buf);
|
|
|
|
prt_printf(&buf, "memory gen: %u", *bucket_gen(ca, iter.pos.offset));
|
|
|
|
ret = lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek_slot(&iter)));
|
|
if (!ret) {
|
|
prt_newline(&buf);
|
|
bch2_bkey_val_to_text(&buf, c, k);
|
|
}
|
|
|
|
bch2_fs_inconsistent(c, "%s", buf.buf);
|
|
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
printbuf_exit(&buf);
|
|
}
|
|
|
|
int __bch2_read_extent(struct btree_trans *trans, struct bch_read_bio *orig,
|
|
struct bvec_iter iter, struct bpos read_pos,
|
|
enum btree_id data_btree, struct bkey_s_c k,
|
|
unsigned offset_into_extent,
|
|
struct bch_io_failures *failed, unsigned flags)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct extent_ptr_decoded pick;
|
|
struct bch_read_bio *rbio = NULL;
|
|
struct bch_dev *ca = NULL;
|
|
struct promote_op *promote = NULL;
|
|
bool bounce = false, read_full = false, narrow_crcs = false;
|
|
struct bpos data_pos = bkey_start_pos(k.k);
|
|
int pick_ret;
|
|
|
|
if (bkey_extent_is_inline_data(k.k)) {
|
|
unsigned bytes = min_t(unsigned, iter.bi_size,
|
|
bkey_inline_data_bytes(k.k));
|
|
|
|
swap(iter.bi_size, bytes);
|
|
memcpy_to_bio(&orig->bio, iter, bkey_inline_data_p(k));
|
|
swap(iter.bi_size, bytes);
|
|
bio_advance_iter(&orig->bio, &iter, bytes);
|
|
zero_fill_bio_iter(&orig->bio, iter);
|
|
goto out_read_done;
|
|
}
|
|
retry_pick:
|
|
pick_ret = bch2_bkey_pick_read_device(c, k, failed, &pick);
|
|
|
|
/* hole or reservation - just zero fill: */
|
|
if (!pick_ret)
|
|
goto hole;
|
|
|
|
if (pick_ret < 0) {
|
|
bch_err_inum_offset_ratelimited(c,
|
|
read_pos.inode, read_pos.offset << 9,
|
|
"no device to read from");
|
|
goto err;
|
|
}
|
|
|
|
ca = bch_dev_bkey_exists(c, pick.ptr.dev);
|
|
|
|
/*
|
|
* Stale dirty pointers are treated as IO errors, but @failed isn't
|
|
* allocated unless we're in the retry path - so if we're not in the
|
|
* retry path, don't check here, it'll be caught in bch2_read_endio()
|
|
* and we'll end up in the retry path:
|
|
*/
|
|
if ((flags & BCH_READ_IN_RETRY) &&
|
|
!pick.ptr.cached &&
|
|
unlikely(ptr_stale(ca, &pick.ptr))) {
|
|
read_from_stale_dirty_pointer(trans, k, pick.ptr);
|
|
bch2_mark_io_failure(failed, &pick);
|
|
goto retry_pick;
|
|
}
|
|
|
|
/*
|
|
* Unlock the iterator while the btree node's lock is still in
|
|
* cache, before doing the IO:
|
|
*/
|
|
bch2_trans_unlock(trans);
|
|
|
|
if (flags & BCH_READ_NODECODE) {
|
|
/*
|
|
* can happen if we retry, and the extent we were going to read
|
|
* has been merged in the meantime:
|
|
*/
|
|
if (pick.crc.compressed_size > orig->bio.bi_vcnt * PAGE_SECTORS)
|
|
goto hole;
|
|
|
|
iter.bi_size = pick.crc.compressed_size << 9;
|
|
goto get_bio;
|
|
}
|
|
|
|
if (!(flags & BCH_READ_LAST_FRAGMENT) ||
|
|
bio_flagged(&orig->bio, BIO_CHAIN))
|
|
flags |= BCH_READ_MUST_CLONE;
|
|
|
|
narrow_crcs = !(flags & BCH_READ_IN_RETRY) &&
|
|
bch2_can_narrow_extent_crcs(k, pick.crc);
|
|
|
|
if (narrow_crcs && (flags & BCH_READ_USER_MAPPED))
|
|
flags |= BCH_READ_MUST_BOUNCE;
|
|
|
|
EBUG_ON(offset_into_extent + bvec_iter_sectors(iter) > k.k->size);
|
|
|
|
if (crc_is_compressed(pick.crc) ||
|
|
(pick.crc.csum_type != BCH_CSUM_none &&
|
|
(bvec_iter_sectors(iter) != pick.crc.uncompressed_size ||
|
|
(bch2_csum_type_is_encryption(pick.crc.csum_type) &&
|
|
(flags & BCH_READ_USER_MAPPED)) ||
|
|
(flags & BCH_READ_MUST_BOUNCE)))) {
|
|
read_full = true;
|
|
bounce = true;
|
|
}
|
|
|
|
if (orig->opts.promote_target)
|
|
promote = promote_alloc(trans, iter, k, &pick, orig->opts, flags,
|
|
&rbio, &bounce, &read_full);
|
|
|
|
if (!read_full) {
|
|
EBUG_ON(crc_is_compressed(pick.crc));
|
|
EBUG_ON(pick.crc.csum_type &&
|
|
(bvec_iter_sectors(iter) != pick.crc.uncompressed_size ||
|
|
bvec_iter_sectors(iter) != pick.crc.live_size ||
|
|
pick.crc.offset ||
|
|
offset_into_extent));
|
|
|
|
data_pos.offset += offset_into_extent;
|
|
pick.ptr.offset += pick.crc.offset +
|
|
offset_into_extent;
|
|
offset_into_extent = 0;
|
|
pick.crc.compressed_size = bvec_iter_sectors(iter);
|
|
pick.crc.uncompressed_size = bvec_iter_sectors(iter);
|
|
pick.crc.offset = 0;
|
|
pick.crc.live_size = bvec_iter_sectors(iter);
|
|
offset_into_extent = 0;
|
|
}
|
|
get_bio:
|
|
if (rbio) {
|
|
/*
|
|
* promote already allocated bounce rbio:
|
|
* promote needs to allocate a bio big enough for uncompressing
|
|
* data in the write path, but we're not going to use it all
|
|
* here:
|
|
*/
|
|
EBUG_ON(rbio->bio.bi_iter.bi_size <
|
|
pick.crc.compressed_size << 9);
|
|
rbio->bio.bi_iter.bi_size =
|
|
pick.crc.compressed_size << 9;
|
|
} else if (bounce) {
|
|
unsigned sectors = pick.crc.compressed_size;
|
|
|
|
rbio = rbio_init(bio_alloc_bioset(NULL,
|
|
DIV_ROUND_UP(sectors, PAGE_SECTORS),
|
|
0,
|
|
GFP_NOFS,
|
|
&c->bio_read_split),
|
|
orig->opts);
|
|
|
|
bch2_bio_alloc_pages_pool(c, &rbio->bio, sectors << 9);
|
|
rbio->bounce = true;
|
|
rbio->split = true;
|
|
} else if (flags & BCH_READ_MUST_CLONE) {
|
|
/*
|
|
* Have to clone if there were any splits, due to error
|
|
* reporting issues (if a split errored, and retrying didn't
|
|
* work, when it reports the error to its parent (us) we don't
|
|
* know if the error was from our bio, and we should retry, or
|
|
* from the whole bio, in which case we don't want to retry and
|
|
* lose the error)
|
|
*/
|
|
rbio = rbio_init(bio_alloc_clone(NULL, &orig->bio, GFP_NOFS,
|
|
&c->bio_read_split),
|
|
orig->opts);
|
|
rbio->bio.bi_iter = iter;
|
|
rbio->split = true;
|
|
} else {
|
|
rbio = orig;
|
|
rbio->bio.bi_iter = iter;
|
|
EBUG_ON(bio_flagged(&rbio->bio, BIO_CHAIN));
|
|
}
|
|
|
|
EBUG_ON(bio_sectors(&rbio->bio) != pick.crc.compressed_size);
|
|
|
|
rbio->c = c;
|
|
rbio->submit_time = local_clock();
|
|
if (rbio->split)
|
|
rbio->parent = orig;
|
|
else
|
|
rbio->end_io = orig->bio.bi_end_io;
|
|
rbio->bvec_iter = iter;
|
|
rbio->offset_into_extent= offset_into_extent;
|
|
rbio->flags = flags;
|
|
rbio->have_ioref = pick_ret > 0 && bch2_dev_get_ioref(ca, READ);
|
|
rbio->narrow_crcs = narrow_crcs;
|
|
rbio->hole = 0;
|
|
rbio->retry = 0;
|
|
rbio->context = 0;
|
|
/* XXX: only initialize this if needed */
|
|
rbio->devs_have = bch2_bkey_devs(k);
|
|
rbio->pick = pick;
|
|
rbio->subvol = orig->subvol;
|
|
rbio->read_pos = read_pos;
|
|
rbio->data_btree = data_btree;
|
|
rbio->data_pos = data_pos;
|
|
rbio->version = k.k->version;
|
|
rbio->promote = promote;
|
|
INIT_WORK(&rbio->work, NULL);
|
|
|
|
rbio->bio.bi_opf = orig->bio.bi_opf;
|
|
rbio->bio.bi_iter.bi_sector = pick.ptr.offset;
|
|
rbio->bio.bi_end_io = bch2_read_endio;
|
|
|
|
if (rbio->bounce)
|
|
trace_and_count(c, read_bounce, &rbio->bio);
|
|
|
|
this_cpu_add(c->counters[BCH_COUNTER_io_read], bio_sectors(&rbio->bio));
|
|
bch2_increment_clock(c, bio_sectors(&rbio->bio), READ);
|
|
|
|
/*
|
|
* If it's being moved internally, we don't want to flag it as a cache
|
|
* hit:
|
|
*/
|
|
if (pick.ptr.cached && !(flags & BCH_READ_NODECODE))
|
|
bch2_bucket_io_time_reset(trans, pick.ptr.dev,
|
|
PTR_BUCKET_NR(ca, &pick.ptr), READ);
|
|
|
|
if (!(flags & (BCH_READ_IN_RETRY|BCH_READ_LAST_FRAGMENT))) {
|
|
bio_inc_remaining(&orig->bio);
|
|
trace_and_count(c, read_split, &orig->bio);
|
|
}
|
|
|
|
if (!rbio->pick.idx) {
|
|
if (!rbio->have_ioref) {
|
|
bch_err_inum_offset_ratelimited(c,
|
|
read_pos.inode,
|
|
read_pos.offset << 9,
|
|
"no device to read from");
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
|
|
goto out;
|
|
}
|
|
|
|
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_user],
|
|
bio_sectors(&rbio->bio));
|
|
bio_set_dev(&rbio->bio, ca->disk_sb.bdev);
|
|
|
|
if (unlikely(c->opts.no_data_io)) {
|
|
if (likely(!(flags & BCH_READ_IN_RETRY)))
|
|
bio_endio(&rbio->bio);
|
|
} else {
|
|
if (likely(!(flags & BCH_READ_IN_RETRY)))
|
|
submit_bio(&rbio->bio);
|
|
else
|
|
submit_bio_wait(&rbio->bio);
|
|
}
|
|
|
|
/*
|
|
* We just submitted IO which may block, we expect relock fail
|
|
* events and shouldn't count them:
|
|
*/
|
|
trans->notrace_relock_fail = true;
|
|
} else {
|
|
/* Attempting reconstruct read: */
|
|
if (bch2_ec_read_extent(c, rbio)) {
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
|
|
goto out;
|
|
}
|
|
|
|
if (likely(!(flags & BCH_READ_IN_RETRY)))
|
|
bio_endio(&rbio->bio);
|
|
}
|
|
out:
|
|
if (likely(!(flags & BCH_READ_IN_RETRY))) {
|
|
return 0;
|
|
} else {
|
|
int ret;
|
|
|
|
rbio->context = RBIO_CONTEXT_UNBOUND;
|
|
bch2_read_endio(&rbio->bio);
|
|
|
|
ret = rbio->retry;
|
|
rbio = bch2_rbio_free(rbio);
|
|
|
|
if (ret == READ_RETRY_AVOID) {
|
|
bch2_mark_io_failure(failed, &pick);
|
|
ret = READ_RETRY;
|
|
}
|
|
|
|
if (!ret)
|
|
goto out_read_done;
|
|
|
|
return ret;
|
|
}
|
|
|
|
err:
|
|
if (flags & BCH_READ_IN_RETRY)
|
|
return READ_ERR;
|
|
|
|
orig->bio.bi_status = BLK_STS_IOERR;
|
|
goto out_read_done;
|
|
|
|
hole:
|
|
/*
|
|
* won't normally happen in the BCH_READ_NODECODE
|
|
* (bch2_move_extent()) path, but if we retry and the extent we wanted
|
|
* to read no longer exists we have to signal that:
|
|
*/
|
|
if (flags & BCH_READ_NODECODE)
|
|
orig->hole = true;
|
|
|
|
zero_fill_bio_iter(&orig->bio, iter);
|
|
out_read_done:
|
|
if (flags & BCH_READ_LAST_FRAGMENT)
|
|
bch2_rbio_done(orig);
|
|
return 0;
|
|
}
|
|
|
|
void __bch2_read(struct bch_fs *c, struct bch_read_bio *rbio,
|
|
struct bvec_iter bvec_iter, subvol_inum inum,
|
|
struct bch_io_failures *failed, unsigned flags)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter iter;
|
|
struct bkey_buf sk;
|
|
struct bkey_s_c k;
|
|
u32 snapshot;
|
|
int ret;
|
|
|
|
BUG_ON(flags & BCH_READ_NODECODE);
|
|
|
|
bch2_bkey_buf_init(&sk);
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
retry:
|
|
bch2_trans_begin(&trans);
|
|
iter = (struct btree_iter) { NULL };
|
|
|
|
ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot);
|
|
if (ret)
|
|
goto err;
|
|
|
|
bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents,
|
|
SPOS(inum.inum, bvec_iter.bi_sector, snapshot),
|
|
BTREE_ITER_SLOTS);
|
|
while (1) {
|
|
unsigned bytes, sectors, offset_into_extent;
|
|
enum btree_id data_btree = BTREE_ID_extents;
|
|
|
|
/*
|
|
* read_extent -> io_time_reset may cause a transaction restart
|
|
* without returning an error, we need to check for that here:
|
|
*/
|
|
ret = bch2_trans_relock(&trans);
|
|
if (ret)
|
|
break;
|
|
|
|
bch2_btree_iter_set_pos(&iter,
|
|
POS(inum.inum, bvec_iter.bi_sector));
|
|
|
|
k = bch2_btree_iter_peek_slot(&iter);
|
|
ret = bkey_err(k);
|
|
if (ret)
|
|
break;
|
|
|
|
offset_into_extent = iter.pos.offset -
|
|
bkey_start_offset(k.k);
|
|
sectors = k.k->size - offset_into_extent;
|
|
|
|
bch2_bkey_buf_reassemble(&sk, c, k);
|
|
|
|
ret = bch2_read_indirect_extent(&trans, &data_btree,
|
|
&offset_into_extent, &sk);
|
|
if (ret)
|
|
break;
|
|
|
|
k = bkey_i_to_s_c(sk.k);
|
|
|
|
/*
|
|
* With indirect extents, the amount of data to read is the min
|
|
* of the original extent and the indirect extent:
|
|
*/
|
|
sectors = min(sectors, k.k->size - offset_into_extent);
|
|
|
|
bytes = min(sectors, bvec_iter_sectors(bvec_iter)) << 9;
|
|
swap(bvec_iter.bi_size, bytes);
|
|
|
|
if (bvec_iter.bi_size == bytes)
|
|
flags |= BCH_READ_LAST_FRAGMENT;
|
|
|
|
ret = __bch2_read_extent(&trans, rbio, bvec_iter, iter.pos,
|
|
data_btree, k,
|
|
offset_into_extent, failed, flags);
|
|
if (ret)
|
|
break;
|
|
|
|
if (flags & BCH_READ_LAST_FRAGMENT)
|
|
break;
|
|
|
|
swap(bvec_iter.bi_size, bytes);
|
|
bio_advance_iter(&rbio->bio, &bvec_iter, bytes);
|
|
|
|
ret = btree_trans_too_many_iters(&trans);
|
|
if (ret)
|
|
break;
|
|
}
|
|
err:
|
|
bch2_trans_iter_exit(&trans, &iter);
|
|
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart) ||
|
|
ret == READ_RETRY ||
|
|
ret == READ_RETRY_AVOID)
|
|
goto retry;
|
|
|
|
bch2_trans_exit(&trans);
|
|
bch2_bkey_buf_exit(&sk, c);
|
|
|
|
if (ret) {
|
|
bch_err_inum_offset_ratelimited(c, inum.inum,
|
|
bvec_iter.bi_sector << 9,
|
|
"read error %i from btree lookup", ret);
|
|
rbio->bio.bi_status = BLK_STS_IOERR;
|
|
bch2_rbio_done(rbio);
|
|
}
|
|
}
|
|
|
|
void bch2_fs_io_exit(struct bch_fs *c)
|
|
{
|
|
if (c->promote_table.tbl)
|
|
rhashtable_destroy(&c->promote_table);
|
|
mempool_exit(&c->bio_bounce_pages);
|
|
bioset_exit(&c->bio_write);
|
|
bioset_exit(&c->bio_read_split);
|
|
bioset_exit(&c->bio_read);
|
|
}
|
|
|
|
int bch2_fs_io_init(struct bch_fs *c)
|
|
{
|
|
if (bioset_init(&c->bio_read, 1, offsetof(struct bch_read_bio, bio),
|
|
BIOSET_NEED_BVECS))
|
|
return -BCH_ERR_ENOMEM_bio_read_init;
|
|
|
|
if (bioset_init(&c->bio_read_split, 1, offsetof(struct bch_read_bio, bio),
|
|
BIOSET_NEED_BVECS))
|
|
return -BCH_ERR_ENOMEM_bio_read_split_init;
|
|
|
|
if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
|
|
BIOSET_NEED_BVECS))
|
|
return -BCH_ERR_ENOMEM_bio_write_init;
|
|
|
|
if (mempool_init_page_pool(&c->bio_bounce_pages,
|
|
max_t(unsigned,
|
|
c->opts.btree_node_size,
|
|
c->opts.encoded_extent_max) /
|
|
PAGE_SIZE, 0))
|
|
return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
|
|
|
|
if (rhashtable_init(&c->promote_table, &bch_promote_params))
|
|
return -BCH_ERR_ENOMEM_promote_table_init;
|
|
|
|
return 0;
|
|
}
|