94c69fafa7
This uses the new _ip() interface to six locks and hooks it up to btree_path->ip_allocated, when available. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1204 lines
29 KiB
C
1204 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "bkey_buf.h"
|
|
#include "btree_cache.h"
|
|
#include "btree_io.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_locking.h"
|
|
#include "debug.h"
|
|
#include "errcode.h"
|
|
#include "error.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/prefetch.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
const char * const bch2_btree_node_flags[] = {
|
|
#define x(f) #f,
|
|
BTREE_FLAGS()
|
|
#undef x
|
|
NULL
|
|
};
|
|
|
|
void bch2_recalc_btree_reserve(struct bch_fs *c)
|
|
{
|
|
unsigned i, reserve = 16;
|
|
|
|
if (!c->btree_roots[0].b)
|
|
reserve += 8;
|
|
|
|
for (i = 0; i < BTREE_ID_NR; i++)
|
|
if (c->btree_roots[i].b)
|
|
reserve += min_t(unsigned, 1,
|
|
c->btree_roots[i].b->c.level) * 8;
|
|
|
|
c->btree_cache.reserve = reserve;
|
|
}
|
|
|
|
static inline unsigned btree_cache_can_free(struct btree_cache *bc)
|
|
{
|
|
return max_t(int, 0, bc->used - bc->reserve);
|
|
}
|
|
|
|
static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
|
|
{
|
|
if (b->c.lock.readers)
|
|
list_move(&b->list, &bc->freed_pcpu);
|
|
else
|
|
list_move(&b->list, &bc->freed_nonpcpu);
|
|
}
|
|
|
|
static void btree_node_data_free(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
|
|
EBUG_ON(btree_node_write_in_flight(b));
|
|
|
|
kvpfree(b->data, btree_bytes(c));
|
|
b->data = NULL;
|
|
#ifdef __KERNEL__
|
|
kvfree(b->aux_data);
|
|
#else
|
|
munmap(b->aux_data, btree_aux_data_bytes(b));
|
|
#endif
|
|
b->aux_data = NULL;
|
|
|
|
bc->used--;
|
|
|
|
btree_node_to_freedlist(bc, b);
|
|
}
|
|
|
|
static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
|
|
const void *obj)
|
|
{
|
|
const struct btree *b = obj;
|
|
const u64 *v = arg->key;
|
|
|
|
return b->hash_val == *v ? 0 : 1;
|
|
}
|
|
|
|
static const struct rhashtable_params bch_btree_cache_params = {
|
|
.head_offset = offsetof(struct btree, hash),
|
|
.key_offset = offsetof(struct btree, hash_val),
|
|
.key_len = sizeof(u64),
|
|
.obj_cmpfn = bch2_btree_cache_cmp_fn,
|
|
};
|
|
|
|
static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
|
|
{
|
|
BUG_ON(b->data || b->aux_data);
|
|
|
|
b->data = kvpmalloc(btree_bytes(c), gfp);
|
|
if (!b->data)
|
|
return -ENOMEM;
|
|
#ifdef __KERNEL__
|
|
b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
|
|
#else
|
|
b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
|
|
if (b->aux_data == MAP_FAILED)
|
|
b->aux_data = NULL;
|
|
#endif
|
|
if (!b->aux_data) {
|
|
kvpfree(b->data, btree_bytes(c));
|
|
b->data = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
|
|
{
|
|
struct btree *b;
|
|
|
|
b = kzalloc(sizeof(struct btree), gfp);
|
|
if (!b)
|
|
return NULL;
|
|
|
|
bkey_btree_ptr_init(&b->key);
|
|
six_lock_init(&b->c.lock);
|
|
lockdep_set_novalidate_class(&b->c.lock);
|
|
INIT_LIST_HEAD(&b->list);
|
|
INIT_LIST_HEAD(&b->write_blocked);
|
|
b->byte_order = ilog2(btree_bytes(c));
|
|
return b;
|
|
}
|
|
|
|
struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
b = __btree_node_mem_alloc(c, GFP_KERNEL);
|
|
if (!b)
|
|
return NULL;
|
|
|
|
if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
|
|
kfree(b);
|
|
return NULL;
|
|
}
|
|
|
|
bc->used++;
|
|
list_add(&b->list, &bc->freeable);
|
|
return b;
|
|
}
|
|
|
|
/* Btree in memory cache - hash table */
|
|
|
|
void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
|
|
{
|
|
int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
|
|
|
|
BUG_ON(ret);
|
|
|
|
/* Cause future lookups for this node to fail: */
|
|
b->hash_val = 0;
|
|
}
|
|
|
|
int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
|
|
{
|
|
BUG_ON(b->hash_val);
|
|
b->hash_val = btree_ptr_hash_val(&b->key);
|
|
|
|
return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
|
|
bch_btree_cache_params);
|
|
}
|
|
|
|
int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
|
|
unsigned level, enum btree_id id)
|
|
{
|
|
int ret;
|
|
|
|
b->c.level = level;
|
|
b->c.btree_id = id;
|
|
|
|
mutex_lock(&bc->lock);
|
|
ret = __bch2_btree_node_hash_insert(bc, b);
|
|
if (!ret)
|
|
list_add_tail(&b->list, &bc->live);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
__flatten
|
|
static inline struct btree *btree_cache_find(struct btree_cache *bc,
|
|
const struct bkey_i *k)
|
|
{
|
|
u64 v = btree_ptr_hash_val(k);
|
|
|
|
return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
|
|
}
|
|
|
|
/*
|
|
* this version is for btree nodes that have already been freed (we're not
|
|
* reaping a real btree node)
|
|
*/
|
|
static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&bc->lock);
|
|
wait_on_io:
|
|
if (b->flags & ((1U << BTREE_NODE_dirty)|
|
|
(1U << BTREE_NODE_read_in_flight)|
|
|
(1U << BTREE_NODE_write_in_flight))) {
|
|
if (!flush)
|
|
return -ENOMEM;
|
|
|
|
/* XXX: waiting on IO with btree cache lock held */
|
|
bch2_btree_node_wait_on_read(b);
|
|
bch2_btree_node_wait_on_write(b);
|
|
}
|
|
|
|
if (!six_trylock_intent(&b->c.lock))
|
|
return -ENOMEM;
|
|
|
|
if (!six_trylock_write(&b->c.lock))
|
|
goto out_unlock_intent;
|
|
|
|
/* recheck under lock */
|
|
if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
|
|
(1U << BTREE_NODE_write_in_flight))) {
|
|
if (!flush)
|
|
goto out_unlock;
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
goto wait_on_io;
|
|
}
|
|
|
|
if (btree_node_noevict(b) ||
|
|
btree_node_write_blocked(b) ||
|
|
btree_node_will_make_reachable(b))
|
|
goto out_unlock;
|
|
|
|
if (btree_node_dirty(b)) {
|
|
if (!flush)
|
|
goto out_unlock;
|
|
/*
|
|
* Using the underscore version because we don't want to compact
|
|
* bsets after the write, since this node is about to be evicted
|
|
* - unless btree verify mode is enabled, since it runs out of
|
|
* the post write cleanup:
|
|
*/
|
|
if (bch2_verify_btree_ondisk)
|
|
bch2_btree_node_write(c, b, SIX_LOCK_intent,
|
|
BTREE_WRITE_cache_reclaim);
|
|
else
|
|
__bch2_btree_node_write(c, b,
|
|
BTREE_WRITE_cache_reclaim);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
goto wait_on_io;
|
|
}
|
|
out:
|
|
if (b->hash_val && !ret)
|
|
trace_and_count(c, btree_cache_reap, c, b);
|
|
return ret;
|
|
out_unlock:
|
|
six_unlock_write(&b->c.lock);
|
|
out_unlock_intent:
|
|
six_unlock_intent(&b->c.lock);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
|
|
{
|
|
return __btree_node_reclaim(c, b, false);
|
|
}
|
|
|
|
static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
|
|
{
|
|
return __btree_node_reclaim(c, b, true);
|
|
}
|
|
|
|
static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct bch_fs *c = container_of(shrink, struct bch_fs,
|
|
btree_cache.shrink);
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b, *t;
|
|
unsigned long nr = sc->nr_to_scan;
|
|
unsigned long can_free = 0;
|
|
unsigned long freed = 0;
|
|
unsigned long touched = 0;
|
|
unsigned i, flags;
|
|
unsigned long ret = SHRINK_STOP;
|
|
bool trigger_writes = atomic_read(&bc->dirty) + nr >=
|
|
bc->used * 3 / 4;
|
|
|
|
if (bch2_btree_shrinker_disabled)
|
|
return SHRINK_STOP;
|
|
|
|
mutex_lock(&bc->lock);
|
|
flags = memalloc_nofs_save();
|
|
|
|
/*
|
|
* It's _really_ critical that we don't free too many btree nodes - we
|
|
* have to always leave ourselves a reserve. The reserve is how we
|
|
* guarantee that allocating memory for a new btree node can always
|
|
* succeed, so that inserting keys into the btree can always succeed and
|
|
* IO can always make forward progress:
|
|
*/
|
|
can_free = btree_cache_can_free(bc);
|
|
nr = min_t(unsigned long, nr, can_free);
|
|
|
|
i = 0;
|
|
list_for_each_entry_safe(b, t, &bc->freeable, list) {
|
|
/*
|
|
* Leave a few nodes on the freeable list, so that a btree split
|
|
* won't have to hit the system allocator:
|
|
*/
|
|
if (++i <= 3)
|
|
continue;
|
|
|
|
touched++;
|
|
|
|
if (touched >= nr)
|
|
goto out;
|
|
|
|
if (!btree_node_reclaim(c, b)) {
|
|
btree_node_data_free(c, b);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
freed++;
|
|
}
|
|
}
|
|
restart:
|
|
list_for_each_entry_safe(b, t, &bc->live, list) {
|
|
touched++;
|
|
|
|
if (btree_node_accessed(b)) {
|
|
clear_btree_node_accessed(b);
|
|
} else if (!btree_node_reclaim(c, b)) {
|
|
freed++;
|
|
btree_node_data_free(c, b);
|
|
|
|
bch2_btree_node_hash_remove(bc, b);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
|
|
if (freed == nr)
|
|
goto out_rotate;
|
|
} else if (trigger_writes &&
|
|
btree_node_dirty(b) &&
|
|
!btree_node_will_make_reachable(b) &&
|
|
!btree_node_write_blocked(b) &&
|
|
six_trylock_read(&b->c.lock)) {
|
|
list_move(&bc->live, &b->list);
|
|
mutex_unlock(&bc->lock);
|
|
__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
|
|
six_unlock_read(&b->c.lock);
|
|
if (touched >= nr)
|
|
goto out_nounlock;
|
|
mutex_lock(&bc->lock);
|
|
goto restart;
|
|
}
|
|
|
|
if (touched >= nr)
|
|
break;
|
|
}
|
|
out_rotate:
|
|
if (&t->list != &bc->live)
|
|
list_move_tail(&bc->live, &t->list);
|
|
out:
|
|
mutex_unlock(&bc->lock);
|
|
out_nounlock:
|
|
ret = freed;
|
|
memalloc_nofs_restore(flags);
|
|
trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct bch_fs *c = container_of(shrink, struct bch_fs,
|
|
btree_cache.shrink);
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
|
|
if (bch2_btree_shrinker_disabled)
|
|
return 0;
|
|
|
|
return btree_cache_can_free(bc);
|
|
}
|
|
|
|
void bch2_fs_btree_cache_exit(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
unsigned i, flags;
|
|
|
|
if (bc->shrink.list.next)
|
|
unregister_shrinker(&bc->shrink);
|
|
|
|
/* vfree() can allocate memory: */
|
|
flags = memalloc_nofs_save();
|
|
mutex_lock(&bc->lock);
|
|
|
|
if (c->verify_data)
|
|
list_move(&c->verify_data->list, &bc->live);
|
|
|
|
kvpfree(c->verify_ondisk, btree_bytes(c));
|
|
|
|
for (i = 0; i < BTREE_ID_NR; i++)
|
|
if (c->btree_roots[i].b)
|
|
list_add(&c->btree_roots[i].b->list, &bc->live);
|
|
|
|
list_splice(&bc->freeable, &bc->live);
|
|
|
|
while (!list_empty(&bc->live)) {
|
|
b = list_first_entry(&bc->live, struct btree, list);
|
|
|
|
BUG_ON(btree_node_read_in_flight(b) ||
|
|
btree_node_write_in_flight(b));
|
|
|
|
if (btree_node_dirty(b))
|
|
bch2_btree_complete_write(c, b, btree_current_write(b));
|
|
clear_btree_node_dirty_acct(c, b);
|
|
|
|
btree_node_data_free(c, b);
|
|
}
|
|
|
|
BUG_ON(atomic_read(&c->btree_cache.dirty));
|
|
|
|
list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
|
|
|
|
while (!list_empty(&bc->freed_nonpcpu)) {
|
|
b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
|
|
list_del(&b->list);
|
|
six_lock_pcpu_free(&b->c.lock);
|
|
kfree(b);
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
memalloc_nofs_restore(flags);
|
|
|
|
if (bc->table_init_done)
|
|
rhashtable_destroy(&bc->table);
|
|
}
|
|
|
|
int bch2_fs_btree_cache_init(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
pr_verbose_init(c->opts, "");
|
|
|
|
ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
|
|
if (ret)
|
|
goto out;
|
|
|
|
bc->table_init_done = true;
|
|
|
|
bch2_recalc_btree_reserve(c);
|
|
|
|
for (i = 0; i < bc->reserve; i++)
|
|
if (!__bch2_btree_node_mem_alloc(c)) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
list_splice_init(&bc->live, &bc->freeable);
|
|
|
|
mutex_init(&c->verify_lock);
|
|
|
|
bc->shrink.count_objects = bch2_btree_cache_count;
|
|
bc->shrink.scan_objects = bch2_btree_cache_scan;
|
|
bc->shrink.seeks = 4;
|
|
ret = register_shrinker(&bc->shrink, "%s/btree_cache", c->name);
|
|
out:
|
|
pr_verbose_init(c->opts, "ret %i", ret);
|
|
return ret;
|
|
}
|
|
|
|
void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
|
|
{
|
|
mutex_init(&bc->lock);
|
|
INIT_LIST_HEAD(&bc->live);
|
|
INIT_LIST_HEAD(&bc->freeable);
|
|
INIT_LIST_HEAD(&bc->freed_pcpu);
|
|
INIT_LIST_HEAD(&bc->freed_nonpcpu);
|
|
}
|
|
|
|
/*
|
|
* We can only have one thread cannibalizing other cached btree nodes at a time,
|
|
* or we'll deadlock. We use an open coded mutex to ensure that, which a
|
|
* cannibalize_bucket() will take. This means every time we unlock the root of
|
|
* the btree, we need to release this lock if we have it held.
|
|
*/
|
|
void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
|
|
if (bc->alloc_lock == current) {
|
|
trace_and_count(c, btree_cache_cannibalize_unlock, c);
|
|
bc->alloc_lock = NULL;
|
|
closure_wake_up(&bc->alloc_wait);
|
|
}
|
|
}
|
|
|
|
int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct task_struct *old;
|
|
|
|
old = cmpxchg(&bc->alloc_lock, NULL, current);
|
|
if (old == NULL || old == current)
|
|
goto success;
|
|
|
|
if (!cl) {
|
|
trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
closure_wait(&bc->alloc_wait, cl);
|
|
|
|
/* Try again, after adding ourselves to waitlist */
|
|
old = cmpxchg(&bc->alloc_lock, NULL, current);
|
|
if (old == NULL || old == current) {
|
|
/* We raced */
|
|
closure_wake_up(&bc->alloc_wait);
|
|
goto success;
|
|
}
|
|
|
|
trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
|
|
return -BCH_ERR_btree_cache_cannibalize_lock_blocked;
|
|
|
|
success:
|
|
trace_and_count(c, btree_cache_cannibalize_lock, c);
|
|
return 0;
|
|
}
|
|
|
|
static struct btree *btree_node_cannibalize(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
list_for_each_entry_reverse(b, &bc->live, list)
|
|
if (!btree_node_reclaim(c, b))
|
|
return b;
|
|
|
|
while (1) {
|
|
list_for_each_entry_reverse(b, &bc->live, list)
|
|
if (!btree_node_write_and_reclaim(c, b))
|
|
return b;
|
|
|
|
/*
|
|
* Rare case: all nodes were intent-locked.
|
|
* Just busy-wait.
|
|
*/
|
|
WARN_ONCE(1, "btree cache cannibalize failed\n");
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
struct btree *bch2_btree_node_mem_alloc(struct bch_fs *c, bool pcpu_read_locks)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct list_head *freed = pcpu_read_locks
|
|
? &bc->freed_pcpu
|
|
: &bc->freed_nonpcpu;
|
|
struct btree *b, *b2;
|
|
u64 start_time = local_clock();
|
|
unsigned flags;
|
|
|
|
flags = memalloc_nofs_save();
|
|
mutex_lock(&bc->lock);
|
|
|
|
/*
|
|
* We never free struct btree itself, just the memory that holds the on
|
|
* disk node. Check the freed list before allocating a new one:
|
|
*/
|
|
list_for_each_entry(b, freed, list)
|
|
if (!btree_node_reclaim(c, b)) {
|
|
list_del_init(&b->list);
|
|
goto got_node;
|
|
}
|
|
|
|
b = __btree_node_mem_alloc(c, __GFP_NOWARN);
|
|
if (!b) {
|
|
mutex_unlock(&bc->lock);
|
|
b = __btree_node_mem_alloc(c, GFP_KERNEL);
|
|
if (!b)
|
|
goto err;
|
|
mutex_lock(&bc->lock);
|
|
}
|
|
|
|
if (pcpu_read_locks)
|
|
six_lock_pcpu_alloc(&b->c.lock);
|
|
|
|
BUG_ON(!six_trylock_intent(&b->c.lock));
|
|
BUG_ON(!six_trylock_write(&b->c.lock));
|
|
got_node:
|
|
|
|
/*
|
|
* btree_free() doesn't free memory; it sticks the node on the end of
|
|
* the list. Check if there's any freed nodes there:
|
|
*/
|
|
list_for_each_entry(b2, &bc->freeable, list)
|
|
if (!btree_node_reclaim(c, b2)) {
|
|
swap(b->data, b2->data);
|
|
swap(b->aux_data, b2->aux_data);
|
|
btree_node_to_freedlist(bc, b2);
|
|
six_unlock_write(&b2->c.lock);
|
|
six_unlock_intent(&b2->c.lock);
|
|
goto got_mem;
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
|
|
if (btree_node_data_alloc(c, b, __GFP_NOWARN|GFP_KERNEL))
|
|
goto err;
|
|
|
|
mutex_lock(&bc->lock);
|
|
bc->used++;
|
|
got_mem:
|
|
mutex_unlock(&bc->lock);
|
|
|
|
BUG_ON(btree_node_hashed(b));
|
|
BUG_ON(btree_node_dirty(b));
|
|
BUG_ON(btree_node_write_in_flight(b));
|
|
out:
|
|
b->flags = 0;
|
|
b->written = 0;
|
|
b->nsets = 0;
|
|
b->sib_u64s[0] = 0;
|
|
b->sib_u64s[1] = 0;
|
|
b->whiteout_u64s = 0;
|
|
bch2_btree_keys_init(b);
|
|
set_btree_node_accessed(b);
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
|
|
start_time);
|
|
|
|
memalloc_nofs_restore(flags);
|
|
return b;
|
|
err:
|
|
mutex_lock(&bc->lock);
|
|
|
|
/* Try to cannibalize another cached btree node: */
|
|
if (bc->alloc_lock == current) {
|
|
b2 = btree_node_cannibalize(c);
|
|
bch2_btree_node_hash_remove(bc, b2);
|
|
|
|
if (b) {
|
|
swap(b->data, b2->data);
|
|
swap(b->aux_data, b2->aux_data);
|
|
btree_node_to_freedlist(bc, b2);
|
|
six_unlock_write(&b2->c.lock);
|
|
six_unlock_intent(&b2->c.lock);
|
|
} else {
|
|
b = b2;
|
|
list_del_init(&b->list);
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
|
|
trace_and_count(c, btree_cache_cannibalize, c);
|
|
goto out;
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
memalloc_nofs_restore(flags);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/* Slowpath, don't want it inlined into btree_iter_traverse() */
|
|
static noinline struct btree *bch2_btree_node_fill(struct bch_fs *c,
|
|
struct btree_trans *trans,
|
|
struct btree_path *path,
|
|
const struct bkey_i *k,
|
|
enum btree_id btree_id,
|
|
unsigned level,
|
|
enum six_lock_type lock_type,
|
|
bool sync)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
u32 seq;
|
|
|
|
BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
|
|
/*
|
|
* Parent node must be locked, else we could read in a btree node that's
|
|
* been freed:
|
|
*/
|
|
if (trans && !bch2_btree_node_relock(trans, path, level + 1)) {
|
|
trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
|
|
}
|
|
|
|
b = bch2_btree_node_mem_alloc(c, level != 0);
|
|
|
|
if (trans && b == ERR_PTR(-ENOMEM)) {
|
|
trans->memory_allocation_failure = true;
|
|
trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
|
|
}
|
|
|
|
if (IS_ERR(b))
|
|
return b;
|
|
|
|
/*
|
|
* Btree nodes read in from disk should not have the accessed bit set
|
|
* initially, so that linear scans don't thrash the cache:
|
|
*/
|
|
clear_btree_node_accessed(b);
|
|
|
|
bkey_copy(&b->key, k);
|
|
if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
|
|
/* raced with another fill: */
|
|
|
|
/* mark as unhashed... */
|
|
b->hash_val = 0;
|
|
|
|
mutex_lock(&bc->lock);
|
|
list_add(&b->list, &bc->freeable);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
return NULL;
|
|
}
|
|
|
|
set_btree_node_read_in_flight(b);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
seq = b->c.lock.state.seq;
|
|
six_unlock_intent(&b->c.lock);
|
|
|
|
/* Unlock before doing IO: */
|
|
if (trans && sync)
|
|
bch2_trans_unlock(trans);
|
|
|
|
bch2_btree_node_read(c, b, sync);
|
|
|
|
if (!sync)
|
|
return NULL;
|
|
|
|
if (trans) {
|
|
int ret = bch2_trans_relock(trans) ?:
|
|
bch2_btree_path_relock_intent(trans, path);
|
|
if (ret) {
|
|
BUG_ON(!trans->restarted);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
if (!six_relock_type(&b->c.lock, lock_type, seq)) {
|
|
if (trans)
|
|
trace_and_count(c, trans_restart_relock_after_fill, trans, _THIS_IP_, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill));
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct printbuf buf = PRINTBUF;
|
|
|
|
if (!test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags))
|
|
return;
|
|
|
|
prt_printf(&buf,
|
|
"btree node header doesn't match ptr\n"
|
|
"btree %s level %u\n"
|
|
"ptr: ",
|
|
bch2_btree_ids[b->c.btree_id], b->c.level);
|
|
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
|
|
|
|
prt_printf(&buf, "\nheader: btree %s level %llu\n"
|
|
"min ",
|
|
bch2_btree_ids[BTREE_NODE_ID(b->data)],
|
|
BTREE_NODE_LEVEL(b->data));
|
|
bch2_bpos_to_text(&buf, b->data->min_key);
|
|
|
|
prt_printf(&buf, "\nmax ");
|
|
bch2_bpos_to_text(&buf, b->data->max_key);
|
|
|
|
bch2_fs_inconsistent(c, "%s", buf.buf);
|
|
printbuf_exit(&buf);
|
|
}
|
|
|
|
static inline void btree_check_header(struct bch_fs *c, struct btree *b)
|
|
{
|
|
if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
|
|
b->c.level != BTREE_NODE_LEVEL(b->data) ||
|
|
!bpos_eq(b->data->max_key, b->key.k.p) ||
|
|
(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
|
|
!bpos_eq(b->data->min_key,
|
|
bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
|
|
btree_bad_header(c, b);
|
|
}
|
|
|
|
static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
|
|
const struct bkey_i *k, unsigned level,
|
|
enum six_lock_type lock_type,
|
|
unsigned long trace_ip)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
struct bset_tree *t;
|
|
int ret;
|
|
|
|
EBUG_ON(level >= BTREE_MAX_DEPTH);
|
|
retry:
|
|
b = btree_cache_find(bc, k);
|
|
if (unlikely(!b)) {
|
|
/*
|
|
* We must have the parent locked to call bch2_btree_node_fill(),
|
|
* else we could read in a btree node from disk that's been
|
|
* freed:
|
|
*/
|
|
b = bch2_btree_node_fill(c, trans, path, k, path->btree_id,
|
|
level, lock_type, true);
|
|
|
|
/* We raced and found the btree node in the cache */
|
|
if (!b)
|
|
goto retry;
|
|
|
|
if (IS_ERR(b))
|
|
return b;
|
|
} else {
|
|
if (btree_node_read_locked(path, level + 1))
|
|
btree_node_unlock(trans, path, level + 1);
|
|
|
|
ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
return ERR_PTR(ret);
|
|
|
|
BUG_ON(ret);
|
|
|
|
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
|
|
b->c.level != level ||
|
|
race_fault())) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
if (bch2_btree_node_relock(trans, path, level + 1))
|
|
goto retry;
|
|
|
|
trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
|
|
}
|
|
|
|
/* avoid atomic set bit if it's not needed: */
|
|
if (!btree_node_accessed(b))
|
|
set_btree_node_accessed(b);
|
|
}
|
|
|
|
if (unlikely(btree_node_read_in_flight(b))) {
|
|
u32 seq = b->c.lock.state.seq;
|
|
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
bch2_trans_unlock(trans);
|
|
|
|
bch2_btree_node_wait_on_read(b);
|
|
|
|
/*
|
|
* should_be_locked is not set on this path yet, so we need to
|
|
* relock it specifically:
|
|
*/
|
|
if (trans) {
|
|
int ret = bch2_trans_relock(trans) ?:
|
|
bch2_btree_path_relock_intent(trans, path);
|
|
if (ret) {
|
|
BUG_ON(!trans->restarted);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
if (!six_relock_type(&b->c.lock, lock_type, seq))
|
|
goto retry;
|
|
}
|
|
|
|
prefetch(b->aux_data);
|
|
|
|
for_each_bset(b, t) {
|
|
void *p = (u64 *) b->aux_data + t->aux_data_offset;
|
|
|
|
prefetch(p + L1_CACHE_BYTES * 0);
|
|
prefetch(p + L1_CACHE_BYTES * 1);
|
|
prefetch(p + L1_CACHE_BYTES * 2);
|
|
}
|
|
|
|
if (unlikely(btree_node_read_error(b))) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
EBUG_ON(b->c.btree_id != path->btree_id);
|
|
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
|
|
btree_check_header(c, b);
|
|
|
|
return b;
|
|
}
|
|
|
|
/**
|
|
* bch_btree_node_get - find a btree node in the cache and lock it, reading it
|
|
* in from disk if necessary.
|
|
*
|
|
* The btree node will have either a read or a write lock held, depending on
|
|
* the @write parameter.
|
|
*/
|
|
struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
|
|
const struct bkey_i *k, unsigned level,
|
|
enum six_lock_type lock_type,
|
|
unsigned long trace_ip)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree *b;
|
|
struct bset_tree *t;
|
|
int ret;
|
|
|
|
EBUG_ON(level >= BTREE_MAX_DEPTH);
|
|
|
|
b = btree_node_mem_ptr(k);
|
|
|
|
/*
|
|
* Check b->hash_val _before_ calling btree_node_lock() - this might not
|
|
* be the node we want anymore, and trying to lock the wrong node could
|
|
* cause an unneccessary transaction restart:
|
|
*/
|
|
if (unlikely(!c->opts.btree_node_mem_ptr_optimization ||
|
|
!b ||
|
|
b->hash_val != btree_ptr_hash_val(k)))
|
|
return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
|
|
|
|
if (btree_node_read_locked(path, level + 1))
|
|
btree_node_unlock(trans, path, level + 1);
|
|
|
|
ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
return ERR_PTR(ret);
|
|
|
|
BUG_ON(ret);
|
|
|
|
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
|
|
b->c.level != level ||
|
|
race_fault())) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
if (bch2_btree_node_relock(trans, path, level + 1))
|
|
return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
|
|
|
|
trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
|
|
}
|
|
|
|
if (unlikely(btree_node_read_in_flight(b))) {
|
|
u32 seq = b->c.lock.state.seq;
|
|
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
bch2_trans_unlock(trans);
|
|
|
|
bch2_btree_node_wait_on_read(b);
|
|
|
|
/*
|
|
* should_be_locked is not set on this path yet, so we need to
|
|
* relock it specifically:
|
|
*/
|
|
if (trans) {
|
|
int ret = bch2_trans_relock(trans) ?:
|
|
bch2_btree_path_relock_intent(trans, path);
|
|
if (ret) {
|
|
BUG_ON(!trans->restarted);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
if (!six_relock_type(&b->c.lock, lock_type, seq))
|
|
return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
|
|
}
|
|
|
|
prefetch(b->aux_data);
|
|
|
|
for_each_bset(b, t) {
|
|
void *p = (u64 *) b->aux_data + t->aux_data_offset;
|
|
|
|
prefetch(p + L1_CACHE_BYTES * 0);
|
|
prefetch(p + L1_CACHE_BYTES * 1);
|
|
prefetch(p + L1_CACHE_BYTES * 2);
|
|
}
|
|
|
|
/* avoid atomic set bit if it's not needed: */
|
|
if (!btree_node_accessed(b))
|
|
set_btree_node_accessed(b);
|
|
|
|
if (unlikely(btree_node_read_error(b))) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
EBUG_ON(b->c.btree_id != path->btree_id);
|
|
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
|
|
btree_check_header(c, b);
|
|
|
|
return b;
|
|
}
|
|
|
|
struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
|
|
const struct bkey_i *k,
|
|
enum btree_id btree_id,
|
|
unsigned level,
|
|
bool nofill)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
struct bset_tree *t;
|
|
int ret;
|
|
|
|
EBUG_ON(level >= BTREE_MAX_DEPTH);
|
|
|
|
if (c->opts.btree_node_mem_ptr_optimization) {
|
|
b = btree_node_mem_ptr(k);
|
|
if (b)
|
|
goto lock_node;
|
|
}
|
|
retry:
|
|
b = btree_cache_find(bc, k);
|
|
if (unlikely(!b)) {
|
|
if (nofill)
|
|
goto out;
|
|
|
|
b = bch2_btree_node_fill(c, NULL, NULL, k, btree_id,
|
|
level, SIX_LOCK_read, true);
|
|
|
|
/* We raced and found the btree node in the cache */
|
|
if (!b)
|
|
goto retry;
|
|
|
|
if (IS_ERR(b) &&
|
|
!bch2_btree_cache_cannibalize_lock(c, NULL))
|
|
goto retry;
|
|
|
|
if (IS_ERR(b))
|
|
goto out;
|
|
} else {
|
|
lock_node:
|
|
ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_);
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
return ERR_PTR(ret);
|
|
|
|
BUG_ON(ret);
|
|
|
|
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
|
|
b->c.btree_id != btree_id ||
|
|
b->c.level != level)) {
|
|
six_unlock_read(&b->c.lock);
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
/* XXX: waiting on IO with btree locks held: */
|
|
__bch2_btree_node_wait_on_read(b);
|
|
|
|
prefetch(b->aux_data);
|
|
|
|
for_each_bset(b, t) {
|
|
void *p = (u64 *) b->aux_data + t->aux_data_offset;
|
|
|
|
prefetch(p + L1_CACHE_BYTES * 0);
|
|
prefetch(p + L1_CACHE_BYTES * 1);
|
|
prefetch(p + L1_CACHE_BYTES * 2);
|
|
}
|
|
|
|
/* avoid atomic set bit if it's not needed: */
|
|
if (!btree_node_accessed(b))
|
|
set_btree_node_accessed(b);
|
|
|
|
if (unlikely(btree_node_read_error(b))) {
|
|
six_unlock_read(&b->c.lock);
|
|
b = ERR_PTR(-EIO);
|
|
goto out;
|
|
}
|
|
|
|
EBUG_ON(b->c.btree_id != btree_id);
|
|
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
|
|
btree_check_header(c, b);
|
|
out:
|
|
bch2_btree_cache_cannibalize_unlock(c);
|
|
return b;
|
|
}
|
|
|
|
int bch2_btree_node_prefetch(struct bch_fs *c,
|
|
struct btree_trans *trans,
|
|
struct btree_path *path,
|
|
const struct bkey_i *k,
|
|
enum btree_id btree_id, unsigned level)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
BUG_ON(trans && !btree_node_locked(path, level + 1));
|
|
BUG_ON(level >= BTREE_MAX_DEPTH);
|
|
|
|
b = btree_cache_find(bc, k);
|
|
if (b)
|
|
return 0;
|
|
|
|
b = bch2_btree_node_fill(c, trans, path, k, btree_id,
|
|
level, SIX_LOCK_read, false);
|
|
return PTR_ERR_OR_ZERO(b);
|
|
}
|
|
|
|
void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
b = btree_cache_find(bc, k);
|
|
if (!b)
|
|
return;
|
|
wait_on_io:
|
|
/* not allowed to wait on io with btree locks held: */
|
|
|
|
/* XXX we're called from btree_gc which will be holding other btree
|
|
* nodes locked
|
|
*/
|
|
__bch2_btree_node_wait_on_read(b);
|
|
__bch2_btree_node_wait_on_write(b);
|
|
|
|
btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
|
|
btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
|
|
|
|
if (btree_node_dirty(b)) {
|
|
__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
goto wait_on_io;
|
|
}
|
|
|
|
BUG_ON(btree_node_dirty(b));
|
|
|
|
mutex_lock(&bc->lock);
|
|
btree_node_data_free(c, b);
|
|
bch2_btree_node_hash_remove(bc, b);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
}
|
|
|
|
void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c,
|
|
struct btree *b)
|
|
{
|
|
const struct bkey_format *f = &b->format;
|
|
struct bset_stats stats;
|
|
|
|
memset(&stats, 0, sizeof(stats));
|
|
|
|
bch2_btree_keys_stats(b, &stats);
|
|
|
|
prt_printf(out, "l %u ", b->c.level);
|
|
bch2_bpos_to_text(out, b->data->min_key);
|
|
prt_printf(out, " - ");
|
|
bch2_bpos_to_text(out, b->data->max_key);
|
|
prt_printf(out, ":\n"
|
|
" ptrs: ");
|
|
bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
|
|
|
|
prt_printf(out, "\n"
|
|
" format: u64s %u fields %u %u %u %u %u\n"
|
|
" unpack fn len: %u\n"
|
|
" bytes used %zu/%zu (%zu%% full)\n"
|
|
" sib u64s: %u, %u (merge threshold %u)\n"
|
|
" nr packed keys %u\n"
|
|
" nr unpacked keys %u\n"
|
|
" floats %zu\n"
|
|
" failed unpacked %zu\n",
|
|
f->key_u64s,
|
|
f->bits_per_field[0],
|
|
f->bits_per_field[1],
|
|
f->bits_per_field[2],
|
|
f->bits_per_field[3],
|
|
f->bits_per_field[4],
|
|
b->unpack_fn_len,
|
|
b->nr.live_u64s * sizeof(u64),
|
|
btree_bytes(c) - sizeof(struct btree_node),
|
|
b->nr.live_u64s * 100 / btree_max_u64s(c),
|
|
b->sib_u64s[0],
|
|
b->sib_u64s[1],
|
|
c->btree_foreground_merge_threshold,
|
|
b->nr.packed_keys,
|
|
b->nr.unpacked_keys,
|
|
stats.floats,
|
|
stats.failed);
|
|
}
|
|
|
|
void bch2_btree_cache_to_text(struct printbuf *out, struct bch_fs *c)
|
|
{
|
|
prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
|
|
prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
|
|
prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
|
|
}
|