Antoine Ténart dc7e28a328 crypto: inside-secure - dequeue all requests at once
This patch updates the dequeueing logic to dequeue all requests at once.
Since we can have many requests in the queue, the interrupt coalescing
is kept so that the ring interrupt fires every EIP197_MAX_BATCH_SZ at
most.

To allow dequeueing all requests at once while still using reasonable
settings for the interrupt coalescing, the result handling function was
updated to setup the threshold interrupt when needed (i.e. when more
requests than EIP197_MAX_BATCH_SZ are in the queue). When using this
capability the ring is marked as busy so that the dequeue function
enqueue new requests without setting the threshold interrupt.

Suggested-by: Ofer Heifetz <oferh@marvell.com>
Signed-off-by: Antoine Tenart <antoine.tenart@free-electrons.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-12-22 20:03:33 +11:00

967 lines
27 KiB
C

/*
* Copyright (C) 2017 Marvell
*
* Antoine Tenart <antoine.tenart@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include "safexcel.h"
static u32 max_rings = EIP197_MAX_RINGS;
module_param(max_rings, uint, 0644);
MODULE_PARM_DESC(max_rings, "Maximum number of rings to use.");
static void eip197_trc_cache_init(struct safexcel_crypto_priv *priv)
{
u32 val, htable_offset;
int i;
/* Enable the record cache memory access */
val = readl(priv->base + EIP197_CS_RAM_CTRL);
val &= ~EIP197_TRC_ENABLE_MASK;
val |= EIP197_TRC_ENABLE_0;
writel(val, priv->base + EIP197_CS_RAM_CTRL);
/* Clear all ECC errors */
writel(0, priv->base + EIP197_TRC_ECCCTRL);
/*
* Make sure the cache memory is accessible by taking record cache into
* reset.
*/
val = readl(priv->base + EIP197_TRC_PARAMS);
val |= EIP197_TRC_PARAMS_SW_RESET;
val &= ~EIP197_TRC_PARAMS_DATA_ACCESS;
writel(val, priv->base + EIP197_TRC_PARAMS);
/* Clear all records */
for (i = 0; i < EIP197_CS_RC_MAX; i++) {
u32 val, offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE;
writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) |
EIP197_CS_RC_PREV(EIP197_RC_NULL),
priv->base + offset);
val = EIP197_CS_RC_NEXT(i+1) | EIP197_CS_RC_PREV(i-1);
if (i == 0)
val |= EIP197_CS_RC_PREV(EIP197_RC_NULL);
else if (i == EIP197_CS_RC_MAX - 1)
val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL);
writel(val, priv->base + offset + sizeof(u32));
}
/* Clear the hash table entries */
htable_offset = EIP197_CS_RC_MAX * EIP197_CS_RC_SIZE;
for (i = 0; i < 64; i++)
writel(GENMASK(29, 0),
priv->base + EIP197_CLASSIFICATION_RAMS + htable_offset + i * sizeof(u32));
/* Disable the record cache memory access */
val = readl(priv->base + EIP197_CS_RAM_CTRL);
val &= ~EIP197_TRC_ENABLE_MASK;
writel(val, priv->base + EIP197_CS_RAM_CTRL);
/* Write head and tail pointers of the record free chain */
val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) |
EIP197_TRC_FREECHAIN_TAIL_PTR(EIP197_CS_RC_MAX - 1);
writel(val, priv->base + EIP197_TRC_FREECHAIN);
/* Configure the record cache #1 */
val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(EIP197_CS_TRC_REC_WC) |
EIP197_TRC_PARAMS2_HTABLE_PTR(EIP197_CS_RC_MAX);
writel(val, priv->base + EIP197_TRC_PARAMS2);
/* Configure the record cache #2 */
val = EIP197_TRC_PARAMS_RC_SZ_LARGE(EIP197_CS_TRC_LG_REC_WC) |
EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) |
EIP197_TRC_PARAMS_HTABLE_SZ(2);
writel(val, priv->base + EIP197_TRC_PARAMS);
}
static void eip197_write_firmware(struct safexcel_crypto_priv *priv,
const struct firmware *fw, u32 ctrl,
u32 prog_en)
{
const u32 *data = (const u32 *)fw->data;
u32 val;
int i;
/* Reset the engine to make its program memory accessible */
writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
priv->base + ctrl);
/* Enable access to the program memory */
writel(prog_en, priv->base + EIP197_PE_ICE_RAM_CTRL);
/* Write the firmware */
for (i = 0; i < fw->size / sizeof(u32); i++)
writel(be32_to_cpu(data[i]),
priv->base + EIP197_CLASSIFICATION_RAMS + i * sizeof(u32));
/* Disable access to the program memory */
writel(0, priv->base + EIP197_PE_ICE_RAM_CTRL);
/* Release engine from reset */
val = readl(priv->base + ctrl);
val &= ~EIP197_PE_ICE_x_CTRL_SW_RESET;
writel(val, priv->base + ctrl);
}
static int eip197_load_firmwares(struct safexcel_crypto_priv *priv)
{
const char *fw_name[] = {"ifpp.bin", "ipue.bin"};
const struct firmware *fw[FW_NB];
int i, j, ret = 0;
u32 val;
for (i = 0; i < FW_NB; i++) {
ret = request_firmware(&fw[i], fw_name[i], priv->dev);
if (ret) {
dev_err(priv->dev,
"Failed to request firmware %s (%d)\n",
fw_name[i], ret);
goto release_fw;
}
}
/* Clear the scratchpad memory */
val = readl(priv->base + EIP197_PE_ICE_SCRATCH_CTRL);
val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER |
EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN |
EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS |
EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS;
writel(val, priv->base + EIP197_PE_ICE_SCRATCH_CTRL);
memset(priv->base + EIP197_PE_ICE_SCRATCH_RAM, 0,
EIP197_NUM_OF_SCRATCH_BLOCKS * sizeof(u32));
eip197_write_firmware(priv, fw[FW_IFPP], EIP197_PE_ICE_FPP_CTRL,
EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN);
eip197_write_firmware(priv, fw[FW_IPUE], EIP197_PE_ICE_PUE_CTRL,
EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN);
release_fw:
for (j = 0; j < i; j++)
release_firmware(fw[j]);
return ret;
}
static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv)
{
u32 hdw, cd_size_rnd, val;
int i;
hdw = readl(priv->base + EIP197_HIA_OPTIONS);
hdw &= GENMASK(27, 25);
hdw >>= 25;
cd_size_rnd = (priv->config.cd_size + (BIT(hdw) - 1)) >> hdw;
for (i = 0; i < priv->config.rings; i++) {
/* ring base address */
writel(lower_32_bits(priv->ring[i].cdr.base_dma),
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(upper_32_bits(priv->ring[i].cdr.base_dma),
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.cd_offset << 16) |
priv->config.cd_size,
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_DESC_SIZE);
writel(((EIP197_FETCH_COUNT * (cd_size_rnd << hdw)) << 16) |
(EIP197_FETCH_COUNT * priv->config.cd_offset),
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_CFG);
/* Configure DMA tx control */
val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
writel(val,
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_DMA_CFG);
/* clear any pending interrupt */
writel(GENMASK(5, 0),
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_STAT);
}
return 0;
}
static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv)
{
u32 hdw, rd_size_rnd, val;
int i;
hdw = readl(priv->base + EIP197_HIA_OPTIONS);
hdw &= GENMASK(27, 25);
hdw >>= 25;
rd_size_rnd = (priv->config.rd_size + (BIT(hdw) - 1)) >> hdw;
for (i = 0; i < priv->config.rings; i++) {
/* ring base address */
writel(lower_32_bits(priv->ring[i].rdr.base_dma),
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(upper_32_bits(priv->ring[i].rdr.base_dma),
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 16) |
priv->config.rd_size,
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_DESC_SIZE);
writel(((EIP197_FETCH_COUNT * (rd_size_rnd << hdw)) << 16) |
(EIP197_FETCH_COUNT * priv->config.rd_offset),
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_CFG);
/* Configure DMA tx control */
val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUG;
writel(val,
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_DMA_CFG);
/* clear any pending interrupt */
writel(GENMASK(7, 0),
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_STAT);
/* enable ring interrupt */
val = readl(priv->base + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
val |= EIP197_RDR_IRQ(i);
writel(val, priv->base + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
}
return 0;
}
static int safexcel_hw_init(struct safexcel_crypto_priv *priv)
{
u32 version, val;
int i, ret;
/* Determine endianess and configure byte swap */
version = readl(priv->base + EIP197_HIA_VERSION);
val = readl(priv->base + EIP197_HIA_MST_CTRL);
if ((version & 0xffff) == EIP197_HIA_VERSION_BE)
val |= EIP197_MST_CTRL_BYTE_SWAP;
else if (((version >> 16) & 0xffff) == EIP197_HIA_VERSION_LE)
val |= (EIP197_MST_CTRL_NO_BYTE_SWAP >> 24);
writel(val, priv->base + EIP197_HIA_MST_CTRL);
/* Configure wr/rd cache values */
writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) |
EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS),
priv->base + EIP197_MST_CTRL);
/* Interrupts reset */
/* Disable all global interrupts */
writel(0, priv->base + EIP197_HIA_AIC_G_ENABLE_CTRL);
/* Clear any pending interrupt */
writel(GENMASK(31, 0), priv->base + EIP197_HIA_AIC_G_ACK);
/* Data Fetch Engine configuration */
/* Reset all DFE threads */
writel(EIP197_DxE_THR_CTRL_RESET_PE,
priv->base + EIP197_HIA_DFE_THR_CTRL);
/* Reset HIA input interface arbiter */
writel(EIP197_HIA_RA_PE_CTRL_RESET,
priv->base + EIP197_HIA_RA_PE_CTRL);
/* DMA transfer size to use */
val = EIP197_HIA_DFE_CFG_DIS_DEBUG;
val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(5) | EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9);
val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(5) | EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7);
val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS);
val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS);
writel(val, priv->base + EIP197_HIA_DFE_CFG);
/* Leave the DFE threads reset state */
writel(0, priv->base + EIP197_HIA_DFE_THR_CTRL);
/* Configure the procesing engine thresholds */
writel(EIP197_PE_IN_xBUF_THRES_MIN(5) | EIP197_PE_IN_xBUF_THRES_MAX(9),
priv->base + EIP197_PE_IN_DBUF_THRES);
writel(EIP197_PE_IN_xBUF_THRES_MIN(5) | EIP197_PE_IN_xBUF_THRES_MAX(7),
priv->base + EIP197_PE_IN_TBUF_THRES);
/* enable HIA input interface arbiter and rings */
writel(EIP197_HIA_RA_PE_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
priv->base + EIP197_HIA_RA_PE_CTRL);
/* Data Store Engine configuration */
/* Reset all DSE threads */
writel(EIP197_DxE_THR_CTRL_RESET_PE,
priv->base + EIP197_HIA_DSE_THR_CTRL);
/* Wait for all DSE threads to complete */
while ((readl(priv->base + EIP197_HIA_DSE_THR_STAT) &
GENMASK(15, 12)) != GENMASK(15, 12))
;
/* DMA transfer size to use */
val = EIP197_HIA_DSE_CFG_DIS_DEBUG;
val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(7) | EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(8);
val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS);
val |= EIP197_HIA_DSE_CFG_ALLWAYS_BUFFERABLE;
val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR;
writel(val, priv->base + EIP197_HIA_DSE_CFG);
/* Leave the DSE threads reset state */
writel(0, priv->base + EIP197_HIA_DSE_THR_CTRL);
/* Configure the procesing engine thresholds */
writel(EIP197_PE_OUT_DBUF_THRES_MIN(7) | EIP197_PE_OUT_DBUF_THRES_MAX(8),
priv->base + EIP197_PE_OUT_DBUF_THRES);
/* Processing Engine configuration */
/* H/W capabilities selection */
val = EIP197_FUNCTION_RSVD;
val |= EIP197_PROTOCOL_ENCRYPT_ONLY | EIP197_PROTOCOL_HASH_ONLY;
val |= EIP197_ALG_AES_ECB | EIP197_ALG_AES_CBC;
val |= EIP197_ALG_SHA1 | EIP197_ALG_HMAC_SHA1;
val |= EIP197_ALG_SHA2;
writel(val, priv->base + EIP197_PE_EIP96_FUNCTION_EN);
/* Command Descriptor Rings prepare */
for (i = 0; i < priv->config.rings; i++) {
/* Clear interrupts for this ring */
writel(GENMASK(31, 0),
priv->base + EIP197_HIA_AIC_R_ENABLE_CLR(i));
/* Disable external triggering */
writel(0, priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_CFG);
/* Clear the pending prepared counter */
writel(EIP197_xDR_PREP_CLR_COUNT,
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_PREP_COUNT);
/* Clear the pending processed counter */
writel(EIP197_xDR_PROC_CLR_COUNT,
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_PROC_COUNT);
writel(0,
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_PREP_PNTR);
writel(0,
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_PROC_PNTR);
writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset) << 2,
priv->base + EIP197_HIA_CDR(i) + EIP197_HIA_xDR_RING_SIZE);
}
/* Result Descriptor Ring prepare */
for (i = 0; i < priv->config.rings; i++) {
/* Disable external triggering*/
writel(0, priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_CFG);
/* Clear the pending prepared counter */
writel(EIP197_xDR_PREP_CLR_COUNT,
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_PREP_COUNT);
/* Clear the pending processed counter */
writel(EIP197_xDR_PROC_CLR_COUNT,
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_PROC_COUNT);
writel(0,
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_PREP_PNTR);
writel(0,
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_PROC_PNTR);
/* Ring size */
writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset) << 2,
priv->base + EIP197_HIA_RDR(i) + EIP197_HIA_xDR_RING_SIZE);
}
/* Enable command descriptor rings */
writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
priv->base + EIP197_HIA_DFE_THR_CTRL);
/* Enable result descriptor rings */
writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
priv->base + EIP197_HIA_DSE_THR_CTRL);
/* Clear any HIA interrupt */
writel(GENMASK(30, 20), priv->base + EIP197_HIA_AIC_G_ACK);
eip197_trc_cache_init(priv);
ret = eip197_load_firmwares(priv);
if (ret)
return ret;
safexcel_hw_setup_cdesc_rings(priv);
safexcel_hw_setup_rdesc_rings(priv);
return 0;
}
/* Called with ring's lock taken */
int safexcel_try_push_requests(struct safexcel_crypto_priv *priv, int ring,
int reqs)
{
int coal = min_t(int, reqs, EIP197_MAX_BATCH_SZ);
if (!coal)
return 0;
/* Configure when we want an interrupt */
writel(EIP197_HIA_RDR_THRESH_PKT_MODE |
EIP197_HIA_RDR_THRESH_PROC_PKT(coal),
priv->base + EIP197_HIA_RDR(ring) + EIP197_HIA_xDR_THRESH);
return coal;
}
void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring)
{
struct crypto_async_request *req, *backlog;
struct safexcel_context *ctx;
struct safexcel_request *request;
int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results;
while (true) {
spin_lock_bh(&priv->ring[ring].queue_lock);
backlog = crypto_get_backlog(&priv->ring[ring].queue);
req = crypto_dequeue_request(&priv->ring[ring].queue);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (!req)
goto finalize;
request = kzalloc(sizeof(*request), EIP197_GFP_FLAGS(*req));
if (!request) {
spin_lock_bh(&priv->ring[ring].queue_lock);
crypto_enqueue_request(&priv->ring[ring].queue, req);
spin_unlock_bh(&priv->ring[ring].queue_lock);
goto finalize;
}
ctx = crypto_tfm_ctx(req->tfm);
ret = ctx->send(req, ring, request, &commands, &results);
if (ret) {
kfree(request);
req->complete(req, ret);
goto finalize;
}
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
spin_lock_bh(&priv->ring[ring].egress_lock);
list_add_tail(&request->list, &priv->ring[ring].list);
spin_unlock_bh(&priv->ring[ring].egress_lock);
cdesc += commands;
rdesc += results;
nreq++;
}
finalize:
if (!nreq)
return;
spin_lock_bh(&priv->ring[ring].egress_lock);
if (!priv->ring[ring].busy) {
nreq -= safexcel_try_push_requests(priv, ring, nreq);
if (nreq)
priv->ring[ring].busy = true;
}
priv->ring[ring].requests_left += nreq;
spin_unlock_bh(&priv->ring[ring].egress_lock);
/* let the RDR know we have pending descriptors */
writel((rdesc * priv->config.rd_offset) << 2,
priv->base + EIP197_HIA_RDR(ring) + EIP197_HIA_xDR_PREP_COUNT);
/* let the CDR know we have pending descriptors */
writel((cdesc * priv->config.cd_offset) << 2,
priv->base + EIP197_HIA_CDR(ring) + EIP197_HIA_xDR_PREP_COUNT);
}
void safexcel_free_context(struct safexcel_crypto_priv *priv,
struct crypto_async_request *req,
int result_sz)
{
struct safexcel_context *ctx = crypto_tfm_ctx(req->tfm);
if (ctx->result_dma)
dma_unmap_single(priv->dev, ctx->result_dma, result_sz,
DMA_FROM_DEVICE);
if (ctx->cache) {
dma_unmap_single(priv->dev, ctx->cache_dma, ctx->cache_sz,
DMA_TO_DEVICE);
kfree(ctx->cache);
ctx->cache = NULL;
ctx->cache_sz = 0;
}
}
void safexcel_complete(struct safexcel_crypto_priv *priv, int ring)
{
struct safexcel_command_desc *cdesc;
/* Acknowledge the command descriptors */
do {
cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr);
if (IS_ERR(cdesc)) {
dev_err(priv->dev,
"Could not retrieve the command descriptor\n");
return;
}
} while (!cdesc->last_seg);
}
void safexcel_inv_complete(struct crypto_async_request *req, int error)
{
struct safexcel_inv_result *result = req->data;
if (error == -EINPROGRESS)
return;
result->error = error;
complete(&result->completion);
}
int safexcel_invalidate_cache(struct crypto_async_request *async,
struct safexcel_crypto_priv *priv,
dma_addr_t ctxr_dma, int ring,
struct safexcel_request *request)
{
struct safexcel_command_desc *cdesc;
struct safexcel_result_desc *rdesc;
int ret = 0;
spin_lock_bh(&priv->ring[ring].egress_lock);
/* Prepare command descriptor */
cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma);
if (IS_ERR(cdesc)) {
ret = PTR_ERR(cdesc);
goto unlock;
}
cdesc->control_data.type = EIP197_TYPE_EXTENDED;
cdesc->control_data.options = 0;
cdesc->control_data.refresh = 0;
cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR;
/* Prepare result descriptor */
rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
if (IS_ERR(rdesc)) {
ret = PTR_ERR(rdesc);
goto cdesc_rollback;
}
request->req = async;
goto unlock;
cdesc_rollback:
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
unlock:
spin_unlock_bh(&priv->ring[ring].egress_lock);
return ret;
}
static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv,
int ring)
{
struct safexcel_request *sreq;
struct safexcel_context *ctx;
int ret, i, nreq, ndesc = 0, done;
bool should_complete;
nreq = readl(priv->base + EIP197_HIA_RDR(ring) + EIP197_HIA_xDR_PROC_COUNT);
nreq >>= 24;
nreq &= GENMASK(6, 0);
if (!nreq)
goto requests_left;
for (i = 0; i < nreq; i++) {
spin_lock_bh(&priv->ring[ring].egress_lock);
sreq = list_first_entry(&priv->ring[ring].list,
struct safexcel_request, list);
list_del(&sreq->list);
spin_unlock_bh(&priv->ring[ring].egress_lock);
ctx = crypto_tfm_ctx(sreq->req->tfm);
ndesc = ctx->handle_result(priv, ring, sreq->req,
&should_complete, &ret);
if (ndesc < 0) {
kfree(sreq);
dev_err(priv->dev, "failed to handle result (%d)", ndesc);
goto requests_left;
}
writel(EIP197_xDR_PROC_xD_PKT(1) |
EIP197_xDR_PROC_xD_COUNT(ndesc * priv->config.rd_offset),
priv->base + EIP197_HIA_RDR(ring) + EIP197_HIA_xDR_PROC_COUNT);
if (should_complete) {
local_bh_disable();
sreq->req->complete(sreq->req, ret);
local_bh_enable();
}
kfree(sreq);
}
requests_left:
spin_lock_bh(&priv->ring[ring].egress_lock);
done = safexcel_try_push_requests(priv, ring,
priv->ring[ring].requests_left);
priv->ring[ring].requests_left -= done;
if (!done && !priv->ring[ring].requests_left)
priv->ring[ring].busy = false;
spin_unlock_bh(&priv->ring[ring].egress_lock);
}
static void safexcel_dequeue_work(struct work_struct *work)
{
struct safexcel_work_data *data =
container_of(work, struct safexcel_work_data, work);
safexcel_dequeue(data->priv, data->ring);
}
struct safexcel_ring_irq_data {
struct safexcel_crypto_priv *priv;
int ring;
};
static irqreturn_t safexcel_irq_ring(int irq, void *data)
{
struct safexcel_ring_irq_data *irq_data = data;
struct safexcel_crypto_priv *priv = irq_data->priv;
int ring = irq_data->ring, rc = IRQ_NONE;
u32 status, stat;
status = readl(priv->base + EIP197_HIA_AIC_R_ENABLED_STAT(ring));
if (!status)
return rc;
/* RDR interrupts */
if (status & EIP197_RDR_IRQ(ring)) {
stat = readl(priv->base + EIP197_HIA_RDR(ring) + EIP197_HIA_xDR_STAT);
if (unlikely(stat & EIP197_xDR_ERR)) {
/*
* Fatal error, the RDR is unusable and must be
* reinitialized. This should not happen under
* normal circumstances.
*/
dev_err(priv->dev, "RDR: fatal error.");
} else if (likely(stat & EIP197_xDR_THRESH)) {
rc = IRQ_WAKE_THREAD;
}
/* ACK the interrupts */
writel(stat & 0xff,
priv->base + EIP197_HIA_RDR(ring) + EIP197_HIA_xDR_STAT);
}
/* ACK the interrupts */
writel(status, priv->base + EIP197_HIA_AIC_R_ACK(ring));
return rc;
}
static irqreturn_t safexcel_irq_ring_thread(int irq, void *data)
{
struct safexcel_ring_irq_data *irq_data = data;
struct safexcel_crypto_priv *priv = irq_data->priv;
int ring = irq_data->ring;
safexcel_handle_result_descriptor(priv, ring);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
return IRQ_HANDLED;
}
static int safexcel_request_ring_irq(struct platform_device *pdev, const char *name,
irq_handler_t handler,
irq_handler_t threaded_handler,
struct safexcel_ring_irq_data *ring_irq_priv)
{
int ret, irq = platform_get_irq_byname(pdev, name);
if (irq < 0) {
dev_err(&pdev->dev, "unable to get IRQ '%s'\n", name);
return irq;
}
ret = devm_request_threaded_irq(&pdev->dev, irq, handler,
threaded_handler, IRQF_ONESHOT,
dev_name(&pdev->dev), ring_irq_priv);
if (ret) {
dev_err(&pdev->dev, "unable to request IRQ %d\n", irq);
return ret;
}
return irq;
}
static struct safexcel_alg_template *safexcel_algs[] = {
&safexcel_alg_ecb_aes,
&safexcel_alg_cbc_aes,
&safexcel_alg_sha1,
&safexcel_alg_sha224,
&safexcel_alg_sha256,
&safexcel_alg_hmac_sha1,
};
static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv)
{
int i, j, ret = 0;
for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
safexcel_algs[i]->priv = priv;
if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher);
else
ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash);
if (ret)
goto fail;
}
return 0;
fail:
for (j = 0; j < i; j++) {
if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher);
else
crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash);
}
return ret;
}
static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv)
{
int i;
for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher);
else
crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash);
}
}
static void safexcel_configure(struct safexcel_crypto_priv *priv)
{
u32 val, mask;
val = readl(priv->base + EIP197_HIA_OPTIONS);
val = (val & GENMASK(27, 25)) >> 25;
mask = BIT(val) - 1;
val = readl(priv->base + EIP197_HIA_OPTIONS);
priv->config.rings = min_t(u32, val & GENMASK(3, 0), max_rings);
priv->config.cd_size = (sizeof(struct safexcel_command_desc) / sizeof(u32));
priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask;
priv->config.rd_size = (sizeof(struct safexcel_result_desc) / sizeof(u32));
priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask;
}
static int safexcel_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct resource *res;
struct safexcel_crypto_priv *priv;
int i, ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->base = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->base)) {
dev_err(dev, "failed to get resource\n");
return PTR_ERR(priv->base);
}
priv->clk = of_clk_get(dev->of_node, 0);
if (!IS_ERR(priv->clk)) {
ret = clk_prepare_enable(priv->clk);
if (ret) {
dev_err(dev, "unable to enable clk (%d)\n", ret);
return ret;
}
} else {
/* The clock isn't mandatory */
if (PTR_ERR(priv->clk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
}
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret)
goto err_clk;
priv->context_pool = dmam_pool_create("safexcel-context", dev,
sizeof(struct safexcel_context_record),
1, 0);
if (!priv->context_pool) {
ret = -ENOMEM;
goto err_clk;
}
safexcel_configure(priv);
for (i = 0; i < priv->config.rings; i++) {
char irq_name[6] = {0}; /* "ringX\0" */
char wq_name[9] = {0}; /* "wq_ringX\0" */
int irq;
struct safexcel_ring_irq_data *ring_irq;
ret = safexcel_init_ring_descriptors(priv,
&priv->ring[i].cdr,
&priv->ring[i].rdr);
if (ret)
goto err_clk;
ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL);
if (!ring_irq) {
ret = -ENOMEM;
goto err_clk;
}
ring_irq->priv = priv;
ring_irq->ring = i;
snprintf(irq_name, 6, "ring%d", i);
irq = safexcel_request_ring_irq(pdev, irq_name, safexcel_irq_ring,
safexcel_irq_ring_thread,
ring_irq);
if (irq < 0) {
ret = irq;
goto err_clk;
}
priv->ring[i].work_data.priv = priv;
priv->ring[i].work_data.ring = i;
INIT_WORK(&priv->ring[i].work_data.work, safexcel_dequeue_work);
snprintf(wq_name, 9, "wq_ring%d", i);
priv->ring[i].workqueue = create_singlethread_workqueue(wq_name);
if (!priv->ring[i].workqueue) {
ret = -ENOMEM;
goto err_clk;
}
priv->ring[i].requests_left = 0;
priv->ring[i].busy = false;
crypto_init_queue(&priv->ring[i].queue,
EIP197_DEFAULT_RING_SIZE);
INIT_LIST_HEAD(&priv->ring[i].list);
spin_lock_init(&priv->ring[i].lock);
spin_lock_init(&priv->ring[i].egress_lock);
spin_lock_init(&priv->ring[i].queue_lock);
}
platform_set_drvdata(pdev, priv);
atomic_set(&priv->ring_used, 0);
ret = safexcel_hw_init(priv);
if (ret) {
dev_err(dev, "EIP h/w init failed (%d)\n", ret);
goto err_clk;
}
ret = safexcel_register_algorithms(priv);
if (ret) {
dev_err(dev, "Failed to register algorithms (%d)\n", ret);
goto err_clk;
}
return 0;
err_clk:
clk_disable_unprepare(priv->clk);
return ret;
}
static int safexcel_remove(struct platform_device *pdev)
{
struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev);
int i;
safexcel_unregister_algorithms(priv);
clk_disable_unprepare(priv->clk);
for (i = 0; i < priv->config.rings; i++)
destroy_workqueue(priv->ring[i].workqueue);
return 0;
}
static const struct of_device_id safexcel_of_match_table[] = {
{ .compatible = "inside-secure,safexcel-eip197" },
{},
};
static struct platform_driver crypto_safexcel = {
.probe = safexcel_probe,
.remove = safexcel_remove,
.driver = {
.name = "crypto-safexcel",
.of_match_table = safexcel_of_match_table,
},
};
module_platform_driver(crypto_safexcel);
MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>");
MODULE_AUTHOR("Igal Liberman <igall@marvell.com>");
MODULE_DESCRIPTION("Support for SafeXcel cryptographic engine EIP197");
MODULE_LICENSE("GPL v2");