156010ed9c
* arm64/for-next/perf: perf: arm_spe: Print the version of SPE detected perf: arm_spe: Add support for SPEv1.2 inverted event filtering perf: Add perf_event_attr::config3 drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable perf: arm_spe: Support new SPEv1.2/v8.7 'not taken' event perf: arm_spe: Use new PMSIDR_EL1 register enums perf: arm_spe: Drop BIT() and use FIELD_GET/PREP accessors arm64/sysreg: Convert SPE registers to automatic generation arm64: Drop SYS_ from SPE register defines perf: arm_spe: Use feature numbering for PMSEVFR_EL1 defines perf/marvell: Add ACPI support to TAD uncore driver perf/marvell: Add ACPI support to DDR uncore driver perf/arm-cmn: Reset DTM_PMU_CONFIG at probe drivers/perf: hisi: Extract initialization of "cpa_pmu->pmu" drivers/perf: hisi: Simplify the parameters of hisi_pmu_init() drivers/perf: hisi: Advertise the PERF_PMU_CAP_NO_EXCLUDE capability * for-next/sysreg: : arm64 sysreg and cpufeature fixes/updates KVM: arm64: Use symbolic definition for ISR_EL1.A arm64/sysreg: Add definition of ISR_EL1 arm64/sysreg: Add definition for ICC_NMIAR1_EL1 arm64/cpufeature: Remove 4 bit assumption in ARM64_FEATURE_MASK() arm64/sysreg: Fix errors in 32 bit enumeration values arm64/cpufeature: Fix field sign for DIT hwcap detection * for-next/sme: : SME-related updates arm64/sme: Optimise SME exit on syscall entry arm64/sme: Don't use streaming mode to probe the maximum SME VL arm64/ptrace: Use system_supports_tpidr2() to check for TPIDR2 support * for-next/kselftest: (23 commits) : arm64 kselftest fixes and improvements kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests kselftest/arm64: Copy whole EXTRA context kselftest/arm64: Fix enumeration of systems without 128 bit SME for SSVE+ZA kselftest/arm64: Fix enumeration of systems without 128 bit SME kselftest/arm64: Don't require FA64 for streaming SVE tests kselftest/arm64: Limit the maximum VL we try to set via ptrace kselftest/arm64: Correct buffer size for SME ZA storage kselftest/arm64: Remove the local NUM_VL definition kselftest/arm64: Verify simultaneous SSVE and ZA context generation kselftest/arm64: Verify that SSVE signal context has SVE_SIG_FLAG_SM set kselftest/arm64: Remove spurious comment from MTE test Makefile kselftest/arm64: Support build of MTE tests with clang kselftest/arm64: Initialise current at build time in signal tests kselftest/arm64: Don't pass headers to the compiler as source kselftest/arm64: Remove redundant _start labels from FP tests kselftest/arm64: Fix .pushsection for strings in FP tests kselftest/arm64: Run BTI selftests on systems without BTI kselftest/arm64: Fix test numbering when skipping tests kselftest/arm64: Skip non-power of 2 SVE vector lengths in fp-stress kselftest/arm64: Only enumerate power of two VLs in syscall-abi ... * for-next/misc: : Miscellaneous arm64 updates arm64/mm: Intercept pfn changes in set_pte_at() Documentation: arm64: correct spelling arm64: traps: attempt to dump all instructions arm64: Apply dynamic shadow call stack patching in two passes arm64: el2_setup.h: fix spelling typo in comments arm64: Kconfig: fix spelling arm64: cpufeature: Use kstrtobool() instead of strtobool() arm64: Avoid repeated AA64MMFR1_EL1 register read on pagefault path arm64: make ARCH_FORCE_MAX_ORDER selectable * for-next/sme2: (23 commits) : Support for arm64 SME 2 and 2.1 arm64/sme: Fix __finalise_el2 SMEver check kselftest/arm64: Remove redundant _start labels from zt-test kselftest/arm64: Add coverage of SME 2 and 2.1 hwcaps kselftest/arm64: Add coverage of the ZT ptrace regset kselftest/arm64: Add SME2 coverage to syscall-abi kselftest/arm64: Add test coverage for ZT register signal frames kselftest/arm64: Teach the generic signal context validation about ZT kselftest/arm64: Enumerate SME2 in the signal test utility code kselftest/arm64: Cover ZT in the FP stress test kselftest/arm64: Add a stress test program for ZT0 arm64/sme: Add hwcaps for SME 2 and 2.1 features arm64/sme: Implement ZT0 ptrace support arm64/sme: Implement signal handling for ZT arm64/sme: Implement context switching for ZT0 arm64/sme: Provide storage for ZT0 arm64/sme: Add basic enumeration for SME2 arm64/sme: Enable host kernel to access ZT0 arm64/sme: Manually encode ZT0 load and store instructions arm64/esr: Document ISS for ZT0 being disabled arm64/sme: Document SME 2 and SME 2.1 ABI ... * for-next/tpidr2: : Include TPIDR2 in the signal context kselftest/arm64: Add test case for TPIDR2 signal frame records kselftest/arm64: Add TPIDR2 to the set of known signal context records arm64/signal: Include TPIDR2 in the signal context arm64/sme: Document ABI for TPIDR2 signal information * for-next/scs: : arm64: harden shadow call stack pointer handling arm64: Stash shadow stack pointer in the task struct on interrupt arm64: Always load shadow stack pointer directly from the task struct * for-next/compat-hwcap: : arm64: Expose compat ARMv8 AArch32 features (HWCAPs) arm64: Add compat hwcap SSBS arm64: Add compat hwcap SB arm64: Add compat hwcap I8MM arm64: Add compat hwcap ASIMDBF16 arm64: Add compat hwcap ASIMDFHM arm64: Add compat hwcap ASIMDDP arm64: Add compat hwcap FPHP and ASIMDHP * for-next/ftrace: : Add arm64 support for DYNAMICE_FTRACE_WITH_CALL_OPS arm64: avoid executing padding bytes during kexec / hibernation arm64: Implement HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS arm64: ftrace: Update stale comment arm64: patching: Add aarch64_insn_write_literal_u64() arm64: insn: Add helpers for BTI arm64: Extend support for CONFIG_FUNCTION_ALIGNMENT ACPI: Don't build ACPICA with '-Os' Compiler attributes: GCC cold function alignment workarounds ftrace: Add DYNAMIC_FTRACE_WITH_CALL_OPS * for-next/efi-boot-mmu-on: : Permit arm64 EFI boot with MMU and caches on arm64: kprobes: Drop ID map text from kprobes blacklist arm64: head: Switch endianness before populating the ID map efi: arm64: enter with MMU and caches enabled arm64: head: Clean the ID map and the HYP text to the PoC if needed arm64: head: avoid cache invalidation when entering with the MMU on arm64: head: record the MMU state at primary entry arm64: kernel: move identity map out of .text mapping arm64: head: Move all finalise_el2 calls to after __enable_mmu * for-next/ptrauth: : arm64 pointer authentication cleanup arm64: pauth: don't sign leaf functions arm64: unify asm-arch manipulation * for-next/pseudo-nmi: : Pseudo-NMI code generation optimisations arm64: irqflags: use alternative branches for pseudo-NMI logic arm64: add ARM64_HAS_GIC_PRIO_RELAXED_SYNC cpucap arm64: make ARM64_HAS_GIC_PRIO_MASKING depend on ARM64_HAS_GIC_CPUIF_SYSREGS arm64: rename ARM64_HAS_IRQ_PRIO_MASKING to ARM64_HAS_GIC_PRIO_MASKING arm64: rename ARM64_HAS_SYSREG_GIC_CPUIF to ARM64_HAS_GIC_CPUIF_SYSREGS
469 lines
18 KiB
ReStructuredText
469 lines
18 KiB
ReStructuredText
===================================================
|
|
Scalable Matrix Extension support for AArch64 Linux
|
|
===================================================
|
|
|
|
This document outlines briefly the interface provided to userspace by Linux in
|
|
order to support use of the ARM Scalable Matrix Extension (SME).
|
|
|
|
This is an outline of the most important features and issues only and not
|
|
intended to be exhaustive. It should be read in conjunction with the SVE
|
|
documentation in sve.rst which provides details on the Streaming SVE mode
|
|
included in SME.
|
|
|
|
This document does not aim to describe the SME architecture or programmer's
|
|
model. To aid understanding, a minimal description of relevant programmer's
|
|
model features for SME is included in Appendix A.
|
|
|
|
|
|
1. General
|
|
-----------
|
|
|
|
* PSTATE.SM, PSTATE.ZA, the streaming mode vector length, the ZA and (when
|
|
present) ZTn register state and TPIDR2_EL0 are tracked per thread.
|
|
|
|
* The presence of SME is reported to userspace via HWCAP2_SME in the aux vector
|
|
AT_HWCAP2 entry. Presence of this flag implies the presence of the SME
|
|
instructions and registers, and the Linux-specific system interfaces
|
|
described in this document. SME is reported in /proc/cpuinfo as "sme".
|
|
|
|
* The presence of SME2 is reported to userspace via HWCAP2_SME2 in the
|
|
aux vector AT_HWCAP2 entry. Presence of this flag implies the presence of
|
|
the SME2 instructions and ZT0, and the Linux-specific system interfaces
|
|
described in this document. SME2 is reported in /proc/cpuinfo as "sme2".
|
|
|
|
* Support for the execution of SME instructions in userspace can also be
|
|
detected by reading the CPU ID register ID_AA64PFR1_EL1 using an MRS
|
|
instruction, and checking that the value of the SME field is nonzero. [3]
|
|
|
|
It does not guarantee the presence of the system interfaces described in the
|
|
following sections: software that needs to verify that those interfaces are
|
|
present must check for HWCAP2_SME instead.
|
|
|
|
* There are a number of optional SME features, presence of these is reported
|
|
through AT_HWCAP2 through:
|
|
|
|
HWCAP2_SME_I16I64
|
|
HWCAP2_SME_F64F64
|
|
HWCAP2_SME_I8I32
|
|
HWCAP2_SME_F16F32
|
|
HWCAP2_SME_B16F32
|
|
HWCAP2_SME_F32F32
|
|
HWCAP2_SME_FA64
|
|
HWCAP2_SME2
|
|
|
|
This list may be extended over time as the SME architecture evolves.
|
|
|
|
These extensions are also reported via the CPU ID register ID_AA64SMFR0_EL1,
|
|
which userspace can read using an MRS instruction. See elf_hwcaps.txt and
|
|
cpu-feature-registers.txt for details.
|
|
|
|
* Debuggers should restrict themselves to interacting with the target via the
|
|
NT_ARM_SVE, NT_ARM_SSVE, NT_ARM_ZA and NT_ARM_ZT regsets. The recommended
|
|
way of detecting support for these regsets is to connect to a target process
|
|
first and then attempt a
|
|
|
|
ptrace(PTRACE_GETREGSET, pid, NT_ARM_<regset>, &iov).
|
|
|
|
* Whenever ZA register values are exchanged in memory between userspace and
|
|
the kernel, the register value is encoded in memory as a series of horizontal
|
|
vectors from 0 to VL/8-1 stored in the same endianness invariant format as is
|
|
used for SVE vectors.
|
|
|
|
* On thread creation TPIDR2_EL0 is preserved unless CLONE_SETTLS is specified,
|
|
in which case it is set to 0.
|
|
|
|
2. Vector lengths
|
|
------------------
|
|
|
|
SME defines a second vector length similar to the SVE vector length which is
|
|
controls the size of the streaming mode SVE vectors and the ZA matrix array.
|
|
The ZA matrix is square with each side having as many bytes as a streaming
|
|
mode SVE vector.
|
|
|
|
|
|
3. Sharing of streaming and non-streaming mode SVE state
|
|
---------------------------------------------------------
|
|
|
|
It is implementation defined which if any parts of the SVE state are shared
|
|
between streaming and non-streaming modes. When switching between modes
|
|
via software interfaces such as ptrace if no register content is provided as
|
|
part of switching no state will be assumed to be shared and everything will
|
|
be zeroed.
|
|
|
|
|
|
4. System call behaviour
|
|
-------------------------
|
|
|
|
* On syscall PSTATE.ZA is preserved, if PSTATE.ZA==1 then the contents of the
|
|
ZA matrix and ZTn (if present) are preserved.
|
|
|
|
* On syscall PSTATE.SM will be cleared and the SVE registers will be handled
|
|
as per the standard SVE ABI.
|
|
|
|
* None of the SVE registers, ZA or ZTn are used to pass arguments to
|
|
or receive results from any syscall.
|
|
|
|
* On process creation (eg, clone()) the newly created process will have
|
|
PSTATE.SM cleared.
|
|
|
|
* All other SME state of a thread, including the currently configured vector
|
|
length, the state of the PR_SME_VL_INHERIT flag, and the deferred vector
|
|
length (if any), is preserved across all syscalls, subject to the specific
|
|
exceptions for execve() described in section 6.
|
|
|
|
|
|
5. Signal handling
|
|
-------------------
|
|
|
|
* Signal handlers are invoked with streaming mode and ZA disabled.
|
|
|
|
* A new signal frame record TPIDR2_MAGIC is added formatted as a struct
|
|
tpidr2_context to allow access to TPIDR2_EL0 from signal handlers.
|
|
|
|
* A new signal frame record za_context encodes the ZA register contents on
|
|
signal delivery. [1]
|
|
|
|
* The signal frame record for ZA always contains basic metadata, in particular
|
|
the thread's vector length (in za_context.vl).
|
|
|
|
* The ZA matrix may or may not be included in the record, depending on
|
|
the value of PSTATE.ZA. The registers are present if and only if:
|
|
za_context.head.size >= ZA_SIG_CONTEXT_SIZE(sve_vq_from_vl(za_context.vl))
|
|
in which case PSTATE.ZA == 1.
|
|
|
|
* If matrix data is present, the remainder of the record has a vl-dependent
|
|
size and layout. Macros ZA_SIG_* are defined [1] to facilitate access to
|
|
them.
|
|
|
|
* The matrix is stored as a series of horizontal vectors in the same format as
|
|
is used for SVE vectors.
|
|
|
|
* If the ZA context is too big to fit in sigcontext.__reserved[], then extra
|
|
space is allocated on the stack, an extra_context record is written in
|
|
__reserved[] referencing this space. za_context is then written in the
|
|
extra space. Refer to [1] for further details about this mechanism.
|
|
|
|
* If ZTn is supported and PSTATE.ZA==1 then a signal frame record for ZTn will
|
|
be generated.
|
|
|
|
* The signal record for ZTn has magic ZT_MAGIC (0x5a544e01) and consists of a
|
|
standard signal frame header followed by a struct zt_context specifying
|
|
the number of ZTn registers supported by the system, then zt_context.nregs
|
|
blocks of 64 bytes of data per register.
|
|
|
|
|
|
5. Signal return
|
|
-----------------
|
|
|
|
When returning from a signal handler:
|
|
|
|
* If there is no za_context record in the signal frame, or if the record is
|
|
present but contains no register data as described in the previous section,
|
|
then ZA is disabled.
|
|
|
|
* If za_context is present in the signal frame and contains matrix data then
|
|
PSTATE.ZA is set to 1 and ZA is populated with the specified data.
|
|
|
|
* The vector length cannot be changed via signal return. If za_context.vl in
|
|
the signal frame does not match the current vector length, the signal return
|
|
attempt is treated as illegal, resulting in a forced SIGSEGV.
|
|
|
|
* If ZTn is not supported or PSTATE.ZA==0 then it is illegal to have a
|
|
signal frame record for ZTn, resulting in a forced SIGSEGV.
|
|
|
|
|
|
6. prctl extensions
|
|
--------------------
|
|
|
|
Some new prctl() calls are added to allow programs to manage the SME vector
|
|
length:
|
|
|
|
prctl(PR_SME_SET_VL, unsigned long arg)
|
|
|
|
Sets the vector length of the calling thread and related flags, where
|
|
arg == vl | flags. Other threads of the calling process are unaffected.
|
|
|
|
vl is the desired vector length, where sve_vl_valid(vl) must be true.
|
|
|
|
flags:
|
|
|
|
PR_SME_VL_INHERIT
|
|
|
|
Inherit the current vector length across execve(). Otherwise, the
|
|
vector length is reset to the system default at execve(). (See
|
|
Section 9.)
|
|
|
|
PR_SME_SET_VL_ONEXEC
|
|
|
|
Defer the requested vector length change until the next execve()
|
|
performed by this thread.
|
|
|
|
The effect is equivalent to implicit execution of the following
|
|
call immediately after the next execve() (if any) by the thread:
|
|
|
|
prctl(PR_SME_SET_VL, arg & ~PR_SME_SET_VL_ONEXEC)
|
|
|
|
This allows launching of a new program with a different vector
|
|
length, while avoiding runtime side effects in the caller.
|
|
|
|
Without PR_SME_SET_VL_ONEXEC, the requested change takes effect
|
|
immediately.
|
|
|
|
|
|
Return value: a nonnegative on success, or a negative value on error:
|
|
EINVAL: SME not supported, invalid vector length requested, or
|
|
invalid flags.
|
|
|
|
|
|
On success:
|
|
|
|
* Either the calling thread's vector length or the deferred vector length
|
|
to be applied at the next execve() by the thread (dependent on whether
|
|
PR_SME_SET_VL_ONEXEC is present in arg), is set to the largest value
|
|
supported by the system that is less than or equal to vl. If vl ==
|
|
SVE_VL_MAX, the value set will be the largest value supported by the
|
|
system.
|
|
|
|
* Any previously outstanding deferred vector length change in the calling
|
|
thread is cancelled.
|
|
|
|
* The returned value describes the resulting configuration, encoded as for
|
|
PR_SME_GET_VL. The vector length reported in this value is the new
|
|
current vector length for this thread if PR_SME_SET_VL_ONEXEC was not
|
|
present in arg; otherwise, the reported vector length is the deferred
|
|
vector length that will be applied at the next execve() by the calling
|
|
thread.
|
|
|
|
* Changing the vector length causes all of ZA, ZTn, P0..P15, FFR and all
|
|
bits of Z0..Z31 except for Z0 bits [127:0] .. Z31 bits [127:0] to become
|
|
unspecified, including both streaming and non-streaming SVE state.
|
|
Calling PR_SME_SET_VL with vl equal to the thread's current vector
|
|
length, or calling PR_SME_SET_VL with the PR_SVE_SET_VL_ONEXEC flag,
|
|
does not constitute a change to the vector length for this purpose.
|
|
|
|
* Changing the vector length causes PSTATE.ZA and PSTATE.SM to be cleared.
|
|
Calling PR_SME_SET_VL with vl equal to the thread's current vector
|
|
length, or calling PR_SME_SET_VL with the PR_SVE_SET_VL_ONEXEC flag,
|
|
does not constitute a change to the vector length for this purpose.
|
|
|
|
|
|
prctl(PR_SME_GET_VL)
|
|
|
|
Gets the vector length of the calling thread.
|
|
|
|
The following flag may be OR-ed into the result:
|
|
|
|
PR_SME_VL_INHERIT
|
|
|
|
Vector length will be inherited across execve().
|
|
|
|
There is no way to determine whether there is an outstanding deferred
|
|
vector length change (which would only normally be the case between a
|
|
fork() or vfork() and the corresponding execve() in typical use).
|
|
|
|
To extract the vector length from the result, bitwise and it with
|
|
PR_SME_VL_LEN_MASK.
|
|
|
|
Return value: a nonnegative value on success, or a negative value on error:
|
|
EINVAL: SME not supported.
|
|
|
|
|
|
7. ptrace extensions
|
|
---------------------
|
|
|
|
* A new regset NT_ARM_SSVE is defined for access to streaming mode SVE
|
|
state via PTRACE_GETREGSET and PTRACE_SETREGSET, this is documented in
|
|
sve.rst.
|
|
|
|
* A new regset NT_ARM_ZA is defined for ZA state for access to ZA state via
|
|
PTRACE_GETREGSET and PTRACE_SETREGSET.
|
|
|
|
Refer to [2] for definitions.
|
|
|
|
The regset data starts with struct user_za_header, containing:
|
|
|
|
size
|
|
|
|
Size of the complete regset, in bytes.
|
|
This depends on vl and possibly on other things in the future.
|
|
|
|
If a call to PTRACE_GETREGSET requests less data than the value of
|
|
size, the caller can allocate a larger buffer and retry in order to
|
|
read the complete regset.
|
|
|
|
max_size
|
|
|
|
Maximum size in bytes that the regset can grow to for the target
|
|
thread. The regset won't grow bigger than this even if the target
|
|
thread changes its vector length etc.
|
|
|
|
vl
|
|
|
|
Target thread's current streaming vector length, in bytes.
|
|
|
|
max_vl
|
|
|
|
Maximum possible streaming vector length for the target thread.
|
|
|
|
flags
|
|
|
|
Zero or more of the following flags, which have the same
|
|
meaning and behaviour as the corresponding PR_SET_VL_* flags:
|
|
|
|
SME_PT_VL_INHERIT
|
|
|
|
SME_PT_VL_ONEXEC (SETREGSET only).
|
|
|
|
* The effects of changing the vector length and/or flags are equivalent to
|
|
those documented for PR_SME_SET_VL.
|
|
|
|
The caller must make a further GETREGSET call if it needs to know what VL is
|
|
actually set by SETREGSET, unless is it known in advance that the requested
|
|
VL is supported.
|
|
|
|
* The size and layout of the payload depends on the header fields. The
|
|
SME_PT_ZA_*() macros are provided to facilitate access to the data.
|
|
|
|
* In either case, for SETREGSET it is permissible to omit the payload, in which
|
|
case the vector length and flags are changed and PSTATE.ZA is set to 0
|
|
(along with any consequences of those changes). If a payload is provided
|
|
then PSTATE.ZA will be set to 1.
|
|
|
|
* For SETREGSET, if the requested VL is not supported, the effect will be the
|
|
same as if the payload were omitted, except that an EIO error is reported.
|
|
No attempt is made to translate the payload data to the correct layout
|
|
for the vector length actually set. It is up to the caller to translate the
|
|
payload layout for the actual VL and retry.
|
|
|
|
* The effect of writing a partial, incomplete payload is unspecified.
|
|
|
|
* A new regset NT_ARM_ZT is defined for access to ZTn state via
|
|
PTRACE_GETREGSET and PTRACE_SETREGSET.
|
|
|
|
* The NT_ARM_ZT regset consists of a single 512 bit register.
|
|
|
|
* When PSTATE.ZA==0 reads of NT_ARM_ZT will report all bits of ZTn as 0.
|
|
|
|
* Writes to NT_ARM_ZT will set PSTATE.ZA to 1.
|
|
|
|
|
|
8. ELF coredump extensions
|
|
---------------------------
|
|
|
|
* NT_ARM_SSVE notes will be added to each coredump for
|
|
each thread of the dumped process. The contents will be equivalent to the
|
|
data that would have been read if a PTRACE_GETREGSET of the corresponding
|
|
type were executed for each thread when the coredump was generated.
|
|
|
|
* A NT_ARM_ZA note will be added to each coredump for each thread of the
|
|
dumped process. The contents will be equivalent to the data that would have
|
|
been read if a PTRACE_GETREGSET of NT_ARM_ZA were executed for each thread
|
|
when the coredump was generated.
|
|
|
|
* A NT_ARM_ZT note will be added to each coredump for each thread of the
|
|
dumped process. The contents will be equivalent to the data that would have
|
|
been read if a PTRACE_GETREGSET of NT_ARM_ZT were executed for each thread
|
|
when the coredump was generated.
|
|
|
|
* The NT_ARM_TLS note will be extended to two registers, the second register
|
|
will contain TPIDR2_EL0 on systems that support SME and will be read as
|
|
zero with writes ignored otherwise.
|
|
|
|
9. System runtime configuration
|
|
--------------------------------
|
|
|
|
* To mitigate the ABI impact of expansion of the signal frame, a policy
|
|
mechanism is provided for administrators, distro maintainers and developers
|
|
to set the default vector length for userspace processes:
|
|
|
|
/proc/sys/abi/sme_default_vector_length
|
|
|
|
Writing the text representation of an integer to this file sets the system
|
|
default vector length to the specified value, unless the value is greater
|
|
than the maximum vector length supported by the system in which case the
|
|
default vector length is set to that maximum.
|
|
|
|
The result can be determined by reopening the file and reading its
|
|
contents.
|
|
|
|
At boot, the default vector length is initially set to 32 or the maximum
|
|
supported vector length, whichever is smaller and supported. This
|
|
determines the initial vector length of the init process (PID 1).
|
|
|
|
Reading this file returns the current system default vector length.
|
|
|
|
* At every execve() call, the new vector length of the new process is set to
|
|
the system default vector length, unless
|
|
|
|
* PR_SME_VL_INHERIT (or equivalently SME_PT_VL_INHERIT) is set for the
|
|
calling thread, or
|
|
|
|
* a deferred vector length change is pending, established via the
|
|
PR_SME_SET_VL_ONEXEC flag (or SME_PT_VL_ONEXEC).
|
|
|
|
* Modifying the system default vector length does not affect the vector length
|
|
of any existing process or thread that does not make an execve() call.
|
|
|
|
|
|
Appendix A. SME programmer's model (informative)
|
|
=================================================
|
|
|
|
This section provides a minimal description of the additions made by SME to the
|
|
ARMv8-A programmer's model that are relevant to this document.
|
|
|
|
Note: This section is for information only and not intended to be complete or
|
|
to replace any architectural specification.
|
|
|
|
A.1. Registers
|
|
---------------
|
|
|
|
In A64 state, SME adds the following:
|
|
|
|
* A new mode, streaming mode, in which a subset of the normal FPSIMD and SVE
|
|
features are available. When supported EL0 software may enter and leave
|
|
streaming mode at any time.
|
|
|
|
For best system performance it is strongly encouraged for software to enable
|
|
streaming mode only when it is actively being used.
|
|
|
|
* A new vector length controlling the size of ZA and the Z registers when in
|
|
streaming mode, separately to the vector length used for SVE when not in
|
|
streaming mode. There is no requirement that either the currently selected
|
|
vector length or the set of vector lengths supported for the two modes in
|
|
a given system have any relationship. The streaming mode vector length
|
|
is referred to as SVL.
|
|
|
|
* A new ZA matrix register. This is a square matrix of SVLxSVL bits. Most
|
|
operations on ZA require that streaming mode be enabled but ZA can be
|
|
enabled without streaming mode in order to load, save and retain data.
|
|
|
|
For best system performance it is strongly encouraged for software to enable
|
|
ZA only when it is actively being used.
|
|
|
|
* A new ZT0 register is introduced when SME2 is present. This is a 512 bit
|
|
register which is accessible when PSTATE.ZA is set, as ZA itself is.
|
|
|
|
* Two new 1 bit fields in PSTATE which may be controlled via the SMSTART and
|
|
SMSTOP instructions or by access to the SVCR system register:
|
|
|
|
* PSTATE.ZA, if this is 1 then the ZA matrix is accessible and has valid
|
|
data while if it is 0 then ZA can not be accessed. When PSTATE.ZA is
|
|
changed from 0 to 1 all bits in ZA are cleared.
|
|
|
|
* PSTATE.SM, if this is 1 then the PE is in streaming mode. When the value
|
|
of PSTATE.SM is changed then it is implementation defined if the subset
|
|
of the floating point register bits valid in both modes may be retained.
|
|
Any other bits will be cleared.
|
|
|
|
|
|
References
|
|
==========
|
|
|
|
[1] arch/arm64/include/uapi/asm/sigcontext.h
|
|
AArch64 Linux signal ABI definitions
|
|
|
|
[2] arch/arm64/include/uapi/asm/ptrace.h
|
|
AArch64 Linux ptrace ABI definitions
|
|
|
|
[3] Documentation/arm64/cpu-feature-registers.rst
|