dd5cde457a
Provide API documentation for rtas_busy_delay_time(), explaining why we return the same value for 9900 and -2. Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20211117060259.957178-3-nathanl@linux.ibm.com
1370 lines
33 KiB
C
1370 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
*
|
|
* Procedures for interfacing to the RTAS on CHRP machines.
|
|
*
|
|
* Peter Bergner, IBM March 2001.
|
|
* Copyright (C) 2001 IBM.
|
|
*/
|
|
|
|
#include <linux/stdarg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/syscalls.h>
|
|
|
|
#include <asm/interrupt.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/page.h>
|
|
#include <asm/param.h>
|
|
#include <asm/delay.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/udbg.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/smp.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/time.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/topology.h>
|
|
#include <asm/paca.h>
|
|
|
|
/* This is here deliberately so it's only used in this file */
|
|
void enter_rtas(unsigned long);
|
|
|
|
static inline void do_enter_rtas(unsigned long args)
|
|
{
|
|
enter_rtas(args);
|
|
|
|
srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
|
|
}
|
|
|
|
struct rtas_t rtas = {
|
|
.lock = __ARCH_SPIN_LOCK_UNLOCKED
|
|
};
|
|
EXPORT_SYMBOL(rtas);
|
|
|
|
DEFINE_SPINLOCK(rtas_data_buf_lock);
|
|
EXPORT_SYMBOL(rtas_data_buf_lock);
|
|
|
|
char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
|
|
EXPORT_SYMBOL(rtas_data_buf);
|
|
|
|
unsigned long rtas_rmo_buf;
|
|
|
|
/*
|
|
* If non-NULL, this gets called when the kernel terminates.
|
|
* This is done like this so rtas_flash can be a module.
|
|
*/
|
|
void (*rtas_flash_term_hook)(int);
|
|
EXPORT_SYMBOL(rtas_flash_term_hook);
|
|
|
|
/* RTAS use home made raw locking instead of spin_lock_irqsave
|
|
* because those can be called from within really nasty contexts
|
|
* such as having the timebase stopped which would lockup with
|
|
* normal locks and spinlock debugging enabled
|
|
*/
|
|
static unsigned long lock_rtas(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
preempt_disable();
|
|
arch_spin_lock(&rtas.lock);
|
|
return flags;
|
|
}
|
|
|
|
static void unlock_rtas(unsigned long flags)
|
|
{
|
|
arch_spin_unlock(&rtas.lock);
|
|
local_irq_restore(flags);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* call_rtas_display_status and call_rtas_display_status_delay
|
|
* are designed only for very early low-level debugging, which
|
|
* is why the token is hard-coded to 10.
|
|
*/
|
|
static void call_rtas_display_status(unsigned char c)
|
|
{
|
|
unsigned long s;
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
|
|
s = lock_rtas();
|
|
rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c);
|
|
unlock_rtas(s);
|
|
}
|
|
|
|
static void call_rtas_display_status_delay(char c)
|
|
{
|
|
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
|
static int width = 16;
|
|
|
|
if (c == '\n') {
|
|
while (width-- > 0)
|
|
call_rtas_display_status(' ');
|
|
width = 16;
|
|
mdelay(500);
|
|
pending_newline = 1;
|
|
} else {
|
|
if (pending_newline) {
|
|
call_rtas_display_status('\r');
|
|
call_rtas_display_status('\n');
|
|
}
|
|
pending_newline = 0;
|
|
if (width--) {
|
|
call_rtas_display_status(c);
|
|
udelay(10000);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init udbg_init_rtas_panel(void)
|
|
{
|
|
udbg_putc = call_rtas_display_status_delay;
|
|
}
|
|
|
|
#ifdef CONFIG_UDBG_RTAS_CONSOLE
|
|
|
|
/* If you think you're dying before early_init_dt_scan_rtas() does its
|
|
* work, you can hard code the token values for your firmware here and
|
|
* hardcode rtas.base/entry etc.
|
|
*/
|
|
static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
|
|
static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
|
|
|
|
static void udbg_rtascon_putc(char c)
|
|
{
|
|
int tries;
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
|
|
/* Add CRs before LFs */
|
|
if (c == '\n')
|
|
udbg_rtascon_putc('\r');
|
|
|
|
/* if there is more than one character to be displayed, wait a bit */
|
|
for (tries = 0; tries < 16; tries++) {
|
|
if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
|
|
break;
|
|
udelay(1000);
|
|
}
|
|
}
|
|
|
|
static int udbg_rtascon_getc_poll(void)
|
|
{
|
|
int c;
|
|
|
|
if (!rtas.base)
|
|
return -1;
|
|
|
|
if (rtas_call(rtas_getchar_token, 0, 2, &c))
|
|
return -1;
|
|
|
|
return c;
|
|
}
|
|
|
|
static int udbg_rtascon_getc(void)
|
|
{
|
|
int c;
|
|
|
|
while ((c = udbg_rtascon_getc_poll()) == -1)
|
|
;
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
void __init udbg_init_rtas_console(void)
|
|
{
|
|
udbg_putc = udbg_rtascon_putc;
|
|
udbg_getc = udbg_rtascon_getc;
|
|
udbg_getc_poll = udbg_rtascon_getc_poll;
|
|
}
|
|
#endif /* CONFIG_UDBG_RTAS_CONSOLE */
|
|
|
|
void rtas_progress(char *s, unsigned short hex)
|
|
{
|
|
struct device_node *root;
|
|
int width;
|
|
const __be32 *p;
|
|
char *os;
|
|
static int display_character, set_indicator;
|
|
static int display_width, display_lines, form_feed;
|
|
static const int *row_width;
|
|
static DEFINE_SPINLOCK(progress_lock);
|
|
static int current_line;
|
|
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
|
|
if (display_width == 0) {
|
|
display_width = 0x10;
|
|
if ((root = of_find_node_by_path("/rtas"))) {
|
|
if ((p = of_get_property(root,
|
|
"ibm,display-line-length", NULL)))
|
|
display_width = be32_to_cpu(*p);
|
|
if ((p = of_get_property(root,
|
|
"ibm,form-feed", NULL)))
|
|
form_feed = be32_to_cpu(*p);
|
|
if ((p = of_get_property(root,
|
|
"ibm,display-number-of-lines", NULL)))
|
|
display_lines = be32_to_cpu(*p);
|
|
row_width = of_get_property(root,
|
|
"ibm,display-truncation-length", NULL);
|
|
of_node_put(root);
|
|
}
|
|
display_character = rtas_token("display-character");
|
|
set_indicator = rtas_token("set-indicator");
|
|
}
|
|
|
|
if (display_character == RTAS_UNKNOWN_SERVICE) {
|
|
/* use hex display if available */
|
|
if (set_indicator != RTAS_UNKNOWN_SERVICE)
|
|
rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
|
|
return;
|
|
}
|
|
|
|
spin_lock(&progress_lock);
|
|
|
|
/*
|
|
* Last write ended with newline, but we didn't print it since
|
|
* it would just clear the bottom line of output. Print it now
|
|
* instead.
|
|
*
|
|
* If no newline is pending and form feed is supported, clear the
|
|
* display with a form feed; otherwise, print a CR to start output
|
|
* at the beginning of the line.
|
|
*/
|
|
if (pending_newline) {
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
rtas_call(display_character, 1, 1, NULL, '\n');
|
|
pending_newline = 0;
|
|
} else {
|
|
current_line = 0;
|
|
if (form_feed)
|
|
rtas_call(display_character, 1, 1, NULL,
|
|
(char)form_feed);
|
|
else
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
}
|
|
|
|
if (row_width)
|
|
width = row_width[current_line];
|
|
else
|
|
width = display_width;
|
|
os = s;
|
|
while (*os) {
|
|
if (*os == '\n' || *os == '\r') {
|
|
/* If newline is the last character, save it
|
|
* until next call to avoid bumping up the
|
|
* display output.
|
|
*/
|
|
if (*os == '\n' && !os[1]) {
|
|
pending_newline = 1;
|
|
current_line++;
|
|
if (current_line > display_lines-1)
|
|
current_line = display_lines-1;
|
|
spin_unlock(&progress_lock);
|
|
return;
|
|
}
|
|
|
|
/* RTAS wants CR-LF, not just LF */
|
|
|
|
if (*os == '\n') {
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
rtas_call(display_character, 1, 1, NULL, '\n');
|
|
} else {
|
|
/* CR might be used to re-draw a line, so we'll
|
|
* leave it alone and not add LF.
|
|
*/
|
|
rtas_call(display_character, 1, 1, NULL, *os);
|
|
}
|
|
|
|
if (row_width)
|
|
width = row_width[current_line];
|
|
else
|
|
width = display_width;
|
|
} else {
|
|
width--;
|
|
rtas_call(display_character, 1, 1, NULL, *os);
|
|
}
|
|
|
|
os++;
|
|
|
|
/* if we overwrite the screen length */
|
|
if (width <= 0)
|
|
while ((*os != 0) && (*os != '\n') && (*os != '\r'))
|
|
os++;
|
|
}
|
|
|
|
spin_unlock(&progress_lock);
|
|
}
|
|
EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */
|
|
|
|
int rtas_token(const char *service)
|
|
{
|
|
const __be32 *tokp;
|
|
if (rtas.dev == NULL)
|
|
return RTAS_UNKNOWN_SERVICE;
|
|
tokp = of_get_property(rtas.dev, service, NULL);
|
|
return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
EXPORT_SYMBOL(rtas_token);
|
|
|
|
int rtas_service_present(const char *service)
|
|
{
|
|
return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
EXPORT_SYMBOL(rtas_service_present);
|
|
|
|
#ifdef CONFIG_RTAS_ERROR_LOGGING
|
|
/*
|
|
* Return the firmware-specified size of the error log buffer
|
|
* for all rtas calls that require an error buffer argument.
|
|
* This includes 'check-exception' and 'rtas-last-error'.
|
|
*/
|
|
int rtas_get_error_log_max(void)
|
|
{
|
|
static int rtas_error_log_max;
|
|
if (rtas_error_log_max)
|
|
return rtas_error_log_max;
|
|
|
|
rtas_error_log_max = rtas_token ("rtas-error-log-max");
|
|
if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
|
|
(rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
|
|
printk (KERN_WARNING "RTAS: bad log buffer size %d\n",
|
|
rtas_error_log_max);
|
|
rtas_error_log_max = RTAS_ERROR_LOG_MAX;
|
|
}
|
|
return rtas_error_log_max;
|
|
}
|
|
EXPORT_SYMBOL(rtas_get_error_log_max);
|
|
|
|
|
|
static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
|
|
static int rtas_last_error_token;
|
|
|
|
/** Return a copy of the detailed error text associated with the
|
|
* most recent failed call to rtas. Because the error text
|
|
* might go stale if there are any other intervening rtas calls,
|
|
* this routine must be called atomically with whatever produced
|
|
* the error (i.e. with rtas.lock still held from the previous call).
|
|
*/
|
|
static char *__fetch_rtas_last_error(char *altbuf)
|
|
{
|
|
struct rtas_args err_args, save_args;
|
|
u32 bufsz;
|
|
char *buf = NULL;
|
|
|
|
if (rtas_last_error_token == -1)
|
|
return NULL;
|
|
|
|
bufsz = rtas_get_error_log_max();
|
|
|
|
err_args.token = cpu_to_be32(rtas_last_error_token);
|
|
err_args.nargs = cpu_to_be32(2);
|
|
err_args.nret = cpu_to_be32(1);
|
|
err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
|
|
err_args.args[1] = cpu_to_be32(bufsz);
|
|
err_args.args[2] = 0;
|
|
|
|
save_args = rtas.args;
|
|
rtas.args = err_args;
|
|
|
|
do_enter_rtas(__pa(&rtas.args));
|
|
|
|
err_args = rtas.args;
|
|
rtas.args = save_args;
|
|
|
|
/* Log the error in the unlikely case that there was one. */
|
|
if (unlikely(err_args.args[2] == 0)) {
|
|
if (altbuf) {
|
|
buf = altbuf;
|
|
} else {
|
|
buf = rtas_err_buf;
|
|
if (slab_is_available())
|
|
buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
|
|
}
|
|
if (buf)
|
|
memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
#define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
|
|
|
|
#else /* CONFIG_RTAS_ERROR_LOGGING */
|
|
#define __fetch_rtas_last_error(x) NULL
|
|
#define get_errorlog_buffer() NULL
|
|
#endif
|
|
|
|
|
|
static void
|
|
va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
|
|
va_list list)
|
|
{
|
|
int i;
|
|
|
|
args->token = cpu_to_be32(token);
|
|
args->nargs = cpu_to_be32(nargs);
|
|
args->nret = cpu_to_be32(nret);
|
|
args->rets = &(args->args[nargs]);
|
|
|
|
for (i = 0; i < nargs; ++i)
|
|
args->args[i] = cpu_to_be32(va_arg(list, __u32));
|
|
|
|
for (i = 0; i < nret; ++i)
|
|
args->rets[i] = 0;
|
|
|
|
do_enter_rtas(__pa(args));
|
|
}
|
|
|
|
void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
|
|
{
|
|
va_list list;
|
|
|
|
va_start(list, nret);
|
|
va_rtas_call_unlocked(args, token, nargs, nret, list);
|
|
va_end(list);
|
|
}
|
|
|
|
int rtas_call(int token, int nargs, int nret, int *outputs, ...)
|
|
{
|
|
va_list list;
|
|
int i;
|
|
unsigned long s;
|
|
struct rtas_args *rtas_args;
|
|
char *buff_copy = NULL;
|
|
int ret;
|
|
|
|
if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
|
|
return -1;
|
|
|
|
s = lock_rtas();
|
|
|
|
/* We use the global rtas args buffer */
|
|
rtas_args = &rtas.args;
|
|
|
|
va_start(list, outputs);
|
|
va_rtas_call_unlocked(rtas_args, token, nargs, nret, list);
|
|
va_end(list);
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (be32_to_cpu(rtas_args->rets[0]) == -1)
|
|
buff_copy = __fetch_rtas_last_error(NULL);
|
|
|
|
if (nret > 1 && outputs != NULL)
|
|
for (i = 0; i < nret-1; ++i)
|
|
outputs[i] = be32_to_cpu(rtas_args->rets[i+1]);
|
|
ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0;
|
|
|
|
unlock_rtas(s);
|
|
|
|
if (buff_copy) {
|
|
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
|
|
if (slab_is_available())
|
|
kfree(buff_copy);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rtas_call);
|
|
|
|
/**
|
|
* rtas_busy_delay_time() - From an RTAS status value, calculate the
|
|
* suggested delay time in milliseconds.
|
|
*
|
|
* @status: a value returned from rtas_call() or similar APIs which return
|
|
* the status of a RTAS function call.
|
|
*
|
|
* Context: Any context.
|
|
*
|
|
* Return:
|
|
* * 100000 - If @status is 9905.
|
|
* * 10000 - If @status is 9904.
|
|
* * 1000 - If @status is 9903.
|
|
* * 100 - If @status is 9902.
|
|
* * 10 - If @status is 9901.
|
|
* * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but
|
|
* some callers depend on this behavior, and the worst outcome
|
|
* is that they will delay for longer than necessary.
|
|
* * 0 - If @status is not a busy or extended delay value.
|
|
*/
|
|
unsigned int rtas_busy_delay_time(int status)
|
|
{
|
|
int order;
|
|
unsigned int ms = 0;
|
|
|
|
if (status == RTAS_BUSY) {
|
|
ms = 1;
|
|
} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
|
|
status <= RTAS_EXTENDED_DELAY_MAX) {
|
|
order = status - RTAS_EXTENDED_DELAY_MIN;
|
|
for (ms = 1; order > 0; order--)
|
|
ms *= 10;
|
|
}
|
|
|
|
return ms;
|
|
}
|
|
EXPORT_SYMBOL(rtas_busy_delay_time);
|
|
|
|
/**
|
|
* rtas_busy_delay() - helper for RTAS busy and extended delay statuses
|
|
*
|
|
* @status: a value returned from rtas_call() or similar APIs which return
|
|
* the status of a RTAS function call.
|
|
*
|
|
* Context: Process context. May sleep or schedule.
|
|
*
|
|
* Return:
|
|
* * true - @status is RTAS_BUSY or an extended delay hint. The
|
|
* caller may assume that the CPU has been yielded if necessary,
|
|
* and that an appropriate delay for @status has elapsed.
|
|
* Generally the caller should reattempt the RTAS call which
|
|
* yielded @status.
|
|
*
|
|
* * false - @status is not @RTAS_BUSY nor an extended delay hint. The
|
|
* caller is responsible for handling @status.
|
|
*/
|
|
bool rtas_busy_delay(int status)
|
|
{
|
|
unsigned int ms;
|
|
bool ret;
|
|
|
|
switch (status) {
|
|
case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
|
|
ret = true;
|
|
ms = rtas_busy_delay_time(status);
|
|
/*
|
|
* The extended delay hint can be as high as 100 seconds.
|
|
* Surely any function returning such a status is either
|
|
* buggy or isn't going to be significantly slowed by us
|
|
* polling at 1HZ. Clamp the sleep time to one second.
|
|
*/
|
|
ms = clamp(ms, 1U, 1000U);
|
|
/*
|
|
* The delay hint is an order-of-magnitude suggestion, not
|
|
* a minimum. It is fine, possibly even advantageous, for
|
|
* us to pause for less time than hinted. For small values,
|
|
* use usleep_range() to ensure we don't sleep much longer
|
|
* than actually needed.
|
|
*
|
|
* See Documentation/timers/timers-howto.rst for
|
|
* explanation of the threshold used here. In effect we use
|
|
* usleep_range() for 9900 and 9901, msleep() for
|
|
* 9902-9905.
|
|
*/
|
|
if (ms <= 20)
|
|
usleep_range(ms * 100, ms * 1000);
|
|
else
|
|
msleep(ms);
|
|
break;
|
|
case RTAS_BUSY:
|
|
ret = true;
|
|
/*
|
|
* We should call again immediately if there's no other
|
|
* work to do.
|
|
*/
|
|
cond_resched();
|
|
break;
|
|
default:
|
|
ret = false;
|
|
/*
|
|
* Not a busy or extended delay status; the caller should
|
|
* handle @status itself. Ensure we warn on misuses in
|
|
* atomic context regardless.
|
|
*/
|
|
might_sleep();
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rtas_busy_delay);
|
|
|
|
static int rtas_error_rc(int rtas_rc)
|
|
{
|
|
int rc;
|
|
|
|
switch (rtas_rc) {
|
|
case -1: /* Hardware Error */
|
|
rc = -EIO;
|
|
break;
|
|
case -3: /* Bad indicator/domain/etc */
|
|
rc = -EINVAL;
|
|
break;
|
|
case -9000: /* Isolation error */
|
|
rc = -EFAULT;
|
|
break;
|
|
case -9001: /* Outstanding TCE/PTE */
|
|
rc = -EEXIST;
|
|
break;
|
|
case -9002: /* No usable slot */
|
|
rc = -ENODEV;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: unexpected RTAS error %d\n",
|
|
__func__, rtas_rc);
|
|
rc = -ERANGE;
|
|
break;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int rtas_get_power_level(int powerdomain, int *level)
|
|
{
|
|
int token = rtas_token("get-power-level");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
|
|
udelay(1);
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_get_power_level);
|
|
|
|
int rtas_set_power_level(int powerdomain, int level, int *setlevel)
|
|
{
|
|
int token = rtas_token("set-power-level");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_set_power_level);
|
|
|
|
int rtas_get_sensor(int sensor, int index, int *state)
|
|
{
|
|
int token = rtas_token("get-sensor-state");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
rc = rtas_call(token, 2, 2, state, sensor, index);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_get_sensor);
|
|
|
|
int rtas_get_sensor_fast(int sensor, int index, int *state)
|
|
{
|
|
int token = rtas_token("get-sensor-state");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
rc = rtas_call(token, 2, 2, state, sensor, index);
|
|
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
|
|
rc <= RTAS_EXTENDED_DELAY_MAX));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
bool rtas_indicator_present(int token, int *maxindex)
|
|
{
|
|
int proplen, count, i;
|
|
const struct indicator_elem {
|
|
__be32 token;
|
|
__be32 maxindex;
|
|
} *indicators;
|
|
|
|
indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
|
|
if (!indicators)
|
|
return false;
|
|
|
|
count = proplen / sizeof(struct indicator_elem);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (__be32_to_cpu(indicators[i].token) != token)
|
|
continue;
|
|
if (maxindex)
|
|
*maxindex = __be32_to_cpu(indicators[i].maxindex);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(rtas_indicator_present);
|
|
|
|
int rtas_set_indicator(int indicator, int index, int new_value)
|
|
{
|
|
int token = rtas_token("set-indicator");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_set_indicator);
|
|
|
|
/*
|
|
* Ignoring RTAS extended delay
|
|
*/
|
|
int rtas_set_indicator_fast(int indicator, int index, int new_value)
|
|
{
|
|
int rc;
|
|
int token = rtas_token("set-indicator");
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
|
|
|
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
|
|
rc <= RTAS_EXTENDED_DELAY_MAX));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
|
|
*
|
|
* @fw_status: RTAS call status will be placed here if not NULL.
|
|
*
|
|
* rtas_ibm_suspend_me() should be called only on a CPU which has
|
|
* received H_CONTINUE from the H_JOIN hcall. All other active CPUs
|
|
* should be waiting to return from H_JOIN.
|
|
*
|
|
* rtas_ibm_suspend_me() may suspend execution of the OS
|
|
* indefinitely. Callers should take appropriate measures upon return, such as
|
|
* resetting watchdog facilities.
|
|
*
|
|
* Callers may choose to retry this call if @fw_status is
|
|
* %RTAS_THREADS_ACTIVE.
|
|
*
|
|
* Return:
|
|
* 0 - The partition has resumed from suspend, possibly after
|
|
* migration to a different host.
|
|
* -ECANCELED - The operation was aborted.
|
|
* -EAGAIN - There were other CPUs not in H_JOIN at the time of the call.
|
|
* -EBUSY - Some other condition prevented the suspend from succeeding.
|
|
* -EIO - Hardware/platform error.
|
|
*/
|
|
int rtas_ibm_suspend_me(int *fw_status)
|
|
{
|
|
int fwrc;
|
|
int ret;
|
|
|
|
fwrc = rtas_call(rtas_token("ibm,suspend-me"), 0, 1, NULL);
|
|
|
|
switch (fwrc) {
|
|
case 0:
|
|
ret = 0;
|
|
break;
|
|
case RTAS_SUSPEND_ABORTED:
|
|
ret = -ECANCELED;
|
|
break;
|
|
case RTAS_THREADS_ACTIVE:
|
|
ret = -EAGAIN;
|
|
break;
|
|
case RTAS_NOT_SUSPENDABLE:
|
|
case RTAS_OUTSTANDING_COPROC:
|
|
ret = -EBUSY;
|
|
break;
|
|
case -1:
|
|
default:
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
if (fw_status)
|
|
*fw_status = fwrc;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __noreturn rtas_restart(char *cmd)
|
|
{
|
|
if (rtas_flash_term_hook)
|
|
rtas_flash_term_hook(SYS_RESTART);
|
|
printk("RTAS system-reboot returned %d\n",
|
|
rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
|
|
for (;;);
|
|
}
|
|
|
|
void rtas_power_off(void)
|
|
{
|
|
if (rtas_flash_term_hook)
|
|
rtas_flash_term_hook(SYS_POWER_OFF);
|
|
/* allow power on only with power button press */
|
|
printk("RTAS power-off returned %d\n",
|
|
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
|
|
for (;;);
|
|
}
|
|
|
|
void __noreturn rtas_halt(void)
|
|
{
|
|
if (rtas_flash_term_hook)
|
|
rtas_flash_term_hook(SYS_HALT);
|
|
/* allow power on only with power button press */
|
|
printk("RTAS power-off returned %d\n",
|
|
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
|
|
for (;;);
|
|
}
|
|
|
|
/* Must be in the RMO region, so we place it here */
|
|
static char rtas_os_term_buf[2048];
|
|
|
|
void rtas_os_term(char *str)
|
|
{
|
|
int status;
|
|
|
|
/*
|
|
* Firmware with the ibm,extended-os-term property is guaranteed
|
|
* to always return from an ibm,os-term call. Earlier versions without
|
|
* this property may terminate the partition which we want to avoid
|
|
* since it interferes with panic_timeout.
|
|
*/
|
|
if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") ||
|
|
RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term"))
|
|
return;
|
|
|
|
snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
|
|
|
|
do {
|
|
status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
|
|
__pa(rtas_os_term_buf));
|
|
} while (rtas_busy_delay(status));
|
|
|
|
if (status != 0)
|
|
printk(KERN_EMERG "ibm,os-term call failed %d\n", status);
|
|
}
|
|
|
|
/**
|
|
* rtas_activate_firmware() - Activate a new version of firmware.
|
|
*
|
|
* Context: This function may sleep.
|
|
*
|
|
* Activate a new version of partition firmware. The OS must call this
|
|
* after resuming from a partition hibernation or migration in order
|
|
* to maintain the ability to perform live firmware updates. It's not
|
|
* catastrophic for this method to be absent or to fail; just log the
|
|
* condition in that case.
|
|
*/
|
|
void rtas_activate_firmware(void)
|
|
{
|
|
int token;
|
|
int fwrc;
|
|
|
|
token = rtas_token("ibm,activate-firmware");
|
|
if (token == RTAS_UNKNOWN_SERVICE) {
|
|
pr_notice("ibm,activate-firmware method unavailable\n");
|
|
return;
|
|
}
|
|
|
|
do {
|
|
fwrc = rtas_call(token, 0, 1, NULL);
|
|
} while (rtas_busy_delay(fwrc));
|
|
|
|
if (fwrc)
|
|
pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
/**
|
|
* rtas_call_reentrant() - Used for reentrant rtas calls
|
|
* @token: Token for desired reentrant RTAS call
|
|
* @nargs: Number of Input Parameters
|
|
* @nret: Number of Output Parameters
|
|
* @outputs: Array of outputs
|
|
* @...: Inputs for desired RTAS call
|
|
*
|
|
* According to LoPAR documentation, only "ibm,int-on", "ibm,int-off",
|
|
* "ibm,get-xive" and "ibm,set-xive" are currently reentrant.
|
|
* Reentrant calls need their own rtas_args buffer, so not using rtas.args, but
|
|
* PACA one instead.
|
|
*
|
|
* Return: -1 on error,
|
|
* First output value of RTAS call if (nret > 0),
|
|
* 0 otherwise,
|
|
*/
|
|
int rtas_call_reentrant(int token, int nargs, int nret, int *outputs, ...)
|
|
{
|
|
va_list list;
|
|
struct rtas_args *args;
|
|
unsigned long flags;
|
|
int i, ret = 0;
|
|
|
|
if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
|
|
return -1;
|
|
|
|
local_irq_save(flags);
|
|
preempt_disable();
|
|
|
|
/* We use the per-cpu (PACA) rtas args buffer */
|
|
args = local_paca->rtas_args_reentrant;
|
|
|
|
va_start(list, outputs);
|
|
va_rtas_call_unlocked(args, token, nargs, nret, list);
|
|
va_end(list);
|
|
|
|
if (nret > 1 && outputs)
|
|
for (i = 0; i < nret - 1; ++i)
|
|
outputs[i] = be32_to_cpu(args->rets[i + 1]);
|
|
|
|
if (nret > 0)
|
|
ret = be32_to_cpu(args->rets[0]);
|
|
|
|
local_irq_restore(flags);
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_PPC_PSERIES */
|
|
|
|
/**
|
|
* get_pseries_errorlog() - Find a specific pseries error log in an RTAS
|
|
* extended event log.
|
|
* @log: RTAS error/event log
|
|
* @section_id: two character section identifier
|
|
*
|
|
* Return: A pointer to the specified errorlog or NULL if not found.
|
|
*/
|
|
struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
|
|
uint16_t section_id)
|
|
{
|
|
struct rtas_ext_event_log_v6 *ext_log =
|
|
(struct rtas_ext_event_log_v6 *)log->buffer;
|
|
struct pseries_errorlog *sect;
|
|
unsigned char *p, *log_end;
|
|
uint32_t ext_log_length = rtas_error_extended_log_length(log);
|
|
uint8_t log_format = rtas_ext_event_log_format(ext_log);
|
|
uint32_t company_id = rtas_ext_event_company_id(ext_log);
|
|
|
|
/* Check that we understand the format */
|
|
if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
|
|
log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
|
|
company_id != RTAS_V6EXT_COMPANY_ID_IBM)
|
|
return NULL;
|
|
|
|
log_end = log->buffer + ext_log_length;
|
|
p = ext_log->vendor_log;
|
|
|
|
while (p < log_end) {
|
|
sect = (struct pseries_errorlog *)p;
|
|
if (pseries_errorlog_id(sect) == section_id)
|
|
return sect;
|
|
p += pseries_errorlog_length(sect);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_RTAS_FILTER
|
|
|
|
/*
|
|
* The sys_rtas syscall, as originally designed, allows root to pass
|
|
* arbitrary physical addresses to RTAS calls. A number of RTAS calls
|
|
* can be abused to write to arbitrary memory and do other things that
|
|
* are potentially harmful to system integrity, and thus should only
|
|
* be used inside the kernel and not exposed to userspace.
|
|
*
|
|
* All known legitimate users of the sys_rtas syscall will only ever
|
|
* pass addresses that fall within the RMO buffer, and use a known
|
|
* subset of RTAS calls.
|
|
*
|
|
* Accordingly, we filter RTAS requests to check that the call is
|
|
* permitted, and that provided pointers fall within the RMO buffer.
|
|
* The rtas_filters list contains an entry for each permitted call,
|
|
* with the indexes of the parameters which are expected to contain
|
|
* addresses and sizes of buffers allocated inside the RMO buffer.
|
|
*/
|
|
struct rtas_filter {
|
|
const char *name;
|
|
int token;
|
|
/* Indexes into the args buffer, -1 if not used */
|
|
int buf_idx1;
|
|
int size_idx1;
|
|
int buf_idx2;
|
|
int size_idx2;
|
|
|
|
int fixed_size;
|
|
};
|
|
|
|
static struct rtas_filter rtas_filters[] __ro_after_init = {
|
|
{ "ibm,activate-firmware", -1, -1, -1, -1, -1 },
|
|
{ "ibm,configure-connector", -1, 0, -1, 1, -1, 4096 }, /* Special cased */
|
|
{ "display-character", -1, -1, -1, -1, -1 },
|
|
{ "ibm,display-message", -1, 0, -1, -1, -1 },
|
|
{ "ibm,errinjct", -1, 2, -1, -1, -1, 1024 },
|
|
{ "ibm,close-errinjct", -1, -1, -1, -1, -1 },
|
|
{ "ibm,open-errinjct", -1, -1, -1, -1, -1 },
|
|
{ "ibm,get-config-addr-info2", -1, -1, -1, -1, -1 },
|
|
{ "ibm,get-dynamic-sensor-state", -1, 1, -1, -1, -1 },
|
|
{ "ibm,get-indices", -1, 2, 3, -1, -1 },
|
|
{ "get-power-level", -1, -1, -1, -1, -1 },
|
|
{ "get-sensor-state", -1, -1, -1, -1, -1 },
|
|
{ "ibm,get-system-parameter", -1, 1, 2, -1, -1 },
|
|
{ "get-time-of-day", -1, -1, -1, -1, -1 },
|
|
{ "ibm,get-vpd", -1, 0, -1, 1, 2 },
|
|
{ "ibm,lpar-perftools", -1, 2, 3, -1, -1 },
|
|
{ "ibm,platform-dump", -1, 4, 5, -1, -1 },
|
|
{ "ibm,read-slot-reset-state", -1, -1, -1, -1, -1 },
|
|
{ "ibm,scan-log-dump", -1, 0, 1, -1, -1 },
|
|
{ "ibm,set-dynamic-indicator", -1, 2, -1, -1, -1 },
|
|
{ "ibm,set-eeh-option", -1, -1, -1, -1, -1 },
|
|
{ "set-indicator", -1, -1, -1, -1, -1 },
|
|
{ "set-power-level", -1, -1, -1, -1, -1 },
|
|
{ "set-time-for-power-on", -1, -1, -1, -1, -1 },
|
|
{ "ibm,set-system-parameter", -1, 1, -1, -1, -1 },
|
|
{ "set-time-of-day", -1, -1, -1, -1, -1 },
|
|
#ifdef CONFIG_CPU_BIG_ENDIAN
|
|
{ "ibm,suspend-me", -1, -1, -1, -1, -1 },
|
|
{ "ibm,update-nodes", -1, 0, -1, -1, -1, 4096 },
|
|
{ "ibm,update-properties", -1, 0, -1, -1, -1, 4096 },
|
|
#endif
|
|
{ "ibm,physical-attestation", -1, 0, 1, -1, -1 },
|
|
};
|
|
|
|
static bool in_rmo_buf(u32 base, u32 end)
|
|
{
|
|
return base >= rtas_rmo_buf &&
|
|
base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
|
|
base <= end &&
|
|
end >= rtas_rmo_buf &&
|
|
end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
|
|
}
|
|
|
|
static bool block_rtas_call(int token, int nargs,
|
|
struct rtas_args *args)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(rtas_filters); i++) {
|
|
struct rtas_filter *f = &rtas_filters[i];
|
|
u32 base, size, end;
|
|
|
|
if (token != f->token)
|
|
continue;
|
|
|
|
if (f->buf_idx1 != -1) {
|
|
base = be32_to_cpu(args->args[f->buf_idx1]);
|
|
if (f->size_idx1 != -1)
|
|
size = be32_to_cpu(args->args[f->size_idx1]);
|
|
else if (f->fixed_size)
|
|
size = f->fixed_size;
|
|
else
|
|
size = 1;
|
|
|
|
end = base + size - 1;
|
|
if (!in_rmo_buf(base, end))
|
|
goto err;
|
|
}
|
|
|
|
if (f->buf_idx2 != -1) {
|
|
base = be32_to_cpu(args->args[f->buf_idx2]);
|
|
if (f->size_idx2 != -1)
|
|
size = be32_to_cpu(args->args[f->size_idx2]);
|
|
else if (f->fixed_size)
|
|
size = f->fixed_size;
|
|
else
|
|
size = 1;
|
|
end = base + size - 1;
|
|
|
|
/*
|
|
* Special case for ibm,configure-connector where the
|
|
* address can be 0
|
|
*/
|
|
if (!strcmp(f->name, "ibm,configure-connector") &&
|
|
base == 0)
|
|
return false;
|
|
|
|
if (!in_rmo_buf(base, end))
|
|
goto err;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
err:
|
|
pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
|
|
pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n",
|
|
token, nargs, current->comm);
|
|
return true;
|
|
}
|
|
|
|
static void __init rtas_syscall_filter_init(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(rtas_filters); i++)
|
|
rtas_filters[i].token = rtas_token(rtas_filters[i].name);
|
|
}
|
|
|
|
#else
|
|
|
|
static bool block_rtas_call(int token, int nargs,
|
|
struct rtas_args *args)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static void __init rtas_syscall_filter_init(void)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_PPC_RTAS_FILTER */
|
|
|
|
/* We assume to be passed big endian arguments */
|
|
SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
|
|
{
|
|
struct rtas_args args;
|
|
unsigned long flags;
|
|
char *buff_copy, *errbuf = NULL;
|
|
int nargs, nret, token;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (!rtas.entry)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
|
|
return -EFAULT;
|
|
|
|
nargs = be32_to_cpu(args.nargs);
|
|
nret = be32_to_cpu(args.nret);
|
|
token = be32_to_cpu(args.token);
|
|
|
|
if (nargs >= ARRAY_SIZE(args.args)
|
|
|| nret > ARRAY_SIZE(args.args)
|
|
|| nargs + nret > ARRAY_SIZE(args.args))
|
|
return -EINVAL;
|
|
|
|
/* Copy in args. */
|
|
if (copy_from_user(args.args, uargs->args,
|
|
nargs * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -EINVAL;
|
|
|
|
args.rets = &args.args[nargs];
|
|
memset(args.rets, 0, nret * sizeof(rtas_arg_t));
|
|
|
|
if (block_rtas_call(token, nargs, &args))
|
|
return -EINVAL;
|
|
|
|
/* Need to handle ibm,suspend_me call specially */
|
|
if (token == rtas_token("ibm,suspend-me")) {
|
|
|
|
/*
|
|
* rtas_ibm_suspend_me assumes the streamid handle is in cpu
|
|
* endian, or at least the hcall within it requires it.
|
|
*/
|
|
int rc = 0;
|
|
u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
|
|
| be32_to_cpu(args.args[1]);
|
|
rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
|
|
if (rc == -EAGAIN)
|
|
args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
|
|
else if (rc == -EIO)
|
|
args.rets[0] = cpu_to_be32(-1);
|
|
else if (rc)
|
|
return rc;
|
|
goto copy_return;
|
|
}
|
|
|
|
buff_copy = get_errorlog_buffer();
|
|
|
|
flags = lock_rtas();
|
|
|
|
rtas.args = args;
|
|
do_enter_rtas(__pa(&rtas.args));
|
|
args = rtas.args;
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (be32_to_cpu(args.rets[0]) == -1)
|
|
errbuf = __fetch_rtas_last_error(buff_copy);
|
|
|
|
unlock_rtas(flags);
|
|
|
|
if (buff_copy) {
|
|
if (errbuf)
|
|
log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
|
|
kfree(buff_copy);
|
|
}
|
|
|
|
copy_return:
|
|
/* Copy out args. */
|
|
if (copy_to_user(uargs->args + nargs,
|
|
args.args + nargs,
|
|
nret * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Call early during boot, before mem init, to retrieve the RTAS
|
|
* information from the device-tree and allocate the RMO buffer for userland
|
|
* accesses.
|
|
*/
|
|
void __init rtas_initialize(void)
|
|
{
|
|
unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
|
|
u32 base, size, entry;
|
|
int no_base, no_size, no_entry;
|
|
|
|
/* Get RTAS dev node and fill up our "rtas" structure with infos
|
|
* about it.
|
|
*/
|
|
rtas.dev = of_find_node_by_name(NULL, "rtas");
|
|
if (!rtas.dev)
|
|
return;
|
|
|
|
no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
|
|
no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
|
|
if (no_base || no_size) {
|
|
of_node_put(rtas.dev);
|
|
rtas.dev = NULL;
|
|
return;
|
|
}
|
|
|
|
rtas.base = base;
|
|
rtas.size = size;
|
|
no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
|
|
rtas.entry = no_entry ? rtas.base : entry;
|
|
|
|
/* If RTAS was found, allocate the RMO buffer for it and look for
|
|
* the stop-self token if any
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
if (firmware_has_feature(FW_FEATURE_LPAR))
|
|
rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
|
|
#endif
|
|
rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
|
|
0, rtas_region);
|
|
if (!rtas_rmo_buf)
|
|
panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
|
|
PAGE_SIZE, &rtas_region);
|
|
|
|
#ifdef CONFIG_RTAS_ERROR_LOGGING
|
|
rtas_last_error_token = rtas_token("rtas-last-error");
|
|
#endif
|
|
|
|
rtas_syscall_filter_init();
|
|
}
|
|
|
|
int __init early_init_dt_scan_rtas(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
const u32 *basep, *entryp, *sizep;
|
|
|
|
if (depth != 1 || strcmp(uname, "rtas") != 0)
|
|
return 0;
|
|
|
|
basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
|
|
entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
|
|
sizep = of_get_flat_dt_prop(node, "rtas-size", NULL);
|
|
|
|
if (basep && entryp && sizep) {
|
|
rtas.base = *basep;
|
|
rtas.entry = *entryp;
|
|
rtas.size = *sizep;
|
|
}
|
|
|
|
#ifdef CONFIG_UDBG_RTAS_CONSOLE
|
|
basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
|
|
if (basep)
|
|
rtas_putchar_token = *basep;
|
|
|
|
basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
|
|
if (basep)
|
|
rtas_getchar_token = *basep;
|
|
|
|
if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
|
|
rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
|
|
udbg_init_rtas_console();
|
|
|
|
#endif
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
static arch_spinlock_t timebase_lock;
|
|
static u64 timebase = 0;
|
|
|
|
void rtas_give_timebase(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
hard_irq_disable();
|
|
arch_spin_lock(&timebase_lock);
|
|
rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
|
|
timebase = get_tb();
|
|
arch_spin_unlock(&timebase_lock);
|
|
|
|
while (timebase)
|
|
barrier();
|
|
rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void rtas_take_timebase(void)
|
|
{
|
|
while (!timebase)
|
|
barrier();
|
|
arch_spin_lock(&timebase_lock);
|
|
set_tb(timebase >> 32, timebase & 0xffffffff);
|
|
timebase = 0;
|
|
arch_spin_unlock(&timebase_lock);
|
|
}
|