linux/kernel/bpf/verifier.c
Andrey Ignatov d7af7e497f bpf: Fix possible out of bound write in narrow load handling
Fix a verifier bug found by smatch static checker in [0].

This problem has never been seen in prod to my best knowledge. Fixing it
still seems to be a good idea since it's hard to say for sure whether
it's possible or not to have a scenario where a combination of
convert_ctx_access() and a narrow load would lead to an out of bound
write.

When narrow load is handled, one or two new instructions are added to
insn_buf array, but before it was only checked that

	cnt >= ARRAY_SIZE(insn_buf)

And it's safe to add a new instruction to insn_buf[cnt++] only once. The
second try will lead to out of bound write. And this is what can happen
if `shift` is set.

Fix it by making sure that if the BPF_RSH instruction has to be added in
addition to BPF_AND then there is enough space for two more instructions
in insn_buf.

The full report [0] is below:

kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array

kernel/bpf/verifier.c
    12282
    12283 			insn->off = off & ~(size_default - 1);
    12284 			insn->code = BPF_LDX | BPF_MEM | size_code;
    12285 		}
    12286
    12287 		target_size = 0;
    12288 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
    12289 					 &target_size);
    12290 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bounds check.

    12291 		    (ctx_field_size && !target_size)) {
    12292 			verbose(env, "bpf verifier is misconfigured\n");
    12293 			return -EINVAL;
    12294 		}
    12295
    12296 		if (is_narrower_load && size < target_size) {
    12297 			u8 shift = bpf_ctx_narrow_access_offset(
    12298 				off, size, size_default) * 8;
    12299 			if (ctx_field_size <= 4) {
    12300 				if (shift)
    12301 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
                                                         ^^^^^
increment beyond end of array

    12302 									insn->dst_reg,
    12303 									shift);
--> 12304 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
                                                 ^^^^^
out of bounds write

    12305 								(1 << size * 8) - 1);
    12306 			} else {
    12307 				if (shift)
    12308 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
    12309 									insn->dst_reg,
    12310 									shift);
    12311 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
                                        ^^^^^^^^^^^^^^^
Same.

    12312 								(1ULL << size * 8) - 1);
    12313 			}
    12314 		}
    12315
    12316 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
    12317 		if (!new_prog)
    12318 			return -ENOMEM;
    12319
    12320 		delta += cnt - 1;
    12321
    12322 		/* keep walking new program and skip insns we just inserted */
    12323 		env->prog = new_prog;
    12324 		insn      = new_prog->insnsi + i + delta;
    12325 	}
    12326
    12327 	return 0;
    12328 }

[0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/

v1->v2:
- clarify that problem was only seen by static checker but not in prod;

Fixes: 46f53a65d2de ("bpf: Allow narrow loads with offset > 0")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210820163935.1902398-1-rdna@fb.com
2021-08-24 14:32:26 -07:00

13895 lines
395 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
* Copyright (c) 2016 Facebook
* Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
*/
#include <uapi/linux/btf.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/bpf_verifier.h>
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
#include <linux/stringify.h>
#include <linux/bsearch.h>
#include <linux/sort.h>
#include <linux/perf_event.h>
#include <linux/ctype.h>
#include <linux/error-injection.h>
#include <linux/bpf_lsm.h>
#include <linux/btf_ids.h>
#include "disasm.h"
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#define BPF_LINK_TYPE(_id, _name)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
#undef BPF_LINK_TYPE
};
/* bpf_check() is a static code analyzer that walks eBPF program
* instruction by instruction and updates register/stack state.
* All paths of conditional branches are analyzed until 'bpf_exit' insn.
*
* The first pass is depth-first-search to check that the program is a DAG.
* It rejects the following programs:
* - larger than BPF_MAXINSNS insns
* - if loop is present (detected via back-edge)
* - unreachable insns exist (shouldn't be a forest. program = one function)
* - out of bounds or malformed jumps
* The second pass is all possible path descent from the 1st insn.
* Since it's analyzing all paths through the program, the length of the
* analysis is limited to 64k insn, which may be hit even if total number of
* insn is less then 4K, but there are too many branches that change stack/regs.
* Number of 'branches to be analyzed' is limited to 1k
*
* On entry to each instruction, each register has a type, and the instruction
* changes the types of the registers depending on instruction semantics.
* If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
* copied to R1.
*
* All registers are 64-bit.
* R0 - return register
* R1-R5 argument passing registers
* R6-R9 callee saved registers
* R10 - frame pointer read-only
*
* At the start of BPF program the register R1 contains a pointer to bpf_context
* and has type PTR_TO_CTX.
*
* Verifier tracks arithmetic operations on pointers in case:
* BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
* 1st insn copies R10 (which has FRAME_PTR) type into R1
* and 2nd arithmetic instruction is pattern matched to recognize
* that it wants to construct a pointer to some element within stack.
* So after 2nd insn, the register R1 has type PTR_TO_STACK
* (and -20 constant is saved for further stack bounds checking).
* Meaning that this reg is a pointer to stack plus known immediate constant.
*
* Most of the time the registers have SCALAR_VALUE type, which
* means the register has some value, but it's not a valid pointer.
* (like pointer plus pointer becomes SCALAR_VALUE type)
*
* When verifier sees load or store instructions the type of base register
* can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
* four pointer types recognized by check_mem_access() function.
*
* PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
* and the range of [ptr, ptr + map's value_size) is accessible.
*
* registers used to pass values to function calls are checked against
* function argument constraints.
*
* ARG_PTR_TO_MAP_KEY is one of such argument constraints.
* It means that the register type passed to this function must be
* PTR_TO_STACK and it will be used inside the function as
* 'pointer to map element key'
*
* For example the argument constraints for bpf_map_lookup_elem():
* .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
* .arg1_type = ARG_CONST_MAP_PTR,
* .arg2_type = ARG_PTR_TO_MAP_KEY,
*
* ret_type says that this function returns 'pointer to map elem value or null'
* function expects 1st argument to be a const pointer to 'struct bpf_map' and
* 2nd argument should be a pointer to stack, which will be used inside
* the helper function as a pointer to map element key.
*
* On the kernel side the helper function looks like:
* u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
* {
* struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
* void *key = (void *) (unsigned long) r2;
* void *value;
*
* here kernel can access 'key' and 'map' pointers safely, knowing that
* [key, key + map->key_size) bytes are valid and were initialized on
* the stack of eBPF program.
* }
*
* Corresponding eBPF program may look like:
* BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
* BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
* BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
* here verifier looks at prototype of map_lookup_elem() and sees:
* .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
* Now verifier knows that this map has key of R1->map_ptr->key_size bytes
*
* Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
* Now verifier checks that [R2, R2 + map's key_size) are within stack limits
* and were initialized prior to this call.
* If it's ok, then verifier allows this BPF_CALL insn and looks at
* .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
* R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
* returns either pointer to map value or NULL.
*
* When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
* insn, the register holding that pointer in the true branch changes state to
* PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
* branch. See check_cond_jmp_op().
*
* After the call R0 is set to return type of the function and registers R1-R5
* are set to NOT_INIT to indicate that they are no longer readable.
*
* The following reference types represent a potential reference to a kernel
* resource which, after first being allocated, must be checked and freed by
* the BPF program:
* - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
*
* When the verifier sees a helper call return a reference type, it allocates a
* pointer id for the reference and stores it in the current function state.
* Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
* PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
* passes through a NULL-check conditional. For the branch wherein the state is
* changed to CONST_IMM, the verifier releases the reference.
*
* For each helper function that allocates a reference, such as
* bpf_sk_lookup_tcp(), there is a corresponding release function, such as
* bpf_sk_release(). When a reference type passes into the release function,
* the verifier also releases the reference. If any unchecked or unreleased
* reference remains at the end of the program, the verifier rejects it.
*/
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
struct bpf_verifier_stack_elem {
/* verifer state is 'st'
* before processing instruction 'insn_idx'
* and after processing instruction 'prev_insn_idx'
*/
struct bpf_verifier_state st;
int insn_idx;
int prev_insn_idx;
struct bpf_verifier_stack_elem *next;
/* length of verifier log at the time this state was pushed on stack */
u32 log_pos;
};
#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
#define BPF_COMPLEXITY_LIMIT_STATES 64
#define BPF_MAP_KEY_POISON (1ULL << 63)
#define BPF_MAP_KEY_SEEN (1ULL << 62)
#define BPF_MAP_PTR_UNPRIV 1UL
#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
POISON_POINTER_DELTA))
#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
{
return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
}
static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
{
return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
}
static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
const struct bpf_map *map, bool unpriv)
{
BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
unpriv |= bpf_map_ptr_unpriv(aux);
aux->map_ptr_state = (unsigned long)map |
(unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
}
static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
{
return aux->map_key_state & BPF_MAP_KEY_POISON;
}
static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
{
return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
}
static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
{
return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
}
static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
{
bool poisoned = bpf_map_key_poisoned(aux);
aux->map_key_state = state | BPF_MAP_KEY_SEEN |
(poisoned ? BPF_MAP_KEY_POISON : 0ULL);
}
static bool bpf_pseudo_call(const struct bpf_insn *insn)
{
return insn->code == (BPF_JMP | BPF_CALL) &&
insn->src_reg == BPF_PSEUDO_CALL;
}
static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
{
return insn->code == (BPF_JMP | BPF_CALL) &&
insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
}
static bool bpf_pseudo_func(const struct bpf_insn *insn)
{
return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
insn->src_reg == BPF_PSEUDO_FUNC;
}
struct bpf_call_arg_meta {
struct bpf_map *map_ptr;
bool raw_mode;
bool pkt_access;
int regno;
int access_size;
int mem_size;
u64 msize_max_value;
int ref_obj_id;
int map_uid;
int func_id;
struct btf *btf;
u32 btf_id;
struct btf *ret_btf;
u32 ret_btf_id;
u32 subprogno;
};
struct btf *btf_vmlinux;
static DEFINE_MUTEX(bpf_verifier_lock);
static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
{
const struct bpf_line_info *linfo;
const struct bpf_prog *prog;
u32 i, nr_linfo;
prog = env->prog;
nr_linfo = prog->aux->nr_linfo;
if (!nr_linfo || insn_off >= prog->len)
return NULL;
linfo = prog->aux->linfo;
for (i = 1; i < nr_linfo; i++)
if (insn_off < linfo[i].insn_off)
break;
return &linfo[i - 1];
}
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
va_list args)
{
unsigned int n;
n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
"verifier log line truncated - local buffer too short\n");
n = min(log->len_total - log->len_used - 1, n);
log->kbuf[n] = '\0';
if (log->level == BPF_LOG_KERNEL) {
pr_err("BPF:%s\n", log->kbuf);
return;
}
if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
log->len_used += n;
else
log->ubuf = NULL;
}
static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
{
char zero = 0;
if (!bpf_verifier_log_needed(log))
return;
log->len_used = new_pos;
if (put_user(zero, log->ubuf + new_pos))
log->ubuf = NULL;
}
/* log_level controls verbosity level of eBPF verifier.
* bpf_verifier_log_write() is used to dump the verification trace to the log,
* so the user can figure out what's wrong with the program
*/
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
const char *fmt, ...)
{
va_list args;
if (!bpf_verifier_log_needed(&env->log))
return;
va_start(args, fmt);
bpf_verifier_vlog(&env->log, fmt, args);
va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
struct bpf_verifier_env *env = private_data;
va_list args;
if (!bpf_verifier_log_needed(&env->log))
return;
va_start(args, fmt);
bpf_verifier_vlog(&env->log, fmt, args);
va_end(args);
}
__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
const char *fmt, ...)
{
va_list args;
if (!bpf_verifier_log_needed(log))
return;
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
static const char *ltrim(const char *s)
{
while (isspace(*s))
s++;
return s;
}
__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
u32 insn_off,
const char *prefix_fmt, ...)
{
const struct bpf_line_info *linfo;
if (!bpf_verifier_log_needed(&env->log))
return;
linfo = find_linfo(env, insn_off);
if (!linfo || linfo == env->prev_linfo)
return;
if (prefix_fmt) {
va_list args;
va_start(args, prefix_fmt);
bpf_verifier_vlog(&env->log, prefix_fmt, args);
va_end(args);
}
verbose(env, "%s\n",
ltrim(btf_name_by_offset(env->prog->aux->btf,
linfo->line_off)));
env->prev_linfo = linfo;
}
static void verbose_invalid_scalar(struct bpf_verifier_env *env,
struct bpf_reg_state *reg,
struct tnum *range, const char *ctx,
const char *reg_name)
{
char tn_buf[48];
verbose(env, "At %s the register %s ", ctx, reg_name);
if (!tnum_is_unknown(reg->var_off)) {
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "has value %s", tn_buf);
} else {
verbose(env, "has unknown scalar value");
}
tnum_strn(tn_buf, sizeof(tn_buf), *range);
verbose(env, " should have been in %s\n", tn_buf);
}
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
return type == PTR_TO_PACKET ||
type == PTR_TO_PACKET_META;
}
static bool type_is_sk_pointer(enum bpf_reg_type type)
{
return type == PTR_TO_SOCKET ||
type == PTR_TO_SOCK_COMMON ||
type == PTR_TO_TCP_SOCK ||
type == PTR_TO_XDP_SOCK;
}
static bool reg_type_not_null(enum bpf_reg_type type)
{
return type == PTR_TO_SOCKET ||
type == PTR_TO_TCP_SOCK ||
type == PTR_TO_MAP_VALUE ||
type == PTR_TO_MAP_KEY ||
type == PTR_TO_SOCK_COMMON;
}
static bool reg_type_may_be_null(enum bpf_reg_type type)
{
return type == PTR_TO_MAP_VALUE_OR_NULL ||
type == PTR_TO_SOCKET_OR_NULL ||
type == PTR_TO_SOCK_COMMON_OR_NULL ||
type == PTR_TO_TCP_SOCK_OR_NULL ||
type == PTR_TO_BTF_ID_OR_NULL ||
type == PTR_TO_MEM_OR_NULL ||
type == PTR_TO_RDONLY_BUF_OR_NULL ||
type == PTR_TO_RDWR_BUF_OR_NULL;
}
static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
{
return reg->type == PTR_TO_MAP_VALUE &&
map_value_has_spin_lock(reg->map_ptr);
}
static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
{
return type == PTR_TO_SOCKET ||
type == PTR_TO_SOCKET_OR_NULL ||
type == PTR_TO_TCP_SOCK ||
type == PTR_TO_TCP_SOCK_OR_NULL ||
type == PTR_TO_MEM ||
type == PTR_TO_MEM_OR_NULL;
}
static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
{
return type == ARG_PTR_TO_SOCK_COMMON;
}
static bool arg_type_may_be_null(enum bpf_arg_type type)
{
return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
type == ARG_PTR_TO_MEM_OR_NULL ||
type == ARG_PTR_TO_CTX_OR_NULL ||
type == ARG_PTR_TO_SOCKET_OR_NULL ||
type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
type == ARG_PTR_TO_STACK_OR_NULL;
}
/* Determine whether the function releases some resources allocated by another
* function call. The first reference type argument will be assumed to be
* released by release_reference().
*/
static bool is_release_function(enum bpf_func_id func_id)
{
return func_id == BPF_FUNC_sk_release ||
func_id == BPF_FUNC_ringbuf_submit ||
func_id == BPF_FUNC_ringbuf_discard;
}
static bool may_be_acquire_function(enum bpf_func_id func_id)
{
return func_id == BPF_FUNC_sk_lookup_tcp ||
func_id == BPF_FUNC_sk_lookup_udp ||
func_id == BPF_FUNC_skc_lookup_tcp ||
func_id == BPF_FUNC_map_lookup_elem ||
func_id == BPF_FUNC_ringbuf_reserve;
}
static bool is_acquire_function(enum bpf_func_id func_id,
const struct bpf_map *map)
{
enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
if (func_id == BPF_FUNC_sk_lookup_tcp ||
func_id == BPF_FUNC_sk_lookup_udp ||
func_id == BPF_FUNC_skc_lookup_tcp ||
func_id == BPF_FUNC_ringbuf_reserve)
return true;
if (func_id == BPF_FUNC_map_lookup_elem &&
(map_type == BPF_MAP_TYPE_SOCKMAP ||
map_type == BPF_MAP_TYPE_SOCKHASH))
return true;
return false;
}
static bool is_ptr_cast_function(enum bpf_func_id func_id)
{
return func_id == BPF_FUNC_tcp_sock ||
func_id == BPF_FUNC_sk_fullsock ||
func_id == BPF_FUNC_skc_to_tcp_sock ||
func_id == BPF_FUNC_skc_to_tcp6_sock ||
func_id == BPF_FUNC_skc_to_udp6_sock ||
func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
func_id == BPF_FUNC_skc_to_tcp_request_sock;
}
static bool is_cmpxchg_insn(const struct bpf_insn *insn)
{
return BPF_CLASS(insn->code) == BPF_STX &&
BPF_MODE(insn->code) == BPF_ATOMIC &&
insn->imm == BPF_CMPXCHG;
}
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
[NOT_INIT] = "?",
[SCALAR_VALUE] = "inv",
[PTR_TO_CTX] = "ctx",
[CONST_PTR_TO_MAP] = "map_ptr",
[PTR_TO_MAP_VALUE] = "map_value",
[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
[PTR_TO_STACK] = "fp",
[PTR_TO_PACKET] = "pkt",
[PTR_TO_PACKET_META] = "pkt_meta",
[PTR_TO_PACKET_END] = "pkt_end",
[PTR_TO_FLOW_KEYS] = "flow_keys",
[PTR_TO_SOCKET] = "sock",
[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
[PTR_TO_SOCK_COMMON] = "sock_common",
[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
[PTR_TO_TCP_SOCK] = "tcp_sock",
[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
[PTR_TO_TP_BUFFER] = "tp_buffer",
[PTR_TO_XDP_SOCK] = "xdp_sock",
[PTR_TO_BTF_ID] = "ptr_",
[PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
[PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
[PTR_TO_MEM] = "mem",
[PTR_TO_MEM_OR_NULL] = "mem_or_null",
[PTR_TO_RDONLY_BUF] = "rdonly_buf",
[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
[PTR_TO_RDWR_BUF] = "rdwr_buf",
[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
[PTR_TO_FUNC] = "func",
[PTR_TO_MAP_KEY] = "map_key",
};
static char slot_type_char[] = {
[STACK_INVALID] = '?',
[STACK_SPILL] = 'r',
[STACK_MISC] = 'm',
[STACK_ZERO] = '0',
};
static void print_liveness(struct bpf_verifier_env *env,
enum bpf_reg_liveness live)
{
if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
verbose(env, "_");
if (live & REG_LIVE_READ)
verbose(env, "r");
if (live & REG_LIVE_WRITTEN)
verbose(env, "w");
if (live & REG_LIVE_DONE)
verbose(env, "D");
}
static struct bpf_func_state *func(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg)
{
struct bpf_verifier_state *cur = env->cur_state;
return cur->frame[reg->frameno];
}
static const char *kernel_type_name(const struct btf* btf, u32 id)
{
return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
}
static void print_verifier_state(struct bpf_verifier_env *env,
const struct bpf_func_state *state)
{
const struct bpf_reg_state *reg;
enum bpf_reg_type t;
int i;
if (state->frameno)
verbose(env, " frame%d:", state->frameno);
for (i = 0; i < MAX_BPF_REG; i++) {
reg = &state->regs[i];
t = reg->type;
if (t == NOT_INIT)
continue;
verbose(env, " R%d", i);
print_liveness(env, reg->live);
verbose(env, "=%s", reg_type_str[t]);
if (t == SCALAR_VALUE && reg->precise)
verbose(env, "P");
if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
tnum_is_const(reg->var_off)) {
/* reg->off should be 0 for SCALAR_VALUE */
verbose(env, "%lld", reg->var_off.value + reg->off);
} else {
if (t == PTR_TO_BTF_ID ||
t == PTR_TO_BTF_ID_OR_NULL ||
t == PTR_TO_PERCPU_BTF_ID)
verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
verbose(env, "(id=%d", reg->id);
if (reg_type_may_be_refcounted_or_null(t))
verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
if (t != SCALAR_VALUE)
verbose(env, ",off=%d", reg->off);
if (type_is_pkt_pointer(t))
verbose(env, ",r=%d", reg->range);
else if (t == CONST_PTR_TO_MAP ||
t == PTR_TO_MAP_KEY ||
t == PTR_TO_MAP_VALUE ||
t == PTR_TO_MAP_VALUE_OR_NULL)
verbose(env, ",ks=%d,vs=%d",
reg->map_ptr->key_size,
reg->map_ptr->value_size);
if (tnum_is_const(reg->var_off)) {
/* Typically an immediate SCALAR_VALUE, but
* could be a pointer whose offset is too big
* for reg->off
*/
verbose(env, ",imm=%llx", reg->var_off.value);
} else {
if (reg->smin_value != reg->umin_value &&
reg->smin_value != S64_MIN)
verbose(env, ",smin_value=%lld",
(long long)reg->smin_value);
if (reg->smax_value != reg->umax_value &&
reg->smax_value != S64_MAX)
verbose(env, ",smax_value=%lld",
(long long)reg->smax_value);
if (reg->umin_value != 0)
verbose(env, ",umin_value=%llu",
(unsigned long long)reg->umin_value);
if (reg->umax_value != U64_MAX)
verbose(env, ",umax_value=%llu",
(unsigned long long)reg->umax_value);
if (!tnum_is_unknown(reg->var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, ",var_off=%s", tn_buf);
}
if (reg->s32_min_value != reg->smin_value &&
reg->s32_min_value != S32_MIN)
verbose(env, ",s32_min_value=%d",
(int)(reg->s32_min_value));
if (reg->s32_max_value != reg->smax_value &&
reg->s32_max_value != S32_MAX)
verbose(env, ",s32_max_value=%d",
(int)(reg->s32_max_value));
if (reg->u32_min_value != reg->umin_value &&
reg->u32_min_value != U32_MIN)
verbose(env, ",u32_min_value=%d",
(int)(reg->u32_min_value));
if (reg->u32_max_value != reg->umax_value &&
reg->u32_max_value != U32_MAX)
verbose(env, ",u32_max_value=%d",
(int)(reg->u32_max_value));
}
verbose(env, ")");
}
}
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
char types_buf[BPF_REG_SIZE + 1];
bool valid = false;
int j;
for (j = 0; j < BPF_REG_SIZE; j++) {
if (state->stack[i].slot_type[j] != STACK_INVALID)
valid = true;
types_buf[j] = slot_type_char[
state->stack[i].slot_type[j]];
}
types_buf[BPF_REG_SIZE] = 0;
if (!valid)
continue;
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, state->stack[i].spilled_ptr.live);
if (state->stack[i].slot_type[0] == STACK_SPILL) {
reg = &state->stack[i].spilled_ptr;
t = reg->type;
verbose(env, "=%s", reg_type_str[t]);
if (t == SCALAR_VALUE && reg->precise)
verbose(env, "P");
if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
verbose(env, "%lld", reg->var_off.value + reg->off);
} else {
verbose(env, "=%s", types_buf);
}
}
if (state->acquired_refs && state->refs[0].id) {
verbose(env, " refs=%d", state->refs[0].id);
for (i = 1; i < state->acquired_refs; i++)
if (state->refs[i].id)
verbose(env, ",%d", state->refs[i].id);
}
if (state->in_callback_fn)
verbose(env, " cb");
if (state->in_async_callback_fn)
verbose(env, " async_cb");
verbose(env, "\n");
}
/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
* small to hold src. This is different from krealloc since we don't want to preserve
* the contents of dst.
*
* Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
* not be allocated.
*/
static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
{
size_t bytes;
if (ZERO_OR_NULL_PTR(src))
goto out;
if (unlikely(check_mul_overflow(n, size, &bytes)))
return NULL;
if (ksize(dst) < bytes) {
kfree(dst);
dst = kmalloc_track_caller(bytes, flags);
if (!dst)
return NULL;
}
memcpy(dst, src, bytes);
out:
return dst ? dst : ZERO_SIZE_PTR;
}
/* resize an array from old_n items to new_n items. the array is reallocated if it's too
* small to hold new_n items. new items are zeroed out if the array grows.
*
* Contrary to krealloc_array, does not free arr if new_n is zero.
*/
static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
{
if (!new_n || old_n == new_n)
goto out;
arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
if (!arr)
return NULL;
if (new_n > old_n)
memset(arr + old_n * size, 0, (new_n - old_n) * size);
out:
return arr ? arr : ZERO_SIZE_PTR;
}
static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
{
dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
sizeof(struct bpf_reference_state), GFP_KERNEL);
if (!dst->refs)
return -ENOMEM;
dst->acquired_refs = src->acquired_refs;
return 0;
}
static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
{
size_t n = src->allocated_stack / BPF_REG_SIZE;
dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
GFP_KERNEL);
if (!dst->stack)
return -ENOMEM;
dst->allocated_stack = src->allocated_stack;
return 0;
}
static int resize_reference_state(struct bpf_func_state *state, size_t n)
{
state->refs = realloc_array(state->refs, state->acquired_refs, n,
sizeof(struct bpf_reference_state));
if (!state->refs)
return -ENOMEM;
state->acquired_refs = n;
return 0;
}
static int grow_stack_state(struct bpf_func_state *state, int size)
{
size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
if (old_n >= n)
return 0;
state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
if (!state->stack)
return -ENOMEM;
state->allocated_stack = size;
return 0;
}
/* Acquire a pointer id from the env and update the state->refs to include
* this new pointer reference.
* On success, returns a valid pointer id to associate with the register
* On failure, returns a negative errno.
*/
static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
{
struct bpf_func_state *state = cur_func(env);
int new_ofs = state->acquired_refs;
int id, err;
err = resize_reference_state(state, state->acquired_refs + 1);
if (err)
return err;
id = ++env->id_gen;
state->refs[new_ofs].id = id;
state->refs[new_ofs].insn_idx = insn_idx;
return id;
}
/* release function corresponding to acquire_reference_state(). Idempotent. */
static int release_reference_state(struct bpf_func_state *state, int ptr_id)
{
int i, last_idx;
last_idx = state->acquired_refs - 1;
for (i = 0; i < state->acquired_refs; i++) {
if (state->refs[i].id == ptr_id) {
if (last_idx && i != last_idx)
memcpy(&state->refs[i], &state->refs[last_idx],
sizeof(*state->refs));
memset(&state->refs[last_idx], 0, sizeof(*state->refs));
state->acquired_refs--;
return 0;
}
}
return -EINVAL;
}
static void free_func_state(struct bpf_func_state *state)
{
if (!state)
return;
kfree(state->refs);
kfree(state->stack);
kfree(state);
}
static void clear_jmp_history(struct bpf_verifier_state *state)
{
kfree(state->jmp_history);
state->jmp_history = NULL;
state->jmp_history_cnt = 0;
}
static void free_verifier_state(struct bpf_verifier_state *state,
bool free_self)
{
int i;
for (i = 0; i <= state->curframe; i++) {
free_func_state(state->frame[i]);
state->frame[i] = NULL;
}
clear_jmp_history(state);
if (free_self)
kfree(state);
}
/* copy verifier state from src to dst growing dst stack space
* when necessary to accommodate larger src stack
*/
static int copy_func_state(struct bpf_func_state *dst,
const struct bpf_func_state *src)
{
int err;
memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
err = copy_reference_state(dst, src);
if (err)
return err;
return copy_stack_state(dst, src);
}
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
const struct bpf_verifier_state *src)
{
struct bpf_func_state *dst;
int i, err;
dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
GFP_USER);
if (!dst_state->jmp_history)
return -ENOMEM;
dst_state->jmp_history_cnt = src->jmp_history_cnt;
/* if dst has more stack frames then src frame, free them */
for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
free_func_state(dst_state->frame[i]);
dst_state->frame[i] = NULL;
}
dst_state->speculative = src->speculative;
dst_state->curframe = src->curframe;
dst_state->active_spin_lock = src->active_spin_lock;
dst_state->branches = src->branches;
dst_state->parent = src->parent;
dst_state->first_insn_idx = src->first_insn_idx;
dst_state->last_insn_idx = src->last_insn_idx;
for (i = 0; i <= src->curframe; i++) {
dst = dst_state->frame[i];
if (!dst) {
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
if (!dst)
return -ENOMEM;
dst_state->frame[i] = dst;
}
err = copy_func_state(dst, src->frame[i]);
if (err)
return err;
}
return 0;
}
static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
{
while (st) {
u32 br = --st->branches;
/* WARN_ON(br > 1) technically makes sense here,
* but see comment in push_stack(), hence:
*/
WARN_ONCE((int)br < 0,
"BUG update_branch_counts:branches_to_explore=%d\n",
br);
if (br)
break;
st = st->parent;
}
}
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
int *insn_idx, bool pop_log)
{
struct bpf_verifier_state *cur = env->cur_state;
struct bpf_verifier_stack_elem *elem, *head = env->head;
int err;
if (env->head == NULL)
return -ENOENT;
if (cur) {
err = copy_verifier_state(cur, &head->st);
if (err)
return err;
}
if (pop_log)
bpf_vlog_reset(&env->log, head->log_pos);
if (insn_idx)
*insn_idx = head->insn_idx;
if (prev_insn_idx)
*prev_insn_idx = head->prev_insn_idx;
elem = head->next;
free_verifier_state(&head->st, false);
kfree(head);
env->head = elem;
env->stack_size--;
return 0;
}
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx,
bool speculative)
{
struct bpf_verifier_state *cur = env->cur_state;
struct bpf_verifier_stack_elem *elem;
int err;
elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
if (!elem)
goto err;
elem->insn_idx = insn_idx;
elem->prev_insn_idx = prev_insn_idx;
elem->next = env->head;
elem->log_pos = env->log.len_used;
env->head = elem;
env->stack_size++;
err = copy_verifier_state(&elem->st, cur);
if (err)
goto err;
elem->st.speculative |= speculative;
if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
verbose(env, "The sequence of %d jumps is too complex.\n",
env->stack_size);
goto err;
}
if (elem->st.parent) {
++elem->st.parent->branches;
/* WARN_ON(branches > 2) technically makes sense here,
* but
* 1. speculative states will bump 'branches' for non-branch
* instructions
* 2. is_state_visited() heuristics may decide not to create
* a new state for a sequence of branches and all such current
* and cloned states will be pointing to a single parent state
* which might have large 'branches' count.
*/
}
return &elem->st;
err:
free_verifier_state(env->cur_state, true);
env->cur_state = NULL;
/* pop all elements and return */
while (!pop_stack(env, NULL, NULL, false));
return NULL;
}
#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};
static void __mark_reg_not_init(const struct bpf_verifier_env *env,
struct bpf_reg_state *reg);
/* This helper doesn't clear reg->id */
static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
reg->var_off = tnum_const(imm);
reg->smin_value = (s64)imm;
reg->smax_value = (s64)imm;
reg->umin_value = imm;
reg->umax_value = imm;
reg->s32_min_value = (s32)imm;
reg->s32_max_value = (s32)imm;
reg->u32_min_value = (u32)imm;
reg->u32_max_value = (u32)imm;
}
/* Mark the unknown part of a register (variable offset or scalar value) as
* known to have the value @imm.
*/
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
/* Clear id, off, and union(map_ptr, range) */
memset(((u8 *)reg) + sizeof(reg->type), 0,
offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
___mark_reg_known(reg, imm);
}
static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
{
reg->var_off = tnum_const_subreg(reg->var_off, imm);
reg->s32_min_value = (s32)imm;
reg->s32_max_value = (s32)imm;
reg->u32_min_value = (u32)imm;
reg->u32_max_value = (u32)imm;
}
/* Mark the 'variable offset' part of a register as zero. This should be
* used only on registers holding a pointer type.
*/
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
{
__mark_reg_known(reg, 0);
}
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
__mark_reg_known(reg, 0);
reg->type = SCALAR_VALUE;
}
static void mark_reg_known_zero(struct bpf_verifier_env *env,
struct bpf_reg_state *regs, u32 regno)
{
if (WARN_ON(regno >= MAX_BPF_REG)) {
verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
/* Something bad happened, let's kill all regs */
for (regno = 0; regno < MAX_BPF_REG; regno++)
__mark_reg_not_init(env, regs + regno);
return;
}
__mark_reg_known_zero(regs + regno);
}
static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
{
switch (reg->type) {
case PTR_TO_MAP_VALUE_OR_NULL: {
const struct bpf_map *map = reg->map_ptr;
if (map->inner_map_meta) {
reg->type = CONST_PTR_TO_MAP;
reg->map_ptr = map->inner_map_meta;
/* transfer reg's id which is unique for every map_lookup_elem
* as UID of the inner map.
*/
reg->map_uid = reg->id;
} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
reg->type = PTR_TO_XDP_SOCK;
} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
map->map_type == BPF_MAP_TYPE_SOCKHASH) {
reg->type = PTR_TO_SOCKET;
} else {
reg->type = PTR_TO_MAP_VALUE;
}
break;
}
case PTR_TO_SOCKET_OR_NULL:
reg->type = PTR_TO_SOCKET;
break;
case PTR_TO_SOCK_COMMON_OR_NULL:
reg->type = PTR_TO_SOCK_COMMON;
break;
case PTR_TO_TCP_SOCK_OR_NULL:
reg->type = PTR_TO_TCP_SOCK;
break;
case PTR_TO_BTF_ID_OR_NULL:
reg->type = PTR_TO_BTF_ID;
break;
case PTR_TO_MEM_OR_NULL:
reg->type = PTR_TO_MEM;
break;
case PTR_TO_RDONLY_BUF_OR_NULL:
reg->type = PTR_TO_RDONLY_BUF;
break;
case PTR_TO_RDWR_BUF_OR_NULL:
reg->type = PTR_TO_RDWR_BUF;
break;
default:
WARN_ONCE(1, "unknown nullable register type");
}
}
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
return type_is_pkt_pointer(reg->type);
}
static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
return reg_is_pkt_pointer(reg) ||
reg->type == PTR_TO_PACKET_END;
}
/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
enum bpf_reg_type which)
{
/* The register can already have a range from prior markings.
* This is fine as long as it hasn't been advanced from its
* origin.
*/
return reg->type == which &&
reg->id == 0 &&
reg->off == 0 &&
tnum_equals_const(reg->var_off, 0);
}
/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
reg->smin_value = S64_MIN;
reg->smax_value = S64_MAX;
reg->umin_value = 0;
reg->umax_value = U64_MAX;
reg->s32_min_value = S32_MIN;
reg->s32_max_value = S32_MAX;
reg->u32_min_value = 0;
reg->u32_max_value = U32_MAX;
}
static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
{
reg->smin_value = S64_MIN;
reg->smax_value = S64_MAX;
reg->umin_value = 0;
reg->umax_value = U64_MAX;
}
static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
{
reg->s32_min_value = S32_MIN;
reg->s32_max_value = S32_MAX;
reg->u32_min_value = 0;
reg->u32_max_value = U32_MAX;
}
static void __update_reg32_bounds(struct bpf_reg_state *reg)
{
struct tnum var32_off = tnum_subreg(reg->var_off);
/* min signed is max(sign bit) | min(other bits) */
reg->s32_min_value = max_t(s32, reg->s32_min_value,
var32_off.value | (var32_off.mask & S32_MIN));
/* max signed is min(sign bit) | max(other bits) */
reg->s32_max_value = min_t(s32, reg->s32_max_value,
var32_off.value | (var32_off.mask & S32_MAX));
reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
reg->u32_max_value = min(reg->u32_max_value,
(u32)(var32_off.value | var32_off.mask));
}
static void __update_reg64_bounds(struct bpf_reg_state *reg)
{
/* min signed is max(sign bit) | min(other bits) */
reg->smin_value = max_t(s64, reg->smin_value,
reg->var_off.value | (reg->var_off.mask & S64_MIN));
/* max signed is min(sign bit) | max(other bits) */
reg->smax_value = min_t(s64, reg->smax_value,
reg->var_off.value | (reg->var_off.mask & S64_MAX));
reg->umin_value = max(reg->umin_value, reg->var_off.value);
reg->umax_value = min(reg->umax_value,
reg->var_off.value | reg->var_off.mask);
}
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
__update_reg32_bounds(reg);
__update_reg64_bounds(reg);
}
/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
{
/* Learn sign from signed bounds.
* If we cannot cross the sign boundary, then signed and unsigned bounds
* are the same, so combine. This works even in the negative case, e.g.
* -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
*/
if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
reg->s32_min_value = reg->u32_min_value =
max_t(u32, reg->s32_min_value, reg->u32_min_value);
reg->s32_max_value = reg->u32_max_value =
min_t(u32, reg->s32_max_value, reg->u32_max_value);
return;
}
/* Learn sign from unsigned bounds. Signed bounds cross the sign
* boundary, so we must be careful.
*/
if ((s32)reg->u32_max_value >= 0) {
/* Positive. We can't learn anything from the smin, but smax
* is positive, hence safe.
*/
reg->s32_min_value = reg->u32_min_value;
reg->s32_max_value = reg->u32_max_value =
min_t(u32, reg->s32_max_value, reg->u32_max_value);
} else if ((s32)reg->u32_min_value < 0) {
/* Negative. We can't learn anything from the smax, but smin
* is negative, hence safe.
*/
reg->s32_min_value = reg->u32_min_value =
max_t(u32, reg->s32_min_value, reg->u32_min_value);
reg->s32_max_value = reg->u32_max_value;
}
}
static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
{
/* Learn sign from signed bounds.
* If we cannot cross the sign boundary, then signed and unsigned bounds
* are the same, so combine. This works even in the negative case, e.g.
* -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
*/
if (reg->smin_value >= 0 || reg->smax_value < 0) {
reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
reg->umin_value);
reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
reg->umax_value);
return;
}
/* Learn sign from unsigned bounds. Signed bounds cross the sign
* boundary, so we must be careful.
*/
if ((s64)reg->umax_value >= 0) {
/* Positive. We can't learn anything from the smin, but smax
* is positive, hence safe.
*/
reg->smin_value = reg->umin_value;
reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
reg->umax_value);
} else if ((s64)reg->umin_value < 0) {
/* Negative. We can't learn anything from the smax, but smin
* is negative, hence safe.
*/
reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
reg->umin_value);
reg->smax_value = reg->umax_value;
}
}
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
__reg32_deduce_bounds(reg);
__reg64_deduce_bounds(reg);
}
/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
struct tnum var64_off = tnum_intersect(reg->var_off,
tnum_range(reg->umin_value,
reg->umax_value));
struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
tnum_range(reg->u32_min_value,
reg->u32_max_value));
reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
}
static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
{
reg->umin_value = reg->u32_min_value;
reg->umax_value = reg->u32_max_value;
/* Attempt to pull 32-bit signed bounds into 64-bit bounds
* but must be positive otherwise set to worse case bounds
* and refine later from tnum.
*/
if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
reg->smax_value = reg->s32_max_value;
else
reg->smax_value = U32_MAX;
if (reg->s32_min_value >= 0)
reg->smin_value = reg->s32_min_value;
else
reg->smin_value = 0;
}
static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
{
/* special case when 64-bit register has upper 32-bit register
* zeroed. Typically happens after zext or <<32, >>32 sequence
* allowing us to use 32-bit bounds directly,
*/
if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
__reg_assign_32_into_64(reg);
} else {
/* Otherwise the best we can do is push lower 32bit known and
* unknown bits into register (var_off set from jmp logic)
* then learn as much as possible from the 64-bit tnum
* known and unknown bits. The previous smin/smax bounds are
* invalid here because of jmp32 compare so mark them unknown
* so they do not impact tnum bounds calculation.
*/
__mark_reg64_unbounded(reg);
__update_reg_bounds(reg);
}
/* Intersecting with the old var_off might have improved our bounds
* slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
* then new var_off is (0; 0x7f...fc) which improves our umax.
*/
__reg_deduce_bounds(reg);
__reg_bound_offset(reg);
__update_reg_bounds(reg);
}
static bool __reg64_bound_s32(s64 a)
{
return a > S32_MIN && a < S32_MAX;
}
static bool __reg64_bound_u32(u64 a)
{
return a > U32_MIN && a < U32_MAX;
}
static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
{
__mark_reg32_unbounded(reg);
if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
reg->s32_min_value = (s32)reg->smin_value;
reg->s32_max_value = (s32)reg->smax_value;
}
if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
reg->u32_min_value = (u32)reg->umin_value;
reg->u32_max_value = (u32)reg->umax_value;
}
/* Intersecting with the old var_off might have improved our bounds
* slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
* then new var_off is (0; 0x7f...fc) which improves our umax.
*/
__reg_deduce_bounds(reg);
__reg_bound_offset(reg);
__update_reg_bounds(reg);
}
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(const struct bpf_verifier_env *env,
struct bpf_reg_state *reg)
{
/*
* Clear type, id, off, and union(map_ptr, range) and
* padding between 'type' and union
*/
memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
reg->type = SCALAR_VALUE;
reg->var_off = tnum_unknown;
reg->frameno = 0;
reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
__mark_reg_unbounded(reg);
}
static void mark_reg_unknown(struct bpf_verifier_env *env,
struct bpf_reg_state *regs, u32 regno)
{
if (WARN_ON(regno >= MAX_BPF_REG)) {
verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
/* Something bad happened, let's kill all regs except FP */
for (regno = 0; regno < BPF_REG_FP; regno++)
__mark_reg_not_init(env, regs + regno);
return;
}
__mark_reg_unknown(env, regs + regno);
}
static void __mark_reg_not_init(const struct bpf_verifier_env *env,
struct bpf_reg_state *reg)
{
__mark_reg_unknown(env, reg);
reg->type = NOT_INIT;
}
static void mark_reg_not_init(struct bpf_verifier_env *env,
struct bpf_reg_state *regs, u32 regno)
{
if (WARN_ON(regno >= MAX_BPF_REG)) {
verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
/* Something bad happened, let's kill all regs except FP */
for (regno = 0; regno < BPF_REG_FP; regno++)
__mark_reg_not_init(env, regs + regno);
return;
}
__mark_reg_not_init(env, regs + regno);
}
static void mark_btf_ld_reg(struct bpf_verifier_env *env,
struct bpf_reg_state *regs, u32 regno,
enum bpf_reg_type reg_type,
struct btf *btf, u32 btf_id)
{
if (reg_type == SCALAR_VALUE) {
mark_reg_unknown(env, regs, regno);
return;
}
mark_reg_known_zero(env, regs, regno);
regs[regno].type = PTR_TO_BTF_ID;
regs[regno].btf = btf;
regs[regno].btf_id = btf_id;
}
#define DEF_NOT_SUBREG (0)
static void init_reg_state(struct bpf_verifier_env *env,
struct bpf_func_state *state)
{
struct bpf_reg_state *regs = state->regs;
int i;
for (i = 0; i < MAX_BPF_REG; i++) {
mark_reg_not_init(env, regs, i);
regs[i].live = REG_LIVE_NONE;
regs[i].parent = NULL;
regs[i].subreg_def = DEF_NOT_SUBREG;
}
/* frame pointer */
regs[BPF_REG_FP].type = PTR_TO_STACK;
mark_reg_known_zero(env, regs, BPF_REG_FP);
regs[BPF_REG_FP].frameno = state->frameno;
}
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
struct bpf_func_state *state,
int callsite, int frameno, int subprogno)
{
state->callsite = callsite;
state->frameno = frameno;
state->subprogno = subprogno;
init_reg_state(env, state);
}
/* Similar to push_stack(), but for async callbacks */
static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx,
int subprog)
{
struct bpf_verifier_stack_elem *elem;
struct bpf_func_state *frame;
elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
if (!elem)
goto err;
elem->insn_idx = insn_idx;
elem->prev_insn_idx = prev_insn_idx;
elem->next = env->head;
elem->log_pos = env->log.len_used;
env->head = elem;
env->stack_size++;
if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
verbose(env,
"The sequence of %d jumps is too complex for async cb.\n",
env->stack_size);
goto err;
}
/* Unlike push_stack() do not copy_verifier_state().
* The caller state doesn't matter.
* This is async callback. It starts in a fresh stack.
* Initialize it similar to do_check_common().
*/
elem->st.branches = 1;
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame)
goto err;
init_func_state(env, frame,
BPF_MAIN_FUNC /* callsite */,
0 /* frameno within this callchain */,
subprog /* subprog number within this prog */);
elem->st.frame[0] = frame;
return &elem->st;
err:
free_verifier_state(env->cur_state, true);
env->cur_state = NULL;
/* pop all elements and return */
while (!pop_stack(env, NULL, NULL, false));
return NULL;
}
enum reg_arg_type {
SRC_OP, /* register is used as source operand */
DST_OP, /* register is used as destination operand */
DST_OP_NO_MARK /* same as above, check only, don't mark */
};
static int cmp_subprogs(const void *a, const void *b)
{
return ((struct bpf_subprog_info *)a)->start -
((struct bpf_subprog_info *)b)->start;
}
static int find_subprog(struct bpf_verifier_env *env, int off)
{
struct bpf_subprog_info *p;
p = bsearch(&off, env->subprog_info, env->subprog_cnt,
sizeof(env->subprog_info[0]), cmp_subprogs);
if (!p)
return -ENOENT;
return p - env->subprog_info;
}
static int add_subprog(struct bpf_verifier_env *env, int off)
{
int insn_cnt = env->prog->len;
int ret;
if (off >= insn_cnt || off < 0) {
verbose(env, "call to invalid destination\n");
return -EINVAL;
}
ret = find_subprog(env, off);
if (ret >= 0)
return ret;
if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
verbose(env, "too many subprograms\n");
return -E2BIG;
}
/* determine subprog starts. The end is one before the next starts */
env->subprog_info[env->subprog_cnt++].start = off;
sort(env->subprog_info, env->subprog_cnt,
sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
return env->subprog_cnt - 1;
}
struct bpf_kfunc_desc {
struct btf_func_model func_model;
u32 func_id;
s32 imm;
};
#define MAX_KFUNC_DESCS 256
struct bpf_kfunc_desc_tab {
struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
u32 nr_descs;
};
static int kfunc_desc_cmp_by_id(const void *a, const void *b)
{
const struct bpf_kfunc_desc *d0 = a;
const struct bpf_kfunc_desc *d1 = b;
/* func_id is not greater than BTF_MAX_TYPE */
return d0->func_id - d1->func_id;
}
static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
{
struct bpf_kfunc_desc desc = {
.func_id = func_id,
};
struct bpf_kfunc_desc_tab *tab;
tab = prog->aux->kfunc_tab;
return bsearch(&desc, tab->descs, tab->nr_descs,
sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
}
static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
{
const struct btf_type *func, *func_proto;
struct bpf_kfunc_desc_tab *tab;
struct bpf_prog_aux *prog_aux;
struct bpf_kfunc_desc *desc;
const char *func_name;
unsigned long addr;
int err;
prog_aux = env->prog->aux;
tab = prog_aux->kfunc_tab;
if (!tab) {
if (!btf_vmlinux) {
verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
return -ENOTSUPP;
}
if (!env->prog->jit_requested) {
verbose(env, "JIT is required for calling kernel function\n");
return -ENOTSUPP;
}
if (!bpf_jit_supports_kfunc_call()) {
verbose(env, "JIT does not support calling kernel function\n");
return -ENOTSUPP;
}
if (!env->prog->gpl_compatible) {
verbose(env, "cannot call kernel function from non-GPL compatible program\n");
return -EINVAL;
}
tab = kzalloc(sizeof(*tab), GFP_KERNEL);
if (!tab)
return -ENOMEM;
prog_aux->kfunc_tab = tab;
}
if (find_kfunc_desc(env->prog, func_id))
return 0;
if (tab->nr_descs == MAX_KFUNC_DESCS) {
verbose(env, "too many different kernel function calls\n");
return -E2BIG;
}
func = btf_type_by_id(btf_vmlinux, func_id);
if (!func || !btf_type_is_func(func)) {
verbose(env, "kernel btf_id %u is not a function\n",
func_id);
return -EINVAL;
}
func_proto = btf_type_by_id(btf_vmlinux, func->type);
if (!func_proto || !btf_type_is_func_proto(func_proto)) {
verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
func_id);
return -EINVAL;
}
func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
addr = kallsyms_lookup_name(func_name);
if (!addr) {
verbose(env, "cannot find address for kernel function %s\n",
func_name);
return -EINVAL;
}
desc = &tab->descs[tab->nr_descs++];
desc->func_id = func_id;
desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
err = btf_distill_func_proto(&env->log, btf_vmlinux,
func_proto, func_name,
&desc->func_model);
if (!err)
sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
kfunc_desc_cmp_by_id, NULL);
return err;
}
static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
{
const struct bpf_kfunc_desc *d0 = a;
const struct bpf_kfunc_desc *d1 = b;
if (d0->imm > d1->imm)
return 1;
else if (d0->imm < d1->imm)
return -1;
return 0;
}
static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
{
struct bpf_kfunc_desc_tab *tab;
tab = prog->aux->kfunc_tab;
if (!tab)
return;
sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
kfunc_desc_cmp_by_imm, NULL);
}
bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
{
return !!prog->aux->kfunc_tab;
}
const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
const struct bpf_insn *insn)
{
const struct bpf_kfunc_desc desc = {
.imm = insn->imm,
};
const struct bpf_kfunc_desc *res;
struct bpf_kfunc_desc_tab *tab;
tab = prog->aux->kfunc_tab;
res = bsearch(&desc, tab->descs, tab->nr_descs,
sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
return res ? &res->func_model : NULL;
}
static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
{
struct bpf_subprog_info *subprog = env->subprog_info;
struct bpf_insn *insn = env->prog->insnsi;
int i, ret, insn_cnt = env->prog->len;
/* Add entry function. */
ret = add_subprog(env, 0);
if (ret)
return ret;
for (i = 0; i < insn_cnt; i++, insn++) {
if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
!bpf_pseudo_kfunc_call(insn))
continue;
if (!env->bpf_capable) {
verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
return -EPERM;
}
if (bpf_pseudo_func(insn)) {
ret = add_subprog(env, i + insn->imm + 1);
if (ret >= 0)
/* remember subprog */
insn[1].imm = ret;
} else if (bpf_pseudo_call(insn)) {
ret = add_subprog(env, i + insn->imm + 1);
} else {
ret = add_kfunc_call(env, insn->imm);
}
if (ret < 0)
return ret;
}
/* Add a fake 'exit' subprog which could simplify subprog iteration
* logic. 'subprog_cnt' should not be increased.
*/
subprog[env->subprog_cnt].start = insn_cnt;
if (env->log.level & BPF_LOG_LEVEL2)
for (i = 0; i < env->subprog_cnt; i++)
verbose(env, "func#%d @%d\n", i, subprog[i].start);
return 0;
}
static int check_subprogs(struct bpf_verifier_env *env)
{
int i, subprog_start, subprog_end, off, cur_subprog = 0;
struct bpf_subprog_info *subprog = env->subprog_info;
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
/* now check that all jumps are within the same subprog */
subprog_start = subprog[cur_subprog].start;
subprog_end = subprog[cur_subprog + 1].start;
for (i = 0; i < insn_cnt; i++) {
u8 code = insn[i].code;
if (code == (BPF_JMP | BPF_CALL) &&
insn[i].imm == BPF_FUNC_tail_call &&
insn[i].src_reg != BPF_PSEUDO_CALL)
subprog[cur_subprog].has_tail_call = true;
if (BPF_CLASS(code) == BPF_LD &&
(BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
subprog[cur_subprog].has_ld_abs = true;
if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
goto next;
if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
goto next;
off = i + insn[i].off + 1;
if (off < subprog_start || off >= subprog_end) {
verbose(env, "jump out of range from insn %d to %d\n", i, off);
return -EINVAL;
}
next:
if (i == subprog_end - 1) {
/* to avoid fall-through from one subprog into another
* the last insn of the subprog should be either exit
* or unconditional jump back
*/
if (code != (BPF_JMP | BPF_EXIT) &&
code != (BPF_JMP | BPF_JA)) {
verbose(env, "last insn is not an exit or jmp\n");
return -EINVAL;
}
subprog_start = subprog_end;
cur_subprog++;
if (cur_subprog < env->subprog_cnt)
subprog_end = subprog[cur_subprog + 1].start;
}
}
return 0;
}
/* Parentage chain of this register (or stack slot) should take care of all
* issues like callee-saved registers, stack slot allocation time, etc.
*/
static int mark_reg_read(struct bpf_verifier_env *env,
const struct bpf_reg_state *state,
struct bpf_reg_state *parent, u8 flag)
{
bool writes = parent == state->parent; /* Observe write marks */
int cnt = 0;
while (parent) {
/* if read wasn't screened by an earlier write ... */
if (writes && state->live & REG_LIVE_WRITTEN)
break;
if (parent->live & REG_LIVE_DONE) {
verbose(env, "verifier BUG type %s var_off %lld off %d\n",
reg_type_str[parent->type],
parent->var_off.value, parent->off);
return -EFAULT;
}
/* The first condition is more likely to be true than the
* second, checked it first.
*/
if ((parent->live & REG_LIVE_READ) == flag ||
parent->live & REG_LIVE_READ64)
/* The parentage chain never changes and
* this parent was already marked as LIVE_READ.
* There is no need to keep walking the chain again and
* keep re-marking all parents as LIVE_READ.
* This case happens when the same register is read
* multiple times without writes into it in-between.
* Also, if parent has the stronger REG_LIVE_READ64 set,
* then no need to set the weak REG_LIVE_READ32.
*/
break;
/* ... then we depend on parent's value */
parent->live |= flag;
/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
if (flag == REG_LIVE_READ64)
parent->live &= ~REG_LIVE_READ32;
state = parent;
parent = state->parent;
writes = true;
cnt++;
}
if (env->longest_mark_read_walk < cnt)
env->longest_mark_read_walk = cnt;
return 0;
}
/* This function is supposed to be used by the following 32-bit optimization
* code only. It returns TRUE if the source or destination register operates
* on 64-bit, otherwise return FALSE.
*/
static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
{
u8 code, class, op;
code = insn->code;
class = BPF_CLASS(code);
op = BPF_OP(code);
if (class == BPF_JMP) {
/* BPF_EXIT for "main" will reach here. Return TRUE
* conservatively.
*/
if (op == BPF_EXIT)
return true;
if (op == BPF_CALL) {
/* BPF to BPF call will reach here because of marking
* caller saved clobber with DST_OP_NO_MARK for which we
* don't care the register def because they are anyway
* marked as NOT_INIT already.
*/
if (insn->src_reg == BPF_PSEUDO_CALL)
return false;
/* Helper call will reach here because of arg type
* check, conservatively return TRUE.
*/
if (t == SRC_OP)
return true;
return false;
}
}
if (class == BPF_ALU64 || class == BPF_JMP ||
/* BPF_END always use BPF_ALU class. */
(class == BPF_ALU && op == BPF_END && insn->imm == 64))
return true;
if (class == BPF_ALU || class == BPF_JMP32)
return false;
if (class == BPF_LDX) {
if (t != SRC_OP)
return BPF_SIZE(code) == BPF_DW;
/* LDX source must be ptr. */
return true;
}
if (class == BPF_STX) {
/* BPF_STX (including atomic variants) has multiple source
* operands, one of which is a ptr. Check whether the caller is
* asking about it.
*/
if (t == SRC_OP && reg->type != SCALAR_VALUE)
return true;
return BPF_SIZE(code) == BPF_DW;
}
if (class == BPF_LD) {
u8 mode = BPF_MODE(code);
/* LD_IMM64 */
if (mode == BPF_IMM)
return true;
/* Both LD_IND and LD_ABS return 32-bit data. */
if (t != SRC_OP)
return false;
/* Implicit ctx ptr. */
if (regno == BPF_REG_6)
return true;
/* Explicit source could be any width. */
return true;
}
if (class == BPF_ST)
/* The only source register for BPF_ST is a ptr. */
return true;
/* Conservatively return true at default. */
return true;
}
/* Return the regno defined by the insn, or -1. */
static int insn_def_regno(const struct bpf_insn *insn)
{
switch (BPF_CLASS(insn->code)) {
case BPF_JMP:
case BPF_JMP32:
case BPF_ST:
return -1;
case BPF_STX:
if (BPF_MODE(insn->code) == BPF_ATOMIC &&
(insn->imm & BPF_FETCH)) {
if (insn->imm == BPF_CMPXCHG)
return BPF_REG_0;
else
return insn->src_reg;
} else {
return -1;
}
default:
return insn->dst_reg;
}
}
/* Return TRUE if INSN has defined any 32-bit value explicitly. */
static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
int dst_reg = insn_def_regno(insn);
if (dst_reg == -1)
return false;
return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
}
static void mark_insn_zext(struct bpf_verifier_env *env,
struct bpf_reg_state *reg)
{
s32 def_idx = reg->subreg_def;
if (def_idx == DEF_NOT_SUBREG)
return;
env->insn_aux_data[def_idx - 1].zext_dst = true;
/* The dst will be zero extended, so won't be sub-register anymore. */
reg->subreg_def = DEF_NOT_SUBREG;
}
static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
enum reg_arg_type t)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
struct bpf_reg_state *reg, *regs = state->regs;
bool rw64;
if (regno >= MAX_BPF_REG) {
verbose(env, "R%d is invalid\n", regno);
return -EINVAL;
}
reg = &regs[regno];
rw64 = is_reg64(env, insn, regno, reg, t);
if (t == SRC_OP) {
/* check whether register used as source operand can be read */
if (reg->type == NOT_INIT) {
verbose(env, "R%d !read_ok\n", regno);
return -EACCES;
}
/* We don't need to worry about FP liveness because it's read-only */
if (regno == BPF_REG_FP)
return 0;
if (rw64)
mark_insn_zext(env, reg);
return mark_reg_read(env, reg, reg->parent,
rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
} else {
/* check whether register used as dest operand can be written to */
if (regno == BPF_REG_FP) {
verbose(env, "frame pointer is read only\n");
return -EACCES;
}
reg->live |= REG_LIVE_WRITTEN;
reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
if (t == DST_OP)
mark_reg_unknown(env, regs, regno);
}
return 0;
}
/* for any branch, call, exit record the history of jmps in the given state */
static int push_jmp_history(struct bpf_verifier_env *env,
struct bpf_verifier_state *cur)
{
u32 cnt = cur->jmp_history_cnt;
struct bpf_idx_pair *p;
cnt++;
p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
if (!p)
return -ENOMEM;
p[cnt - 1].idx = env->insn_idx;
p[cnt - 1].prev_idx = env->prev_insn_idx;
cur->jmp_history = p;
cur->jmp_history_cnt = cnt;
return 0;
}
/* Backtrack one insn at a time. If idx is not at the top of recorded
* history then previous instruction came from straight line execution.
*/
static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
u32 *history)
{
u32 cnt = *history;
if (cnt && st->jmp_history[cnt - 1].idx == i) {
i = st->jmp_history[cnt - 1].prev_idx;
(*history)--;
} else {
i--;
}
return i;
}
static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
{
const struct btf_type *func;
if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
return NULL;
func = btf_type_by_id(btf_vmlinux, insn->imm);
return btf_name_by_offset(btf_vmlinux, func->name_off);
}
/* For given verifier state backtrack_insn() is called from the last insn to
* the first insn. Its purpose is to compute a bitmask of registers and
* stack slots that needs precision in the parent verifier state.
*/
static int backtrack_insn(struct bpf_verifier_env *env, int idx,
u32 *reg_mask, u64 *stack_mask)
{
const struct bpf_insn_cbs cbs = {
.cb_call = disasm_kfunc_name,
.cb_print = verbose,
.private_data = env,
};
struct bpf_insn *insn = env->prog->insnsi + idx;
u8 class = BPF_CLASS(insn->code);
u8 opcode = BPF_OP(insn->code);
u8 mode = BPF_MODE(insn->code);
u32 dreg = 1u << insn->dst_reg;
u32 sreg = 1u << insn->src_reg;
u32 spi;
if (insn->code == 0)
return 0;
if (env->log.level & BPF_LOG_LEVEL) {
verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
verbose(env, "%d: ", idx);
print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
}
if (class == BPF_ALU || class == BPF_ALU64) {
if (!(*reg_mask & dreg))
return 0;
if (opcode == BPF_MOV) {
if (BPF_SRC(insn->code) == BPF_X) {
/* dreg = sreg
* dreg needs precision after this insn
* sreg needs precision before this insn
*/
*reg_mask &= ~dreg;
*reg_mask |= sreg;
} else {
/* dreg = K
* dreg needs precision after this insn.
* Corresponding register is already marked
* as precise=true in this verifier state.
* No further markings in parent are necessary
*/
*reg_mask &= ~dreg;
}
} else {
if (BPF_SRC(insn->code) == BPF_X) {
/* dreg += sreg
* both dreg and sreg need precision
* before this insn
*/
*reg_mask |= sreg;
} /* else dreg += K
* dreg still needs precision before this insn
*/
}
} else if (class == BPF_LDX) {
if (!(*reg_mask & dreg))
return 0;
*reg_mask &= ~dreg;
/* scalars can only be spilled into stack w/o losing precision.
* Load from any other memory can be zero extended.
* The desire to keep that precision is already indicated
* by 'precise' mark in corresponding register of this state.
* No further tracking necessary.
*/
if (insn->src_reg != BPF_REG_FP)
return 0;
if (BPF_SIZE(insn->code) != BPF_DW)
return 0;
/* dreg = *(u64 *)[fp - off] was a fill from the stack.
* that [fp - off] slot contains scalar that needs to be
* tracked with precision
*/
spi = (-insn->off - 1) / BPF_REG_SIZE;
if (spi >= 64) {
verbose(env, "BUG spi %d\n", spi);
WARN_ONCE(1, "verifier backtracking bug");
return -EFAULT;
}
*stack_mask |= 1ull << spi;
} else if (class == BPF_STX || class == BPF_ST) {
if (*reg_mask & dreg)
/* stx & st shouldn't be using _scalar_ dst_reg
* to access memory. It means backtracking
* encountered a case of pointer subtraction.
*/
return -ENOTSUPP;
/* scalars can only be spilled into stack */
if (insn->dst_reg != BPF_REG_FP)
return 0;
if (BPF_SIZE(insn->code) != BPF_DW)
return 0;
spi = (-insn->off - 1) / BPF_REG_SIZE;
if (spi >= 64) {
verbose(env, "BUG spi %d\n", spi);
WARN_ONCE(1, "verifier backtracking bug");
return -EFAULT;
}
if (!(*stack_mask & (1ull << spi)))
return 0;
*stack_mask &= ~(1ull << spi);
if (class == BPF_STX)
*reg_mask |= sreg;
} else if (class == BPF_JMP || class == BPF_JMP32) {
if (opcode == BPF_CALL) {
if (insn->src_reg == BPF_PSEUDO_CALL)
return -ENOTSUPP;
/* regular helper call sets R0 */
*reg_mask &= ~1;
if (*reg_mask & 0x3f) {
/* if backtracing was looking for registers R1-R5
* they should have been found already.
*/
verbose(env, "BUG regs %x\n", *reg_mask);
WARN_ONCE(1, "verifier backtracking bug");
return -EFAULT;
}
} else if (opcode == BPF_EXIT) {
return -ENOTSUPP;
}
} else if (class == BPF_LD) {
if (!(*reg_mask & dreg))
return 0;
*reg_mask &= ~dreg;
/* It's ld_imm64 or ld_abs or ld_ind.
* For ld_imm64 no further tracking of precision
* into parent is necessary
*/
if (mode == BPF_IND || mode == BPF_ABS)
/* to be analyzed */
return -ENOTSUPP;
}
return 0;
}
/* the scalar precision tracking algorithm:
* . at the start all registers have precise=false.
* . scalar ranges are tracked as normal through alu and jmp insns.
* . once precise value of the scalar register is used in:
* . ptr + scalar alu
* . if (scalar cond K|scalar)
* . helper_call(.., scalar, ...) where ARG_CONST is expected
* backtrack through the verifier states and mark all registers and
* stack slots with spilled constants that these scalar regisers
* should be precise.
* . during state pruning two registers (or spilled stack slots)
* are equivalent if both are not precise.
*
* Note the verifier cannot simply walk register parentage chain,
* since many different registers and stack slots could have been
* used to compute single precise scalar.
*
* The approach of starting with precise=true for all registers and then
* backtrack to mark a register as not precise when the verifier detects
* that program doesn't care about specific value (e.g., when helper
* takes register as ARG_ANYTHING parameter) is not safe.
*
* It's ok to walk single parentage chain of the verifier states.
* It's possible that this backtracking will go all the way till 1st insn.
* All other branches will be explored for needing precision later.
*
* The backtracking needs to deal with cases like:
* R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
* r9 -= r8
* r5 = r9
* if r5 > 0x79f goto pc+7
* R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
* r5 += 1
* ...
* call bpf_perf_event_output#25
* where .arg5_type = ARG_CONST_SIZE_OR_ZERO
*
* and this case:
* r6 = 1
* call foo // uses callee's r6 inside to compute r0
* r0 += r6
* if r0 == 0 goto
*
* to track above reg_mask/stack_mask needs to be independent for each frame.
*
* Also if parent's curframe > frame where backtracking started,
* the verifier need to mark registers in both frames, otherwise callees
* may incorrectly prune callers. This is similar to
* commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
*
* For now backtracking falls back into conservative marking.
*/
static void mark_all_scalars_precise(struct bpf_verifier_env *env,
struct bpf_verifier_state *st)
{
struct bpf_func_state *func;
struct bpf_reg_state *reg;
int i, j;
/* big hammer: mark all scalars precise in this path.
* pop_stack may still get !precise scalars.
*/
for (; st; st = st->parent)
for (i = 0; i <= st->curframe; i++) {
func = st->frame[i];
for (j = 0; j < BPF_REG_FP; j++) {
reg = &func->regs[j];
if (reg->type != SCALAR_VALUE)
continue;
reg->precise = true;
}
for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
if (func->stack[j].slot_type[0] != STACK_SPILL)
continue;
reg = &func->stack[j].spilled_ptr;
if (reg->type != SCALAR_VALUE)
continue;
reg->precise = true;
}
}
}
static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
int spi)
{
struct bpf_verifier_state *st = env->cur_state;
int first_idx = st->first_insn_idx;
int last_idx = env->insn_idx;
struct bpf_func_state *func;
struct bpf_reg_state *reg;
u32 reg_mask = regno >= 0 ? 1u << regno : 0;
u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
bool skip_first = true;
bool new_marks = false;
int i, err;
if (!env->bpf_capable)
return 0;
func = st->frame[st->curframe];
if (regno >= 0) {
reg = &func->regs[regno];
if (reg->type != SCALAR_VALUE) {
WARN_ONCE(1, "backtracing misuse");
return -EFAULT;
}
if (!reg->precise)
new_marks = true;
else
reg_mask = 0;
reg->precise = true;
}
while (spi >= 0) {
if (func->stack[spi].slot_type[0] != STACK_SPILL) {
stack_mask = 0;
break;
}
reg = &func->stack[spi].spilled_ptr;
if (reg->type != SCALAR_VALUE) {
stack_mask = 0;
break;
}
if (!reg->precise)
new_marks = true;
else
stack_mask = 0;
reg->precise = true;
break;
}
if (!new_marks)
return 0;
if (!reg_mask && !stack_mask)
return 0;
for (;;) {
DECLARE_BITMAP(mask, 64);
u32 history = st->jmp_history_cnt;
if (env->log.level & BPF_LOG_LEVEL)
verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
for (i = last_idx;;) {
if (skip_first) {
err = 0;
skip_first = false;
} else {
err = backtrack_insn(env, i, &reg_mask, &stack_mask);
}
if (err == -ENOTSUPP) {
mark_all_scalars_precise(env, st);
return 0;
} else if (err) {
return err;
}
if (!reg_mask && !stack_mask)
/* Found assignment(s) into tracked register in this state.
* Since this state is already marked, just return.
* Nothing to be tracked further in the parent state.
*/
return 0;
if (i == first_idx)
break;
i = get_prev_insn_idx(st, i, &history);
if (i >= env->prog->len) {
/* This can happen if backtracking reached insn 0
* and there are still reg_mask or stack_mask
* to backtrack.
* It means the backtracking missed the spot where
* particular register was initialized with a constant.
*/
verbose(env, "BUG backtracking idx %d\n", i);
WARN_ONCE(1, "verifier backtracking bug");
return -EFAULT;
}
}
st = st->parent;
if (!st)
break;
new_marks = false;
func = st->frame[st->curframe];
bitmap_from_u64(mask, reg_mask);
for_each_set_bit(i, mask, 32) {
reg = &func->regs[i];
if (reg->type != SCALAR_VALUE) {
reg_mask &= ~(1u << i);
continue;
}
if (!reg->precise)
new_marks = true;
reg->precise = true;
}
bitmap_from_u64(mask, stack_mask);
for_each_set_bit(i, mask, 64) {
if (i >= func->allocated_stack / BPF_REG_SIZE) {
/* the sequence of instructions:
* 2: (bf) r3 = r10
* 3: (7b) *(u64 *)(r3 -8) = r0
* 4: (79) r4 = *(u64 *)(r10 -8)
* doesn't contain jmps. It's backtracked
* as a single block.
* During backtracking insn 3 is not recognized as
* stack access, so at the end of backtracking
* stack slot fp-8 is still marked in stack_mask.
* However the parent state may not have accessed
* fp-8 and it's "unallocated" stack space.
* In such case fallback to conservative.
*/
mark_all_scalars_precise(env, st);
return 0;
}
if (func->stack[i].slot_type[0] != STACK_SPILL) {
stack_mask &= ~(1ull << i);
continue;
}
reg = &func->stack[i].spilled_ptr;
if (reg->type != SCALAR_VALUE) {
stack_mask &= ~(1ull << i);
continue;
}
if (!reg->precise)
new_marks = true;
reg->precise = true;
}
if (env->log.level & BPF_LOG_LEVEL) {
print_verifier_state(env, func);
verbose(env, "parent %s regs=%x stack=%llx marks\n",
new_marks ? "didn't have" : "already had",
reg_mask, stack_mask);
}
if (!reg_mask && !stack_mask)
break;
if (!new_marks)
break;
last_idx = st->last_insn_idx;
first_idx = st->first_insn_idx;
}
return 0;
}
static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
{
return __mark_chain_precision(env, regno, -1);
}
static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
{
return __mark_chain_precision(env, -1, spi);
}
static bool is_spillable_regtype(enum bpf_reg_type type)
{
switch (type) {
case PTR_TO_MAP_VALUE:
case PTR_TO_MAP_VALUE_OR_NULL:
case PTR_TO_STACK:
case PTR_TO_CTX:
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
case PTR_TO_PACKET_END:
case PTR_TO_FLOW_KEYS:
case CONST_PTR_TO_MAP:
case PTR_TO_SOCKET:
case PTR_TO_SOCKET_OR_NULL:
case PTR_TO_SOCK_COMMON:
case PTR_TO_SOCK_COMMON_OR_NULL:
case PTR_TO_TCP_SOCK:
case PTR_TO_TCP_SOCK_OR_NULL:
case PTR_TO_XDP_SOCK:
case PTR_TO_BTF_ID:
case PTR_TO_BTF_ID_OR_NULL:
case PTR_TO_RDONLY_BUF:
case PTR_TO_RDONLY_BUF_OR_NULL:
case PTR_TO_RDWR_BUF:
case PTR_TO_RDWR_BUF_OR_NULL:
case PTR_TO_PERCPU_BTF_ID:
case PTR_TO_MEM:
case PTR_TO_MEM_OR_NULL:
case PTR_TO_FUNC:
case PTR_TO_MAP_KEY:
return true;
default:
return false;
}
}
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}
static bool register_is_const(struct bpf_reg_state *reg)
{
return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
}
static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
{
return tnum_is_unknown(reg->var_off) &&
reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
reg->umin_value == 0 && reg->umax_value == U64_MAX &&
reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
}
static bool register_is_bounded(struct bpf_reg_state *reg)
{
return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
}
static bool __is_pointer_value(bool allow_ptr_leaks,
const struct bpf_reg_state *reg)
{
if (allow_ptr_leaks)
return false;
return reg->type != SCALAR_VALUE;
}
static void save_register_state(struct bpf_func_state *state,
int spi, struct bpf_reg_state *reg)
{
int i;
state->stack[spi].spilled_ptr = *reg;
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
for (i = 0; i < BPF_REG_SIZE; i++)
state->stack[spi].slot_type[i] = STACK_SPILL;
}
/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
* stack boundary and alignment are checked in check_mem_access()
*/
static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
/* stack frame we're writing to */
struct bpf_func_state *state,
int off, int size, int value_regno,
int insn_idx)
{
struct bpf_func_state *cur; /* state of the current function */
int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
struct bpf_reg_state *reg = NULL;
err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
if (err)
return err;
/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
* so it's aligned access and [off, off + size) are within stack limits
*/
if (!env->allow_ptr_leaks &&
state->stack[spi].slot_type[0] == STACK_SPILL &&
size != BPF_REG_SIZE) {
verbose(env, "attempt to corrupt spilled pointer on stack\n");
return -EACCES;
}
cur = env->cur_state->frame[env->cur_state->curframe];
if (value_regno >= 0)
reg = &cur->regs[value_regno];
if (!env->bypass_spec_v4) {
bool sanitize = reg && is_spillable_regtype(reg->type);
for (i = 0; i < size; i++) {
if (state->stack[spi].slot_type[i] == STACK_INVALID) {
sanitize = true;
break;
}
}
if (sanitize)
env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
}
if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
!register_is_null(reg) && env->bpf_capable) {
if (dst_reg != BPF_REG_FP) {
/* The backtracking logic can only recognize explicit
* stack slot address like [fp - 8]. Other spill of
* scalar via different register has to be conservative.
* Backtrack from here and mark all registers as precise
* that contributed into 'reg' being a constant.
*/
err = mark_chain_precision(env, value_regno);
if (err)
return err;
}
save_register_state(state, spi, reg);
} else if (reg && is_spillable_regtype(reg->type)) {
/* register containing pointer is being spilled into stack */
if (size != BPF_REG_SIZE) {
verbose_linfo(env, insn_idx, "; ");
verbose(env, "invalid size of register spill\n");
return -EACCES;
}
if (state != cur && reg->type == PTR_TO_STACK) {
verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
return -EINVAL;
}
save_register_state(state, spi, reg);
} else {
u8 type = STACK_MISC;
/* regular write of data into stack destroys any spilled ptr */
state->stack[spi].spilled_ptr.type = NOT_INIT;
/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
if (state->stack[spi].slot_type[0] == STACK_SPILL)
for (i = 0; i < BPF_REG_SIZE; i++)
state->stack[spi].slot_type[i] = STACK_MISC;
/* only mark the slot as written if all 8 bytes were written
* otherwise read propagation may incorrectly stop too soon
* when stack slots are partially written.
* This heuristic means that read propagation will be
* conservative, since it will add reg_live_read marks
* to stack slots all the way to first state when programs
* writes+reads less than 8 bytes
*/
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
/* when we zero initialize stack slots mark them as such */
if (reg && register_is_null(reg)) {
/* backtracking doesn't work for STACK_ZERO yet. */
err = mark_chain_precision(env, value_regno);
if (err)
return err;
type = STACK_ZERO;
}
/* Mark slots affected by this stack write. */
for (i = 0; i < size; i++)
state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
type;
}
return 0;
}
/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
* known to contain a variable offset.
* This function checks whether the write is permitted and conservatively
* tracks the effects of the write, considering that each stack slot in the
* dynamic range is potentially written to.
*
* 'off' includes 'regno->off'.
* 'value_regno' can be -1, meaning that an unknown value is being written to
* the stack.
*
* Spilled pointers in range are not marked as written because we don't know
* what's going to be actually written. This means that read propagation for
* future reads cannot be terminated by this write.
*
* For privileged programs, uninitialized stack slots are considered
* initialized by this write (even though we don't know exactly what offsets
* are going to be written to). The idea is that we don't want the verifier to
* reject future reads that access slots written to through variable offsets.
*/
static int check_stack_write_var_off(struct bpf_verifier_env *env,
/* func where register points to */
struct bpf_func_state *state,
int ptr_regno, int off, int size,
int value_regno, int insn_idx)
{
struct bpf_func_state *cur; /* state of the current function */
int min_off, max_off;
int i, err;
struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
bool writing_zero = false;
/* set if the fact that we're writing a zero is used to let any
* stack slots remain STACK_ZERO
*/
bool zero_used = false;
cur = env->cur_state->frame[env->cur_state->curframe];
ptr_reg = &cur->regs[ptr_regno];
min_off = ptr_reg->smin_value + off;
max_off = ptr_reg->smax_value + off + size;
if (value_regno >= 0)
value_reg = &cur->regs[value_regno];
if (value_reg && register_is_null(value_reg))
writing_zero = true;
err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
if (err)
return err;
/* Variable offset writes destroy any spilled pointers in range. */
for (i = min_off; i < max_off; i++) {
u8 new_type, *stype;
int slot, spi;
slot = -i - 1;
spi = slot / BPF_REG_SIZE;
stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
if (!env->allow_ptr_leaks
&& *stype != NOT_INIT
&& *stype != SCALAR_VALUE) {
/* Reject the write if there's are spilled pointers in
* range. If we didn't reject here, the ptr status
* would be erased below (even though not all slots are
* actually overwritten), possibly opening the door to
* leaks.
*/
verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
insn_idx, i);
return -EINVAL;
}
/* Erase all spilled pointers. */
state->stack[spi].spilled_ptr.type = NOT_INIT;
/* Update the slot type. */
new_type = STACK_MISC;
if (writing_zero && *stype == STACK_ZERO) {
new_type = STACK_ZERO;
zero_used = true;
}
/* If the slot is STACK_INVALID, we check whether it's OK to
* pretend that it will be initialized by this write. The slot
* might not actually be written to, and so if we mark it as
* initialized future reads might leak uninitialized memory.
* For privileged programs, we will accept such reads to slots
* that may or may not be written because, if we're reject
* them, the error would be too confusing.
*/
if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
insn_idx, i);
return -EINVAL;
}
*stype = new_type;
}
if (zero_used) {
/* backtracking doesn't work for STACK_ZERO yet. */
err = mark_chain_precision(env, value_regno);
if (err)
return err;
}
return 0;
}
/* When register 'dst_regno' is assigned some values from stack[min_off,
* max_off), we set the register's type according to the types of the
* respective stack slots. If all the stack values are known to be zeros, then
* so is the destination reg. Otherwise, the register is considered to be
* SCALAR. This function does not deal with register filling; the caller must
* ensure that all spilled registers in the stack range have been marked as
* read.
*/
static void mark_reg_stack_read(struct bpf_verifier_env *env,
/* func where src register points to */
struct bpf_func_state *ptr_state,
int min_off, int max_off, int dst_regno)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
int i, slot, spi;
u8 *stype;
int zeros = 0;
for (i = min_off; i < max_off; i++) {
slot = -i - 1;
spi = slot / BPF_REG_SIZE;
stype = ptr_state->stack[spi].slot_type;
if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
break;
zeros++;
}
if (zeros == max_off - min_off) {
/* any access_size read into register is zero extended,
* so the whole register == const_zero
*/
__mark_reg_const_zero(&state->regs[dst_regno]);
/* backtracking doesn't support STACK_ZERO yet,
* so mark it precise here, so that later
* backtracking can stop here.
* Backtracking may not need this if this register
* doesn't participate in pointer adjustment.
* Forward propagation of precise flag is not
* necessary either. This mark is only to stop
* backtracking. Any register that contributed
* to const 0 was marked precise before spill.
*/
state->regs[dst_regno].precise = true;
} else {
/* have read misc data from the stack */
mark_reg_unknown(env, state->regs, dst_regno);
}
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
}
/* Read the stack at 'off' and put the results into the register indicated by
* 'dst_regno'. It handles reg filling if the addressed stack slot is a
* spilled reg.
*
* 'dst_regno' can be -1, meaning that the read value is not going to a
* register.
*
* The access is assumed to be within the current stack bounds.
*/
static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
/* func where src register points to */
struct bpf_func_state *reg_state,
int off, int size, int dst_regno)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
struct bpf_reg_state *reg;
u8 *stype;
stype = reg_state->stack[spi].slot_type;
reg = &reg_state->stack[spi].spilled_ptr;
if (stype[0] == STACK_SPILL) {
if (size != BPF_REG_SIZE) {
if (reg->type != SCALAR_VALUE) {
verbose_linfo(env, env->insn_idx, "; ");
verbose(env, "invalid size of register fill\n");
return -EACCES;
}
if (dst_regno >= 0) {
mark_reg_unknown(env, state->regs, dst_regno);
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
}
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
return 0;
}
for (i = 1; i < BPF_REG_SIZE; i++) {
if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
verbose(env, "corrupted spill memory\n");
return -EACCES;
}
}
if (dst_regno >= 0) {
/* restore register state from stack */
state->regs[dst_regno] = *reg;
/* mark reg as written since spilled pointer state likely
* has its liveness marks cleared by is_state_visited()
* which resets stack/reg liveness for state transitions
*/
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
/* If dst_regno==-1, the caller is asking us whether
* it is acceptable to use this value as a SCALAR_VALUE
* (e.g. for XADD).
* We must not allow unprivileged callers to do that
* with spilled pointers.
*/
verbose(env, "leaking pointer from stack off %d\n",
off);
return -EACCES;
}
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
} else {
u8 type;
for (i = 0; i < size; i++) {
type = stype[(slot - i) % BPF_REG_SIZE];
if (type == STACK_MISC)
continue;
if (type == STACK_ZERO)
continue;
verbose(env, "invalid read from stack off %d+%d size %d\n",
off, i, size);
return -EACCES;
}
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
if (dst_regno >= 0)
mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
}
return 0;
}
enum stack_access_src {
ACCESS_DIRECT = 1, /* the access is performed by an instruction */
ACCESS_HELPER = 2, /* the access is performed by a helper */
};
static int check_stack_range_initialized(struct bpf_verifier_env *env,
int regno, int off, int access_size,
bool zero_size_allowed,
enum stack_access_src type,
struct bpf_call_arg_meta *meta);
static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
{
return cur_regs(env) + regno;
}
/* Read the stack at 'ptr_regno + off' and put the result into the register
* 'dst_regno'.
* 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
* but not its variable offset.
* 'size' is assumed to be <= reg size and the access is assumed to be aligned.
*
* As opposed to check_stack_read_fixed_off, this function doesn't deal with
* filling registers (i.e. reads of spilled register cannot be detected when
* the offset is not fixed). We conservatively mark 'dst_regno' as containing
* SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
* offset; for a fixed offset check_stack_read_fixed_off should be used
* instead.
*/
static int check_stack_read_var_off(struct bpf_verifier_env *env,
int ptr_regno, int off, int size, int dst_regno)
{
/* The state of the source register. */
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
struct bpf_func_state *ptr_state = func(env, reg);
int err;
int min_off, max_off;
/* Note that we pass a NULL meta, so raw access will not be permitted.
*/
err = check_stack_range_initialized(env, ptr_regno, off, size,
false, ACCESS_DIRECT, NULL);
if (err)
return err;
min_off = reg->smin_value + off;
max_off = reg->smax_value + off;
mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
return 0;
}
/* check_stack_read dispatches to check_stack_read_fixed_off or
* check_stack_read_var_off.
*
* The caller must ensure that the offset falls within the allocated stack
* bounds.
*
* 'dst_regno' is a register which will receive the value from the stack. It
* can be -1, meaning that the read value is not going to a register.
*/
static int check_stack_read(struct bpf_verifier_env *env,
int ptr_regno, int off, int size,
int dst_regno)
{
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
struct bpf_func_state *state = func(env, reg);
int err;
/* Some accesses are only permitted with a static offset. */
bool var_off = !tnum_is_const(reg->var_off);
/* The offset is required to be static when reads don't go to a
* register, in order to not leak pointers (see
* check_stack_read_fixed_off).
*/
if (dst_regno < 0 && var_off) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
tn_buf, off, size);
return -EACCES;
}
/* Variable offset is prohibited for unprivileged mode for simplicity
* since it requires corresponding support in Spectre masking for stack
* ALU. See also retrieve_ptr_limit().
*/
if (!env->bypass_spec_v1 && var_off) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
ptr_regno, tn_buf);
return -EACCES;
}
if (!var_off) {
off += reg->var_off.value;
err = check_stack_read_fixed_off(env, state, off, size,
dst_regno);
} else {
/* Variable offset stack reads need more conservative handling
* than fixed offset ones. Note that dst_regno >= 0 on this
* branch.
*/
err = check_stack_read_var_off(env, ptr_regno, off, size,
dst_regno);
}
return err;
}
/* check_stack_write dispatches to check_stack_write_fixed_off or
* check_stack_write_var_off.
*
* 'ptr_regno' is the register used as a pointer into the stack.
* 'off' includes 'ptr_regno->off', but not its variable offset (if any).
* 'value_regno' is the register whose value we're writing to the stack. It can
* be -1, meaning that we're not writing from a register.
*
* The caller must ensure that the offset falls within the maximum stack size.
*/
static int check_stack_write(struct bpf_verifier_env *env,
int ptr_regno, int off, int size,
int value_regno, int insn_idx)
{
struct bpf_reg_state *reg = reg_state(env, ptr_regno);
struct bpf_func_state *state = func(env, reg);
int err;
if (tnum_is_const(reg->var_off)) {
off += reg->var_off.value;
err = check_stack_write_fixed_off(env, state, off, size,
value_regno, insn_idx);
} else {
/* Variable offset stack reads need more conservative handling
* than fixed offset ones.
*/
err = check_stack_write_var_off(env, state,
ptr_regno, off, size,
value_regno, insn_idx);
}
return err;
}
static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
int off, int size, enum bpf_access_type type)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_map *map = regs[regno].map_ptr;
u32 cap = bpf_map_flags_to_cap(map);
if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
map->value_size, off, size);
return -EACCES;
}
if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
map->value_size, off, size);
return -EACCES;
}
return 0;
}
/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
static int __check_mem_access(struct bpf_verifier_env *env, int regno,
int off, int size, u32 mem_size,
bool zero_size_allowed)
{
bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
struct bpf_reg_state *reg;
if (off >= 0 && size_ok && (u64)off + size <= mem_size)
return 0;
reg = &cur_regs(env)[regno];
switch (reg->type) {
case PTR_TO_MAP_KEY:
verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
mem_size, off, size);
break;
case PTR_TO_MAP_VALUE:
verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
mem_size, off, size);
break;
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
case PTR_TO_PACKET_END:
verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
off, size, regno, reg->id, off, mem_size);
break;
case PTR_TO_MEM:
default:
verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
mem_size, off, size);
}
return -EACCES;
}
/* check read/write into a memory region with possible variable offset */
static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
int off, int size, u32 mem_size,
bool zero_size_allowed)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *reg = &state->regs[regno];
int err;
/* We may have adjusted the register pointing to memory region, so we
* need to try adding each of min_value and max_value to off
* to make sure our theoretical access will be safe.
*/
if (env->log.level & BPF_LOG_LEVEL)
print_verifier_state(env, state);
/* The minimum value is only important with signed
* comparisons where we can't assume the floor of a
* value is 0. If we are using signed variables for our
* index'es we need to make sure that whatever we use
* will have a set floor within our range.
*/
if (reg->smin_value < 0 &&
(reg->smin_value == S64_MIN ||
(off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
reg->smin_value + off < 0)) {
verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
}
err = __check_mem_access(env, regno, reg->smin_value + off, size,
mem_size, zero_size_allowed);
if (err) {
verbose(env, "R%d min value is outside of the allowed memory range\n",
regno);
return err;
}
/* If we haven't set a max value then we need to bail since we can't be
* sure we won't do bad things.
* If reg->umax_value + off could overflow, treat that as unbounded too.
*/
if (reg->umax_value >= BPF_MAX_VAR_OFF) {
verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
regno);
return -EACCES;
}
err = __check_mem_access(env, regno, reg->umax_value + off, size,
mem_size, zero_size_allowed);
if (err) {
verbose(env, "R%d max value is outside of the allowed memory range\n",
regno);
return err;
}
return 0;
}
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
int off, int size, bool zero_size_allowed)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *reg = &state->regs[regno];
struct bpf_map *map = reg->map_ptr;
int err;
err = check_mem_region_access(env, regno, off, size, map->value_size,
zero_size_allowed);
if (err)
return err;
if (map_value_has_spin_lock(map)) {
u32 lock = map->spin_lock_off;
/* if any part of struct bpf_spin_lock can be touched by
* load/store reject this program.
* To check that [x1, x2) overlaps with [y1, y2)
* it is sufficient to check x1 < y2 && y1 < x2.
*/
if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
lock < reg->umax_value + off + size) {
verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
return -EACCES;
}
}
if (map_value_has_timer(map)) {
u32 t = map->timer_off;
if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
t < reg->umax_value + off + size) {
verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
return -EACCES;
}
}
return err;
}
#define MAX_PACKET_OFF 0xffff
static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
{
return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
}
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
const struct bpf_call_arg_meta *meta,
enum bpf_access_type t)
{
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
switch (prog_type) {
/* Program types only with direct read access go here! */
case BPF_PROG_TYPE_LWT_IN:
case BPF_PROG_TYPE_LWT_OUT:
case BPF_PROG_TYPE_LWT_SEG6LOCAL:
case BPF_PROG_TYPE_SK_REUSEPORT:
case BPF_PROG_TYPE_FLOW_DISSECTOR:
case BPF_PROG_TYPE_CGROUP_SKB:
if (t == BPF_WRITE)
return false;
fallthrough;
/* Program types with direct read + write access go here! */
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
case BPF_PROG_TYPE_XDP:
case BPF_PROG_TYPE_LWT_XMIT:
case BPF_PROG_TYPE_SK_SKB:
case BPF_PROG_TYPE_SK_MSG:
if (meta)
return meta->pkt_access;
env->seen_direct_write = true;
return true;
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
if (t == BPF_WRITE)
env->seen_direct_write = true;
return true;
default:
return false;
}
}
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
int size, bool zero_size_allowed)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = &regs[regno];
int err;
/* We may have added a variable offset to the packet pointer; but any
* reg->range we have comes after that. We are only checking the fixed
* offset.
*/
/* We don't allow negative numbers, because we aren't tracking enough
* detail to prove they're safe.
*/
if (reg->smin_value < 0) {
verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
}
err = reg->range < 0 ? -EINVAL :
__check_mem_access(env, regno, off, size, reg->range,
zero_size_allowed);
if (err) {
verbose(env, "R%d offset is outside of the packet\n", regno);
return err;
}
/* __check_mem_access has made sure "off + size - 1" is within u16.
* reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
* otherwise find_good_pkt_pointers would have refused to set range info
* that __check_mem_access would have rejected this pkt access.
* Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
*/
env->prog->aux->max_pkt_offset =
max_t(u32, env->prog->aux->max_pkt_offset,
off + reg->umax_value + size - 1);
return err;
}
/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
enum bpf_access_type t, enum bpf_reg_type *reg_type,
struct btf **btf, u32 *btf_id)
{
struct bpf_insn_access_aux info = {
.reg_type = *reg_type,
.log = &env->log,
};
if (env->ops->is_valid_access &&
env->ops->is_valid_access(off, size, t, env->prog, &info)) {
/* A non zero info.ctx_field_size indicates that this field is a
* candidate for later verifier transformation to load the whole
* field and then apply a mask when accessed with a narrower
* access than actual ctx access size. A zero info.ctx_field_size
* will only allow for whole field access and rejects any other
* type of narrower access.
*/
*reg_type = info.reg_type;
if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
*btf = info.btf;
*btf_id = info.btf_id;
} else {
env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
}
/* remember the offset of last byte accessed in ctx */
if (env->prog->aux->max_ctx_offset < off + size)
env->prog->aux->max_ctx_offset = off + size;
return 0;
}
verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
return -EACCES;
}
static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
int size)
{
if (size < 0 || off < 0 ||
(u64)off + size > sizeof(struct bpf_flow_keys)) {
verbose(env, "invalid access to flow keys off=%d size=%d\n",
off, size);
return -EACCES;
}
return 0;
}
static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
u32 regno, int off, int size,
enum bpf_access_type t)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = &regs[regno];
struct bpf_insn_access_aux info = {};
bool valid;
if (reg->smin_value < 0) {
verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
}
switch (reg->type) {
case PTR_TO_SOCK_COMMON:
valid = bpf_sock_common_is_valid_access(off, size, t, &info);
break;
case PTR_TO_SOCKET:
valid = bpf_sock_is_valid_access(off, size, t, &info);
break;
case PTR_TO_TCP_SOCK:
valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
break;
case PTR_TO_XDP_SOCK:
valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
break;
default:
valid = false;
}
if (valid) {
env->insn_aux_data[insn_idx].ctx_field_size =
info.ctx_field_size;
return 0;
}
verbose(env, "R%d invalid %s access off=%d size=%d\n",
regno, reg_type_str[reg->type], off, size);
return -EACCES;
}
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
}
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
const struct bpf_reg_state *reg = reg_state(env, regno);
return reg->type == PTR_TO_CTX;
}
static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
{
const struct bpf_reg_state *reg = reg_state(env, regno);
return type_is_sk_pointer(reg->type);
}
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
const struct bpf_reg_state *reg = reg_state(env, regno);
return type_is_pkt_pointer(reg->type);
}
static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
{
const struct bpf_reg_state *reg = reg_state(env, regno);
/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
return reg->type == PTR_TO_FLOW_KEYS;
}
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
int off, int size, bool strict)
{
struct tnum reg_off;
int ip_align;
/* Byte size accesses are always allowed. */
if (!strict || size == 1)
return 0;
/* For platforms that do not have a Kconfig enabling
* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
* NET_IP_ALIGN is universally set to '2'. And on platforms
* that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
* to this code only in strict mode where we want to emulate
* the NET_IP_ALIGN==2 checking. Therefore use an
* unconditional IP align value of '2'.
*/
ip_align = 2;
reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
if (!tnum_is_aligned(reg_off, size)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env,
"misaligned packet access off %d+%s+%d+%d size %d\n",
ip_align, tn_buf, reg->off, off, size);
return -EACCES;
}
return 0;
}
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
const char *pointer_desc,
int off, int size, bool strict)
{
struct tnum reg_off;
/* Byte size accesses are always allowed. */
if (!strict || size == 1)
return 0;
reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
if (!tnum_is_aligned(reg_off, size)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
pointer_desc, tn_buf, reg->off, off, size);
return -EACCES;
}
return 0;
}
static int check_ptr_alignment(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg, int off,
int size, bool strict_alignment_once)
{
bool strict = env->strict_alignment || strict_alignment_once;
const char *pointer_desc = "";
switch (reg->type) {
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
/* Special case, because of NET_IP_ALIGN. Given metadata sits
* right in front, treat it the very same way.
*/
return check_pkt_ptr_alignment(env, reg, off, size, strict);
case PTR_TO_FLOW_KEYS:
pointer_desc = "flow keys ";
break;
case PTR_TO_MAP_KEY:
pointer_desc = "key ";
break;
case PTR_TO_MAP_VALUE:
pointer_desc = "value ";
break;
case PTR_TO_CTX:
pointer_desc = "context ";
break;
case PTR_TO_STACK:
pointer_desc = "stack ";
/* The stack spill tracking logic in check_stack_write_fixed_off()
* and check_stack_read_fixed_off() relies on stack accesses being
* aligned.
*/
strict = true;
break;
case PTR_TO_SOCKET:
pointer_desc = "sock ";
break;
case PTR_TO_SOCK_COMMON:
pointer_desc = "sock_common ";
break;
case PTR_TO_TCP_SOCK:
pointer_desc = "tcp_sock ";
break;
case PTR_TO_XDP_SOCK:
pointer_desc = "xdp_sock ";
break;
default:
break;
}
return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
strict);
}
static int update_stack_depth(struct bpf_verifier_env *env,
const struct bpf_func_state *func,
int off)
{
u16 stack = env->subprog_info[func->subprogno].stack_depth;
if (stack >= -off)
return 0;
/* update known max for given subprogram */
env->subprog_info[func->subprogno].stack_depth = -off;
return 0;
}
/* starting from main bpf function walk all instructions of the function
* and recursively walk all callees that given function can call.
* Ignore jump and exit insns.
* Since recursion is prevented by check_cfg() this algorithm
* only needs a local stack of MAX_CALL_FRAMES to remember callsites
*/
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
struct bpf_subprog_info *subprog = env->subprog_info;
struct bpf_insn *insn = env->prog->insnsi;
bool tail_call_reachable = false;
int ret_insn[MAX_CALL_FRAMES];
int ret_prog[MAX_CALL_FRAMES];
int j;
process_func:
/* protect against potential stack overflow that might happen when
* bpf2bpf calls get combined with tailcalls. Limit the caller's stack
* depth for such case down to 256 so that the worst case scenario
* would result in 8k stack size (32 which is tailcall limit * 256 =
* 8k).
*
* To get the idea what might happen, see an example:
* func1 -> sub rsp, 128
* subfunc1 -> sub rsp, 256
* tailcall1 -> add rsp, 256
* func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
* subfunc2 -> sub rsp, 64
* subfunc22 -> sub rsp, 128
* tailcall2 -> add rsp, 128
* func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
*
* tailcall will unwind the current stack frame but it will not get rid
* of caller's stack as shown on the example above.
*/
if (idx && subprog[idx].has_tail_call && depth >= 256) {
verbose(env,
"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
depth);
return -EACCES;
}
/* round up to 32-bytes, since this is granularity
* of interpreter stack size
*/
depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
if (depth > MAX_BPF_STACK) {
verbose(env, "combined stack size of %d calls is %d. Too large\n",
frame + 1, depth);
return -EACCES;
}
continue_func:
subprog_end = subprog[idx + 1].start;
for (; i < subprog_end; i++) {
int next_insn;
if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
continue;
/* remember insn and function to return to */
ret_insn[frame] = i + 1;
ret_prog[frame] = idx;
/* find the callee */
next_insn = i + insn[i].imm + 1;
idx = find_subprog(env, next_insn);
if (idx < 0) {
WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
next_insn);
return -EFAULT;
}
if (subprog[idx].is_async_cb) {
if (subprog[idx].has_tail_call) {
verbose(env, "verifier bug. subprog has tail_call and async cb\n");
return -EFAULT;
}
/* async callbacks don't increase bpf prog stack size */
continue;
}
i = next_insn;
if (subprog[idx].has_tail_call)
tail_call_reachable = true;
frame++;
if (frame >= MAX_CALL_FRAMES) {
verbose(env, "the call stack of %d frames is too deep !\n",
frame);
return -E2BIG;
}
goto process_func;
}
/* if tail call got detected across bpf2bpf calls then mark each of the
* currently present subprog frames as tail call reachable subprogs;
* this info will be utilized by JIT so that we will be preserving the
* tail call counter throughout bpf2bpf calls combined with tailcalls
*/
if (tail_call_reachable)
for (j = 0; j < frame; j++)
subprog[ret_prog[j]].tail_call_reachable = true;
if (subprog[0].tail_call_reachable)
env->prog->aux->tail_call_reachable = true;
/* end of for() loop means the last insn of the 'subprog'
* was reached. Doesn't matter whether it was JA or EXIT
*/
if (frame == 0)
return 0;
depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
frame--;
i = ret_insn[frame];
idx = ret_prog[frame];
goto continue_func;
}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
static int get_callee_stack_depth(struct bpf_verifier_env *env,
const struct bpf_insn *insn, int idx)
{
int start = idx + insn->imm + 1, subprog;
subprog = find_subprog(env, start);
if (subprog < 0) {
WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
start);
return -EFAULT;
}
return env->subprog_info[subprog].stack_depth;
}
#endif
int check_ctx_reg(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg, int regno)
{
/* Access to ctx or passing it to a helper is only allowed in
* its original, unmodified form.
*/
if (reg->off) {
verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
regno, reg->off);
return -EACCES;
}
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
return -EACCES;
}
return 0;
}
static int __check_buffer_access(struct bpf_verifier_env *env,
const char *buf_info,
const struct bpf_reg_state *reg,
int regno, int off, int size)
{
if (off < 0) {
verbose(env,
"R%d invalid %s buffer access: off=%d, size=%d\n",
regno, buf_info, off, size);
return -EACCES;
}
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env,
"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
regno, off, tn_buf);
return -EACCES;
}
return 0;
}
static int check_tp_buffer_access(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
int regno, int off, int size)
{
int err;
err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
if (err)
return err;
if (off + size > env->prog->aux->max_tp_access)
env->prog->aux->max_tp_access = off + size;
return 0;
}
static int check_buffer_access(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
int regno, int off, int size,
bool zero_size_allowed,
const char *buf_info,
u32 *max_access)
{
int err;
err = __check_buffer_access(env, buf_info, reg, regno, off, size);
if (err)
return err;
if (off + size > *max_access)
*max_access = off + size;
return 0;
}
/* BPF architecture zero extends alu32 ops into 64-bit registesr */
static void zext_32_to_64(struct bpf_reg_state *reg)
{
reg->var_off = tnum_subreg(reg->var_off);
__reg_assign_32_into_64(reg);
}
/* truncate register to smaller size (in bytes)
* must be called with size < BPF_REG_SIZE
*/
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
u64 mask;
/* clear high bits in bit representation */
reg->var_off = tnum_cast(reg->var_off, size);
/* fix arithmetic bounds */
mask = ((u64)1 << (size * 8)) - 1;
if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
reg->umin_value &= mask;
reg->umax_value &= mask;
} else {
reg->umin_value = 0;
reg->umax_value = mask;
}
reg->smin_value = reg->umin_value;
reg->smax_value = reg->umax_value;
/* If size is smaller than 32bit register the 32bit register
* values are also truncated so we push 64-bit bounds into
* 32-bit bounds. Above were truncated < 32-bits already.
*/
if (size >= 4)
return;
__reg_combine_64_into_32(reg);
}
static bool bpf_map_is_rdonly(const struct bpf_map *map)
{
return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
}
static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
{
void *ptr;
u64 addr;
int err;
err = map->ops->map_direct_value_addr(map, &addr, off);
if (err)
return err;
ptr = (void *)(long)addr + off;
switch (size) {
case sizeof(u8):
*val = (u64)*(u8 *)ptr;
break;
case sizeof(u16):
*val = (u64)*(u16 *)ptr;
break;
case sizeof(u32):
*val = (u64)*(u32 *)ptr;
break;
case sizeof(u64):
*val = *(u64 *)ptr;
break;
default:
return -EINVAL;
}
return 0;
}
static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
struct bpf_reg_state *regs,
int regno, int off, int size,
enum bpf_access_type atype,
int value_regno)
{
struct bpf_reg_state *reg = regs + regno;
const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
const char *tname = btf_name_by_offset(reg->btf, t->name_off);
u32 btf_id;
int ret;
if (off < 0) {
verbose(env,
"R%d is ptr_%s invalid negative access: off=%d\n",
regno, tname, off);
return -EACCES;
}
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env,
"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
regno, tname, off, tn_buf);
return -EACCES;
}
if (env->ops->btf_struct_access) {
ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
off, size, atype, &btf_id);
} else {
if (atype != BPF_READ) {
verbose(env, "only read is supported\n");
return -EACCES;
}
ret = btf_struct_access(&env->log, reg->btf, t, off, size,
atype, &btf_id);
}
if (ret < 0)
return ret;
if (atype == BPF_READ && value_regno >= 0)
mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
return 0;
}
static int check_ptr_to_map_access(struct bpf_verifier_env *env,
struct bpf_reg_state *regs,
int regno, int off, int size,
enum bpf_access_type atype,
int value_regno)
{
struct bpf_reg_state *reg = regs + regno;
struct bpf_map *map = reg->map_ptr;
const struct btf_type *t;
const char *tname;
u32 btf_id;
int ret;
if (!btf_vmlinux) {
verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
return -ENOTSUPP;
}
if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
verbose(env, "map_ptr access not supported for map type %d\n",
map->map_type);
return -ENOTSUPP;
}
t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
tname = btf_name_by_offset(btf_vmlinux, t->name_off);
if (!env->allow_ptr_to_map_access) {
verbose(env,
"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
tname);
return -EPERM;
}
if (off < 0) {
verbose(env, "R%d is %s invalid negative access: off=%d\n",
regno, tname, off);
return -EACCES;
}
if (atype != BPF_READ) {
verbose(env, "only read from %s is supported\n", tname);
return -EACCES;
}
ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
if (ret < 0)
return ret;
if (value_regno >= 0)
mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
return 0;
}
/* Check that the stack access at the given offset is within bounds. The
* maximum valid offset is -1.
*
* The minimum valid offset is -MAX_BPF_STACK for writes, and
* -state->allocated_stack for reads.
*/
static int check_stack_slot_within_bounds(int off,
struct bpf_func_state *state,
enum bpf_access_type t)
{
int min_valid_off;
if (t == BPF_WRITE)
min_valid_off = -MAX_BPF_STACK;
else
min_valid_off = -state->allocated_stack;
if (off < min_valid_off || off > -1)
return -EACCES;
return 0;
}
/* Check that the stack access at 'regno + off' falls within the maximum stack
* bounds.
*
* 'off' includes `regno->offset`, but not its dynamic part (if any).
*/
static int check_stack_access_within_bounds(
struct bpf_verifier_env *env,
int regno, int off, int access_size,
enum stack_access_src src, enum bpf_access_type type)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = regs + regno;
struct bpf_func_state *state = func(env, reg);
int min_off, max_off;
int err;
char *err_extra;
if (src == ACCESS_HELPER)
/* We don't know if helpers are reading or writing (or both). */
err_extra = " indirect access to";
else if (type == BPF_READ)
err_extra = " read from";
else
err_extra = " write to";
if (tnum_is_const(reg->var_off)) {
min_off = reg->var_off.value + off;
if (access_size > 0)
max_off = min_off + access_size - 1;
else
max_off = min_off;
} else {
if (reg->smax_value >= BPF_MAX_VAR_OFF ||
reg->smin_value <= -BPF_MAX_VAR_OFF) {
verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
err_extra, regno);
return -EACCES;
}
min_off = reg->smin_value + off;
if (access_size > 0)
max_off = reg->smax_value + off + access_size - 1;
else
max_off = min_off;
}
err = check_stack_slot_within_bounds(min_off, state, type);
if (!err)
err = check_stack_slot_within_bounds(max_off, state, type);
if (err) {
if (tnum_is_const(reg->var_off)) {
verbose(env, "invalid%s stack R%d off=%d size=%d\n",
err_extra, regno, off, access_size);
} else {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
err_extra, regno, tn_buf, access_size);
}
}
return err;
}
/* check whether memory at (regno + off) is accessible for t = (read | write)
* if t==write, value_regno is a register which value is stored into memory
* if t==read, value_regno is a register which will receive the value from memory
* if t==write && value_regno==-1, some unknown value is stored into memory
* if t==read && value_regno==-1, don't care what we read from memory
*/
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
int off, int bpf_size, enum bpf_access_type t,
int value_regno, bool strict_alignment_once)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = regs + regno;
struct bpf_func_state *state;
int size, err = 0;
size = bpf_size_to_bytes(bpf_size);
if (size < 0)
return size;
/* alignment checks will add in reg->off themselves */
err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
if (err)
return err;
/* for access checks, reg->off is just part of off */
off += reg->off;
if (reg->type == PTR_TO_MAP_KEY) {
if (t == BPF_WRITE) {
verbose(env, "write to change key R%d not allowed\n", regno);
return -EACCES;
}
err = check_mem_region_access(env, regno, off, size,
reg->map_ptr->key_size, false);
if (err)
return err;
if (value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_MAP_VALUE) {
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into map\n", value_regno);
return -EACCES;
}
err = check_map_access_type(env, regno, off, size, t);
if (err)
return err;
err = check_map_access(env, regno, off, size, false);
if (!err && t == BPF_READ && value_regno >= 0) {
struct bpf_map *map = reg->map_ptr;
/* if map is read-only, track its contents as scalars */
if (tnum_is_const(reg->var_off) &&
bpf_map_is_rdonly(map) &&
map->ops->map_direct_value_addr) {
int map_off = off + reg->var_off.value;
u64 val = 0;
err = bpf_map_direct_read(map, map_off, size,
&val);
if (err)
return err;
regs[value_regno].type = SCALAR_VALUE;
__mark_reg_known(&regs[value_regno], val);
} else {
mark_reg_unknown(env, regs, value_regno);
}
}
} else if (reg->type == PTR_TO_MEM) {
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into mem\n", value_regno);
return -EACCES;
}
err = check_mem_region_access(env, regno, off, size,
reg->mem_size, false);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_CTX) {
enum bpf_reg_type reg_type = SCALAR_VALUE;
struct btf *btf = NULL;
u32 btf_id = 0;
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into ctx\n", value_regno);
return -EACCES;
}
err = check_ctx_reg(env, reg, regno);
if (err < 0)
return err;
err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
if (err)
verbose_linfo(env, insn_idx, "; ");
if (!err && t == BPF_READ && value_regno >= 0) {
/* ctx access returns either a scalar, or a
* PTR_TO_PACKET[_META,_END]. In the latter
* case, we know the offset is zero.
*/
if (reg_type == SCALAR_VALUE) {
mark_reg_unknown(env, regs, value_regno);
} else {
mark_reg_known_zero(env, regs,
value_regno);
if (reg_type_may_be_null(reg_type))
regs[value_regno].id = ++env->id_gen;
/* A load of ctx field could have different
* actual load size with the one encoded in the
* insn. When the dst is PTR, it is for sure not
* a sub-register.
*/
regs[value_regno].subreg_def = DEF_NOT_SUBREG;
if (reg_type == PTR_TO_BTF_ID ||
reg_type == PTR_TO_BTF_ID_OR_NULL) {
regs[value_regno].btf = btf;
regs[value_regno].btf_id = btf_id;
}
}
regs[value_regno].type = reg_type;
}
} else if (reg->type == PTR_TO_STACK) {
/* Basic bounds checks. */
err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
if (err)
return err;
state = func(env, reg);
err = update_stack_depth(env, state, off);
if (err)
return err;
if (t == BPF_READ)
err = check_stack_read(env, regno, off, size,
value_regno);
else
err = check_stack_write(env, regno, off, size,
value_regno, insn_idx);
} else if (reg_is_pkt_pointer(reg)) {
if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
verbose(env, "cannot write into packet\n");
return -EACCES;
}
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into packet\n",
value_regno);
return -EACCES;
}
err = check_packet_access(env, regno, off, size, false);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_FLOW_KEYS) {
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose(env, "R%d leaks addr into flow keys\n",
value_regno);
return -EACCES;
}
err = check_flow_keys_access(env, off, size);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (type_is_sk_pointer(reg->type)) {
if (t == BPF_WRITE) {
verbose(env, "R%d cannot write into %s\n",
regno, reg_type_str[reg->type]);
return -EACCES;
}
err = check_sock_access(env, insn_idx, regno, off, size, t);
if (!err && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_TP_BUFFER) {
err = check_tp_buffer_access(env, reg, regno, off, size);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_BTF_ID) {
err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
value_regno);
} else if (reg->type == CONST_PTR_TO_MAP) {
err = check_ptr_to_map_access(env, regs, regno, off, size, t,
value_regno);
} else if (reg->type == PTR_TO_RDONLY_BUF) {
if (t == BPF_WRITE) {
verbose(env, "R%d cannot write into %s\n",
regno, reg_type_str[reg->type]);
return -EACCES;
}
err = check_buffer_access(env, reg, regno, off, size, false,
"rdonly",
&env->prog->aux->max_rdonly_access);
if (!err && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_RDWR_BUF) {
err = check_buffer_access(env, reg, regno, off, size, false,
"rdwr",
&env->prog->aux->max_rdwr_access);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else {
verbose(env, "R%d invalid mem access '%s'\n", regno,
reg_type_str[reg->type]);
return -EACCES;
}
if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
regs[value_regno].type == SCALAR_VALUE) {
/* b/h/w load zero-extends, mark upper bits as known 0 */
coerce_reg_to_size(&regs[value_regno], size);
}
return err;
}
static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
{
int load_reg;
int err;
switch (insn->imm) {
case BPF_ADD:
case BPF_ADD | BPF_FETCH:
case BPF_AND:
case BPF_AND | BPF_FETCH:
case BPF_OR:
case BPF_OR | BPF_FETCH:
case BPF_XOR:
case BPF_XOR | BPF_FETCH:
case BPF_XCHG:
case BPF_CMPXCHG:
break;
default:
verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
return -EINVAL;
}
if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
verbose(env, "invalid atomic operand size\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
/* check src2 operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
if (insn->imm == BPF_CMPXCHG) {
/* Check comparison of R0 with memory location */
err = check_reg_arg(env, BPF_REG_0, SRC_OP);
if (err)
return err;
}
if (is_pointer_value(env, insn->src_reg)) {
verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
return -EACCES;
}
if (is_ctx_reg(env, insn->dst_reg) ||
is_pkt_reg(env, insn->dst_reg) ||
is_flow_key_reg(env, insn->dst_reg) ||
is_sk_reg(env, insn->dst_reg)) {
verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
insn->dst_reg,
reg_type_str[reg_state(env, insn->dst_reg)->type]);
return -EACCES;
}
if (insn->imm & BPF_FETCH) {
if (insn->imm == BPF_CMPXCHG)
load_reg = BPF_REG_0;
else
load_reg = insn->src_reg;
/* check and record load of old value */
err = check_reg_arg(env, load_reg, DST_OP);
if (err)
return err;
} else {
/* This instruction accesses a memory location but doesn't
* actually load it into a register.
*/
load_reg = -1;
}
/* check whether we can read the memory */
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_READ, load_reg, true);
if (err)
return err;
/* check whether we can write into the same memory */
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_WRITE, -1, true);
if (err)
return err;
return 0;
}
/* When register 'regno' is used to read the stack (either directly or through
* a helper function) make sure that it's within stack boundary and, depending
* on the access type, that all elements of the stack are initialized.
*
* 'off' includes 'regno->off', but not its dynamic part (if any).
*
* All registers that have been spilled on the stack in the slots within the
* read offsets are marked as read.
*/
static int check_stack_range_initialized(
struct bpf_verifier_env *env, int regno, int off,
int access_size, bool zero_size_allowed,
enum stack_access_src type, struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *reg = reg_state(env, regno);
struct bpf_func_state *state = func(env, reg);
int err, min_off, max_off, i, j, slot, spi;
char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
enum bpf_access_type bounds_check_type;
/* Some accesses can write anything into the stack, others are
* read-only.
*/
bool clobber = false;
if (access_size == 0 && !zero_size_allowed) {
verbose(env, "invalid zero-sized read\n");
return -EACCES;
}
if (type == ACCESS_HELPER) {
/* The bounds checks for writes are more permissive than for
* reads. However, if raw_mode is not set, we'll do extra
* checks below.
*/
bounds_check_type = BPF_WRITE;
clobber = true;
} else {
bounds_check_type = BPF_READ;
}
err = check_stack_access_within_bounds(env, regno, off, access_size,
type, bounds_check_type);
if (err)
return err;
if (tnum_is_const(reg->var_off)) {
min_off = max_off = reg->var_off.value + off;
} else {
/* Variable offset is prohibited for unprivileged mode for
* simplicity since it requires corresponding support in
* Spectre masking for stack ALU.
* See also retrieve_ptr_limit().
*/
if (!env->bypass_spec_v1) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
regno, err_extra, tn_buf);
return -EACCES;
}
/* Only initialized buffer on stack is allowed to be accessed
* with variable offset. With uninitialized buffer it's hard to
* guarantee that whole memory is marked as initialized on
* helper return since specific bounds are unknown what may
* cause uninitialized stack leaking.
*/
if (meta && meta->raw_mode)
meta = NULL;
min_off = reg->smin_value + off;
max_off = reg->smax_value + off;
}
if (meta && meta->raw_mode) {
meta->access_size = access_size;
meta->regno = regno;
return 0;
}
for (i = min_off; i < max_off + access_size; i++) {
u8 *stype;
slot = -i - 1;
spi = slot / BPF_REG_SIZE;
if (state->allocated_stack <= slot)
goto err;
stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
if (*stype == STACK_MISC)
goto mark;
if (*stype == STACK_ZERO) {
if (clobber) {
/* helper can write anything into the stack */
*stype = STACK_MISC;
}
goto mark;
}
if (state->stack[spi].slot_type[0] == STACK_SPILL &&
state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
goto mark;
if (state->stack[spi].slot_type[0] == STACK_SPILL &&
(state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
env->allow_ptr_leaks)) {
if (clobber) {
__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
for (j = 0; j < BPF_REG_SIZE; j++)
state->stack[spi].slot_type[j] = STACK_MISC;
}
goto mark;
}
err:
if (tnum_is_const(reg->var_off)) {
verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
err_extra, regno, min_off, i - min_off, access_size);
} else {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
err_extra, regno, tn_buf, i - min_off, access_size);
}
return -EACCES;
mark:
/* reading any byte out of 8-byte 'spill_slot' will cause
* the whole slot to be marked as 'read'
*/
mark_reg_read(env, &state->stack[spi].spilled_ptr,
state->stack[spi].spilled_ptr.parent,
REG_LIVE_READ64);
}
return update_stack_depth(env, state, min_off);
}
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
int access_size, bool zero_size_allowed,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
switch (reg->type) {
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
return check_packet_access(env, regno, reg->off, access_size,
zero_size_allowed);
case PTR_TO_MAP_KEY:
return check_mem_region_access(env, regno, reg->off, access_size,
reg->map_ptr->key_size, false);
case PTR_TO_MAP_VALUE:
if (check_map_access_type(env, regno, reg->off, access_size,
meta && meta->raw_mode ? BPF_WRITE :
BPF_READ))
return -EACCES;
return check_map_access(env, regno, reg->off, access_size,
zero_size_allowed);
case PTR_TO_MEM:
return check_mem_region_access(env, regno, reg->off,
access_size, reg->mem_size,
zero_size_allowed);
case PTR_TO_RDONLY_BUF:
if (meta && meta->raw_mode)
return -EACCES;
return check_buffer_access(env, reg, regno, reg->off,
access_size, zero_size_allowed,
"rdonly",
&env->prog->aux->max_rdonly_access);
case PTR_TO_RDWR_BUF:
return check_buffer_access(env, reg, regno, reg->off,
access_size, zero_size_allowed,
"rdwr",
&env->prog->aux->max_rdwr_access);
case PTR_TO_STACK:
return check_stack_range_initialized(
env,
regno, reg->off, access_size,
zero_size_allowed, ACCESS_HELPER, meta);
default: /* scalar_value or invalid ptr */
/* Allow zero-byte read from NULL, regardless of pointer type */
if (zero_size_allowed && access_size == 0 &&
register_is_null(reg))
return 0;
verbose(env, "R%d type=%s expected=%s\n", regno,
reg_type_str[reg->type],
reg_type_str[PTR_TO_STACK]);
return -EACCES;
}
}
int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
u32 regno, u32 mem_size)
{
if (register_is_null(reg))
return 0;
if (reg_type_may_be_null(reg->type)) {
/* Assuming that the register contains a value check if the memory
* access is safe. Temporarily save and restore the register's state as
* the conversion shouldn't be visible to a caller.
*/
const struct bpf_reg_state saved_reg = *reg;
int rv;
mark_ptr_not_null_reg(reg);
rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
*reg = saved_reg;
return rv;
}
return check_helper_mem_access(env, regno, mem_size, true, NULL);
}
/* Implementation details:
* bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
* Two bpf_map_lookups (even with the same key) will have different reg->id.
* For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
* value_or_null->value transition, since the verifier only cares about
* the range of access to valid map value pointer and doesn't care about actual
* address of the map element.
* For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
* reg->id > 0 after value_or_null->value transition. By doing so
* two bpf_map_lookups will be considered two different pointers that
* point to different bpf_spin_locks.
* The verifier allows taking only one bpf_spin_lock at a time to avoid
* dead-locks.
* Since only one bpf_spin_lock is allowed the checks are simpler than
* reg_is_refcounted() logic. The verifier needs to remember only
* one spin_lock instead of array of acquired_refs.
* cur_state->active_spin_lock remembers which map value element got locked
* and clears it after bpf_spin_unlock.
*/
static int process_spin_lock(struct bpf_verifier_env *env, int regno,
bool is_lock)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
struct bpf_verifier_state *cur = env->cur_state;
bool is_const = tnum_is_const(reg->var_off);
struct bpf_map *map = reg->map_ptr;
u64 val = reg->var_off.value;
if (!is_const) {
verbose(env,
"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
regno);
return -EINVAL;
}
if (!map->btf) {
verbose(env,
"map '%s' has to have BTF in order to use bpf_spin_lock\n",
map->name);
return -EINVAL;
}
if (!map_value_has_spin_lock(map)) {
if (map->spin_lock_off == -E2BIG)
verbose(env,
"map '%s' has more than one 'struct bpf_spin_lock'\n",
map->name);
else if (map->spin_lock_off == -ENOENT)
verbose(env,
"map '%s' doesn't have 'struct bpf_spin_lock'\n",
map->name);
else
verbose(env,
"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
map->name);
return -EINVAL;
}
if (map->spin_lock_off != val + reg->off) {
verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
val + reg->off);
return -EINVAL;
}
if (is_lock) {
if (cur->active_spin_lock) {
verbose(env,
"Locking two bpf_spin_locks are not allowed\n");
return -EINVAL;
}
cur->active_spin_lock = reg->id;
} else {
if (!cur->active_spin_lock) {
verbose(env, "bpf_spin_unlock without taking a lock\n");
return -EINVAL;
}
if (cur->active_spin_lock != reg->id) {
verbose(env, "bpf_spin_unlock of different lock\n");
return -EINVAL;
}
cur->active_spin_lock = 0;
}
return 0;
}
static int process_timer_func(struct bpf_verifier_env *env, int regno,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
bool is_const = tnum_is_const(reg->var_off);
struct bpf_map *map = reg->map_ptr;
u64 val = reg->var_off.value;
if (!is_const) {
verbose(env,
"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
regno);
return -EINVAL;
}
if (!map->btf) {
verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
map->name);
return -EINVAL;
}
if (!map_value_has_timer(map)) {
if (map->timer_off == -E2BIG)
verbose(env,
"map '%s' has more than one 'struct bpf_timer'\n",
map->name);
else if (map->timer_off == -ENOENT)
verbose(env,
"map '%s' doesn't have 'struct bpf_timer'\n",
map->name);
else
verbose(env,
"map '%s' is not a struct type or bpf_timer is mangled\n",
map->name);
return -EINVAL;
}
if (map->timer_off != val + reg->off) {
verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
val + reg->off, map->timer_off);
return -EINVAL;
}
if (meta->map_ptr) {
verbose(env, "verifier bug. Two map pointers in a timer helper\n");
return -EFAULT;
}
meta->map_uid = reg->map_uid;
meta->map_ptr = map;
return 0;
}
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
return type == ARG_PTR_TO_MEM ||
type == ARG_PTR_TO_MEM_OR_NULL ||
type == ARG_PTR_TO_UNINIT_MEM;
}
static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
return type == ARG_CONST_SIZE ||
type == ARG_CONST_SIZE_OR_ZERO;
}
static bool arg_type_is_alloc_size(enum bpf_arg_type type)
{
return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
}
static bool arg_type_is_int_ptr(enum bpf_arg_type type)
{
return type == ARG_PTR_TO_INT ||
type == ARG_PTR_TO_LONG;
}
static int int_ptr_type_to_size(enum bpf_arg_type type)
{
if (type == ARG_PTR_TO_INT)
return sizeof(u32);
else if (type == ARG_PTR_TO_LONG)
return sizeof(u64);
return -EINVAL;
}
static int resolve_map_arg_type(struct bpf_verifier_env *env,
const struct bpf_call_arg_meta *meta,
enum bpf_arg_type *arg_type)
{
if (!meta->map_ptr) {
/* kernel subsystem misconfigured verifier */
verbose(env, "invalid map_ptr to access map->type\n");
return -EACCES;
}
switch (meta->map_ptr->map_type) {
case BPF_MAP_TYPE_SOCKMAP:
case BPF_MAP_TYPE_SOCKHASH:
if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
} else {
verbose(env, "invalid arg_type for sockmap/sockhash\n");
return -EINVAL;
}
break;
default:
break;
}
return 0;
}
struct bpf_reg_types {
const enum bpf_reg_type types[10];
u32 *btf_id;
};
static const struct bpf_reg_types map_key_value_types = {
.types = {
PTR_TO_STACK,
PTR_TO_PACKET,
PTR_TO_PACKET_META,
PTR_TO_MAP_KEY,
PTR_TO_MAP_VALUE,
},
};
static const struct bpf_reg_types sock_types = {
.types = {
PTR_TO_SOCK_COMMON,
PTR_TO_SOCKET,
PTR_TO_TCP_SOCK,
PTR_TO_XDP_SOCK,
},
};
#ifdef CONFIG_NET
static const struct bpf_reg_types btf_id_sock_common_types = {
.types = {
PTR_TO_SOCK_COMMON,
PTR_TO_SOCKET,
PTR_TO_TCP_SOCK,
PTR_TO_XDP_SOCK,
PTR_TO_BTF_ID,
},
.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
};
#endif
static const struct bpf_reg_types mem_types = {
.types = {
PTR_TO_STACK,
PTR_TO_PACKET,
PTR_TO_PACKET_META,
PTR_TO_MAP_KEY,
PTR_TO_MAP_VALUE,
PTR_TO_MEM,
PTR_TO_RDONLY_BUF,
PTR_TO_RDWR_BUF,
},
};
static const struct bpf_reg_types int_ptr_types = {
.types = {
PTR_TO_STACK,
PTR_TO_PACKET,
PTR_TO_PACKET_META,
PTR_TO_MAP_KEY,
PTR_TO_MAP_VALUE,
},
};
static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
[ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
[ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
[ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
[ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
[ARG_CONST_SIZE] = &scalar_types,
[ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
[ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
[ARG_CONST_MAP_PTR] = &const_map_ptr_types,
[ARG_PTR_TO_CTX] = &context_types,
[ARG_PTR_TO_CTX_OR_NULL] = &context_types,
[ARG_PTR_TO_SOCK_COMMON] = &sock_types,
#ifdef CONFIG_NET
[ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
#endif
[ARG_PTR_TO_SOCKET] = &fullsock_types,
[ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
[ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
[ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
[ARG_PTR_TO_MEM] = &mem_types,
[ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
[ARG_PTR_TO_UNINIT_MEM] = &mem_types,
[ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
[ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
[ARG_PTR_TO_INT] = &int_ptr_types,
[ARG_PTR_TO_LONG] = &int_ptr_types,
[ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
[ARG_PTR_TO_FUNC] = &func_ptr_types,
[ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types,
[ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
[ARG_PTR_TO_TIMER] = &timer_types,
};
static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
enum bpf_arg_type arg_type,
const u32 *arg_btf_id)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
enum bpf_reg_type expected, type = reg->type;
const struct bpf_reg_types *compatible;
int i, j;
compatible = compatible_reg_types[arg_type];
if (!compatible) {
verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
return -EFAULT;
}
for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
expected = compatible->types[i];
if (expected == NOT_INIT)
break;
if (type == expected)
goto found;
}
verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
for (j = 0; j + 1 < i; j++)
verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
return -EACCES;
found:
if (type == PTR_TO_BTF_ID) {
if (!arg_btf_id) {
if (!compatible->btf_id) {
verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
return -EFAULT;
}
arg_btf_id = compatible->btf_id;
}
if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
btf_vmlinux, *arg_btf_id)) {
verbose(env, "R%d is of type %s but %s is expected\n",
regno, kernel_type_name(reg->btf, reg->btf_id),
kernel_type_name(btf_vmlinux, *arg_btf_id));
return -EACCES;
}
if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
regno);
return -EACCES;
}
}
return 0;
}
static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
struct bpf_call_arg_meta *meta,
const struct bpf_func_proto *fn)
{
u32 regno = BPF_REG_1 + arg;
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
enum bpf_arg_type arg_type = fn->arg_type[arg];
enum bpf_reg_type type = reg->type;
int err = 0;
if (arg_type == ARG_DONTCARE)
return 0;
err = check_reg_arg(env, regno, SRC_OP);
if (err)
return err;
if (arg_type == ARG_ANYTHING) {
if (is_pointer_value(env, regno)) {
verbose(env, "R%d leaks addr into helper function\n",
regno);
return -EACCES;
}
return 0;
}
if (type_is_pkt_pointer(type) &&
!may_access_direct_pkt_data(env, meta, BPF_READ)) {
verbose(env, "helper access to the packet is not allowed\n");
return -EACCES;
}
if (arg_type == ARG_PTR_TO_MAP_VALUE ||
arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
err = resolve_map_arg_type(env, meta, &arg_type);
if (err)
return err;
}
if (register_is_null(reg) && arg_type_may_be_null(arg_type))
/* A NULL register has a SCALAR_VALUE type, so skip
* type checking.
*/
goto skip_type_check;
err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
if (err)
return err;
if (type == PTR_TO_CTX) {
err = check_ctx_reg(env, reg, regno);
if (err < 0)
return err;
}
skip_type_check:
if (reg->ref_obj_id) {
if (meta->ref_obj_id) {
verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
regno, reg->ref_obj_id,
meta->ref_obj_id);
return -EFAULT;
}
meta->ref_obj_id = reg->ref_obj_id;
}
if (arg_type == ARG_CONST_MAP_PTR) {
/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
if (meta->map_ptr) {
/* Use map_uid (which is unique id of inner map) to reject:
* inner_map1 = bpf_map_lookup_elem(outer_map, key1)
* inner_map2 = bpf_map_lookup_elem(outer_map, key2)
* if (inner_map1 && inner_map2) {
* timer = bpf_map_lookup_elem(inner_map1);
* if (timer)
* // mismatch would have been allowed
* bpf_timer_init(timer, inner_map2);
* }
*
* Comparing map_ptr is enough to distinguish normal and outer maps.
*/
if (meta->map_ptr != reg->map_ptr ||
meta->map_uid != reg->map_uid) {
verbose(env,
"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
meta->map_uid, reg->map_uid);
return -EINVAL;
}
}
meta->map_ptr = reg->map_ptr;
meta->map_uid = reg->map_uid;
} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
/* bpf_map_xxx(..., map_ptr, ..., key) call:
* check that [key, key + map->key_size) are within
* stack limits and initialized
*/
if (!meta->map_ptr) {
/* in function declaration map_ptr must come before
* map_key, so that it's verified and known before
* we have to check map_key here. Otherwise it means
* that kernel subsystem misconfigured verifier
*/
verbose(env, "invalid map_ptr to access map->key\n");
return -EACCES;
}
err = check_helper_mem_access(env, regno,
meta->map_ptr->key_size, false,
NULL);
} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
(arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
!register_is_null(reg)) ||
arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
/* bpf_map_xxx(..., map_ptr, ..., value) call:
* check [value, value + map->value_size) validity
*/
if (!meta->map_ptr) {
/* kernel subsystem misconfigured verifier */
verbose(env, "invalid map_ptr to access map->value\n");
return -EACCES;
}
meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
err = check_helper_mem_access(env, regno,
meta->map_ptr->value_size, false,
meta);
} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
if (!reg->btf_id) {
verbose(env, "Helper has invalid btf_id in R%d\n", regno);
return -EACCES;
}
meta->ret_btf = reg->btf;
meta->ret_btf_id = reg->btf_id;
} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
if (meta->func_id == BPF_FUNC_spin_lock) {
if (process_spin_lock(env, regno, true))
return -EACCES;
} else if (meta->func_id == BPF_FUNC_spin_unlock) {
if (process_spin_lock(env, regno, false))
return -EACCES;
} else {
verbose(env, "verifier internal error\n");
return -EFAULT;
}
} else if (arg_type == ARG_PTR_TO_TIMER) {
if (process_timer_func(env, regno, meta))
return -EACCES;
} else if (arg_type == ARG_PTR_TO_FUNC) {
meta->subprogno = reg->subprogno;
} else if (arg_type_is_mem_ptr(arg_type)) {
/* The access to this pointer is only checked when we hit the
* next is_mem_size argument below.
*/
meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
} else if (arg_type_is_mem_size(arg_type)) {
bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
/* This is used to refine r0 return value bounds for helpers
* that enforce this value as an upper bound on return values.
* See do_refine_retval_range() for helpers that can refine
* the return value. C type of helper is u32 so we pull register
* bound from umax_value however, if negative verifier errors
* out. Only upper bounds can be learned because retval is an
* int type and negative retvals are allowed.
*/
meta->msize_max_value = reg->umax_value;
/* The register is SCALAR_VALUE; the access check
* happens using its boundaries.
*/
if (!tnum_is_const(reg->var_off))
/* For unprivileged variable accesses, disable raw
* mode so that the program is required to
* initialize all the memory that the helper could
* just partially fill up.
*/
meta = NULL;
if (reg->smin_value < 0) {
verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
regno);
return -EACCES;
}
if (reg->umin_value == 0) {
err = check_helper_mem_access(env, regno - 1, 0,
zero_size_allowed,
meta);
if (err)
return err;
}
if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
regno);
return -EACCES;
}
err = check_helper_mem_access(env, regno - 1,
reg->umax_value,
zero_size_allowed, meta);
if (!err)
err = mark_chain_precision(env, regno);
} else if (arg_type_is_alloc_size(arg_type)) {
if (!tnum_is_const(reg->var_off)) {
verbose(env, "R%d is not a known constant'\n",
regno);
return -EACCES;
}
meta->mem_size = reg->var_off.value;
} else if (arg_type_is_int_ptr(arg_type)) {
int size = int_ptr_type_to_size(arg_type);
err = check_helper_mem_access(env, regno, size, false, meta);
if (err)
return err;
err = check_ptr_alignment(env, reg, 0, size, true);
} else if (arg_type == ARG_PTR_TO_CONST_STR) {
struct bpf_map *map = reg->map_ptr;
int map_off;
u64 map_addr;
char *str_ptr;
if (!bpf_map_is_rdonly(map)) {
verbose(env, "R%d does not point to a readonly map'\n", regno);
return -EACCES;
}
if (!tnum_is_const(reg->var_off)) {
verbose(env, "R%d is not a constant address'\n", regno);
return -EACCES;
}
if (!map->ops->map_direct_value_addr) {
verbose(env, "no direct value access support for this map type\n");
return -EACCES;
}
err = check_map_access(env, regno, reg->off,
map->value_size - reg->off, false);
if (err)
return err;
map_off = reg->off + reg->var_off.value;
err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
if (err) {
verbose(env, "direct value access on string failed\n");
return err;
}
str_ptr = (char *)(long)(map_addr);
if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
verbose(env, "string is not zero-terminated\n");
return -EINVAL;
}
}
return err;
}
static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
{
enum bpf_attach_type eatype = env->prog->expected_attach_type;
enum bpf_prog_type type = resolve_prog_type(env->prog);
if (func_id != BPF_FUNC_map_update_elem)
return false;
/* It's not possible to get access to a locked struct sock in these
* contexts, so updating is safe.
*/
switch (type) {
case BPF_PROG_TYPE_TRACING:
if (eatype == BPF_TRACE_ITER)
return true;
break;
case BPF_PROG_TYPE_SOCKET_FILTER:
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
case BPF_PROG_TYPE_XDP:
case BPF_PROG_TYPE_SK_REUSEPORT:
case BPF_PROG_TYPE_FLOW_DISSECTOR:
case BPF_PROG_TYPE_SK_LOOKUP:
return true;
default:
break;
}
verbose(env, "cannot update sockmap in this context\n");
return false;
}
static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
{
return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
}
static int check_map_func_compatibility(struct bpf_verifier_env *env,
struct bpf_map *map, int func_id)
{
if (!map)
return 0;
/* We need a two way check, first is from map perspective ... */
switch (map->map_type) {
case BPF_MAP_TYPE_PROG_ARRAY:
if (func_id != BPF_FUNC_tail_call)
goto error;
break;
case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
if (func_id != BPF_FUNC_perf_event_read &&
func_id != BPF_FUNC_perf_event_output &&
func_id != BPF_FUNC_skb_output &&
func_id != BPF_FUNC_perf_event_read_value &&
func_id != BPF_FUNC_xdp_output)
goto error;
break;
case BPF_MAP_TYPE_RINGBUF:
if (func_id != BPF_FUNC_ringbuf_output &&
func_id != BPF_FUNC_ringbuf_reserve &&
func_id != BPF_FUNC_ringbuf_submit &&
func_id != BPF_FUNC_ringbuf_discard &&
func_id != BPF_FUNC_ringbuf_query)
goto error;
break;
case BPF_MAP_TYPE_STACK_TRACE:
if (func_id != BPF_FUNC_get_stackid)
goto error;
break;
case BPF_MAP_TYPE_CGROUP_ARRAY:
if (func_id != BPF_FUNC_skb_under_cgroup &&
func_id != BPF_FUNC_current_task_under_cgroup)
goto error;
break;
case BPF_MAP_TYPE_CGROUP_STORAGE:
case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
if (func_id != BPF_FUNC_get_local_storage)
goto error;
break;
case BPF_MAP_TYPE_DEVMAP:
case BPF_MAP_TYPE_DEVMAP_HASH:
if (func_id != BPF_FUNC_redirect_map &&
func_id != BPF_FUNC_map_lookup_elem)
goto error;
break;
/* Restrict bpf side of cpumap and xskmap, open when use-cases
* appear.
*/
case BPF_MAP_TYPE_CPUMAP:
if (func_id != BPF_FUNC_redirect_map)
goto error;
break;
case BPF_MAP_TYPE_XSKMAP:
if (func_id != BPF_FUNC_redirect_map &&
func_id != BPF_FUNC_map_lookup_elem)
goto error;
break;
case BPF_MAP_TYPE_ARRAY_OF_MAPS:
case BPF_MAP_TYPE_HASH_OF_MAPS:
if (func_id != BPF_FUNC_map_lookup_elem)
goto error;
break;
case BPF_MAP_TYPE_SOCKMAP:
if (func_id != BPF_FUNC_sk_redirect_map &&
func_id != BPF_FUNC_sock_map_update &&
func_id != BPF_FUNC_map_delete_elem &&
func_id != BPF_FUNC_msg_redirect_map &&
func_id != BPF_FUNC_sk_select_reuseport &&
func_id != BPF_FUNC_map_lookup_elem &&
!may_update_sockmap(env, func_id))
goto error;
break;
case BPF_MAP_TYPE_SOCKHASH:
if (func_id != BPF_FUNC_sk_redirect_hash &&
func_id != BPF_FUNC_sock_hash_update &&
func_id != BPF_FUNC_map_delete_elem &&
func_id != BPF_FUNC_msg_redirect_hash &&
func_id != BPF_FUNC_sk_select_reuseport &&
func_id != BPF_FUNC_map_lookup_elem &&
!may_update_sockmap(env, func_id))
goto error;
break;
case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
if (func_id != BPF_FUNC_sk_select_reuseport)
goto error;
break;
case BPF_MAP_TYPE_QUEUE:
case BPF_MAP_TYPE_STACK:
if (func_id != BPF_FUNC_map_peek_elem &&
func_id != BPF_FUNC_map_pop_elem &&
func_id != BPF_FUNC_map_push_elem)
goto error;
break;
case BPF_MAP_TYPE_SK_STORAGE:
if (func_id != BPF_FUNC_sk_storage_get &&
func_id != BPF_FUNC_sk_storage_delete)
goto error;
break;
case BPF_MAP_TYPE_INODE_STORAGE:
if (func_id != BPF_FUNC_inode_storage_get &&
func_id != BPF_FUNC_inode_storage_delete)
goto error;
break;
case BPF_MAP_TYPE_TASK_STORAGE:
if (func_id != BPF_FUNC_task_storage_get &&
func_id != BPF_FUNC_task_storage_delete)
goto error;
break;
default:
break;
}
/* ... and second from the function itself. */
switch (func_id) {
case BPF_FUNC_tail_call:
if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
goto error;
if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
return -EINVAL;
}
break;
case BPF_FUNC_perf_event_read:
case BPF_FUNC_perf_event_output:
case BPF_FUNC_perf_event_read_value:
case BPF_FUNC_skb_output:
case BPF_FUNC_xdp_output:
if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
goto error;
break;
case BPF_FUNC_get_stackid:
if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
goto error;
break;
case BPF_FUNC_current_task_under_cgroup:
case BPF_FUNC_skb_under_cgroup:
if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
goto error;
break;
case BPF_FUNC_redirect_map:
if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
map->map_type != BPF_MAP_TYPE_CPUMAP &&
map->map_type != BPF_MAP_TYPE_XSKMAP)
goto error;
break;
case BPF_FUNC_sk_redirect_map:
case BPF_FUNC_msg_redirect_map:
case BPF_FUNC_sock_map_update:
if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
goto error;
break;
case BPF_FUNC_sk_redirect_hash:
case BPF_FUNC_msg_redirect_hash:
case BPF_FUNC_sock_hash_update:
if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
goto error;
break;
case BPF_FUNC_get_local_storage:
if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
goto error;
break;
case BPF_FUNC_sk_select_reuseport:
if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
map->map_type != BPF_MAP_TYPE_SOCKMAP &&
map->map_type != BPF_MAP_TYPE_SOCKHASH)
goto error;
break;
case BPF_FUNC_map_peek_elem:
case BPF_FUNC_map_pop_elem:
case BPF_FUNC_map_push_elem:
if (map->map_type != BPF_MAP_TYPE_QUEUE &&
map->map_type != BPF_MAP_TYPE_STACK)
goto error;
break;
case BPF_FUNC_sk_storage_get:
case BPF_FUNC_sk_storage_delete:
if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
goto error;
break;
case BPF_FUNC_inode_storage_get:
case BPF_FUNC_inode_storage_delete:
if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
goto error;
break;
case BPF_FUNC_task_storage_get:
case BPF_FUNC_task_storage_delete:
if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
goto error;
break;
default:
break;
}
return 0;
error:
verbose(env, "cannot pass map_type %d into func %s#%d\n",
map->map_type, func_id_name(func_id), func_id);
return -EINVAL;
}
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
{
int count = 0;
if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
count++;
if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
count++;
if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
count++;
if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
count++;
if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
count++;
/* We only support one arg being in raw mode at the moment,
* which is sufficient for the helper functions we have
* right now.
*/
return count <= 1;
}
static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
enum bpf_arg_type arg_next)
{
return (arg_type_is_mem_ptr(arg_curr) &&
!arg_type_is_mem_size(arg_next)) ||
(!arg_type_is_mem_ptr(arg_curr) &&
arg_type_is_mem_size(arg_next));
}
static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
/* bpf_xxx(..., buf, len) call will access 'len'
* bytes from memory 'buf'. Both arg types need
* to be paired, so make sure there's no buggy
* helper function specification.
*/
if (arg_type_is_mem_size(fn->arg1_type) ||
arg_type_is_mem_ptr(fn->arg5_type) ||
check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
return false;
return true;
}
static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
{
int count = 0;
if (arg_type_may_be_refcounted(fn->arg1_type))
count++;
if (arg_type_may_be_refcounted(fn->arg2_type))
count++;
if (arg_type_may_be_refcounted(fn->arg3_type))
count++;
if (arg_type_may_be_refcounted(fn->arg4_type))
count++;
if (arg_type_may_be_refcounted(fn->arg5_type))
count++;
/* A reference acquiring function cannot acquire
* another refcounted ptr.
*/
if (may_be_acquire_function(func_id) && count)
return false;
/* We only support one arg being unreferenced at the moment,
* which is sufficient for the helper functions we have right now.
*/
return count <= 1;
}
static bool check_btf_id_ok(const struct bpf_func_proto *fn)
{
int i;
for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
return false;
if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
return false;
}
return true;
}
static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
{
return check_raw_mode_ok(fn) &&
check_arg_pair_ok(fn) &&
check_btf_id_ok(fn) &&
check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
}
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
* are now invalid, so turn them into unknown SCALAR_VALUE.
*/
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
struct bpf_func_state *state)
{
struct bpf_reg_state *regs = state->regs, *reg;
int i;
for (i = 0; i < MAX_BPF_REG; i++)
if (reg_is_pkt_pointer_any(&regs[i]))
mark_reg_unknown(env, regs, i);
bpf_for_each_spilled_reg(i, state, reg) {
if (!reg)
continue;
if (reg_is_pkt_pointer_any(reg))
__mark_reg_unknown(env, reg);
}
}
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
struct bpf_verifier_state *vstate = env->cur_state;
int i;
for (i = 0; i <= vstate->curframe; i++)
__clear_all_pkt_pointers(env, vstate->frame[i]);
}
enum {
AT_PKT_END = -1,
BEYOND_PKT_END = -2,
};
static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
{
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *reg = &state->regs[regn];
if (reg->type != PTR_TO_PACKET)
/* PTR_TO_PACKET_META is not supported yet */
return;
/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
* How far beyond pkt_end it goes is unknown.
* if (!range_open) it's the case of pkt >= pkt_end
* if (range_open) it's the case of pkt > pkt_end
* hence this pointer is at least 1 byte bigger than pkt_end
*/
if (range_open)
reg->range = BEYOND_PKT_END;
else
reg->range = AT_PKT_END;
}
static void release_reg_references(struct bpf_verifier_env *env,
struct bpf_func_state *state,
int ref_obj_id)
{
struct bpf_reg_state *regs = state->regs, *reg;
int i;
for (i = 0; i < MAX_BPF_REG; i++)
if (regs[i].ref_obj_id == ref_obj_id)
mark_reg_unknown(env, regs, i);
bpf_for_each_spilled_reg(i, state, reg) {
if (!reg)
continue;
if (reg->ref_obj_id == ref_obj_id)
__mark_reg_unknown(env, reg);
}
}
/* The pointer with the specified id has released its reference to kernel
* resources. Identify all copies of the same pointer and clear the reference.
*/
static int release_reference(struct bpf_verifier_env *env,
int ref_obj_id)
{
struct bpf_verifier_state *vstate = env->cur_state;
int err;
int i;
err = release_reference_state(cur_func(env), ref_obj_id);
if (err)
return err;
for (i = 0; i <= vstate->curframe; i++)
release_reg_references(env, vstate->frame[i], ref_obj_id);
return 0;
}
static void clear_caller_saved_regs(struct bpf_verifier_env *env,
struct bpf_reg_state *regs)
{
int i;
/* after the call registers r0 - r5 were scratched */
for (i = 0; i < CALLER_SAVED_REGS; i++) {
mark_reg_not_init(env, regs, caller_saved[i]);
check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
}
}
typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee,
int insn_idx);
static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
int *insn_idx, int subprog,
set_callee_state_fn set_callee_state_cb)
{
struct bpf_verifier_state *state = env->cur_state;
struct bpf_func_info_aux *func_info_aux;
struct bpf_func_state *caller, *callee;
int err;
bool is_global = false;
if (state->curframe + 1 >= MAX_CALL_FRAMES) {
verbose(env, "the call stack of %d frames is too deep\n",
state->curframe + 2);
return -E2BIG;
}
caller = state->frame[state->curframe];
if (state->frame[state->curframe + 1]) {
verbose(env, "verifier bug. Frame %d already allocated\n",
state->curframe + 1);
return -EFAULT;
}
func_info_aux = env->prog->aux->func_info_aux;
if (func_info_aux)
is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
err = btf_check_subprog_arg_match(env, subprog, caller->regs);
if (err == -EFAULT)
return err;
if (is_global) {
if (err) {
verbose(env, "Caller passes invalid args into func#%d\n",
subprog);
return err;
} else {
if (env->log.level & BPF_LOG_LEVEL)
verbose(env,
"Func#%d is global and valid. Skipping.\n",
subprog);
clear_caller_saved_regs(env, caller->regs);
/* All global functions return a 64-bit SCALAR_VALUE */
mark_reg_unknown(env, caller->regs, BPF_REG_0);
caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
/* continue with next insn after call */
return 0;
}
}
if (insn->code == (BPF_JMP | BPF_CALL) &&
insn->imm == BPF_FUNC_timer_set_callback) {
struct bpf_verifier_state *async_cb;
/* there is no real recursion here. timer callbacks are async */
env->subprog_info[subprog].is_async_cb = true;
async_cb = push_async_cb(env, env->subprog_info[subprog].start,
*insn_idx, subprog);
if (!async_cb)
return -EFAULT;
callee = async_cb->frame[0];
callee->async_entry_cnt = caller->async_entry_cnt + 1;
/* Convert bpf_timer_set_callback() args into timer callback args */
err = set_callee_state_cb(env, caller, callee, *insn_idx);
if (err)
return err;
clear_caller_saved_regs(env, caller->regs);
mark_reg_unknown(env, caller->regs, BPF_REG_0);
caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
/* continue with next insn after call */
return 0;
}
callee = kzalloc(sizeof(*callee), GFP_KERNEL);
if (!callee)
return -ENOMEM;
state->frame[state->curframe + 1] = callee;
/* callee cannot access r0, r6 - r9 for reading and has to write
* into its own stack before reading from it.
* callee can read/write into caller's stack
*/
init_func_state(env, callee,
/* remember the callsite, it will be used by bpf_exit */
*insn_idx /* callsite */,
state->curframe + 1 /* frameno within this callchain */,
subprog /* subprog number within this prog */);
/* Transfer references to the callee */
err = copy_reference_state(callee, caller);
if (err)
return err;
err = set_callee_state_cb(env, caller, callee, *insn_idx);
if (err)
return err;
clear_caller_saved_regs(env, caller->regs);
/* only increment it after check_reg_arg() finished */
state->curframe++;
/* and go analyze first insn of the callee */
*insn_idx = env->subprog_info[subprog].start - 1;
if (env->log.level & BPF_LOG_LEVEL) {
verbose(env, "caller:\n");
print_verifier_state(env, caller);
verbose(env, "callee:\n");
print_verifier_state(env, callee);
}
return 0;
}
int map_set_for_each_callback_args(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee)
{
/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
* void *callback_ctx, u64 flags);
* callback_fn(struct bpf_map *map, void *key, void *value,
* void *callback_ctx);
*/
callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
/* pointer to stack or null */
callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
/* unused */
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
return 0;
}
static int set_callee_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee, int insn_idx)
{
int i;
/* copy r1 - r5 args that callee can access. The copy includes parent
* pointers, which connects us up to the liveness chain
*/
for (i = BPF_REG_1; i <= BPF_REG_5; i++)
callee->regs[i] = caller->regs[i];
return 0;
}
static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
int *insn_idx)
{
int subprog, target_insn;
target_insn = *insn_idx + insn->imm + 1;
subprog = find_subprog(env, target_insn);
if (subprog < 0) {
verbose(env, "verifier bug. No program starts at insn %d\n",
target_insn);
return -EFAULT;
}
return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
}
static int set_map_elem_callback_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee,
int insn_idx)
{
struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
struct bpf_map *map;
int err;
if (bpf_map_ptr_poisoned(insn_aux)) {
verbose(env, "tail_call abusing map_ptr\n");
return -EINVAL;
}
map = BPF_MAP_PTR(insn_aux->map_ptr_state);
if (!map->ops->map_set_for_each_callback_args ||
!map->ops->map_for_each_callback) {
verbose(env, "callback function not allowed for map\n");
return -ENOTSUPP;
}
err = map->ops->map_set_for_each_callback_args(env, caller, callee);
if (err)
return err;
callee->in_callback_fn = true;
return 0;
}
static int set_timer_callback_state(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee,
int insn_idx)
{
struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
* callback_fn(struct bpf_map *map, void *key, void *value);
*/
callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
callee->regs[BPF_REG_1].map_ptr = map_ptr;
callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
callee->regs[BPF_REG_2].map_ptr = map_ptr;
callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
callee->regs[BPF_REG_3].map_ptr = map_ptr;
/* unused */
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
callee->in_async_callback_fn = true;
return 0;
}
static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
struct bpf_verifier_state *state = env->cur_state;
struct bpf_func_state *caller, *callee;
struct bpf_reg_state *r0;
int err;
callee = state->frame[state->curframe];
r0 = &callee->regs[BPF_REG_0];
if (r0->type == PTR_TO_STACK) {
/* technically it's ok to return caller's stack pointer
* (or caller's caller's pointer) back to the caller,
* since these pointers are valid. Only current stack
* pointer will be invalid as soon as function exits,
* but let's be conservative
*/
verbose(env, "cannot return stack pointer to the caller\n");
return -EINVAL;
}
state->curframe--;
caller = state->frame[state->curframe];
if (callee->in_callback_fn) {
/* enforce R0 return value range [0, 1]. */
struct tnum range = tnum_range(0, 1);
if (r0->type != SCALAR_VALUE) {
verbose(env, "R0 not a scalar value\n");
return -EACCES;
}
if (!tnum_in(range, r0->var_off)) {
verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
return -EINVAL;
}
} else {
/* return to the caller whatever r0 had in the callee */
caller->regs[BPF_REG_0] = *r0;
}
/* Transfer references to the caller */
err = copy_reference_state(caller, callee);
if (err)
return err;
*insn_idx = callee->callsite + 1;
if (env->log.level & BPF_LOG_LEVEL) {
verbose(env, "returning from callee:\n");
print_verifier_state(env, callee);
verbose(env, "to caller at %d:\n", *insn_idx);
print_verifier_state(env, caller);
}
/* clear everything in the callee */
free_func_state(callee);
state->frame[state->curframe + 1] = NULL;
return 0;
}
static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
int func_id,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
if (ret_type != RET_INTEGER ||
(func_id != BPF_FUNC_get_stack &&
func_id != BPF_FUNC_get_task_stack &&
func_id != BPF_FUNC_probe_read_str &&
func_id != BPF_FUNC_probe_read_kernel_str &&
func_id != BPF_FUNC_probe_read_user_str))
return;
ret_reg->smax_value = meta->msize_max_value;
ret_reg->s32_max_value = meta->msize_max_value;
ret_reg->smin_value = -MAX_ERRNO;
ret_reg->s32_min_value = -MAX_ERRNO;
__reg_deduce_bounds(ret_reg);
__reg_bound_offset(ret_reg);
__update_reg_bounds(ret_reg);
}
static int
record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
int func_id, int insn_idx)
{
struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
struct bpf_map *map = meta->map_ptr;
if (func_id != BPF_FUNC_tail_call &&
func_id != BPF_FUNC_map_lookup_elem &&
func_id != BPF_FUNC_map_update_elem &&
func_id != BPF_FUNC_map_delete_elem &&
func_id != BPF_FUNC_map_push_elem &&
func_id != BPF_FUNC_map_pop_elem &&
func_id != BPF_FUNC_map_peek_elem &&
func_id != BPF_FUNC_for_each_map_elem &&
func_id != BPF_FUNC_redirect_map)
return 0;
if (map == NULL) {
verbose(env, "kernel subsystem misconfigured verifier\n");
return -EINVAL;
}
/* In case of read-only, some additional restrictions
* need to be applied in order to prevent altering the
* state of the map from program side.
*/
if ((map->map_flags & BPF_F_RDONLY_PROG) &&
(func_id == BPF_FUNC_map_delete_elem ||
func_id == BPF_FUNC_map_update_elem ||
func_id == BPF_FUNC_map_push_elem ||
func_id == BPF_FUNC_map_pop_elem)) {
verbose(env, "write into map forbidden\n");
return -EACCES;
}
if (!BPF_MAP_PTR(aux->map_ptr_state))
bpf_map_ptr_store(aux, meta->map_ptr,
!meta->map_ptr->bypass_spec_v1);
else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
!meta->map_ptr->bypass_spec_v1);
return 0;
}
static int
record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
int func_id, int insn_idx)
{
struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
struct bpf_reg_state *regs = cur_regs(env), *reg;
struct bpf_map *map = meta->map_ptr;
struct tnum range;
u64 val;
int err;
if (func_id != BPF_FUNC_tail_call)
return 0;
if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
verbose(env, "kernel subsystem misconfigured verifier\n");
return -EINVAL;
}
range = tnum_range(0, map->max_entries - 1);
reg = &regs[BPF_REG_3];
if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
return 0;
}
err = mark_chain_precision(env, BPF_REG_3);
if (err)
return err;
val = reg->var_off.value;
if (bpf_map_key_unseen(aux))
bpf_map_key_store(aux, val);
else if (!bpf_map_key_poisoned(aux) &&
bpf_map_key_immediate(aux) != val)
bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
return 0;
}
static int check_reference_leak(struct bpf_verifier_env *env)
{
struct bpf_func_state *state = cur_func(env);
int i;
for (i = 0; i < state->acquired_refs; i++) {
verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
state->refs[i].id, state->refs[i].insn_idx);
}
return state->acquired_refs ? -EINVAL : 0;
}
static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
struct bpf_reg_state *regs)
{
struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
struct bpf_map *fmt_map = fmt_reg->map_ptr;
int err, fmt_map_off, num_args;
u64 fmt_addr;
char *fmt;
/* data must be an array of u64 */
if (data_len_reg->var_off.value % 8)
return -EINVAL;
num_args = data_len_reg->var_off.value / 8;
/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
* and map_direct_value_addr is set.
*/
fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
fmt_map_off);
if (err) {
verbose(env, "verifier bug\n");
return -EFAULT;
}
fmt = (char *)(long)fmt_addr + fmt_map_off;
/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
* can focus on validating the format specifiers.
*/
err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
if (err < 0)
verbose(env, "Invalid format string\n");
return err;
}
static int check_get_func_ip(struct bpf_verifier_env *env)
{
enum bpf_attach_type eatype = env->prog->expected_attach_type;
enum bpf_prog_type type = resolve_prog_type(env->prog);
int func_id = BPF_FUNC_get_func_ip;
if (type == BPF_PROG_TYPE_TRACING) {
if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
eatype != BPF_MODIFY_RETURN) {
verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
func_id_name(func_id), func_id);
return -ENOTSUPP;
}
return 0;
} else if (type == BPF_PROG_TYPE_KPROBE) {
return 0;
}
verbose(env, "func %s#%d not supported for program type %d\n",
func_id_name(func_id), func_id, type);
return -ENOTSUPP;
}
static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
int *insn_idx_p)
{
const struct bpf_func_proto *fn = NULL;
struct bpf_reg_state *regs;
struct bpf_call_arg_meta meta;
int insn_idx = *insn_idx_p;
bool changes_data;
int i, err, func_id;
/* find function prototype */
func_id = insn->imm;
if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
func_id);
return -EINVAL;
}
if (env->ops->get_func_proto)
fn = env->ops->get_func_proto(func_id, env->prog);
if (!fn) {
verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
func_id);
return -EINVAL;
}
/* eBPF programs must be GPL compatible to use GPL-ed functions */
if (!env->prog->gpl_compatible && fn->gpl_only) {
verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
return -EINVAL;
}
if (fn->allowed && !fn->allowed(env->prog)) {
verbose(env, "helper call is not allowed in probe\n");
return -EINVAL;
}
/* With LD_ABS/IND some JITs save/restore skb from r1. */
changes_data = bpf_helper_changes_pkt_data(fn->func);
if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
func_id_name(func_id), func_id);
return -EINVAL;
}
memset(&meta, 0, sizeof(meta));
meta.pkt_access = fn->pkt_access;
err = check_func_proto(fn, func_id);
if (err) {
verbose(env, "kernel subsystem misconfigured func %s#%d\n",
func_id_name(func_id), func_id);
return err;
}
meta.func_id = func_id;
/* check args */
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
err = check_func_arg(env, i, &meta, fn);
if (err)
return err;
}
err = record_func_map(env, &meta, func_id, insn_idx);
if (err)
return err;
err = record_func_key(env, &meta, func_id, insn_idx);
if (err)
return err;
/* Mark slots with STACK_MISC in case of raw mode, stack offset
* is inferred from register state.
*/
for (i = 0; i < meta.access_size; i++) {
err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
BPF_WRITE, -1, false);
if (err)
return err;
}
if (func_id == BPF_FUNC_tail_call) {
err = check_reference_leak(env);
if (err) {
verbose(env, "tail_call would lead to reference leak\n");
return err;
}
} else if (is_release_function(func_id)) {
err = release_reference(env, meta.ref_obj_id);
if (err) {
verbose(env, "func %s#%d reference has not been acquired before\n",
func_id_name(func_id), func_id);
return err;
}
}
regs = cur_regs(env);
/* check that flags argument in get_local_storage(map, flags) is 0,
* this is required because get_local_storage() can't return an error.
*/
if (func_id == BPF_FUNC_get_local_storage &&
!register_is_null(&regs[BPF_REG_2])) {
verbose(env, "get_local_storage() doesn't support non-zero flags\n");
return -EINVAL;
}
if (func_id == BPF_FUNC_for_each_map_elem) {
err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
set_map_elem_callback_state);
if (err < 0)
return -EINVAL;
}
if (func_id == BPF_FUNC_timer_set_callback) {
err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
set_timer_callback_state);
if (err < 0)
return -EINVAL;
}
if (func_id == BPF_FUNC_snprintf) {
err = check_bpf_snprintf_call(env, regs);
if (err < 0)
return err;
}
/* reset caller saved regs */
for (i = 0; i < CALLER_SAVED_REGS; i++) {
mark_reg_not_init(env, regs, caller_saved[i]);
check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
}
/* helper call returns 64-bit value. */
regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
/* update return register (already marked as written above) */
if (fn->ret_type == RET_INTEGER) {
/* sets type to SCALAR_VALUE */
mark_reg_unknown(env, regs, BPF_REG_0);
} else if (fn->ret_type == RET_VOID) {
regs[BPF_REG_0].type = NOT_INIT;
} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
fn->ret_type == RET_PTR_TO_MAP_VALUE) {
/* There is no offset yet applied, variable or fixed */
mark_reg_known_zero(env, regs, BPF_REG_0);
/* remember map_ptr, so that check_map_access()
* can check 'value_size' boundary of memory access
* to map element returned from bpf_map_lookup_elem()
*/
if (meta.map_ptr == NULL) {
verbose(env,
"kernel subsystem misconfigured verifier\n");
return -EINVAL;
}
regs[BPF_REG_0].map_ptr = meta.map_ptr;
regs[BPF_REG_0].map_uid = meta.map_uid;
if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
if (map_value_has_spin_lock(meta.map_ptr))
regs[BPF_REG_0].id = ++env->id_gen;
} else {
regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
}
} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
regs[BPF_REG_0].mem_size = meta.mem_size;
} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
const struct btf_type *t;
mark_reg_known_zero(env, regs, BPF_REG_0);
t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
if (!btf_type_is_struct(t)) {
u32 tsize;
const struct btf_type *ret;
const char *tname;
/* resolve the type size of ksym. */
ret = btf_resolve_size(meta.ret_btf, t, &tsize);
if (IS_ERR(ret)) {
tname = btf_name_by_offset(meta.ret_btf, t->name_off);
verbose(env, "unable to resolve the size of type '%s': %ld\n",
tname, PTR_ERR(ret));
return -EINVAL;
}
regs[BPF_REG_0].type =
fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
regs[BPF_REG_0].mem_size = tsize;
} else {
regs[BPF_REG_0].type =
fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
regs[BPF_REG_0].btf = meta.ret_btf;
regs[BPF_REG_0].btf_id = meta.ret_btf_id;
}
} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
fn->ret_type == RET_PTR_TO_BTF_ID) {
int ret_btf_id;
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
PTR_TO_BTF_ID :
PTR_TO_BTF_ID_OR_NULL;
ret_btf_id = *fn->ret_btf_id;
if (ret_btf_id == 0) {
verbose(env, "invalid return type %d of func %s#%d\n",
fn->ret_type, func_id_name(func_id), func_id);
return -EINVAL;
}
/* current BPF helper definitions are only coming from
* built-in code with type IDs from vmlinux BTF
*/
regs[BPF_REG_0].btf = btf_vmlinux;
regs[BPF_REG_0].btf_id = ret_btf_id;
} else {
verbose(env, "unknown return type %d of func %s#%d\n",
fn->ret_type, func_id_name(func_id), func_id);
return -EINVAL;
}
if (reg_type_may_be_null(regs[BPF_REG_0].type))
regs[BPF_REG_0].id = ++env->id_gen;
if (is_ptr_cast_function(func_id)) {
/* For release_reference() */
regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
} else if (is_acquire_function(func_id, meta.map_ptr)) {
int id = acquire_reference_state(env, insn_idx);
if (id < 0)
return id;
/* For mark_ptr_or_null_reg() */
regs[BPF_REG_0].id = id;
/* For release_reference() */
regs[BPF_REG_0].ref_obj_id = id;
}
do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
err = check_map_func_compatibility(env, meta.map_ptr, func_id);
if (err)
return err;
if ((func_id == BPF_FUNC_get_stack ||
func_id == BPF_FUNC_get_task_stack) &&
!env->prog->has_callchain_buf) {
const char *err_str;
#ifdef CONFIG_PERF_EVENTS
err = get_callchain_buffers(sysctl_perf_event_max_stack);
err_str = "cannot get callchain buffer for func %s#%d\n";
#else
err = -ENOTSUPP;
err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
#endif
if (err) {
verbose(env, err_str, func_id_name(func_id), func_id);
return err;
}
env->prog->has_callchain_buf = true;
}
if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
env->prog->call_get_stack = true;
if (func_id == BPF_FUNC_get_func_ip) {
if (check_get_func_ip(env))
return -ENOTSUPP;
env->prog->call_get_func_ip = true;
}
if (changes_data)
clear_all_pkt_pointers(env);
return 0;
}
/* mark_btf_func_reg_size() is used when the reg size is determined by
* the BTF func_proto's return value size and argument.
*/
static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
size_t reg_size)
{
struct bpf_reg_state *reg = &cur_regs(env)[regno];
if (regno == BPF_REG_0) {
/* Function return value */
reg->live |= REG_LIVE_WRITTEN;
reg->subreg_def = reg_size == sizeof(u64) ?
DEF_NOT_SUBREG : env->insn_idx + 1;
} else {
/* Function argument */
if (reg_size == sizeof(u64)) {
mark_insn_zext(env, reg);
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
} else {
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
}
}
}
static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
const struct btf_type *t, *func, *func_proto, *ptr_type;
struct bpf_reg_state *regs = cur_regs(env);
const char *func_name, *ptr_type_name;
u32 i, nargs, func_id, ptr_type_id;
const struct btf_param *args;
int err;
func_id = insn->imm;
func = btf_type_by_id(btf_vmlinux, func_id);
func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
func_proto = btf_type_by_id(btf_vmlinux, func->type);
if (!env->ops->check_kfunc_call ||
!env->ops->check_kfunc_call(func_id)) {
verbose(env, "calling kernel function %s is not allowed\n",
func_name);
return -EACCES;
}
/* Check the arguments */
err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
if (err)
return err;
for (i = 0; i < CALLER_SAVED_REGS; i++)
mark_reg_not_init(env, regs, caller_saved[i]);
/* Check return type */
t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
if (btf_type_is_scalar(t)) {
mark_reg_unknown(env, regs, BPF_REG_0);
mark_btf_func_reg_size(env, BPF_REG_0, t->size);
} else if (btf_type_is_ptr(t)) {
ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
&ptr_type_id);
if (!btf_type_is_struct(ptr_type)) {
ptr_type_name = btf_name_by_offset(btf_vmlinux,
ptr_type->name_off);
verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
func_name, btf_type_str(ptr_type),
ptr_type_name);
return -EINVAL;
}
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].btf = btf_vmlinux;
regs[BPF_REG_0].type = PTR_TO_BTF_ID;
regs[BPF_REG_0].btf_id = ptr_type_id;
mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
nargs = btf_type_vlen(func_proto);
args = (const struct btf_param *)(func_proto + 1);
for (i = 0; i < nargs; i++) {
u32 regno = i + 1;
t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
if (btf_type_is_ptr(t))
mark_btf_func_reg_size(env, regno, sizeof(void *));
else
/* scalar. ensured by btf_check_kfunc_arg_match() */
mark_btf_func_reg_size(env, regno, t->size);
}
return 0;
}
static bool signed_add_overflows(s64 a, s64 b)
{
/* Do the add in u64, where overflow is well-defined */
s64 res = (s64)((u64)a + (u64)b);
if (b < 0)
return res > a;
return res < a;
}
static bool signed_add32_overflows(s32 a, s32 b)
{
/* Do the add in u32, where overflow is well-defined */
s32 res = (s32)((u32)a + (u32)b);
if (b < 0)
return res > a;
return res < a;
}
static bool signed_sub_overflows(s64 a, s64 b)
{
/* Do the sub in u64, where overflow is well-defined */
s64 res = (s64)((u64)a - (u64)b);
if (b < 0)
return res < a;
return res > a;
}
static bool signed_sub32_overflows(s32 a, s32 b)
{
/* Do the sub in u32, where overflow is well-defined */
s32 res = (s32)((u32)a - (u32)b);
if (b < 0)
return res < a;
return res > a;
}
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
enum bpf_reg_type type)
{
bool known = tnum_is_const(reg->var_off);
s64 val = reg->var_off.value;
s64 smin = reg->smin_value;
if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
verbose(env, "math between %s pointer and %lld is not allowed\n",
reg_type_str[type], val);
return false;
}
if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
verbose(env, "%s pointer offset %d is not allowed\n",
reg_type_str[type], reg->off);
return false;
}
if (smin == S64_MIN) {
verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
reg_type_str[type]);
return false;
}
if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
verbose(env, "value %lld makes %s pointer be out of bounds\n",
smin, reg_type_str[type]);
return false;
}
return true;
}
static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
{
return &env->insn_aux_data[env->insn_idx];
}
enum {
REASON_BOUNDS = -1,
REASON_TYPE = -2,
REASON_PATHS = -3,
REASON_LIMIT = -4,
REASON_STACK = -5,
};
static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
u32 *alu_limit, bool mask_to_left)
{
u32 max = 0, ptr_limit = 0;
switch (ptr_reg->type) {
case PTR_TO_STACK:
/* Offset 0 is out-of-bounds, but acceptable start for the
* left direction, see BPF_REG_FP. Also, unknown scalar
* offset where we would need to deal with min/max bounds is
* currently prohibited for unprivileged.
*/
max = MAX_BPF_STACK + mask_to_left;
ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
break;
case PTR_TO_MAP_VALUE:
max = ptr_reg->map_ptr->value_size;
ptr_limit = (mask_to_left ?
ptr_reg->smin_value :
ptr_reg->umax_value) + ptr_reg->off;
break;
default:
return REASON_TYPE;
}
if (ptr_limit >= max)
return REASON_LIMIT;
*alu_limit = ptr_limit;
return 0;
}
static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
const struct bpf_insn *insn)
{
return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
}
static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
u32 alu_state, u32 alu_limit)
{
/* If we arrived here from different branches with different
* state or limits to sanitize, then this won't work.
*/
if (aux->alu_state &&
(aux->alu_state != alu_state ||
aux->alu_limit != alu_limit))
return REASON_PATHS;
/* Corresponding fixup done in do_misc_fixups(). */
aux->alu_state = alu_state;
aux->alu_limit = alu_limit;
return 0;
}
static int sanitize_val_alu(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_insn_aux_data *aux = cur_aux(env);
if (can_skip_alu_sanitation(env, insn))
return 0;
return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
}
static bool sanitize_needed(u8 opcode)
{
return opcode == BPF_ADD || opcode == BPF_SUB;
}
struct bpf_sanitize_info {
struct bpf_insn_aux_data aux;
bool mask_to_left;
};
static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env *env,
const struct bpf_insn *insn,
u32 next_idx, u32 curr_idx)
{
struct bpf_verifier_state *branch;
struct bpf_reg_state *regs;
branch = push_stack(env, next_idx, curr_idx, true);
if (branch && insn) {
regs = branch->frame[branch->curframe]->regs;
if (BPF_SRC(insn->code) == BPF_K) {
mark_reg_unknown(env, regs, insn->dst_reg);
} else if (BPF_SRC(insn->code) == BPF_X) {
mark_reg_unknown(env, regs, insn->dst_reg);
mark_reg_unknown(env, regs, insn->src_reg);
}
}
return branch;
}
static int sanitize_ptr_alu(struct bpf_verifier_env *env,
struct bpf_insn *insn,
const struct bpf_reg_state *ptr_reg,
const struct bpf_reg_state *off_reg,
struct bpf_reg_state *dst_reg,
struct bpf_sanitize_info *info,
const bool commit_window)
{
struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
struct bpf_verifier_state *vstate = env->cur_state;
bool off_is_imm = tnum_is_const(off_reg->var_off);
bool off_is_neg = off_reg->smin_value < 0;
bool ptr_is_dst_reg = ptr_reg == dst_reg;
u8 opcode = BPF_OP(insn->code);
u32 alu_state, alu_limit;
struct bpf_reg_state tmp;
bool ret;
int err;
if (can_skip_alu_sanitation(env, insn))
return 0;
/* We already marked aux for masking from non-speculative
* paths, thus we got here in the first place. We only care
* to explore bad access from here.
*/
if (vstate->speculative)
goto do_sim;
if (!commit_window) {
if (!tnum_is_const(off_reg->var_off) &&
(off_reg->smin_value < 0) != (off_reg->smax_value < 0))
return REASON_BOUNDS;
info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
(opcode == BPF_SUB && !off_is_neg);
}
err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
if (err < 0)
return err;
if (commit_window) {
/* In commit phase we narrow the masking window based on
* the observed pointer move after the simulated operation.
*/
alu_state = info->aux.alu_state;
alu_limit = abs(info->aux.alu_limit - alu_limit);
} else {
alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
alu_state |= ptr_is_dst_reg ?
BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
/* Limit pruning on unknown scalars to enable deep search for
* potential masking differences from other program paths.
*/
if (!off_is_imm)
env->explore_alu_limits = true;
}
err = update_alu_sanitation_state(aux, alu_state, alu_limit);
if (err < 0)
return err;
do_sim:
/* If we're in commit phase, we're done here given we already
* pushed the truncated dst_reg into the speculative verification
* stack.
*
* Also, when register is a known constant, we rewrite register-based
* operation to immediate-based, and thus do not need masking (and as
* a consequence, do not need to simulate the zero-truncation either).
*/
if (commit_window || off_is_imm)
return 0;
/* Simulate and find potential out-of-bounds access under
* speculative execution from truncation as a result of
* masking when off was not within expected range. If off
* sits in dst, then we temporarily need to move ptr there
* to simulate dst (== 0) +/-= ptr. Needed, for example,
* for cases where we use K-based arithmetic in one direction
* and truncated reg-based in the other in order to explore
* bad access.
*/
if (!ptr_is_dst_reg) {
tmp = *dst_reg;
*dst_reg = *ptr_reg;
}
ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
env->insn_idx);
if (!ptr_is_dst_reg && ret)
*dst_reg = tmp;
return !ret ? REASON_STACK : 0;
}
static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
{
struct bpf_verifier_state *vstate = env->cur_state;
/* If we simulate paths under speculation, we don't update the
* insn as 'seen' such that when we verify unreachable paths in
* the non-speculative domain, sanitize_dead_code() can still
* rewrite/sanitize them.
*/
if (!vstate->speculative)
env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
}
static int sanitize_err(struct bpf_verifier_env *env,
const struct bpf_insn *insn, int reason,
const struct bpf_reg_state *off_reg,
const struct bpf_reg_state *dst_reg)
{
static const char *err = "pointer arithmetic with it prohibited for !root";
const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
u32 dst = insn->dst_reg, src = insn->src_reg;
switch (reason) {
case REASON_BOUNDS:
verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
off_reg == dst_reg ? dst : src, err);
break;
case REASON_TYPE:
verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
off_reg == dst_reg ? src : dst, err);
break;
case REASON_PATHS:
verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
dst, op, err);
break;
case REASON_LIMIT:
verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
dst, op, err);
break;
case REASON_STACK:
verbose(env, "R%d could not be pushed for speculative verification, %s\n",
dst, err);
break;
default:
verbose(env, "verifier internal error: unknown reason (%d)\n",
reason);
break;
}
return -EACCES;
}
/* check that stack access falls within stack limits and that 'reg' doesn't
* have a variable offset.
*
* Variable offset is prohibited for unprivileged mode for simplicity since it
* requires corresponding support in Spectre masking for stack ALU. See also
* retrieve_ptr_limit().
*
*
* 'off' includes 'reg->off'.
*/
static int check_stack_access_for_ptr_arithmetic(
struct bpf_verifier_env *env,
int regno,
const struct bpf_reg_state *reg,
int off)
{
if (!tnum_is_const(reg->var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
regno, tn_buf, off);
return -EACCES;
}
if (off >= 0 || off < -MAX_BPF_STACK) {
verbose(env, "R%d stack pointer arithmetic goes out of range, "
"prohibited for !root; off=%d\n", regno, off);
return -EACCES;
}
return 0;
}
static int sanitize_check_bounds(struct bpf_verifier_env *env,
const struct bpf_insn *insn,
const struct bpf_reg_state *dst_reg)
{
u32 dst = insn->dst_reg;
/* For unprivileged we require that resulting offset must be in bounds
* in order to be able to sanitize access later on.
*/
if (env->bypass_spec_v1)
return 0;
switch (dst_reg->type) {
case PTR_TO_STACK:
if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
dst_reg->off + dst_reg->var_off.value))
return -EACCES;
break;
case PTR_TO_MAP_VALUE:
if (check_map_access(env, dst, dst_reg->off, 1, false)) {
verbose(env, "R%d pointer arithmetic of map value goes out of range, "
"prohibited for !root\n", dst);
return -EACCES;
}
break;
default:
break;
}
return 0;
}
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
* Caller should also handle BPF_MOV case separately.
* If we return -EACCES, caller may want to try again treating pointer as a
* scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
*/
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn,
const struct bpf_reg_state *ptr_reg,
const struct bpf_reg_state *off_reg)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *regs = state->regs, *dst_reg;
bool known = tnum_is_const(off_reg->var_off);
s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
struct bpf_sanitize_info info = {};
u8 opcode = BPF_OP(insn->code);
u32 dst = insn->dst_reg;
int ret;
dst_reg = &regs[dst];
if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
smin_val > smax_val || umin_val > umax_val) {
/* Taint dst register if offset had invalid bounds derived from
* e.g. dead branches.
*/
__mark_reg_unknown(env, dst_reg);
return 0;
}
if (BPF_CLASS(insn->code) != BPF_ALU64) {
/* 32-bit ALU ops on pointers produce (meaningless) scalars */
if (opcode == BPF_SUB && env->allow_ptr_leaks) {
__mark_reg_unknown(env, dst_reg);
return 0;
}
verbose(env,
"R%d 32-bit pointer arithmetic prohibited\n",
dst);
return -EACCES;
}
switch (ptr_reg->type) {
case PTR_TO_MAP_VALUE_OR_NULL:
verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
dst, reg_type_str[ptr_reg->type]);
return -EACCES;
case CONST_PTR_TO_MAP:
/* smin_val represents the known value */
if (known && smin_val == 0 && opcode == BPF_ADD)
break;
fallthrough;
case PTR_TO_PACKET_END:
case PTR_TO_SOCKET:
case PTR_TO_SOCKET_OR_NULL:
case PTR_TO_SOCK_COMMON:
case PTR_TO_SOCK_COMMON_OR_NULL:
case PTR_TO_TCP_SOCK:
case PTR_TO_TCP_SOCK_OR_NULL:
case PTR_TO_XDP_SOCK:
verbose(env, "R%d pointer arithmetic on %s prohibited\n",
dst, reg_type_str[ptr_reg->type]);
return -EACCES;
default:
break;
}
/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
* The id may be overwritten later if we create a new variable offset.
*/
dst_reg->type = ptr_reg->type;
dst_reg->id = ptr_reg->id;
if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
!check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
return -EINVAL;
/* pointer types do not carry 32-bit bounds at the moment. */
__mark_reg32_unbounded(dst_reg);
if (sanitize_needed(opcode)) {
ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
&info, false);
if (ret < 0)
return sanitize_err(env, insn, ret, off_reg, dst_reg);
}
switch (opcode) {
case BPF_ADD:
/* We can take a fixed offset as long as it doesn't overflow
* the s32 'off' field
*/
if (known && (ptr_reg->off + smin_val ==
(s64)(s32)(ptr_reg->off + smin_val))) {
/* pointer += K. Accumulate it into fixed offset */
dst_reg->smin_value = smin_ptr;
dst_reg->smax_value = smax_ptr;
dst_reg->umin_value = umin_ptr;
dst_reg->umax_value = umax_ptr;
dst_reg->var_off = ptr_reg->var_off;
dst_reg->off = ptr_reg->off + smin_val;
dst_reg->raw = ptr_reg->raw;
break;
}
/* A new variable offset is created. Note that off_reg->off
* == 0, since it's a scalar.
* dst_reg gets the pointer type and since some positive
* integer value was added to the pointer, give it a new 'id'
* if it's a PTR_TO_PACKET.
* this creates a new 'base' pointer, off_reg (variable) gets
* added into the variable offset, and we copy the fixed offset
* from ptr_reg.
*/
if (signed_add_overflows(smin_ptr, smin_val) ||
signed_add_overflows(smax_ptr, smax_val)) {
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value = smin_ptr + smin_val;
dst_reg->smax_value = smax_ptr + smax_val;
}
if (umin_ptr + umin_val < umin_ptr ||
umax_ptr + umax_val < umax_ptr) {
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
dst_reg->umin_value = umin_ptr + umin_val;
dst_reg->umax_value = umax_ptr + umax_val;
}
dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
dst_reg->off = ptr_reg->off;
dst_reg->raw = ptr_reg->raw;
if (reg_is_pkt_pointer(ptr_reg)) {
dst_reg->id = ++env->id_gen;
/* something was added to pkt_ptr, set range to zero */
memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
}
break;
case BPF_SUB:
if (dst_reg == off_reg) {
/* scalar -= pointer. Creates an unknown scalar */
verbose(env, "R%d tried to subtract pointer from scalar\n",
dst);
return -EACCES;
}
/* We don't allow subtraction from FP, because (according to
* test_verifier.c test "invalid fp arithmetic", JITs might not
* be able to deal with it.
*/
if (ptr_reg->type == PTR_TO_STACK) {
verbose(env, "R%d subtraction from stack pointer prohibited\n",
dst);
return -EACCES;
}
if (known && (ptr_reg->off - smin_val ==
(s64)(s32)(ptr_reg->off - smin_val))) {
/* pointer -= K. Subtract it from fixed offset */
dst_reg->smin_value = smin_ptr;
dst_reg->smax_value = smax_ptr;
dst_reg->umin_value = umin_ptr;
dst_reg->umax_value = umax_ptr;
dst_reg->var_off = ptr_reg->var_off;
dst_reg->id = ptr_reg->id;
dst_reg->off = ptr_reg->off - smin_val;
dst_reg->raw = ptr_reg->raw;
break;
}
/* A new variable offset is created. If the subtrahend is known
* nonnegative, then any reg->range we had before is still good.
*/
if (signed_sub_overflows(smin_ptr, smax_val) ||
signed_sub_overflows(smax_ptr, smin_val)) {
/* Overflow possible, we know nothing */
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value = smin_ptr - smax_val;
dst_reg->smax_value = smax_ptr - smin_val;
}
if (umin_ptr < umax_val) {
/* Overflow possible, we know nothing */
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
/* Cannot overflow (as long as bounds are consistent) */
dst_reg->umin_value = umin_ptr - umax_val;
dst_reg->umax_value = umax_ptr - umin_val;
}
dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
dst_reg->off = ptr_reg->off;
dst_reg->raw = ptr_reg->raw;
if (reg_is_pkt_pointer(ptr_reg)) {
dst_reg->id = ++env->id_gen;
/* something was added to pkt_ptr, set range to zero */
if (smin_val < 0)
memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
}
break;
case BPF_AND:
case BPF_OR:
case BPF_XOR:
/* bitwise ops on pointers are troublesome, prohibit. */
verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
dst, bpf_alu_string[opcode >> 4]);
return -EACCES;
default:
/* other operators (e.g. MUL,LSH) produce non-pointer results */
verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
dst, bpf_alu_string[opcode >> 4]);
return -EACCES;
}
if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
return -EINVAL;
__update_reg_bounds(dst_reg);
__reg_deduce_bounds(dst_reg);
__reg_bound_offset(dst_reg);
if (sanitize_check_bounds(env, insn, dst_reg) < 0)
return -EACCES;
if (sanitize_needed(opcode)) {
ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
&info, true);
if (ret < 0)
return sanitize_err(env, insn, ret, off_reg, dst_reg);
}
return 0;
}
static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s32 smin_val = src_reg->s32_min_value;
s32 smax_val = src_reg->s32_max_value;
u32 umin_val = src_reg->u32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
dst_reg->s32_min_value += smin_val;
dst_reg->s32_max_value += smax_val;
}
if (dst_reg->u32_min_value + umin_val < umin_val ||
dst_reg->u32_max_value + umax_val < umax_val) {
dst_reg->u32_min_value = 0;
dst_reg->u32_max_value = U32_MAX;
} else {
dst_reg->u32_min_value += umin_val;
dst_reg->u32_max_value += umax_val;
}
}
static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s64 smin_val = src_reg->smin_value;
s64 smax_val = src_reg->smax_value;
u64 umin_val = src_reg->umin_value;
u64 umax_val = src_reg->umax_value;
if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
signed_add_overflows(dst_reg->smax_value, smax_val)) {
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value += smin_val;
dst_reg->smax_value += smax_val;
}
if (dst_reg->umin_value + umin_val < umin_val ||
dst_reg->umax_value + umax_val < umax_val) {
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
dst_reg->umin_value += umin_val;
dst_reg->umax_value += umax_val;
}
}
static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s32 smin_val = src_reg->s32_min_value;
s32 smax_val = src_reg->s32_max_value;
u32 umin_val = src_reg->u32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
/* Overflow possible, we know nothing */
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
dst_reg->s32_min_value -= smax_val;
dst_reg->s32_max_value -= smin_val;
}
if (dst_reg->u32_min_value < umax_val) {
/* Overflow possible, we know nothing */
dst_reg->u32_min_value = 0;
dst_reg->u32_max_value = U32_MAX;
} else {
/* Cannot overflow (as long as bounds are consistent) */
dst_reg->u32_min_value -= umax_val;
dst_reg->u32_max_value -= umin_val;
}
}
static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s64 smin_val = src_reg->smin_value;
s64 smax_val = src_reg->smax_value;
u64 umin_val = src_reg->umin_value;
u64 umax_val = src_reg->umax_value;
if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
signed_sub_overflows(dst_reg->smax_value, smin_val)) {
/* Overflow possible, we know nothing */
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value -= smax_val;
dst_reg->smax_value -= smin_val;
}
if (dst_reg->umin_value < umax_val) {
/* Overflow possible, we know nothing */
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
/* Cannot overflow (as long as bounds are consistent) */
dst_reg->umin_value -= umax_val;
dst_reg->umax_value -= umin_val;
}
}
static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s32 smin_val = src_reg->s32_min_value;
u32 umin_val = src_reg->u32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (smin_val < 0 || dst_reg->s32_min_value < 0) {
/* Ain't nobody got time to multiply that sign */
__mark_reg32_unbounded(dst_reg);
return;
}
/* Both values are positive, so we can work with unsigned and
* copy the result to signed (unless it exceeds S32_MAX).
*/
if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
/* Potential overflow, we know nothing */
__mark_reg32_unbounded(dst_reg);
return;
}
dst_reg->u32_min_value *= umin_val;
dst_reg->u32_max_value *= umax_val;
if (dst_reg->u32_max_value > S32_MAX) {
/* Overflow possible, we know nothing */
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
}
}
static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
s64 smin_val = src_reg->smin_value;
u64 umin_val = src_reg->umin_value;
u64 umax_val = src_reg->umax_value;
if (smin_val < 0 || dst_reg->smin_value < 0) {
/* Ain't nobody got time to multiply that sign */
__mark_reg64_unbounded(dst_reg);
return;
}
/* Both values are positive, so we can work with unsigned and
* copy the result to signed (unless it exceeds S64_MAX).
*/
if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
/* Potential overflow, we know nothing */
__mark_reg64_unbounded(dst_reg);
return;
}
dst_reg->umin_value *= umin_val;
dst_reg->umax_value *= umax_val;
if (dst_reg->umax_value > S64_MAX) {
/* Overflow possible, we know nothing */
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
}
}
static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
s32 smin_val = src_reg->s32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (src_known && dst_known) {
__mark_reg32_known(dst_reg, var32_off.value);
return;
}
/* We get our minimum from the var_off, since that's inherently
* bitwise. Our maximum is the minimum of the operands' maxima.
*/
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
if (dst_reg->s32_min_value < 0 || smin_val < 0) {
/* Lose signed bounds when ANDing negative numbers,
* ain't nobody got time for that.
*/
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
/* ANDing two positives gives a positive, so safe to
* cast result into s64.
*/
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
}
}
static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
s64 smin_val = src_reg->smin_value;
u64 umax_val = src_reg->umax_value;
if (src_known && dst_known) {
__mark_reg_known(dst_reg, dst_reg->var_off.value);
return;
}
/* We get our minimum from the var_off, since that's inherently
* bitwise. Our maximum is the minimum of the operands' maxima.
*/
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
if (dst_reg->smin_value < 0 || smin_val < 0) {
/* Lose signed bounds when ANDing negative numbers,
* ain't nobody got time for that.
*/
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
/* ANDing two positives gives a positive, so safe to
* cast result into s64.
*/
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
}
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
}
static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
s32 smin_val = src_reg->s32_min_value;
u32 umin_val = src_reg->u32_min_value;
if (src_known && dst_known) {
__mark_reg32_known(dst_reg, var32_off.value);
return;
}
/* We get our maximum from the var_off, and our minimum is the
* maximum of the operands' minima
*/
dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
if (dst_reg->s32_min_value < 0 || smin_val < 0) {
/* Lose signed bounds when ORing negative numbers,
* ain't nobody got time for that.
*/
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
} else {
/* ORing two positives gives a positive, so safe to
* cast result into s64.
*/
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
}
}
static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
s64 smin_val = src_reg->smin_value;
u64 umin_val = src_reg->umin_value;
if (src_known && dst_known) {
__mark_reg_known(dst_reg, dst_reg->var_off.value);
return;
}
/* We get our maximum from the var_off, and our minimum is the
* maximum of the operands' minima
*/
dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
if (dst_reg->smin_value < 0 || smin_val < 0) {
/* Lose signed bounds when ORing negative numbers,
* ain't nobody got time for that.
*/
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
} else {
/* ORing two positives gives a positive, so safe to
* cast result into s64.
*/
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
}
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
}
static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
s32 smin_val = src_reg->s32_min_value;
if (src_known && dst_known) {
__mark_reg32_known(dst_reg, var32_off.value);
return;
}
/* We get both minimum and maximum from the var32_off. */
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
/* XORing two positive sign numbers gives a positive,
* so safe to cast u32 result into s32.
*/
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
} else {
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
}
}
static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
s64 smin_val = src_reg->smin_value;
if (src_known && dst_known) {
/* dst_reg->var_off.value has been updated earlier */
__mark_reg_known(dst_reg, dst_reg->var_off.value);
return;
}
/* We get both minimum and maximum from the var_off. */
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
if (dst_reg->smin_value >= 0 && smin_val >= 0) {
/* XORing two positive sign numbers gives a positive,
* so safe to cast u64 result into s64.
*/
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
} else {
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
}
__update_reg_bounds(dst_reg);
}
static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
u64 umin_val, u64 umax_val)
{
/* We lose all sign bit information (except what we can pick
* up from var_off)
*/
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
/* If we might shift our top bit out, then we know nothing */
if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
dst_reg->u32_min_value = 0;
dst_reg->u32_max_value = U32_MAX;
} else {
dst_reg->u32_min_value <<= umin_val;
dst_reg->u32_max_value <<= umax_val;
}
}
static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u32 umax_val = src_reg->u32_max_value;
u32 umin_val = src_reg->u32_min_value;
/* u32 alu operation will zext upper bits */
struct tnum subreg = tnum_subreg(dst_reg->var_off);
__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
/* Not required but being careful mark reg64 bounds as unknown so
* that we are forced to pick them up from tnum and zext later and
* if some path skips this step we are still safe.
*/
__mark_reg64_unbounded(dst_reg);
__update_reg32_bounds(dst_reg);
}
static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
u64 umin_val, u64 umax_val)
{
/* Special case <<32 because it is a common compiler pattern to sign
* extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
* positive we know this shift will also be positive so we can track
* bounds correctly. Otherwise we lose all sign bit information except
* what we can pick up from var_off. Perhaps we can generalize this
* later to shifts of any length.
*/
if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
else
dst_reg->smax_value = S64_MAX;
if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
else
dst_reg->smin_value = S64_MIN;
/* If we might shift our top bit out, then we know nothing */
if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
} else {
dst_reg->umin_value <<= umin_val;
dst_reg->umax_value <<= umax_val;
}
}
static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u64 umax_val = src_reg->umax_value;
u64 umin_val = src_reg->umin_value;
/* scalar64 calc uses 32bit unshifted bounds so must be called first */
__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
}
static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
struct tnum subreg = tnum_subreg(dst_reg->var_off);
u32 umax_val = src_reg->u32_max_value;
u32 umin_val = src_reg->u32_min_value;
/* BPF_RSH is an unsigned shift. If the value in dst_reg might
* be negative, then either:
* 1) src_reg might be zero, so the sign bit of the result is
* unknown, so we lose our signed bounds
* 2) it's known negative, thus the unsigned bounds capture the
* signed bounds
* 3) the signed bounds cross zero, so they tell us nothing
* about the result
* If the value in dst_reg is known nonnegative, then again the
* unsigned bounds capture the signed bounds.
* Thus, in all cases it suffices to blow away our signed bounds
* and rely on inferring new ones from the unsigned bounds and
* var_off of the result.
*/
dst_reg->s32_min_value = S32_MIN;
dst_reg->s32_max_value = S32_MAX;
dst_reg->var_off = tnum_rshift(subreg, umin_val);
dst_reg->u32_min_value >>= umax_val;
dst_reg->u32_max_value >>= umin_val;
__mark_reg64_unbounded(dst_reg);
__update_reg32_bounds(dst_reg);
}
static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u64 umax_val = src_reg->umax_value;
u64 umin_val = src_reg->umin_value;
/* BPF_RSH is an unsigned shift. If the value in dst_reg might
* be negative, then either:
* 1) src_reg might be zero, so the sign bit of the result is
* unknown, so we lose our signed bounds
* 2) it's known negative, thus the unsigned bounds capture the
* signed bounds
* 3) the signed bounds cross zero, so they tell us nothing
* about the result
* If the value in dst_reg is known nonnegative, then again the
* unsigned bounds capture the signed bounds.
* Thus, in all cases it suffices to blow away our signed bounds
* and rely on inferring new ones from the unsigned bounds and
* var_off of the result.
*/
dst_reg->smin_value = S64_MIN;
dst_reg->smax_value = S64_MAX;
dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
dst_reg->umin_value >>= umax_val;
dst_reg->umax_value >>= umin_val;
/* Its not easy to operate on alu32 bounds here because it depends
* on bits being shifted in. Take easy way out and mark unbounded
* so we can recalculate later from tnum.
*/
__mark_reg32_unbounded(dst_reg);
__update_reg_bounds(dst_reg);
}
static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u64 umin_val = src_reg->u32_min_value;
/* Upon reaching here, src_known is true and
* umax_val is equal to umin_val.
*/
dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
/* blow away the dst_reg umin_value/umax_value and rely on
* dst_reg var_off to refine the result.
*/
dst_reg->u32_min_value = 0;
dst_reg->u32_max_value = U32_MAX;
__mark_reg64_unbounded(dst_reg);
__update_reg32_bounds(dst_reg);
}
static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
u64 umin_val = src_reg->umin_value;
/* Upon reaching here, src_known is true and umax_val is equal
* to umin_val.
*/
dst_reg->smin_value >>= umin_val;
dst_reg->smax_value >>= umin_val;
dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
/* blow away the dst_reg umin_value/umax_value and rely on
* dst_reg var_off to refine the result.
*/
dst_reg->umin_value = 0;
dst_reg->umax_value = U64_MAX;
/* Its not easy to operate on alu32 bounds here because it depends
* on bits being shifted in from upper 32-bits. Take easy way out
* and mark unbounded so we can recalculate later from tnum.
*/
__mark_reg32_unbounded(dst_reg);
__update_reg_bounds(dst_reg);
}
/* WARNING: This function does calculations on 64-bit values, but the actual
* execution may occur on 32-bit values. Therefore, things like bitshifts
* need extra checks in the 32-bit case.
*/
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn,
struct bpf_reg_state *dst_reg,
struct bpf_reg_state src_reg)
{
struct bpf_reg_state *regs = cur_regs(env);
u8 opcode = BPF_OP(insn->code);
bool src_known;
s64 smin_val, smax_val;
u64 umin_val, umax_val;
s32 s32_min_val, s32_max_val;
u32 u32_min_val, u32_max_val;
u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
int ret;
smin_val = src_reg.smin_value;
smax_val = src_reg.smax_value;
umin_val = src_reg.umin_value;
umax_val = src_reg.umax_value;
s32_min_val = src_reg.s32_min_value;
s32_max_val = src_reg.s32_max_value;
u32_min_val = src_reg.u32_min_value;
u32_max_val = src_reg.u32_max_value;
if (alu32) {
src_known = tnum_subreg_is_const(src_reg.var_off);
if ((src_known &&
(s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
/* Taint dst register if offset had invalid bounds
* derived from e.g. dead branches.
*/
__mark_reg_unknown(env, dst_reg);
return 0;
}
} else {
src_known = tnum_is_const(src_reg.var_off);
if ((src_known &&
(smin_val != smax_val || umin_val != umax_val)) ||
smin_val > smax_val || umin_val > umax_val) {
/* Taint dst register if offset had invalid bounds
* derived from e.g. dead branches.
*/
__mark_reg_unknown(env, dst_reg);
return 0;
}
}
if (!src_known &&
opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
__mark_reg_unknown(env, dst_reg);
return 0;
}
if (sanitize_needed(opcode)) {
ret = sanitize_val_alu(env, insn);
if (ret < 0)
return sanitize_err(env, insn, ret, NULL, NULL);
}
/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
* There are two classes of instructions: The first class we track both
* alu32 and alu64 sign/unsigned bounds independently this provides the
* greatest amount of precision when alu operations are mixed with jmp32
* operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
* and BPF_OR. This is possible because these ops have fairly easy to
* understand and calculate behavior in both 32-bit and 64-bit alu ops.
* See alu32 verifier tests for examples. The second class of
* operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
* with regards to tracking sign/unsigned bounds because the bits may
* cross subreg boundaries in the alu64 case. When this happens we mark
* the reg unbounded in the subreg bound space and use the resulting
* tnum to calculate an approximation of the sign/unsigned bounds.
*/
switch (opcode) {
case BPF_ADD:
scalar32_min_max_add(dst_reg, &src_reg);
scalar_min_max_add(dst_reg, &src_reg);
dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
break;
case BPF_SUB:
scalar32_min_max_sub(dst_reg, &src_reg);
scalar_min_max_sub(dst_reg, &src_reg);
dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
break;
case BPF_MUL:
dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
scalar32_min_max_mul(dst_reg, &src_reg);
scalar_min_max_mul(dst_reg, &src_reg);
break;
case BPF_AND:
dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
scalar32_min_max_and(dst_reg, &src_reg);
scalar_min_max_and(dst_reg, &src_reg);
break;
case BPF_OR:
dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
scalar32_min_max_or(dst_reg, &src_reg);
scalar_min_max_or(dst_reg, &src_reg);
break;
case BPF_XOR:
dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
scalar32_min_max_xor(dst_reg, &src_reg);
scalar_min_max_xor(dst_reg, &src_reg);
break;
case BPF_LSH:
if (umax_val >= insn_bitness) {
/* Shifts greater than 31 or 63 are undefined.
* This includes shifts by a negative number.
*/
mark_reg_unknown(env, regs, insn->dst_reg);
break;
}
if (alu32)
scalar32_min_max_lsh(dst_reg, &src_reg);
else
scalar_min_max_lsh(dst_reg, &src_reg);
break;
case BPF_RSH:
if (umax_val >= insn_bitness) {
/* Shifts greater than 31 or 63 are undefined.
* This includes shifts by a negative number.
*/
mark_reg_unknown(env, regs, insn->dst_reg);
break;
}
if (alu32)
scalar32_min_max_rsh(dst_reg, &src_reg);
else
scalar_min_max_rsh(dst_reg, &src_reg);
break;
case BPF_ARSH:
if (umax_val >= insn_bitness) {
/* Shifts greater than 31 or 63 are undefined.
* This includes shifts by a negative number.
*/
mark_reg_unknown(env, regs, insn->dst_reg);
break;
}
if (alu32)
scalar32_min_max_arsh(dst_reg, &src_reg);
else
scalar_min_max_arsh(dst_reg, &src_reg);
break;
default:
mark_reg_unknown(env, regs, insn->dst_reg);
break;
}
/* ALU32 ops are zero extended into 64bit register */
if (alu32)
zext_32_to_64(dst_reg);
__update_reg_bounds(dst_reg);
__reg_deduce_bounds(dst_reg);
__reg_bound_offset(dst_reg);
return 0;
}
/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
* and var_off.
*/
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
u8 opcode = BPF_OP(insn->code);
int err;
dst_reg = &regs[insn->dst_reg];
src_reg = NULL;
if (dst_reg->type != SCALAR_VALUE)
ptr_reg = dst_reg;
else
/* Make sure ID is cleared otherwise dst_reg min/max could be
* incorrectly propagated into other registers by find_equal_scalars()
*/
dst_reg->id = 0;
if (BPF_SRC(insn->code) == BPF_X) {
src_reg = &regs[insn->src_reg];
if (src_reg->type != SCALAR_VALUE) {
if (dst_reg->type != SCALAR_VALUE) {
/* Combining two pointers by any ALU op yields
* an arbitrary scalar. Disallow all math except
* pointer subtraction
*/
if (opcode == BPF_SUB && env->allow_ptr_leaks) {
mark_reg_unknown(env, regs, insn->dst_reg);
return 0;
}
verbose(env, "R%d pointer %s pointer prohibited\n",
insn->dst_reg,
bpf_alu_string[opcode >> 4]);
return -EACCES;
} else {
/* scalar += pointer
* This is legal, but we have to reverse our
* src/dest handling in computing the range
*/
err = mark_chain_precision(env, insn->dst_reg);
if (err)
return err;
return adjust_ptr_min_max_vals(env, insn,
src_reg, dst_reg);
}
} else if (ptr_reg) {
/* pointer += scalar */
err = mark_chain_precision(env, insn->src_reg);
if (err)
return err;
return adjust_ptr_min_max_vals(env, insn,
dst_reg, src_reg);
}
} else {
/* Pretend the src is a reg with a known value, since we only
* need to be able to read from this state.
*/
off_reg.type = SCALAR_VALUE;
__mark_reg_known(&off_reg, insn->imm);
src_reg = &off_reg;
if (ptr_reg) /* pointer += K */
return adjust_ptr_min_max_vals(env, insn,
ptr_reg, src_reg);
}
/* Got here implies adding two SCALAR_VALUEs */
if (WARN_ON_ONCE(ptr_reg)) {
print_verifier_state(env, state);
verbose(env, "verifier internal error: unexpected ptr_reg\n");
return -EINVAL;
}
if (WARN_ON(!src_reg)) {
print_verifier_state(env, state);
verbose(env, "verifier internal error: no src_reg\n");
return -EINVAL;
}
return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
}
/* check validity of 32-bit and 64-bit arithmetic operations */
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
struct bpf_reg_state *regs = cur_regs(env);
u8 opcode = BPF_OP(insn->code);
int err;
if (opcode == BPF_END || opcode == BPF_NEG) {
if (opcode == BPF_NEG) {
if (BPF_SRC(insn->code) != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->off != 0 || insn->imm != 0) {
verbose(env, "BPF_NEG uses reserved fields\n");
return -EINVAL;
}
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
(insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
BPF_CLASS(insn->code) == BPF_ALU64) {
verbose(env, "BPF_END uses reserved fields\n");
return -EINVAL;
}
}
/* check src operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
if (is_pointer_value(env, insn->dst_reg)) {
verbose(env, "R%d pointer arithmetic prohibited\n",
insn->dst_reg);
return -EACCES;
}
/* check dest operand */
err = check_reg_arg(env, insn->dst_reg, DST_OP);
if (err)
return err;
} else if (opcode == BPF_MOV) {
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0 || insn->off != 0) {
verbose(env, "BPF_MOV uses reserved fields\n");
return -EINVAL;
}
/* check src operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
verbose(env, "BPF_MOV uses reserved fields\n");
return -EINVAL;
}
}
/* check dest operand, mark as required later */
err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
if (err)
return err;
if (BPF_SRC(insn->code) == BPF_X) {
struct bpf_reg_state *src_reg = regs + insn->src_reg;
struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
if (BPF_CLASS(insn->code) == BPF_ALU64) {
/* case: R1 = R2
* copy register state to dest reg
*/
if (src_reg->type == SCALAR_VALUE && !src_reg->id)
/* Assign src and dst registers the same ID
* that will be used by find_equal_scalars()
* to propagate min/max range.
*/
src_reg->id = ++env->id_gen;
*dst_reg = *src_reg;
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = DEF_NOT_SUBREG;
} else {
/* R1 = (u32) R2 */
if (is_pointer_value(env, insn->src_reg)) {
verbose(env,
"R%d partial copy of pointer\n",
insn->src_reg);
return -EACCES;
} else if (src_reg->type == SCALAR_VALUE) {
*dst_reg = *src_reg;
/* Make sure ID is cleared otherwise
* dst_reg min/max could be incorrectly
* propagated into src_reg by find_equal_scalars()
*/
dst_reg->id = 0;
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = env->insn_idx + 1;
} else {
mark_reg_unknown(env, regs,
insn->dst_reg);
}
zext_32_to_64(dst_reg);
}
} else {
/* case: R = imm
* remember the value we stored into this reg
*/
/* clear any state __mark_reg_known doesn't set */
mark_reg_unknown(env, regs, insn->dst_reg);
regs[insn->dst_reg].type = SCALAR_VALUE;
if (BPF_CLASS(insn->code) == BPF_ALU64) {
__mark_reg_known(regs + insn->dst_reg,
insn->imm);
} else {
__mark_reg_known(regs + insn->dst_reg,
(u32)insn->imm);
}
}
} else if (opcode > BPF_END) {
verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
return -EINVAL;
} else { /* all other ALU ops: and, sub, xor, add, ... */
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0 || insn->off != 0) {
verbose(env, "BPF_ALU uses reserved fields\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
verbose(env, "BPF_ALU uses reserved fields\n");
return -EINVAL;
}
}
/* check src2 operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
verbose(env, "div by zero\n");
return -EINVAL;
}
if ((opcode == BPF_LSH || opcode == BPF_RSH ||
opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
if (insn->imm < 0 || insn->imm >= size) {
verbose(env, "invalid shift %d\n", insn->imm);
return -EINVAL;
}
}
/* check dest operand */
err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
if (err)
return err;
return adjust_reg_min_max_vals(env, insn);
}
return 0;
}
static void __find_good_pkt_pointers(struct bpf_func_state *state,
struct bpf_reg_state *dst_reg,
enum bpf_reg_type type, int new_range)
{
struct bpf_reg_state *reg;
int i;
for (i = 0; i < MAX_BPF_REG; i++) {
reg = &state->regs[i];
if (reg->type == type && reg->id == dst_reg->id)
/* keep the maximum range already checked */
reg->range = max(reg->range, new_range);
}
bpf_for_each_spilled_reg(i, state, reg) {
if (!reg)
continue;
if (reg->type == type && reg->id == dst_reg->id)
reg->range = max(reg->range, new_range);
}
}
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
struct bpf_reg_state *dst_reg,
enum bpf_reg_type type,
bool range_right_open)
{
int new_range, i;
if (dst_reg->off < 0 ||
(dst_reg->off == 0 && range_right_open))
/* This doesn't give us any range */
return;
if (dst_reg->umax_value > MAX_PACKET_OFF ||
dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
/* Risk of overflow. For instance, ptr + (1<<63) may be less
* than pkt_end, but that's because it's also less than pkt.
*/
return;
new_range = dst_reg->off;
if (range_right_open)
new_range--;
/* Examples for register markings:
*
* pkt_data in dst register:
*
* r2 = r3;
* r2 += 8;
* if (r2 > pkt_end) goto <handle exception>
* <access okay>
*
* r2 = r3;
* r2 += 8;
* if (r2 < pkt_end) goto <access okay>
* <handle exception>
*
* Where:
* r2 == dst_reg, pkt_end == src_reg
* r2=pkt(id=n,off=8,r=0)
* r3=pkt(id=n,off=0,r=0)
*
* pkt_data in src register:
*
* r2 = r3;
* r2 += 8;
* if (pkt_end >= r2) goto <access okay>
* <handle exception>
*
* r2 = r3;
* r2 += 8;
* if (pkt_end <= r2) goto <handle exception>
* <access okay>
*
* Where:
* pkt_end == dst_reg, r2 == src_reg
* r2=pkt(id=n,off=8,r=0)
* r3=pkt(id=n,off=0,r=0)
*
* Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
* or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
* and [r3, r3 + 8-1) respectively is safe to access depending on
* the check.
*/
/* If our ids match, then we must have the same max_value. And we
* don't care about the other reg's fixed offset, since if it's too big
* the range won't allow anything.
* dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
*/
for (i = 0; i <= vstate->curframe; i++)
__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
new_range);
}
static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
{
struct tnum subreg = tnum_subreg(reg->var_off);
s32 sval = (s32)val;
switch (opcode) {
case BPF_JEQ:
if (tnum_is_const(subreg))
return !!tnum_equals_const(subreg, val);
break;
case BPF_JNE:
if (tnum_is_const(subreg))
return !tnum_equals_const(subreg, val);
break;
case BPF_JSET:
if ((~subreg.mask & subreg.value) & val)
return 1;
if (!((subreg.mask | subreg.value) & val))
return 0;
break;
case BPF_JGT:
if (reg->u32_min_value > val)
return 1;
else if (reg->u32_max_value <= val)
return 0;
break;
case BPF_JSGT:
if (reg->s32_min_value > sval)
return 1;
else if (reg->s32_max_value <= sval)
return 0;
break;
case BPF_JLT:
if (reg->u32_max_value < val)
return 1;
else if (reg->u32_min_value >= val)
return 0;
break;
case BPF_JSLT:
if (reg->s32_max_value < sval)
return 1;
else if (reg->s32_min_value >= sval)
return 0;
break;
case BPF_JGE:
if (reg->u32_min_value >= val)
return 1;
else if (reg->u32_max_value < val)
return 0;
break;
case BPF_JSGE:
if (reg->s32_min_value >= sval)
return 1;
else if (reg->s32_max_value < sval)
return 0;
break;
case BPF_JLE:
if (reg->u32_max_value <= val)
return 1;
else if (reg->u32_min_value > val)
return 0;
break;
case BPF_JSLE:
if (reg->s32_max_value <= sval)
return 1;
else if (reg->s32_min_value > sval)
return 0;
break;
}
return -1;
}
static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
{
s64 sval = (s64)val;
switch (opcode) {
case BPF_JEQ:
if (tnum_is_const(reg->var_off))
return !!tnum_equals_const(reg->var_off, val);
break;
case BPF_JNE:
if (tnum_is_const(reg->var_off))
return !tnum_equals_const(reg->var_off, val);
break;
case BPF_JSET:
if ((~reg->var_off.mask & reg->var_off.value) & val)
return 1;
if (!((reg->var_off.mask | reg->var_off.value) & val))
return 0;
break;
case BPF_JGT:
if (reg->umin_value > val)
return 1;
else if (reg->umax_value <= val)
return 0;
break;
case BPF_JSGT:
if (reg->smin_value > sval)
return 1;
else if (reg->smax_value <= sval)
return 0;
break;
case BPF_JLT:
if (reg->umax_value < val)
return 1;
else if (reg->umin_value >= val)
return 0;
break;
case BPF_JSLT:
if (reg->smax_value < sval)
return 1;
else if (reg->smin_value >= sval)
return 0;
break;
case BPF_JGE:
if (reg->umin_value >= val)
return 1;
else if (reg->umax_value < val)
return 0;
break;
case BPF_JSGE:
if (reg->smin_value >= sval)
return 1;
else if (reg->smax_value < sval)
return 0;
break;
case BPF_JLE:
if (reg->umax_value <= val)
return 1;
else if (reg->umin_value > val)
return 0;
break;
case BPF_JSLE:
if (reg->smax_value <= sval)
return 1;
else if (reg->smin_value > sval)
return 0;
break;
}
return -1;
}
/* compute branch direction of the expression "if (reg opcode val) goto target;"
* and return:
* 1 - branch will be taken and "goto target" will be executed
* 0 - branch will not be taken and fall-through to next insn
* -1 - unknown. Example: "if (reg < 5)" is unknown when register value
* range [0,10]
*/
static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
bool is_jmp32)
{
if (__is_pointer_value(false, reg)) {
if (!reg_type_not_null(reg->type))
return -1;
/* If pointer is valid tests against zero will fail so we can
* use this to direct branch taken.
*/
if (val != 0)
return -1;
switch (opcode) {
case BPF_JEQ:
return 0;
case BPF_JNE:
return 1;
default:
return -1;
}
}
if (is_jmp32)
return is_branch32_taken(reg, val, opcode);
return is_branch64_taken(reg, val, opcode);
}
static int flip_opcode(u32 opcode)
{
/* How can we transform "a <op> b" into "b <op> a"? */
static const u8 opcode_flip[16] = {
/* these stay the same */
[BPF_JEQ >> 4] = BPF_JEQ,
[BPF_JNE >> 4] = BPF_JNE,
[BPF_JSET >> 4] = BPF_JSET,
/* these swap "lesser" and "greater" (L and G in the opcodes) */
[BPF_JGE >> 4] = BPF_JLE,
[BPF_JGT >> 4] = BPF_JLT,
[BPF_JLE >> 4] = BPF_JGE,
[BPF_JLT >> 4] = BPF_JGT,
[BPF_JSGE >> 4] = BPF_JSLE,
[BPF_JSGT >> 4] = BPF_JSLT,
[BPF_JSLE >> 4] = BPF_JSGE,
[BPF_JSLT >> 4] = BPF_JSGT
};
return opcode_flip[opcode >> 4];
}
static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg,
u8 opcode)
{
struct bpf_reg_state *pkt;
if (src_reg->type == PTR_TO_PACKET_END) {
pkt = dst_reg;
} else if (dst_reg->type == PTR_TO_PACKET_END) {
pkt = src_reg;
opcode = flip_opcode(opcode);
} else {
return -1;
}
if (pkt->range >= 0)
return -1;
switch (opcode) {
case BPF_JLE:
/* pkt <= pkt_end */
fallthrough;
case BPF_JGT:
/* pkt > pkt_end */
if (pkt->range == BEYOND_PKT_END)
/* pkt has at last one extra byte beyond pkt_end */
return opcode == BPF_JGT;
break;
case BPF_JLT:
/* pkt < pkt_end */
fallthrough;
case BPF_JGE:
/* pkt >= pkt_end */
if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
return opcode == BPF_JGE;
break;
}
return -1;
}
/* Adjusts the register min/max values in the case that the dst_reg is the
* variable register that we are working on, and src_reg is a constant or we're
* simply doing a BPF_K check.
* In JEQ/JNE cases we also adjust the var_off values.
*/
static void reg_set_min_max(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg,
u64 val, u32 val32,
u8 opcode, bool is_jmp32)
{
struct tnum false_32off = tnum_subreg(false_reg->var_off);
struct tnum false_64off = false_reg->var_off;
struct tnum true_32off = tnum_subreg(true_reg->var_off);
struct tnum true_64off = true_reg->var_off;
s64 sval = (s64)val;
s32 sval32 = (s32)val32;
/* If the dst_reg is a pointer, we can't learn anything about its
* variable offset from the compare (unless src_reg were a pointer into
* the same object, but we don't bother with that.
* Since false_reg and true_reg have the same type by construction, we
* only need to check one of them for pointerness.
*/
if (__is_pointer_value(false, false_reg))
return;
switch (opcode) {
case BPF_JEQ:
case BPF_JNE:
{
struct bpf_reg_state *reg =
opcode == BPF_JEQ ? true_reg : false_reg;
/* JEQ/JNE comparison doesn't change the register equivalence.
* r1 = r2;
* if (r1 == 42) goto label;
* ...
* label: // here both r1 and r2 are known to be 42.
*
* Hence when marking register as known preserve it's ID.
*/
if (is_jmp32)
__mark_reg32_known(reg, val32);
else
___mark_reg_known(reg, val);
break;
}
case BPF_JSET:
if (is_jmp32) {
false_32off = tnum_and(false_32off, tnum_const(~val32));
if (is_power_of_2(val32))
true_32off = tnum_or(true_32off,
tnum_const(val32));
} else {
false_64off = tnum_and(false_64off, tnum_const(~val));
if (is_power_of_2(val))
true_64off = tnum_or(true_64off,
tnum_const(val));
}
break;
case BPF_JGE:
case BPF_JGT:
{
if (is_jmp32) {
u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
false_reg->u32_max_value = min(false_reg->u32_max_value,
false_umax);
true_reg->u32_min_value = max(true_reg->u32_min_value,
true_umin);
} else {
u64 false_umax = opcode == BPF_JGT ? val : val - 1;
u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
false_reg->umax_value = min(false_reg->umax_value, false_umax);
true_reg->umin_value = max(true_reg->umin_value, true_umin);
}
break;
}
case BPF_JSGE:
case BPF_JSGT:
{
if (is_jmp32) {
s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
} else {
s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
false_reg->smax_value = min(false_reg->smax_value, false_smax);
true_reg->smin_value = max(true_reg->smin_value, true_smin);
}
break;
}
case BPF_JLE:
case BPF_JLT:
{
if (is_jmp32) {
u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
false_reg->u32_min_value = max(false_reg->u32_min_value,
false_umin);
true_reg->u32_max_value = min(true_reg->u32_max_value,
true_umax);
} else {
u64 false_umin = opcode == BPF_JLT ? val : val + 1;
u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
false_reg->umin_value = max(false_reg->umin_value, false_umin);
true_reg->umax_value = min(true_reg->umax_value, true_umax);
}
break;
}
case BPF_JSLE:
case BPF_JSLT:
{
if (is_jmp32) {
s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
} else {
s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
false_reg->smin_value = max(false_reg->smin_value, false_smin);
true_reg->smax_value = min(true_reg->smax_value, true_smax);
}
break;
}
default:
return;
}
if (is_jmp32) {
false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
tnum_subreg(false_32off));
true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
tnum_subreg(true_32off));
__reg_combine_32_into_64(false_reg);
__reg_combine_32_into_64(true_reg);
} else {
false_reg->var_off = false_64off;
true_reg->var_off = true_64off;
__reg_combine_64_into_32(false_reg);
__reg_combine_64_into_32(true_reg);
}
}
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
* the variable reg.
*/
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg,
u64 val, u32 val32,
u8 opcode, bool is_jmp32)
{
opcode = flip_opcode(opcode);
/* This uses zero as "not present in table"; luckily the zero opcode,
* BPF_JA, can't get here.
*/
if (opcode)
reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
}
/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
struct bpf_reg_state *dst_reg)
{
src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
dst_reg->umin_value);
src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
dst_reg->umax_value);
src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
dst_reg->smin_value);
src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
dst_reg->smax_value);
src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
dst_reg->var_off);
/* We might have learned new bounds from the var_off. */
__update_reg_bounds(src_reg);
__update_reg_bounds(dst_reg);
/* We might have learned something about the sign bit. */
__reg_deduce_bounds(src_reg);
__reg_deduce_bounds(dst_reg);
/* We might have learned some bits from the bounds. */
__reg_bound_offset(src_reg);
__reg_bound_offset(dst_reg);
/* Intersecting with the old var_off might have improved our bounds
* slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
* then new var_off is (0; 0x7f...fc) which improves our umax.
*/
__update_reg_bounds(src_reg);
__update_reg_bounds(dst_reg);
}
static void reg_combine_min_max(struct bpf_reg_state *true_src,
struct bpf_reg_state *true_dst,
struct bpf_reg_state *false_src,
struct bpf_reg_state *false_dst,
u8 opcode)
{
switch (opcode) {
case BPF_JEQ:
__reg_combine_min_max(true_src, true_dst);
break;
case BPF_JNE:
__reg_combine_min_max(false_src, false_dst);
break;
}
}
static void mark_ptr_or_null_reg(struct bpf_func_state *state,
struct bpf_reg_state *reg, u32 id,
bool is_null)
{
if (reg_type_may_be_null(reg->type) && reg->id == id &&
!WARN_ON_ONCE(!reg->id)) {
/* Old offset (both fixed and variable parts) should
* have been known-zero, because we don't allow pointer
* arithmetic on pointers that might be NULL.
*/
if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
!tnum_equals_const(reg->var_off, 0) ||
reg->off)) {
__mark_reg_known_zero(reg);
reg->off = 0;
}
if (is_null) {
reg->type = SCALAR_VALUE;
/* We don't need id and ref_obj_id from this point
* onwards anymore, thus we should better reset it,
* so that state pruning has chances to take effect.
*/
reg->id = 0;
reg->ref_obj_id = 0;
return;
}
mark_ptr_not_null_reg(reg);
if (!reg_may_point_to_spin_lock(reg)) {
/* For not-NULL ptr, reg->ref_obj_id will be reset
* in release_reg_references().
*
* reg->id is still used by spin_lock ptr. Other
* than spin_lock ptr type, reg->id can be reset.
*/
reg->id = 0;
}
}
}
static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
bool is_null)
{
struct bpf_reg_state *reg;
int i;
for (i = 0; i < MAX_BPF_REG; i++)
mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
bpf_for_each_spilled_reg(i, state, reg) {
if (!reg)
continue;
mark_ptr_or_null_reg(state, reg, id, is_null);
}
}
/* The logic is similar to find_good_pkt_pointers(), both could eventually
* be folded together at some point.
*/
static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
bool is_null)
{
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *regs = state->regs;
u32 ref_obj_id = regs[regno].ref_obj_id;
u32 id = regs[regno].id;
int i;
if (ref_obj_id && ref_obj_id == id && is_null)
/* regs[regno] is in the " == NULL" branch.
* No one could have freed the reference state before
* doing the NULL check.
*/
WARN_ON_ONCE(release_reference_state(state, id));
for (i = 0; i <= vstate->curframe; i++)
__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
}
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg,
struct bpf_verifier_state *this_branch,
struct bpf_verifier_state *other_branch)
{
if (BPF_SRC(insn->code) != BPF_X)
return false;
/* Pointers are always 64-bit. */
if (BPF_CLASS(insn->code) == BPF_JMP32)
return false;
switch (BPF_OP(insn->code)) {
case BPF_JGT:
if ((dst_reg->type == PTR_TO_PACKET &&
src_reg->type == PTR_TO_PACKET_END) ||
(dst_reg->type == PTR_TO_PACKET_META &&
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
find_good_pkt_pointers(this_branch, dst_reg,
dst_reg->type, false);
mark_pkt_end(other_branch, insn->dst_reg, true);
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
src_reg->type == PTR_TO_PACKET) ||
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
src_reg->type == PTR_TO_PACKET_META)) {
/* pkt_end > pkt_data', pkt_data > pkt_meta' */
find_good_pkt_pointers(other_branch, src_reg,
src_reg->type, true);
mark_pkt_end(this_branch, insn->src_reg, false);
} else {
return false;
}
break;
case BPF_JLT:
if ((dst_reg->type == PTR_TO_PACKET &&
src_reg->type == PTR_TO_PACKET_END) ||
(dst_reg->type == PTR_TO_PACKET_META &&
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
find_good_pkt_pointers(other_branch, dst_reg,
dst_reg->type, true);
mark_pkt_end(this_branch, insn->dst_reg, false);
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
src_reg->type == PTR_TO_PACKET) ||
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
src_reg->type == PTR_TO_PACKET_META)) {
/* pkt_end < pkt_data', pkt_data > pkt_meta' */
find_good_pkt_pointers(this_branch, src_reg,
src_reg->type, false);
mark_pkt_end(other_branch, insn->src_reg, true);
} else {
return false;
}
break;
case BPF_JGE:
if ((dst_reg->type == PTR_TO_PACKET &&
src_reg->type == PTR_TO_PACKET_END) ||
(dst_reg->type == PTR_TO_PACKET_META &&
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
find_good_pkt_pointers(this_branch, dst_reg,
dst_reg->type, true);
mark_pkt_end(other_branch, insn->dst_reg, false);
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
src_reg->type == PTR_TO_PACKET) ||
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
src_reg->type == PTR_TO_PACKET_META)) {
/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
find_good_pkt_pointers(other_branch, src_reg,
src_reg->type, false);
mark_pkt_end(this_branch, insn->src_reg, true);
} else {
return false;
}
break;
case BPF_JLE:
if ((dst_reg->type == PTR_TO_PACKET &&
src_reg->type == PTR_TO_PACKET_END) ||
(dst_reg->type == PTR_TO_PACKET_META &&
reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
find_good_pkt_pointers(other_branch, dst_reg,
dst_reg->type, false);
mark_pkt_end(this_branch, insn->dst_reg, true);
} else if ((dst_reg->type == PTR_TO_PACKET_END &&
src_reg->type == PTR_TO_PACKET) ||
(reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
src_reg->type == PTR_TO_PACKET_META)) {
/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
find_good_pkt_pointers(this_branch, src_reg,
src_reg->type, true);
mark_pkt_end(other_branch, insn->src_reg, false);
} else {
return false;
}
break;
default:
return false;
}
return true;
}
static void find_equal_scalars(struct bpf_verifier_state *vstate,
struct bpf_reg_state *known_reg)
{
struct bpf_func_state *state;
struct bpf_reg_state *reg;
int i, j;
for (i = 0; i <= vstate->curframe; i++) {
state = vstate->frame[i];
for (j = 0; j < MAX_BPF_REG; j++) {
reg = &state->regs[j];
if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
*reg = *known_reg;
}
bpf_for_each_spilled_reg(j, state, reg) {
if (!reg)
continue;
if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
*reg = *known_reg;
}
}
}
static int check_cond_jmp_op(struct bpf_verifier_env *env,
struct bpf_insn *insn, int *insn_idx)
{
struct bpf_verifier_state *this_branch = env->cur_state;
struct bpf_verifier_state *other_branch;
struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
u8 opcode = BPF_OP(insn->code);
bool is_jmp32;
int pred = -1;
int err;
/* Only conditional jumps are expected to reach here. */
if (opcode == BPF_JA || opcode > BPF_JSLE) {
verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
return -EINVAL;
}
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0) {
verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
if (is_pointer_value(env, insn->src_reg)) {
verbose(env, "R%d pointer comparison prohibited\n",
insn->src_reg);
return -EACCES;
}
src_reg = &regs[insn->src_reg];
} else {
if (insn->src_reg != BPF_REG_0) {
verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
return -EINVAL;
}
}
/* check src2 operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
dst_reg = &regs[insn->dst_reg];
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
if (BPF_SRC(insn->code) == BPF_K) {
pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
} else if (src_reg->type == SCALAR_VALUE &&
is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
pred = is_branch_taken(dst_reg,
tnum_subreg(src_reg->var_off).value,
opcode,
is_jmp32);
} else if (src_reg->type == SCALAR_VALUE &&
!is_jmp32 && tnum_is_const(src_reg->var_off)) {
pred = is_branch_taken(dst_reg,
src_reg->var_off.value,
opcode,
is_jmp32);
} else if (reg_is_pkt_pointer_any(dst_reg) &&
reg_is_pkt_pointer_any(src_reg) &&
!is_jmp32) {
pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
}
if (pred >= 0) {
/* If we get here with a dst_reg pointer type it is because
* above is_branch_taken() special cased the 0 comparison.
*/
if (!__is_pointer_value(false, dst_reg))
err = mark_chain_precision(env, insn->dst_reg);
if (BPF_SRC(insn->code) == BPF_X && !err &&
!__is_pointer_value(false, src_reg))
err = mark_chain_precision(env, insn->src_reg);
if (err)
return err;
}
if (pred == 1) {
/* Only follow the goto, ignore fall-through. If needed, push
* the fall-through branch for simulation under speculative
* execution.
*/
if (!env->bypass_spec_v1 &&
!sanitize_speculative_path(env, insn, *insn_idx + 1,
*insn_idx))
return -EFAULT;
*insn_idx += insn->off;
return 0;
} else if (pred == 0) {
/* Only follow the fall-through branch, since that's where the
* program will go. If needed, push the goto branch for
* simulation under speculative execution.
*/
if (!env->bypass_spec_v1 &&
!sanitize_speculative_path(env, insn,
*insn_idx + insn->off + 1,
*insn_idx))
return -EFAULT;
return 0;
}
other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
false);
if (!other_branch)
return -EFAULT;
other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
/* detect if we are comparing against a constant value so we can adjust
* our min/max values for our dst register.
* this is only legit if both are scalars (or pointers to the same
* object, I suppose, but we don't support that right now), because
* otherwise the different base pointers mean the offsets aren't
* comparable.
*/
if (BPF_SRC(insn->code) == BPF_X) {
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
if (dst_reg->type == SCALAR_VALUE &&
src_reg->type == SCALAR_VALUE) {
if (tnum_is_const(src_reg->var_off) ||
(is_jmp32 &&
tnum_is_const(tnum_subreg(src_reg->var_off))))
reg_set_min_max(&other_branch_regs[insn->dst_reg],
dst_reg,
src_reg->var_off.value,
tnum_subreg(src_reg->var_off).value,
opcode, is_jmp32);
else if (tnum_is_const(dst_reg->var_off) ||
(is_jmp32 &&
tnum_is_const(tnum_subreg(dst_reg->var_off))))
reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
src_reg,
dst_reg->var_off.value,
tnum_subreg(dst_reg->var_off).value,
opcode, is_jmp32);
else if (!is_jmp32 &&
(opcode == BPF_JEQ || opcode == BPF_JNE))
/* Comparing for equality, we can combine knowledge */
reg_combine_min_max(&other_branch_regs[insn->src_reg],
&other_branch_regs[insn->dst_reg],
src_reg, dst_reg, opcode);
if (src_reg->id &&
!WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
find_equal_scalars(this_branch, src_reg);
find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
}
}
} else if (dst_reg->type == SCALAR_VALUE) {
reg_set_min_max(&other_branch_regs[insn->dst_reg],
dst_reg, insn->imm, (u32)insn->imm,
opcode, is_jmp32);
}
if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
!WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
find_equal_scalars(this_branch, dst_reg);
find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
}
/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
* NOTE: these optimizations below are related with pointer comparison
* which will never be JMP32.
*/
if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
reg_type_may_be_null(dst_reg->type)) {
/* Mark all identical registers in each branch as either
* safe or unknown depending R == 0 or R != 0 conditional.
*/
mark_ptr_or_null_regs(this_branch, insn->dst_reg,
opcode == BPF_JNE);
mark_ptr_or_null_regs(other_branch, insn->dst_reg,
opcode == BPF_JEQ);
} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
this_branch, other_branch) &&
is_pointer_value(env, insn->dst_reg)) {
verbose(env, "R%d pointer comparison prohibited\n",
insn->dst_reg);
return -EACCES;
}
if (env->log.level & BPF_LOG_LEVEL)
print_verifier_state(env, this_branch->frame[this_branch->curframe]);
return 0;
}
/* verify BPF_LD_IMM64 instruction */
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
struct bpf_insn_aux_data *aux = cur_aux(env);
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *dst_reg;
struct bpf_map *map;
int err;
if (BPF_SIZE(insn->code) != BPF_DW) {
verbose(env, "invalid BPF_LD_IMM insn\n");
return -EINVAL;
}
if (insn->off != 0) {
verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
return -EINVAL;
}
err = check_reg_arg(env, insn->dst_reg, DST_OP);
if (err)
return err;
dst_reg = &regs[insn->dst_reg];
if (insn->src_reg == 0) {
u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
dst_reg->type = SCALAR_VALUE;
__mark_reg_known(&regs[insn->dst_reg], imm);
return 0;
}
if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
mark_reg_known_zero(env, regs, insn->dst_reg);
dst_reg->type = aux->btf_var.reg_type;
switch (dst_reg->type) {
case PTR_TO_MEM:
dst_reg->mem_size = aux->btf_var.mem_size;
break;
case PTR_TO_BTF_ID:
case PTR_TO_PERCPU_BTF_ID:
dst_reg->btf = aux->btf_var.btf;
dst_reg->btf_id = aux->btf_var.btf_id;
break;
default:
verbose(env, "bpf verifier is misconfigured\n");
return -EFAULT;
}
return 0;
}
if (insn->src_reg == BPF_PSEUDO_FUNC) {
struct bpf_prog_aux *aux = env->prog->aux;
u32 subprogno = insn[1].imm;
if (!aux->func_info) {
verbose(env, "missing btf func_info\n");
return -EINVAL;
}
if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
verbose(env, "callback function not static\n");
return -EINVAL;
}
dst_reg->type = PTR_TO_FUNC;
dst_reg->subprogno = subprogno;
return 0;
}
map = env->used_maps[aux->map_index];
mark_reg_known_zero(env, regs, insn->dst_reg);
dst_reg->map_ptr = map;
if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
dst_reg->type = PTR_TO_MAP_VALUE;
dst_reg->off = aux->map_off;
if (map_value_has_spin_lock(map))
dst_reg->id = ++env->id_gen;
} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
insn->src_reg == BPF_PSEUDO_MAP_IDX) {
dst_reg->type = CONST_PTR_TO_MAP;
} else {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
return 0;
}
static bool may_access_skb(enum bpf_prog_type type)
{
switch (type) {
case BPF_PROG_TYPE_SOCKET_FILTER:
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
return true;
default:
return false;
}
}
/* verify safety of LD_ABS|LD_IND instructions:
* - they can only appear in the programs where ctx == skb
* - since they are wrappers of function calls, they scratch R1-R5 registers,
* preserve R6-R9, and store return value into R0
*
* Implicit input:
* ctx == skb == R6 == CTX
*
* Explicit input:
* SRC == any register
* IMM == 32-bit immediate
*
* Output:
* R0 - 8/16/32-bit skb data converted to cpu endianness
*/
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
struct bpf_reg_state *regs = cur_regs(env);
static const int ctx_reg = BPF_REG_6;
u8 mode = BPF_MODE(insn->code);
int i, err;
if (!may_access_skb(resolve_prog_type(env->prog))) {
verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
return -EINVAL;
}
if (!env->ops->gen_ld_abs) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
BPF_SIZE(insn->code) == BPF_DW ||
(mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
return -EINVAL;
}
/* check whether implicit source operand (register R6) is readable */
err = check_reg_arg(env, ctx_reg, SRC_OP);
if (err)
return err;
/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
* gen_ld_abs() may terminate the program at runtime, leading to
* reference leak.
*/
err = check_reference_leak(env);
if (err) {
verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
return err;
}
if (env->cur_state->active_spin_lock) {
verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
return -EINVAL;
}
if (regs[ctx_reg].type != PTR_TO_CTX) {
verbose(env,
"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
return -EINVAL;
}
if (mode == BPF_IND) {
/* check explicit source operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
}
err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
if (err < 0)
return err;
/* reset caller saved regs to unreadable */
for (i = 0; i < CALLER_SAVED_REGS; i++) {
mark_reg_not_init(env, regs, caller_saved[i]);
check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
}
/* mark destination R0 register as readable, since it contains
* the value fetched from the packet.
* Already marked as written above.
*/
mark_reg_unknown(env, regs, BPF_REG_0);
/* ld_abs load up to 32-bit skb data. */
regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
return 0;
}
static int check_return_code(struct bpf_verifier_env *env)
{
struct tnum enforce_attach_type_range = tnum_unknown;
const struct bpf_prog *prog = env->prog;
struct bpf_reg_state *reg;
struct tnum range = tnum_range(0, 1);
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
int err;
struct bpf_func_state *frame = env->cur_state->frame[0];
const bool is_subprog = frame->subprogno;
/* LSM and struct_ops func-ptr's return type could be "void" */
if (!is_subprog &&
(prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
prog_type == BPF_PROG_TYPE_LSM) &&
!prog->aux->attach_func_proto->type)
return 0;
/* eBPF calling convention is such that R0 is used
* to return the value from eBPF program.
* Make sure that it's readable at this time
* of bpf_exit, which means that program wrote
* something into it earlier
*/
err = check_reg_arg(env, BPF_REG_0, SRC_OP);
if (err)
return err;
if (is_pointer_value(env, BPF_REG_0)) {
verbose(env, "R0 leaks addr as return value\n");
return -EACCES;
}
reg = cur_regs(env) + BPF_REG_0;
if (frame->in_async_callback_fn) {
/* enforce return zero from async callbacks like timer */
if (reg->type != SCALAR_VALUE) {
verbose(env, "In async callback the register R0 is not a known value (%s)\n",
reg_type_str[reg->type]);
return -EINVAL;
}
if (!tnum_in(tnum_const(0), reg->var_off)) {
verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
return -EINVAL;
}
return 0;
}
if (is_subprog) {
if (reg->type != SCALAR_VALUE) {
verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
reg_type_str[reg->type]);
return -EINVAL;
}
return 0;
}
switch (prog_type) {
case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
range = tnum_range(1, 1);
if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
range = tnum_range(0, 3);
break;
case BPF_PROG_TYPE_CGROUP_SKB:
if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
range = tnum_range(0, 3);
enforce_attach_type_range = tnum_range(2, 3);
}
break;
case BPF_PROG_TYPE_CGROUP_SOCK:
case BPF_PROG_TYPE_SOCK_OPS:
case BPF_PROG_TYPE_CGROUP_DEVICE:
case BPF_PROG_TYPE_CGROUP_SYSCTL:
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
break;
case BPF_PROG_TYPE_RAW_TRACEPOINT:
if (!env->prog->aux->attach_btf_id)
return 0;
range = tnum_const(0);
break;
case BPF_PROG_TYPE_TRACING:
switch (env->prog->expected_attach_type) {
case BPF_TRACE_FENTRY:
case BPF_TRACE_FEXIT:
range = tnum_const(0);
break;
case BPF_TRACE_RAW_TP:
case BPF_MODIFY_RETURN:
return 0;
case BPF_TRACE_ITER:
break;
default:
return -ENOTSUPP;
}
break;
case BPF_PROG_TYPE_SK_LOOKUP:
range = tnum_range(SK_DROP, SK_PASS);
break;
case BPF_PROG_TYPE_EXT:
/* freplace program can return anything as its return value
* depends on the to-be-replaced kernel func or bpf program.
*/
default:
return 0;
}
if (reg->type != SCALAR_VALUE) {
verbose(env, "At program exit the register R0 is not a known value (%s)\n",
reg_type_str[reg->type]);
return -EINVAL;
}
if (!tnum_in(range, reg->var_off)) {
verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
return -EINVAL;
}
if (!tnum_is_unknown(enforce_attach_type_range) &&
tnum_in(enforce_attach_type_range, reg->var_off))
env->prog->enforce_expected_attach_type = 1;
return 0;
}
/* non-recursive DFS pseudo code
* 1 procedure DFS-iterative(G,v):
* 2 label v as discovered
* 3 let S be a stack
* 4 S.push(v)
* 5 while S is not empty
* 6 t <- S.pop()
* 7 if t is what we're looking for:
* 8 return t
* 9 for all edges e in G.adjacentEdges(t) do
* 10 if edge e is already labelled
* 11 continue with the next edge
* 12 w <- G.adjacentVertex(t,e)
* 13 if vertex w is not discovered and not explored
* 14 label e as tree-edge
* 15 label w as discovered
* 16 S.push(w)
* 17 continue at 5
* 18 else if vertex w is discovered
* 19 label e as back-edge
* 20 else
* 21 // vertex w is explored
* 22 label e as forward- or cross-edge
* 23 label t as explored
* 24 S.pop()
*
* convention:
* 0x10 - discovered
* 0x11 - discovered and fall-through edge labelled
* 0x12 - discovered and fall-through and branch edges labelled
* 0x20 - explored
*/
enum {
DISCOVERED = 0x10,
EXPLORED = 0x20,
FALLTHROUGH = 1,
BRANCH = 2,
};
static u32 state_htab_size(struct bpf_verifier_env *env)
{
return env->prog->len;
}
static struct bpf_verifier_state_list **explored_state(
struct bpf_verifier_env *env,
int idx)
{
struct bpf_verifier_state *cur = env->cur_state;
struct bpf_func_state *state = cur->frame[cur->curframe];
return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
}
static void init_explored_state(struct bpf_verifier_env *env, int idx)
{
env->insn_aux_data[idx].prune_point = true;
}
enum {
DONE_EXPLORING = 0,
KEEP_EXPLORING = 1,
};
/* t, w, e - match pseudo-code above:
* t - index of current instruction
* w - next instruction
* e - edge
*/
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
bool loop_ok)
{
int *insn_stack = env->cfg.insn_stack;
int *insn_state = env->cfg.insn_state;
if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
return DONE_EXPLORING;
if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
return DONE_EXPLORING;
if (w < 0 || w >= env->prog->len) {
verbose_linfo(env, t, "%d: ", t);
verbose(env, "jump out of range from insn %d to %d\n", t, w);
return -EINVAL;
}
if (e == BRANCH)
/* mark branch target for state pruning */
init_explored_state(env, w);
if (insn_state[w] == 0) {
/* tree-edge */
insn_state[t] = DISCOVERED | e;
insn_state[w] = DISCOVERED;
if (env->cfg.cur_stack >= env->prog->len)
return -E2BIG;
insn_stack[env->cfg.cur_stack++] = w;
return KEEP_EXPLORING;
} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
if (loop_ok && env->bpf_capable)
return DONE_EXPLORING;
verbose_linfo(env, t, "%d: ", t);
verbose_linfo(env, w, "%d: ", w);
verbose(env, "back-edge from insn %d to %d\n", t, w);
return -EINVAL;
} else if (insn_state[w] == EXPLORED) {
/* forward- or cross-edge */
insn_state[t] = DISCOVERED | e;
} else {
verbose(env, "insn state internal bug\n");
return -EFAULT;
}
return DONE_EXPLORING;
}
static int visit_func_call_insn(int t, int insn_cnt,
struct bpf_insn *insns,
struct bpf_verifier_env *env,
bool visit_callee)
{
int ret;
ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
if (ret)
return ret;
if (t + 1 < insn_cnt)
init_explored_state(env, t + 1);
if (visit_callee) {
init_explored_state(env, t);
ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
/* It's ok to allow recursion from CFG point of
* view. __check_func_call() will do the actual
* check.
*/
bpf_pseudo_func(insns + t));
}
return ret;
}
/* Visits the instruction at index t and returns one of the following:
* < 0 - an error occurred
* DONE_EXPLORING - the instruction was fully explored
* KEEP_EXPLORING - there is still work to be done before it is fully explored
*/
static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
{
struct bpf_insn *insns = env->prog->insnsi;
int ret;
if (bpf_pseudo_func(insns + t))
return visit_func_call_insn(t, insn_cnt, insns, env, true);
/* All non-branch instructions have a single fall-through edge. */
if (BPF_CLASS(insns[t].code) != BPF_JMP &&
BPF_CLASS(insns[t].code) != BPF_JMP32)
return push_insn(t, t + 1, FALLTHROUGH, env, false);
switch (BPF_OP(insns[t].code)) {
case BPF_EXIT:
return DONE_EXPLORING;
case BPF_CALL:
if (insns[t].imm == BPF_FUNC_timer_set_callback)
/* Mark this call insn to trigger is_state_visited() check
* before call itself is processed by __check_func_call().
* Otherwise new async state will be pushed for further
* exploration.
*/
init_explored_state(env, t);
return visit_func_call_insn(t, insn_cnt, insns, env,
insns[t].src_reg == BPF_PSEUDO_CALL);
case BPF_JA:
if (BPF_SRC(insns[t].code) != BPF_K)
return -EINVAL;
/* unconditional jump with single edge */
ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
true);
if (ret)
return ret;
/* unconditional jmp is not a good pruning point,
* but it's marked, since backtracking needs
* to record jmp history in is_state_visited().
*/
init_explored_state(env, t + insns[t].off + 1);
/* tell verifier to check for equivalent states
* after every call and jump
*/
if (t + 1 < insn_cnt)
init_explored_state(env, t + 1);
return ret;
default:
/* conditional jump with two edges */
init_explored_state(env, t);
ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
if (ret)
return ret;
return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
}
}
/* non-recursive depth-first-search to detect loops in BPF program
* loop == back-edge in directed graph
*/
static int check_cfg(struct bpf_verifier_env *env)
{
int insn_cnt = env->prog->len;
int *insn_stack, *insn_state;
int ret = 0;
int i;
insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
if (!insn_state)
return -ENOMEM;
insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
if (!insn_stack) {
kvfree(insn_state);
return -ENOMEM;
}
insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
insn_stack[0] = 0; /* 0 is the first instruction */
env->cfg.cur_stack = 1;
while (env->cfg.cur_stack > 0) {
int t = insn_stack[env->cfg.cur_stack - 1];
ret = visit_insn(t, insn_cnt, env);
switch (ret) {
case DONE_EXPLORING:
insn_state[t] = EXPLORED;
env->cfg.cur_stack--;
break;
case KEEP_EXPLORING:
break;
default:
if (ret > 0) {
verbose(env, "visit_insn internal bug\n");
ret = -EFAULT;
}
goto err_free;
}
}
if (env->cfg.cur_stack < 0) {
verbose(env, "pop stack internal bug\n");
ret = -EFAULT;
goto err_free;
}
for (i = 0; i < insn_cnt; i++) {
if (insn_state[i] != EXPLORED) {
verbose(env, "unreachable insn %d\n", i);
ret = -EINVAL;
goto err_free;
}
}
ret = 0; /* cfg looks good */
err_free:
kvfree(insn_state);
kvfree(insn_stack);
env->cfg.insn_state = env->cfg.insn_stack = NULL;
return ret;
}
static int check_abnormal_return(struct bpf_verifier_env *env)
{
int i;
for (i = 1; i < env->subprog_cnt; i++) {
if (env->subprog_info[i].has_ld_abs) {
verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
return -EINVAL;
}
if (env->subprog_info[i].has_tail_call) {
verbose(env, "tail_call is not allowed in subprogs without BTF\n");
return -EINVAL;
}
}
return 0;
}
/* The minimum supported BTF func info size */
#define MIN_BPF_FUNCINFO_SIZE 8
#define MAX_FUNCINFO_REC_SIZE 252
static int check_btf_func(struct bpf_verifier_env *env,
const union bpf_attr *attr,
bpfptr_t uattr)
{
const struct btf_type *type, *func_proto, *ret_type;
u32 i, nfuncs, urec_size, min_size;
u32 krec_size = sizeof(struct bpf_func_info);
struct bpf_func_info *krecord;
struct bpf_func_info_aux *info_aux = NULL;
struct bpf_prog *prog;
const struct btf *btf;
bpfptr_t urecord;
u32 prev_offset = 0;
bool scalar_return;
int ret = -ENOMEM;
nfuncs = attr->func_info_cnt;
if (!nfuncs) {
if (check_abnormal_return(env))
return -EINVAL;
return 0;
}
if (nfuncs != env->subprog_cnt) {
verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
return -EINVAL;
}
urec_size = attr->func_info_rec_size;
if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
urec_size > MAX_FUNCINFO_REC_SIZE ||
urec_size % sizeof(u32)) {
verbose(env, "invalid func info rec size %u\n", urec_size);
return -EINVAL;
}
prog = env->prog;
btf = prog->aux->btf;
urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
min_size = min_t(u32, krec_size, urec_size);
krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
if (!krecord)
return -ENOMEM;
info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
if (!info_aux)
goto err_free;
for (i = 0; i < nfuncs; i++) {
ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
if (ret) {
if (ret == -E2BIG) {
verbose(env, "nonzero tailing record in func info");
/* set the size kernel expects so loader can zero
* out the rest of the record.
*/
if (copy_to_bpfptr_offset(uattr,
offsetof(union bpf_attr, func_info_rec_size),
&min_size, sizeof(min_size)))
ret = -EFAULT;
}
goto err_free;
}
if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
ret = -EFAULT;
goto err_free;
}
/* check insn_off */
ret = -EINVAL;
if (i == 0) {
if (krecord[i].insn_off) {
verbose(env,
"nonzero insn_off %u for the first func info record",
krecord[i].insn_off);
goto err_free;
}
} else if (krecord[i].insn_off <= prev_offset) {
verbose(env,
"same or smaller insn offset (%u) than previous func info record (%u)",
krecord[i].insn_off, prev_offset);
goto err_free;
}
if (env->subprog_info[i].start != krecord[i].insn_off) {
verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
goto err_free;
}
/* check type_id */
type = btf_type_by_id(btf, krecord[i].type_id);
if (!type || !btf_type_is_func(type)) {
verbose(env, "invalid type id %d in func info",
krecord[i].type_id);
goto err_free;
}
info_aux[i].linkage = BTF_INFO_VLEN(type->info);
func_proto = btf_type_by_id(btf, type->type);
if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
/* btf_func_check() already verified it during BTF load */
goto err_free;
ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
scalar_return =
btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
goto err_free;
}
if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
goto err_free;
}
prev_offset = krecord[i].insn_off;
bpfptr_add(&urecord, urec_size);
}
prog->aux->func_info = krecord;
prog->aux->func_info_cnt = nfuncs;
prog->aux->func_info_aux = info_aux;
return 0;
err_free:
kvfree(krecord);
kfree(info_aux);
return ret;
}
static void adjust_btf_func(struct bpf_verifier_env *env)
{
struct bpf_prog_aux *aux = env->prog->aux;
int i;
if (!aux->func_info)
return;
for (i = 0; i < env->subprog_cnt; i++)
aux->func_info[i].insn_off = env->subprog_info[i].start;
}
#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
sizeof(((struct bpf_line_info *)(0))->line_col))
#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
static int check_btf_line(struct bpf_verifier_env *env,
const union bpf_attr *attr,
bpfptr_t uattr)
{
u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
struct bpf_subprog_info *sub;
struct bpf_line_info *linfo;
struct bpf_prog *prog;
const struct btf *btf;
bpfptr_t ulinfo;
int err;
nr_linfo = attr->line_info_cnt;
if (!nr_linfo)
return 0;
rec_size = attr->line_info_rec_size;
if (rec_size < MIN_BPF_LINEINFO_SIZE ||
rec_size > MAX_LINEINFO_REC_SIZE ||
rec_size & (sizeof(u32) - 1))
return -EINVAL;
/* Need to zero it in case the userspace may
* pass in a smaller bpf_line_info object.
*/
linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
GFP_KERNEL | __GFP_NOWARN);
if (!linfo)
return -ENOMEM;
prog = env->prog;
btf = prog->aux->btf;
s = 0;
sub = env->subprog_info;
ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
expected_size = sizeof(struct bpf_line_info);
ncopy = min_t(u32, expected_size, rec_size);
for (i = 0; i < nr_linfo; i++) {
err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
if (err) {
if (err == -E2BIG) {
verbose(env, "nonzero tailing record in line_info");
if (copy_to_bpfptr_offset(uattr,
offsetof(union bpf_attr, line_info_rec_size),
&expected_size, sizeof(expected_size)))
err = -EFAULT;
}
goto err_free;
}
if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
err = -EFAULT;
goto err_free;
}
/*
* Check insn_off to ensure
* 1) strictly increasing AND
* 2) bounded by prog->len
*
* The linfo[0].insn_off == 0 check logically falls into
* the later "missing bpf_line_info for func..." case
* because the first linfo[0].insn_off must be the
* first sub also and the first sub must have
* subprog_info[0].start == 0.
*/
if ((i && linfo[i].insn_off <= prev_offset) ||
linfo[i].insn_off >= prog->len) {
verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
i, linfo[i].insn_off, prev_offset,
prog->len);
err = -EINVAL;
goto err_free;
}
if (!prog->insnsi[linfo[i].insn_off].code) {
verbose(env,
"Invalid insn code at line_info[%u].insn_off\n",
i);
err = -EINVAL;
goto err_free;
}
if (!btf_name_by_offset(btf, linfo[i].line_off) ||
!btf_name_by_offset(btf, linfo[i].file_name_off)) {
verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
err = -EINVAL;
goto err_free;
}
if (s != env->subprog_cnt) {
if (linfo[i].insn_off == sub[s].start) {
sub[s].linfo_idx = i;
s++;
} else if (sub[s].start < linfo[i].insn_off) {
verbose(env, "missing bpf_line_info for func#%u\n", s);
err = -EINVAL;
goto err_free;
}
}
prev_offset = linfo[i].insn_off;
bpfptr_add(&ulinfo, rec_size);
}
if (s != env->subprog_cnt) {
verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
env->subprog_cnt - s, s);
err = -EINVAL;
goto err_free;
}
prog->aux->linfo = linfo;
prog->aux->nr_linfo = nr_linfo;
return 0;
err_free:
kvfree(linfo);
return err;
}
static int check_btf_info(struct bpf_verifier_env *env,
const union bpf_attr *attr,
bpfptr_t uattr)
{
struct btf *btf;
int err;
if (!attr->func_info_cnt && !attr->line_info_cnt) {
if (check_abnormal_return(env))
return -EINVAL;
return 0;
}
btf = btf_get_by_fd(attr->prog_btf_fd);
if (IS_ERR(btf))
return PTR_ERR(btf);
if (btf_is_kernel(btf)) {
btf_put(btf);
return -EACCES;
}
env->prog->aux->btf = btf;
err = check_btf_func(env, attr, uattr);
if (err)
return err;
err = check_btf_line(env, attr, uattr);
if (err)
return err;
return 0;
}
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
struct bpf_reg_state *cur)
{
return old->umin_value <= cur->umin_value &&
old->umax_value >= cur->umax_value &&
old->smin_value <= cur->smin_value &&
old->smax_value >= cur->smax_value &&
old->u32_min_value <= cur->u32_min_value &&
old->u32_max_value >= cur->u32_max_value &&
old->s32_min_value <= cur->s32_min_value &&
old->s32_max_value >= cur->s32_max_value;
}
/* If in the old state two registers had the same id, then they need to have
* the same id in the new state as well. But that id could be different from
* the old state, so we need to track the mapping from old to new ids.
* Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
* regs with old id 5 must also have new id 9 for the new state to be safe. But
* regs with a different old id could still have new id 9, we don't care about
* that.
* So we look through our idmap to see if this old id has been seen before. If
* so, we require the new id to match; otherwise, we add the id pair to the map.
*/
static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
{
unsigned int i;
for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
if (!idmap[i].old) {
/* Reached an empty slot; haven't seen this id before */
idmap[i].old = old_id;
idmap[i].cur = cur_id;
return true;
}
if (idmap[i].old == old_id)
return idmap[i].cur == cur_id;
}
/* We ran out of idmap slots, which should be impossible */
WARN_ON_ONCE(1);
return false;
}
static void clean_func_state(struct bpf_verifier_env *env,
struct bpf_func_state *st)
{
enum bpf_reg_liveness live;
int i, j;
for (i = 0; i < BPF_REG_FP; i++) {
live = st->regs[i].live;
/* liveness must not touch this register anymore */
st->regs[i].live |= REG_LIVE_DONE;
if (!(live & REG_LIVE_READ))
/* since the register is unused, clear its state
* to make further comparison simpler
*/
__mark_reg_not_init(env, &st->regs[i]);
}
for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
live = st->stack[i].spilled_ptr.live;
/* liveness must not touch this stack slot anymore */
st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
if (!(live & REG_LIVE_READ)) {
__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
for (j = 0; j < BPF_REG_SIZE; j++)
st->stack[i].slot_type[j] = STACK_INVALID;
}
}
}
static void clean_verifier_state(struct bpf_verifier_env *env,
struct bpf_verifier_state *st)
{
int i;
if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
/* all regs in this state in all frames were already marked */
return;
for (i = 0; i <= st->curframe; i++)
clean_func_state(env, st->frame[i]);
}
/* the parentage chains form a tree.
* the verifier states are added to state lists at given insn and
* pushed into state stack for future exploration.
* when the verifier reaches bpf_exit insn some of the verifer states
* stored in the state lists have their final liveness state already,
* but a lot of states will get revised from liveness point of view when
* the verifier explores other branches.
* Example:
* 1: r0 = 1
* 2: if r1 == 100 goto pc+1
* 3: r0 = 2
* 4: exit
* when the verifier reaches exit insn the register r0 in the state list of
* insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
* of insn 2 and goes exploring further. At the insn 4 it will walk the
* parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
*
* Since the verifier pushes the branch states as it sees them while exploring
* the program the condition of walking the branch instruction for the second
* time means that all states below this branch were already explored and
* their final liveness marks are already propagated.
* Hence when the verifier completes the search of state list in is_state_visited()
* we can call this clean_live_states() function to mark all liveness states
* as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
* will not be used.
* This function also clears the registers and stack for states that !READ
* to simplify state merging.
*
* Important note here that walking the same branch instruction in the callee
* doesn't meant that the states are DONE. The verifier has to compare
* the callsites
*/
static void clean_live_states(struct bpf_verifier_env *env, int insn,
struct bpf_verifier_state *cur)
{
struct bpf_verifier_state_list *sl;
int i;
sl = *explored_state(env, insn);
while (sl) {
if (sl->state.branches)
goto next;
if (sl->state.insn_idx != insn ||
sl->state.curframe != cur->curframe)
goto next;
for (i = 0; i <= cur->curframe; i++)
if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
goto next;
clean_verifier_state(env, &sl->state);
next:
sl = sl->next;
}
}
/* Returns true if (rold safe implies rcur safe) */
static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
{
bool equal;
if (!(rold->live & REG_LIVE_READ))
/* explored state didn't use this */
return true;
equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
if (rold->type == PTR_TO_STACK)
/* two stack pointers are equal only if they're pointing to
* the same stack frame, since fp-8 in foo != fp-8 in bar
*/
return equal && rold->frameno == rcur->frameno;
if (equal)
return true;
if (rold->type == NOT_INIT)
/* explored state can't have used this */
return true;
if (rcur->type == NOT_INIT)
return false;
switch (rold->type) {
case SCALAR_VALUE:
if (env->explore_alu_limits)
return false;
if (rcur->type == SCALAR_VALUE) {
if (!rold->precise && !rcur->precise)
return true;
/* new val must satisfy old val knowledge */
return range_within(rold, rcur) &&
tnum_in(rold->var_off, rcur->var_off);
} else {
/* We're trying to use a pointer in place of a scalar.
* Even if the scalar was unbounded, this could lead to
* pointer leaks because scalars are allowed to leak
* while pointers are not. We could make this safe in
* special cases if root is calling us, but it's
* probably not worth the hassle.
*/
return false;
}
case PTR_TO_MAP_KEY:
case PTR_TO_MAP_VALUE:
/* If the new min/max/var_off satisfy the old ones and
* everything else matches, we are OK.
* 'id' is not compared, since it's only used for maps with
* bpf_spin_lock inside map element and in such cases if
* the rest of the prog is valid for one map element then
* it's valid for all map elements regardless of the key
* used in bpf_map_lookup()
*/
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
range_within(rold, rcur) &&
tnum_in(rold->var_off, rcur->var_off);
case PTR_TO_MAP_VALUE_OR_NULL:
/* a PTR_TO_MAP_VALUE could be safe to use as a
* PTR_TO_MAP_VALUE_OR_NULL into the same map.
* However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
* checked, doing so could have affected others with the same
* id, and we can't check for that because we lost the id when
* we converted to a PTR_TO_MAP_VALUE.
*/
if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
return false;
if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
return false;
/* Check our ids match any regs they're supposed to */
return check_ids(rold->id, rcur->id, idmap);
case PTR_TO_PACKET_META:
case PTR_TO_PACKET:
if (rcur->type != rold->type)
return false;
/* We must have at least as much range as the old ptr
* did, so that any accesses which were safe before are
* still safe. This is true even if old range < old off,
* since someone could have accessed through (ptr - k), or
* even done ptr -= k in a register, to get a safe access.
*/
if (rold->range > rcur->range)
return false;
/* If the offsets don't match, we can't trust our alignment;
* nor can we be sure that we won't fall out of range.
*/
if (rold->off != rcur->off)
return false;
/* id relations must be preserved */
if (rold->id && !check_ids(rold->id, rcur->id, idmap))
return false;
/* new val must satisfy old val knowledge */
return range_within(rold, rcur) &&
tnum_in(rold->var_off, rcur->var_off);
case PTR_TO_CTX:
case CONST_PTR_TO_MAP:
case PTR_TO_PACKET_END:
case PTR_TO_FLOW_KEYS:
case PTR_TO_SOCKET:
case PTR_TO_SOCKET_OR_NULL:
case PTR_TO_SOCK_COMMON:
case PTR_TO_SOCK_COMMON_OR_NULL:
case PTR_TO_TCP_SOCK:
case PTR_TO_TCP_SOCK_OR_NULL:
case PTR_TO_XDP_SOCK:
/* Only valid matches are exact, which memcmp() above
* would have accepted
*/
default:
/* Don't know what's going on, just say it's not safe */
return false;
}
/* Shouldn't get here; if we do, say it's not safe */
WARN_ON_ONCE(1);
return false;
}
static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
struct bpf_func_state *cur, struct bpf_id_pair *idmap)
{
int i, spi;
/* walk slots of the explored stack and ignore any additional
* slots in the current stack, since explored(safe) state
* didn't use them
*/
for (i = 0; i < old->allocated_stack; i++) {
spi = i / BPF_REG_SIZE;
if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
i += BPF_REG_SIZE - 1;
/* explored state didn't use this */
continue;
}
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
continue;
/* explored stack has more populated slots than current stack
* and these slots were used
*/
if (i >= cur->allocated_stack)
return false;
/* if old state was safe with misc data in the stack
* it will be safe with zero-initialized stack.
* The opposite is not true
*/
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
continue;
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
cur->stack[spi].slot_type[i % BPF_REG_SIZE])
/* Ex: old explored (safe) state has STACK_SPILL in
* this stack slot, but current has STACK_MISC ->
* this verifier states are not equivalent,
* return false to continue verification of this path
*/
return false;
if (i % BPF_REG_SIZE)
continue;
if (old->stack[spi].slot_type[0] != STACK_SPILL)
continue;
if (!regsafe(env, &old->stack[spi].spilled_ptr,
&cur->stack[spi].spilled_ptr, idmap))
/* when explored and current stack slot are both storing
* spilled registers, check that stored pointers types
* are the same as well.
* Ex: explored safe path could have stored
* (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
* but current path has stored:
* (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
* such verifier states are not equivalent.
* return false to continue verification of this path
*/
return false;
}
return true;
}
static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
{
if (old->acquired_refs != cur->acquired_refs)
return false;
return !memcmp(old->refs, cur->refs,
sizeof(*old->refs) * old->acquired_refs);
}
/* compare two verifier states
*
* all states stored in state_list are known to be valid, since
* verifier reached 'bpf_exit' instruction through them
*
* this function is called when verifier exploring different branches of
* execution popped from the state stack. If it sees an old state that has
* more strict register state and more strict stack state then this execution
* branch doesn't need to be explored further, since verifier already
* concluded that more strict state leads to valid finish.
*
* Therefore two states are equivalent if register state is more conservative
* and explored stack state is more conservative than the current one.
* Example:
* explored current
* (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
* (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
*
* In other words if current stack state (one being explored) has more
* valid slots than old one that already passed validation, it means
* the verifier can stop exploring and conclude that current state is valid too
*
* Similarly with registers. If explored state has register type as invalid
* whereas register type in current state is meaningful, it means that
* the current state will reach 'bpf_exit' instruction safely
*/
static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
struct bpf_func_state *cur)
{
int i;
memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
for (i = 0; i < MAX_BPF_REG; i++)
if (!regsafe(env, &old->regs[i], &cur->regs[i],
env->idmap_scratch))
return false;
if (!stacksafe(env, old, cur, env->idmap_scratch))
return false;
if (!refsafe(old, cur))
return false;
return true;
}
static bool states_equal(struct bpf_verifier_env *env,
struct bpf_verifier_state *old,
struct bpf_verifier_state *cur)
{
int i;
if (old->curframe != cur->curframe)
return false;
/* Verification state from speculative execution simulation
* must never prune a non-speculative execution one.
*/
if (old->speculative && !cur->speculative)
return false;
if (old->active_spin_lock != cur->active_spin_lock)
return false;
/* for states to be equal callsites have to be the same
* and all frame states need to be equivalent
*/
for (i = 0; i <= old->curframe; i++) {
if (old->frame[i]->callsite != cur->frame[i]->callsite)
return false;
if (!func_states_equal(env, old->frame[i], cur->frame[i]))
return false;
}
return true;
}
/* Return 0 if no propagation happened. Return negative error code if error
* happened. Otherwise, return the propagated bit.
*/
static int propagate_liveness_reg(struct bpf_verifier_env *env,
struct bpf_reg_state *reg,
struct bpf_reg_state *parent_reg)
{
u8 parent_flag = parent_reg->live & REG_LIVE_READ;
u8 flag = reg->live & REG_LIVE_READ;
int err;
/* When comes here, read flags of PARENT_REG or REG could be any of
* REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
* of propagation if PARENT_REG has strongest REG_LIVE_READ64.
*/
if (parent_flag == REG_LIVE_READ64 ||
/* Or if there is no read flag from REG. */
!flag ||
/* Or if the read flag from REG is the same as PARENT_REG. */
parent_flag == flag)
return 0;
err = mark_reg_read(env, reg, parent_reg, flag);
if (err)
return err;
return flag;
}
/* A write screens off any subsequent reads; but write marks come from the
* straight-line code between a state and its parent. When we arrive at an
* equivalent state (jump target or such) we didn't arrive by the straight-line
* code, so read marks in the state must propagate to the parent regardless
* of the state's write marks. That's what 'parent == state->parent' comparison
* in mark_reg_read() is for.
*/
static int propagate_liveness(struct bpf_verifier_env *env,
const struct bpf_verifier_state *vstate,
struct bpf_verifier_state *vparent)
{
struct bpf_reg_state *state_reg, *parent_reg;
struct bpf_func_state *state, *parent;
int i, frame, err = 0;
if (vparent->curframe != vstate->curframe) {
WARN(1, "propagate_live: parent frame %d current frame %d\n",
vparent->curframe, vstate->curframe);
return -EFAULT;
}
/* Propagate read liveness of registers... */
BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
for (frame = 0; frame <= vstate->curframe; frame++) {
parent = vparent->frame[frame];
state = vstate->frame[frame];
parent_reg = parent->regs;
state_reg = state->regs;
/* We don't need to worry about FP liveness, it's read-only */
for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
err = propagate_liveness_reg(env, &state_reg[i],
&parent_reg[i]);
if (err < 0)
return err;
if (err == REG_LIVE_READ64)
mark_insn_zext(env, &parent_reg[i]);
}
/* Propagate stack slots. */
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
i < parent->allocated_stack / BPF_REG_SIZE; i++) {
parent_reg = &parent->stack[i].spilled_ptr;
state_reg = &state->stack[i].spilled_ptr;
err = propagate_liveness_reg(env, state_reg,
parent_reg);
if (err < 0)
return err;
}
}
return 0;
}
/* find precise scalars in the previous equivalent state and
* propagate them into the current state
*/
static int propagate_precision(struct bpf_verifier_env *env,
const struct bpf_verifier_state *old)
{
struct bpf_reg_state *state_reg;
struct bpf_func_state *state;
int i, err = 0;
state = old->frame[old->curframe];
state_reg = state->regs;
for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
if (state_reg->type != SCALAR_VALUE ||
!state_reg->precise)
continue;
if (env->log.level & BPF_LOG_LEVEL2)
verbose(env, "propagating r%d\n", i);
err = mark_chain_precision(env, i);
if (err < 0)
return err;
}
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
if (state->stack[i].slot_type[0] != STACK_SPILL)
continue;
state_reg = &state->stack[i].spilled_ptr;
if (state_reg->type != SCALAR_VALUE ||
!state_reg->precise)
continue;
if (env->log.level & BPF_LOG_LEVEL2)
verbose(env, "propagating fp%d\n",
(-i - 1) * BPF_REG_SIZE);
err = mark_chain_precision_stack(env, i);
if (err < 0)
return err;
}
return 0;
}
static bool states_maybe_looping(struct bpf_verifier_state *old,
struct bpf_verifier_state *cur)
{
struct bpf_func_state *fold, *fcur;
int i, fr = cur->curframe;
if (old->curframe != fr)
return false;
fold = old->frame[fr];
fcur = cur->frame[fr];
for (i = 0; i < MAX_BPF_REG; i++)
if (memcmp(&fold->regs[i], &fcur->regs[i],
offsetof(struct bpf_reg_state, parent)))
return false;
return true;
}
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
{
struct bpf_verifier_state_list *new_sl;
struct bpf_verifier_state_list *sl, **pprev;
struct bpf_verifier_state *cur = env->cur_state, *new;
int i, j, err, states_cnt = 0;
bool add_new_state = env->test_state_freq ? true : false;
cur->last_insn_idx = env->prev_insn_idx;
if (!env->insn_aux_data[insn_idx].prune_point)
/* this 'insn_idx' instruction wasn't marked, so we will not
* be doing state search here
*/
return 0;
/* bpf progs typically have pruning point every 4 instructions
* http://vger.kernel.org/bpfconf2019.html#session-1
* Do not add new state for future pruning if the verifier hasn't seen
* at least 2 jumps and at least 8 instructions.
* This heuristics helps decrease 'total_states' and 'peak_states' metric.
* In tests that amounts to up to 50% reduction into total verifier
* memory consumption and 20% verifier time speedup.
*/
if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
env->insn_processed - env->prev_insn_processed >= 8)
add_new_state = true;
pprev = explored_state(env, insn_idx);
sl = *pprev;
clean_live_states(env, insn_idx, cur);
while (sl) {
states_cnt++;
if (sl->state.insn_idx != insn_idx)
goto next;
if (sl->state.branches) {
struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
if (frame->in_async_callback_fn &&
frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
/* Different async_entry_cnt means that the verifier is
* processing another entry into async callback.
* Seeing the same state is not an indication of infinite
* loop or infinite recursion.
* But finding the same state doesn't mean that it's safe
* to stop processing the current state. The previous state
* hasn't yet reached bpf_exit, since state.branches > 0.
* Checking in_async_callback_fn alone is not enough either.
* Since the verifier still needs to catch infinite loops
* inside async callbacks.
*/
} else if (states_maybe_looping(&sl->state, cur) &&
states_equal(env, &sl->state, cur)) {
verbose_linfo(env, insn_idx, "; ");
verbose(env, "infinite loop detected at insn %d\n", insn_idx);
return -EINVAL;
}
/* if the verifier is processing a loop, avoid adding new state
* too often, since different loop iterations have distinct
* states and may not help future pruning.
* This threshold shouldn't be too low to make sure that
* a loop with large bound will be rejected quickly.
* The most abusive loop will be:
* r1 += 1
* if r1 < 1000000 goto pc-2
* 1M insn_procssed limit / 100 == 10k peak states.
* This threshold shouldn't be too high either, since states
* at the end of the loop are likely to be useful in pruning.
*/
if (env->jmps_processed - env->prev_jmps_processed < 20 &&
env->insn_processed - env->prev_insn_processed < 100)
add_new_state = false;
goto miss;
}
if (states_equal(env, &sl->state, cur)) {
sl->hit_cnt++;
/* reached equivalent register/stack state,
* prune the search.
* Registers read by the continuation are read by us.
* If we have any write marks in env->cur_state, they
* will prevent corresponding reads in the continuation
* from reaching our parent (an explored_state). Our
* own state will get the read marks recorded, but
* they'll be immediately forgotten as we're pruning
* this state and will pop a new one.
*/
err = propagate_liveness(env, &sl->state, cur);
/* if previous state reached the exit with precision and
* current state is equivalent to it (except precsion marks)
* the precision needs to be propagated back in
* the current state.
*/
err = err ? : push_jmp_history(env, cur);
err = err ? : propagate_precision(env, &sl->state);
if (err)
return err;
return 1;
}
miss:
/* when new state is not going to be added do not increase miss count.
* Otherwise several loop iterations will remove the state
* recorded earlier. The goal of these heuristics is to have
* states from some iterations of the loop (some in the beginning
* and some at the end) to help pruning.
*/
if (add_new_state)
sl->miss_cnt++;
/* heuristic to determine whether this state is beneficial
* to keep checking from state equivalence point of view.
* Higher numbers increase max_states_per_insn and verification time,
* but do not meaningfully decrease insn_processed.
*/
if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
/* the state is unlikely to be useful. Remove it to
* speed up verification
*/
*pprev = sl->next;
if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
u32 br = sl->state.branches;
WARN_ONCE(br,
"BUG live_done but branches_to_explore %d\n",
br);
free_verifier_state(&sl->state, false);
kfree(sl);
env->peak_states--;
} else {
/* cannot free this state, since parentage chain may
* walk it later. Add it for free_list instead to
* be freed at the end of verification
*/
sl->next = env->free_list;
env->free_list = sl;
}
sl = *pprev;
continue;
}
next:
pprev = &sl->next;
sl = *pprev;
}
if (env->max_states_per_insn < states_cnt)
env->max_states_per_insn = states_cnt;
if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
return push_jmp_history(env, cur);
if (!add_new_state)
return push_jmp_history(env, cur);
/* There were no equivalent states, remember the current one.
* Technically the current state is not proven to be safe yet,
* but it will either reach outer most bpf_exit (which means it's safe)
* or it will be rejected. When there are no loops the verifier won't be
* seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
* again on the way to bpf_exit.
* When looping the sl->state.branches will be > 0 and this state
* will not be considered for equivalence until branches == 0.
*/
new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
if (!new_sl)
return -ENOMEM;
env->total_states++;
env->peak_states++;
env->prev_jmps_processed = env->jmps_processed;
env->prev_insn_processed = env->insn_processed;
/* add new state to the head of linked list */
new = &new_sl->state;
err = copy_verifier_state(new, cur);
if (err) {
free_verifier_state(new, false);
kfree(new_sl);
return err;
}
new->insn_idx = insn_idx;
WARN_ONCE(new->branches != 1,
"BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
cur->parent = new;
cur->first_insn_idx = insn_idx;
clear_jmp_history(cur);
new_sl->next = *explored_state(env, insn_idx);
*explored_state(env, insn_idx) = new_sl;
/* connect new state to parentage chain. Current frame needs all
* registers connected. Only r6 - r9 of the callers are alive (pushed
* to the stack implicitly by JITs) so in callers' frames connect just
* r6 - r9 as an optimization. Callers will have r1 - r5 connected to
* the state of the call instruction (with WRITTEN set), and r0 comes
* from callee with its full parentage chain, anyway.
*/
/* clear write marks in current state: the writes we did are not writes
* our child did, so they don't screen off its reads from us.
* (There are no read marks in current state, because reads always mark
* their parent and current state never has children yet. Only
* explored_states can get read marks.)
*/
for (j = 0; j <= cur->curframe; j++) {
for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
for (i = 0; i < BPF_REG_FP; i++)
cur->frame[j]->regs[i].live = REG_LIVE_NONE;
}
/* all stack frames are accessible from callee, clear them all */
for (j = 0; j <= cur->curframe; j++) {
struct bpf_func_state *frame = cur->frame[j];
struct bpf_func_state *newframe = new->frame[j];
for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
frame->stack[i].spilled_ptr.parent =
&newframe->stack[i].spilled_ptr;
}
}
return 0;
}
/* Return true if it's OK to have the same insn return a different type. */
static bool reg_type_mismatch_ok(enum bpf_reg_type type)
{
switch (type) {
case PTR_TO_CTX:
case PTR_TO_SOCKET:
case PTR_TO_SOCKET_OR_NULL:
case PTR_TO_SOCK_COMMON:
case PTR_TO_SOCK_COMMON_OR_NULL:
case PTR_TO_TCP_SOCK:
case PTR_TO_TCP_SOCK_OR_NULL:
case PTR_TO_XDP_SOCK:
case PTR_TO_BTF_ID:
case PTR_TO_BTF_ID_OR_NULL:
return false;
default:
return true;
}
}
/* If an instruction was previously used with particular pointer types, then we
* need to be careful to avoid cases such as the below, where it may be ok
* for one branch accessing the pointer, but not ok for the other branch:
*
* R1 = sock_ptr
* goto X;
* ...
* R1 = some_other_valid_ptr;
* goto X;
* ...
* R2 = *(u32 *)(R1 + 0);
*/
static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
{
return src != prev && (!reg_type_mismatch_ok(src) ||
!reg_type_mismatch_ok(prev));
}
static int do_check(struct bpf_verifier_env *env)
{
bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
struct bpf_verifier_state *state = env->cur_state;
struct bpf_insn *insns = env->prog->insnsi;
struct bpf_reg_state *regs;
int insn_cnt = env->prog->len;
bool do_print_state = false;
int prev_insn_idx = -1;
for (;;) {
struct bpf_insn *insn;
u8 class;
int err;
env->prev_insn_idx = prev_insn_idx;
if (env->insn_idx >= insn_cnt) {
verbose(env, "invalid insn idx %d insn_cnt %d\n",
env->insn_idx, insn_cnt);
return -EFAULT;
}
insn = &insns[env->insn_idx];
class = BPF_CLASS(insn->code);
if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
verbose(env,
"BPF program is too large. Processed %d insn\n",
env->insn_processed);
return -E2BIG;
}
err = is_state_visited(env, env->insn_idx);
if (err < 0)
return err;
if (err == 1) {
/* found equivalent state, can prune the search */
if (env->log.level & BPF_LOG_LEVEL) {
if (do_print_state)
verbose(env, "\nfrom %d to %d%s: safe\n",
env->prev_insn_idx, env->insn_idx,
env->cur_state->speculative ?
" (speculative execution)" : "");
else
verbose(env, "%d: safe\n", env->insn_idx);
}
goto process_bpf_exit;
}
if (signal_pending(current))
return -EAGAIN;
if (need_resched())
cond_resched();
if (env->log.level & BPF_LOG_LEVEL2 ||
(env->log.level & BPF_LOG_LEVEL && do_print_state)) {
if (env->log.level & BPF_LOG_LEVEL2)
verbose(env, "%d:", env->insn_idx);
else
verbose(env, "\nfrom %d to %d%s:",
env->prev_insn_idx, env->insn_idx,
env->cur_state->speculative ?
" (speculative execution)" : "");
print_verifier_state(env, state->frame[state->curframe]);
do_print_state = false;
}
if (env->log.level & BPF_LOG_LEVEL) {
const struct bpf_insn_cbs cbs = {
.cb_call = disasm_kfunc_name,
.cb_print = verbose,
.private_data = env,
};
verbose_linfo(env, env->insn_idx, "; ");
verbose(env, "%d: ", env->insn_idx);
print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
}
if (bpf_prog_is_dev_bound(env->prog->aux)) {
err = bpf_prog_offload_verify_insn(env, env->insn_idx,
env->prev_insn_idx);
if (err)
return err;
}
regs = cur_regs(env);
sanitize_mark_insn_seen(env);
prev_insn_idx = env->insn_idx;
if (class == BPF_ALU || class == BPF_ALU64) {
err = check_alu_op(env, insn);
if (err)
return err;
} else if (class == BPF_LDX) {
enum bpf_reg_type *prev_src_type, src_reg_type;
/* check for reserved fields is already done */
/* check src operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
if (err)
return err;
src_reg_type = regs[insn->src_reg].type;
/* check that memory (src_reg + off) is readable,
* the state of dst_reg will be updated by this func
*/
err = check_mem_access(env, env->insn_idx, insn->src_reg,
insn->off, BPF_SIZE(insn->code),
BPF_READ, insn->dst_reg, false);
if (err)
return err;
prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
if (*prev_src_type == NOT_INIT) {
/* saw a valid insn
* dst_reg = *(u32 *)(src_reg + off)
* save type to validate intersecting paths
*/
*prev_src_type = src_reg_type;
} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
/* ABuser program is trying to use the same insn
* dst_reg = *(u32*) (src_reg + off)
* with different pointer types:
* src_reg == ctx in one branch and
* src_reg == stack|map in some other branch.
* Reject it.
*/
verbose(env, "same insn cannot be used with different pointers\n");
return -EINVAL;
}
} else if (class == BPF_STX) {
enum bpf_reg_type *prev_dst_type, dst_reg_type;
if (BPF_MODE(insn->code) == BPF_ATOMIC) {
err = check_atomic(env, env->insn_idx, insn);
if (err)
return err;
env->insn_idx++;
continue;
}
if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
verbose(env, "BPF_STX uses reserved fields\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
return err;
/* check src2 operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
dst_reg_type = regs[insn->dst_reg].type;
/* check that memory (dst_reg + off) is writeable */
err = check_mem_access(env, env->insn_idx, insn->dst_reg,
insn->off, BPF_SIZE(insn->code),
BPF_WRITE, insn->src_reg, false);
if (err)
return err;
prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
if (*prev_dst_type == NOT_INIT) {
*prev_dst_type = dst_reg_type;
} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
verbose(env, "same insn cannot be used with different pointers\n");
return -EINVAL;
}
} else if (class == BPF_ST) {
if (BPF_MODE(insn->code) != BPF_MEM ||
insn->src_reg != BPF_REG_0) {
verbose(env, "BPF_ST uses reserved fields\n");
return -EINVAL;
}
/* check src operand */
err = check_reg_arg(env, insn->dst_reg, SRC_OP);
if (err)
return err;
if (is_ctx_reg(env, insn->dst_reg)) {
verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
insn->dst_reg,
reg_type_str[reg_state(env, insn->dst_reg)->type]);
return -EACCES;
}
/* check that memory (dst_reg + off) is writeable */
err = check_mem_access(env, env->insn_idx, insn->dst_reg,
insn->off, BPF_SIZE(insn->code),
BPF_WRITE, -1, false);
if (err)
return err;
} else if (class == BPF_JMP || class == BPF_JMP32) {
u8 opcode = BPF_OP(insn->code);
env->jmps_processed++;
if (opcode == BPF_CALL) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->off != 0 ||
(insn->src_reg != BPF_REG_0 &&
insn->src_reg != BPF_PSEUDO_CALL &&
insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
insn->dst_reg != BPF_REG_0 ||
class == BPF_JMP32) {
verbose(env, "BPF_CALL uses reserved fields\n");
return -EINVAL;
}
if (env->cur_state->active_spin_lock &&
(insn->src_reg == BPF_PSEUDO_CALL ||
insn->imm != BPF_FUNC_spin_unlock)) {
verbose(env, "function calls are not allowed while holding a lock\n");
return -EINVAL;
}
if (insn->src_reg == BPF_PSEUDO_CALL)
err = check_func_call(env, insn, &env->insn_idx);
else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
err = check_kfunc_call(env, insn);
else
err = check_helper_call(env, insn, &env->insn_idx);
if (err)
return err;
} else if (opcode == BPF_JA) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->imm != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->dst_reg != BPF_REG_0 ||
class == BPF_JMP32) {
verbose(env, "BPF_JA uses reserved fields\n");
return -EINVAL;
}
env->insn_idx += insn->off + 1;
continue;
} else if (opcode == BPF_EXIT) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->imm != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->dst_reg != BPF_REG_0 ||
class == BPF_JMP32) {
verbose(env, "BPF_EXIT uses reserved fields\n");
return -EINVAL;
}
if (env->cur_state->active_spin_lock) {
verbose(env, "bpf_spin_unlock is missing\n");
return -EINVAL;
}
if (state->curframe) {
/* exit from nested function */
err = prepare_func_exit(env, &env->insn_idx);
if (err)
return err;
do_print_state = true;
continue;
}
err = check_reference_leak(env);
if (err)
return err;
err = check_return_code(env);
if (err)
return err;
process_bpf_exit:
update_branch_counts(env, env->cur_state);
err = pop_stack(env, &prev_insn_idx,
&env->insn_idx, pop_log);
if (err < 0) {
if (err != -ENOENT)
return err;
break;
} else {
do_print_state = true;
continue;
}
} else {
err = check_cond_jmp_op(env, insn, &env->insn_idx);
if (err)
return err;
}
} else if (class == BPF_LD) {
u8 mode = BPF_MODE(insn->code);
if (mode == BPF_ABS || mode == BPF_IND) {
err = check_ld_abs(env, insn);
if (err)
return err;
} else if (mode == BPF_IMM) {
err = check_ld_imm(env, insn);
if (err)
return err;
env->insn_idx++;
sanitize_mark_insn_seen(env);
} else {
verbose(env, "invalid BPF_LD mode\n");
return -EINVAL;
}
} else {
verbose(env, "unknown insn class %d\n", class);
return -EINVAL;
}
env->insn_idx++;
}
return 0;
}
static int find_btf_percpu_datasec(struct btf *btf)
{
const struct btf_type *t;
const char *tname;
int i, n;
/*
* Both vmlinux and module each have their own ".data..percpu"
* DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
* types to look at only module's own BTF types.
*/
n = btf_nr_types(btf);
if (btf_is_module(btf))
i = btf_nr_types(btf_vmlinux);
else
i = 1;
for(; i < n; i++) {
t = btf_type_by_id(btf, i);
if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
continue;
tname = btf_name_by_offset(btf, t->name_off);
if (!strcmp(tname, ".data..percpu"))
return i;
}
return -ENOENT;
}
/* replace pseudo btf_id with kernel symbol address */
static int check_pseudo_btf_id(struct bpf_verifier_env *env,
struct bpf_insn *insn,
struct bpf_insn_aux_data *aux)
{
const struct btf_var_secinfo *vsi;
const struct btf_type *datasec;
struct btf_mod_pair *btf_mod;
const struct btf_type *t;
const char *sym_name;
bool percpu = false;
u32 type, id = insn->imm;
struct btf *btf;
s32 datasec_id;
u64 addr;
int i, btf_fd, err;
btf_fd = insn[1].imm;
if (btf_fd) {
btf = btf_get_by_fd(btf_fd);
if (IS_ERR(btf)) {
verbose(env, "invalid module BTF object FD specified.\n");
return -EINVAL;
}
} else {
if (!btf_vmlinux) {
verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
return -EINVAL;
}
btf = btf_vmlinux;
btf_get(btf);
}
t = btf_type_by_id(btf, id);
if (!t) {
verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
err = -ENOENT;
goto err_put;
}
if (!btf_type_is_var(t)) {
verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
err = -EINVAL;
goto err_put;
}
sym_name = btf_name_by_offset(btf, t->name_off);
addr = kallsyms_lookup_name(sym_name);
if (!addr) {
verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
sym_name);
err = -ENOENT;
goto err_put;
}
datasec_id = find_btf_percpu_datasec(btf);
if (datasec_id > 0) {
datasec = btf_type_by_id(btf, datasec_id);
for_each_vsi(i, datasec, vsi) {
if (vsi->type == id) {
percpu = true;
break;
}
}
}
insn[0].imm = (u32)addr;
insn[1].imm = addr >> 32;
type = t->type;
t = btf_type_skip_modifiers(btf, type, NULL);
if (percpu) {
aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
aux->btf_var.btf = btf;
aux->btf_var.btf_id = type;
} else if (!btf_type_is_struct(t)) {
const struct btf_type *ret;
const char *tname;
u32 tsize;
/* resolve the type size of ksym. */
ret = btf_resolve_size(btf, t, &tsize);
if (IS_ERR(ret)) {
tname = btf_name_by_offset(btf, t->name_off);
verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
tname, PTR_ERR(ret));
err = -EINVAL;
goto err_put;
}
aux->btf_var.reg_type = PTR_TO_MEM;
aux->btf_var.mem_size = tsize;
} else {
aux->btf_var.reg_type = PTR_TO_BTF_ID;
aux->btf_var.btf = btf;
aux->btf_var.btf_id = type;
}
/* check whether we recorded this BTF (and maybe module) already */
for (i = 0; i < env->used_btf_cnt; i++) {
if (env->used_btfs[i].btf == btf) {
btf_put(btf);
return 0;
}
}
if (env->used_btf_cnt >= MAX_USED_BTFS) {
err = -E2BIG;
goto err_put;
}
btf_mod = &env->used_btfs[env->used_btf_cnt];
btf_mod->btf = btf;
btf_mod->module = NULL;
/* if we reference variables from kernel module, bump its refcount */
if (btf_is_module(btf)) {
btf_mod->module = btf_try_get_module(btf);
if (!btf_mod->module) {
err = -ENXIO;
goto err_put;
}
}
env->used_btf_cnt++;
return 0;
err_put:
btf_put(btf);
return err;
}
static int check_map_prealloc(struct bpf_map *map)
{
return (map->map_type != BPF_MAP_TYPE_HASH &&
map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
!(map->map_flags & BPF_F_NO_PREALLOC);
}
static bool is_tracing_prog_type(enum bpf_prog_type type)
{
switch (type) {
case BPF_PROG_TYPE_KPROBE:
case BPF_PROG_TYPE_TRACEPOINT:
case BPF_PROG_TYPE_PERF_EVENT:
case BPF_PROG_TYPE_RAW_TRACEPOINT:
return true;
default:
return false;
}
}
static bool is_preallocated_map(struct bpf_map *map)
{
if (!check_map_prealloc(map))
return false;
if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
return false;
return true;
}
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
struct bpf_map *map,
struct bpf_prog *prog)
{
enum bpf_prog_type prog_type = resolve_prog_type(prog);
/*
* Validate that trace type programs use preallocated hash maps.
*
* For programs attached to PERF events this is mandatory as the
* perf NMI can hit any arbitrary code sequence.
*
* All other trace types using preallocated hash maps are unsafe as
* well because tracepoint or kprobes can be inside locked regions
* of the memory allocator or at a place where a recursion into the
* memory allocator would see inconsistent state.
*
* On RT enabled kernels run-time allocation of all trace type
* programs is strictly prohibited due to lock type constraints. On
* !RT kernels it is allowed for backwards compatibility reasons for
* now, but warnings are emitted so developers are made aware of
* the unsafety and can fix their programs before this is enforced.
*/
if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
verbose(env, "perf_event programs can only use preallocated hash map\n");
return -EINVAL;
}
if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
verbose(env, "trace type programs can only use preallocated hash map\n");
return -EINVAL;
}
WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
}
if (map_value_has_spin_lock(map)) {
if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
return -EINVAL;
}
if (is_tracing_prog_type(prog_type)) {
verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
return -EINVAL;
}
if (prog->aux->sleepable) {
verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
return -EINVAL;
}
}
if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
!bpf_offload_prog_map_match(prog, map)) {
verbose(env, "offload device mismatch between prog and map\n");
return -EINVAL;
}
if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
verbose(env, "bpf_struct_ops map cannot be used in prog\n");
return -EINVAL;
}
if (prog->aux->sleepable)
switch (map->map_type) {
case BPF_MAP_TYPE_HASH:
case BPF_MAP_TYPE_LRU_HASH:
case BPF_MAP_TYPE_ARRAY:
case BPF_MAP_TYPE_PERCPU_HASH:
case BPF_MAP_TYPE_PERCPU_ARRAY:
case BPF_MAP_TYPE_LRU_PERCPU_HASH:
case BPF_MAP_TYPE_ARRAY_OF_MAPS:
case BPF_MAP_TYPE_HASH_OF_MAPS:
if (!is_preallocated_map(map)) {
verbose(env,
"Sleepable programs can only use preallocated maps\n");
return -EINVAL;
}
break;
case BPF_MAP_TYPE_RINGBUF:
break;
default:
verbose(env,
"Sleepable programs can only use array, hash, and ringbuf maps\n");
return -EINVAL;
}
return 0;
}
static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
{
return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
}
/* find and rewrite pseudo imm in ld_imm64 instructions:
*
* 1. if it accesses map FD, replace it with actual map pointer.
* 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
*
* NOTE: btf_vmlinux is required for converting pseudo btf_id.
*/
static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
{
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
int i, j, err;
err = bpf_prog_calc_tag(env->prog);
if (err)
return err;
for (i = 0; i < insn_cnt; i++, insn++) {
if (BPF_CLASS(insn->code) == BPF_LDX &&
(BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
verbose(env, "BPF_LDX uses reserved fields\n");
return -EINVAL;
}
if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
struct bpf_insn_aux_data *aux;
struct bpf_map *map;
struct fd f;
u64 addr;
u32 fd;
if (i == insn_cnt - 1 || insn[1].code != 0 ||
insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
insn[1].off != 0) {
verbose(env, "invalid bpf_ld_imm64 insn\n");
return -EINVAL;
}
if (insn[0].src_reg == 0)
/* valid generic load 64-bit imm */
goto next_insn;
if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
aux = &env->insn_aux_data[i];
err = check_pseudo_btf_id(env, insn, aux);
if (err)
return err;
goto next_insn;
}
if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
aux = &env->insn_aux_data[i];
aux->ptr_type = PTR_TO_FUNC;
goto next_insn;
}
/* In final convert_pseudo_ld_imm64() step, this is
* converted into regular 64-bit imm load insn.
*/
switch (insn[0].src_reg) {
case BPF_PSEUDO_MAP_VALUE:
case BPF_PSEUDO_MAP_IDX_VALUE:
break;
case BPF_PSEUDO_MAP_FD:
case BPF_PSEUDO_MAP_IDX:
if (insn[1].imm == 0)
break;
fallthrough;
default:
verbose(env, "unrecognized bpf_ld_imm64 insn\n");
return -EINVAL;
}
switch (insn[0].src_reg) {
case BPF_PSEUDO_MAP_IDX_VALUE:
case BPF_PSEUDO_MAP_IDX:
if (bpfptr_is_null(env->fd_array)) {
verbose(env, "fd_idx without fd_array is invalid\n");
return -EPROTO;
}
if (copy_from_bpfptr_offset(&fd, env->fd_array,
insn[0].imm * sizeof(fd),
sizeof(fd)))
return -EFAULT;
break;
default:
fd = insn[0].imm;
break;
}
f = fdget(fd);
map = __bpf_map_get(f);
if (IS_ERR(map)) {
verbose(env, "fd %d is not pointing to valid bpf_map\n",
insn[0].imm);
return PTR_ERR(map);
}
err = check_map_prog_compatibility(env, map, env->prog);
if (err) {
fdput(f);
return err;
}
aux = &env->insn_aux_data[i];
if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
addr = (unsigned long)map;
} else {
u32 off = insn[1].imm;
if (off >= BPF_MAX_VAR_OFF) {
verbose(env, "direct value offset of %u is not allowed\n", off);
fdput(f);
return -EINVAL;
}
if (!map->ops->map_direct_value_addr) {
verbose(env, "no direct value access support for this map type\n");
fdput(f);
return -EINVAL;
}
err = map->ops->map_direct_value_addr(map, &addr, off);
if (err) {
verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
map->value_size, off);
fdput(f);
return err;
}
aux->map_off = off;
addr += off;
}
insn[0].imm = (u32)addr;
insn[1].imm = addr >> 32;
/* check whether we recorded this map already */
for (j = 0; j < env->used_map_cnt; j++) {
if (env->used_maps[j] == map) {
aux->map_index = j;
fdput(f);
goto next_insn;
}
}
if (env->used_map_cnt >= MAX_USED_MAPS) {
fdput(f);
return -E2BIG;
}
/* hold the map. If the program is rejected by verifier,
* the map will be released by release_maps() or it
* will be used by the valid program until it's unloaded
* and all maps are released in free_used_maps()
*/
bpf_map_inc(map);
aux->map_index = env->used_map_cnt;
env->used_maps[env->used_map_cnt++] = map;
if (bpf_map_is_cgroup_storage(map) &&
bpf_cgroup_storage_assign(env->prog->aux, map)) {
verbose(env, "only one cgroup storage of each type is allowed\n");
fdput(f);
return -EBUSY;
}
fdput(f);
next_insn:
insn++;
i++;
continue;
}
/* Basic sanity check before we invest more work here. */
if (!bpf_opcode_in_insntable(insn->code)) {
verbose(env, "unknown opcode %02x\n", insn->code);
return -EINVAL;
}
}
/* now all pseudo BPF_LD_IMM64 instructions load valid
* 'struct bpf_map *' into a register instead of user map_fd.
* These pointers will be used later by verifier to validate map access.
*/
return 0;
}
/* drop refcnt of maps used by the rejected program */
static void release_maps(struct bpf_verifier_env *env)
{
__bpf_free_used_maps(env->prog->aux, env->used_maps,
env->used_map_cnt);
}
/* drop refcnt of maps used by the rejected program */
static void release_btfs(struct bpf_verifier_env *env)
{
__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
env->used_btf_cnt);
}
/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
{
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
int i;
for (i = 0; i < insn_cnt; i++, insn++) {
if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
continue;
if (insn->src_reg == BPF_PSEUDO_FUNC)
continue;
insn->src_reg = 0;
}
}
/* single env->prog->insni[off] instruction was replaced with the range
* insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
* [0, off) and [off, end) to new locations, so the patched range stays zero
*/
static void adjust_insn_aux_data(struct bpf_verifier_env *env,
struct bpf_insn_aux_data *new_data,
struct bpf_prog *new_prog, u32 off, u32 cnt)
{
struct bpf_insn_aux_data *old_data = env->insn_aux_data;
struct bpf_insn *insn = new_prog->insnsi;
u32 old_seen = old_data[off].seen;
u32 prog_len;
int i;
/* aux info at OFF always needs adjustment, no matter fast path
* (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
* original insn at old prog.
*/
old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
if (cnt == 1)
return;
prog_len = new_prog->len;
memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
memcpy(new_data + off + cnt - 1, old_data + off,
sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
for (i = off; i < off + cnt - 1; i++) {
/* Expand insni[off]'s seen count to the patched range. */
new_data[i].seen = old_seen;
new_data[i].zext_dst = insn_has_def32(env, insn + i);
}
env->insn_aux_data = new_data;
vfree(old_data);
}
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
int i;
if (len == 1)
return;
/* NOTE: fake 'exit' subprog should be updated as well. */
for (i = 0; i <= env->subprog_cnt; i++) {
if (env->subprog_info[i].start <= off)
continue;
env->subprog_info[i].start += len - 1;
}
}
static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
{
struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
int i, sz = prog->aux->size_poke_tab;
struct bpf_jit_poke_descriptor *desc;
for (i = 0; i < sz; i++) {
desc = &tab[i];
if (desc->insn_idx <= off)
continue;
desc->insn_idx += len - 1;
}
}
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
const struct bpf_insn *patch, u32 len)
{
struct bpf_prog *new_prog;
struct bpf_insn_aux_data *new_data = NULL;
if (len > 1) {
new_data = vzalloc(array_size(env->prog->len + len - 1,
sizeof(struct bpf_insn_aux_data)));
if (!new_data)
return NULL;
}
new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
if (IS_ERR(new_prog)) {
if (PTR_ERR(new_prog) == -ERANGE)
verbose(env,
"insn %d cannot be patched due to 16-bit range\n",
env->insn_aux_data[off].orig_idx);
vfree(new_data);
return NULL;
}
adjust_insn_aux_data(env, new_data, new_prog, off, len);
adjust_subprog_starts(env, off, len);
adjust_poke_descs(new_prog, off, len);
return new_prog;
}
static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
u32 off, u32 cnt)
{
int i, j;
/* find first prog starting at or after off (first to remove) */
for (i = 0; i < env->subprog_cnt; i++)
if (env->subprog_info[i].start >= off)
break;
/* find first prog starting at or after off + cnt (first to stay) */
for (j = i; j < env->subprog_cnt; j++)
if (env->subprog_info[j].start >= off + cnt)
break;
/* if j doesn't start exactly at off + cnt, we are just removing
* the front of previous prog
*/
if (env->subprog_info[j].start != off + cnt)
j--;
if (j > i) {
struct bpf_prog_aux *aux = env->prog->aux;
int move;
/* move fake 'exit' subprog as well */
move = env->subprog_cnt + 1 - j;
memmove(env->subprog_info + i,
env->subprog_info + j,
sizeof(*env->subprog_info) * move);
env->subprog_cnt -= j - i;
/* remove func_info */
if (aux->func_info) {
move = aux->func_info_cnt - j;
memmove(aux->func_info + i,
aux->func_info + j,
sizeof(*aux->func_info) * move);
aux->func_info_cnt -= j - i;
/* func_info->insn_off is set after all code rewrites,
* in adjust_btf_func() - no need to adjust
*/
}
} else {
/* convert i from "first prog to remove" to "first to adjust" */
if (env->subprog_info[i].start == off)
i++;
}
/* update fake 'exit' subprog as well */
for (; i <= env->subprog_cnt; i++)
env->subprog_info[i].start -= cnt;
return 0;
}
static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
u32 cnt)
{
struct bpf_prog *prog = env->prog;
u32 i, l_off, l_cnt, nr_linfo;
struct bpf_line_info *linfo;
nr_linfo = prog->aux->nr_linfo;
if (!nr_linfo)
return 0;
linfo = prog->aux->linfo;
/* find first line info to remove, count lines to be removed */
for (i = 0; i < nr_linfo; i++)
if (linfo[i].insn_off >= off)
break;
l_off = i;
l_cnt = 0;
for (; i < nr_linfo; i++)
if (linfo[i].insn_off < off + cnt)
l_cnt++;
else
break;
/* First live insn doesn't match first live linfo, it needs to "inherit"
* last removed linfo. prog is already modified, so prog->len == off
* means no live instructions after (tail of the program was removed).
*/
if (prog->len != off && l_cnt &&
(i == nr_linfo || linfo[i].insn_off != off + cnt)) {
l_cnt--;
linfo[--i].insn_off = off + cnt;
}
/* remove the line info which refer to the removed instructions */
if (l_cnt) {
memmove(linfo + l_off, linfo + i,
sizeof(*linfo) * (nr_linfo - i));
prog->aux->nr_linfo -= l_cnt;
nr_linfo = prog->aux->nr_linfo;
}
/* pull all linfo[i].insn_off >= off + cnt in by cnt */
for (i = l_off; i < nr_linfo; i++)
linfo[i].insn_off -= cnt;
/* fix up all subprogs (incl. 'exit') which start >= off */
for (i = 0; i <= env->subprog_cnt; i++)
if (env->subprog_info[i].linfo_idx > l_off) {
/* program may have started in the removed region but
* may not be fully removed
*/
if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
env->subprog_info[i].linfo_idx -= l_cnt;
else
env->subprog_info[i].linfo_idx = l_off;
}
return 0;
}
static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
{
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
unsigned int orig_prog_len = env->prog->len;
int err;
if (bpf_prog_is_dev_bound(env->prog->aux))
bpf_prog_offload_remove_insns(env, off, cnt);
err = bpf_remove_insns(env->prog, off, cnt);
if (err)
return err;
err = adjust_subprog_starts_after_remove(env, off, cnt);
if (err)
return err;
err = bpf_adj_linfo_after_remove(env, off, cnt);
if (err)
return err;
memmove(aux_data + off, aux_data + off + cnt,
sizeof(*aux_data) * (orig_prog_len - off - cnt));
return 0;
}
/* The verifier does more data flow analysis than llvm and will not
* explore branches that are dead at run time. Malicious programs can
* have dead code too. Therefore replace all dead at-run-time code
* with 'ja -1'.
*
* Just nops are not optimal, e.g. if they would sit at the end of the
* program and through another bug we would manage to jump there, then
* we'd execute beyond program memory otherwise. Returning exception
* code also wouldn't work since we can have subprogs where the dead
* code could be located.
*/
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
struct bpf_insn *insn = env->prog->insnsi;
const int insn_cnt = env->prog->len;
int i;
for (i = 0; i < insn_cnt; i++) {
if (aux_data[i].seen)
continue;
memcpy(insn + i, &trap, sizeof(trap));
}
}
static bool insn_is_cond_jump(u8 code)
{
u8 op;
if (BPF_CLASS(code) == BPF_JMP32)
return true;
if (BPF_CLASS(code) != BPF_JMP)
return false;
op = BPF_OP(code);
return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
}
static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
{
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
struct bpf_insn *insn = env->prog->insnsi;
const int insn_cnt = env->prog->len;
int i;
for (i = 0; i < insn_cnt; i++, insn++) {
if (!insn_is_cond_jump(insn->code))
continue;
if (!aux_data[i + 1].seen)
ja.off = insn->off;
else if (!aux_data[i + 1 + insn->off].seen)
ja.off = 0;
else
continue;
if (bpf_prog_is_dev_bound(env->prog->aux))
bpf_prog_offload_replace_insn(env, i, &ja);
memcpy(insn, &ja, sizeof(ja));
}
}
static int opt_remove_dead_code(struct bpf_verifier_env *env)
{
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
int insn_cnt = env->prog->len;
int i, err;
for (i = 0; i < insn_cnt; i++) {
int j;
j = 0;
while (i + j < insn_cnt && !aux_data[i + j].seen)
j++;
if (!j)
continue;
err = verifier_remove_insns(env, i, j);
if (err)
return err;
insn_cnt = env->prog->len;
}
return 0;
}
static int opt_remove_nops(struct bpf_verifier_env *env)
{
const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
int i, err;
for (i = 0; i < insn_cnt; i++) {
if (memcmp(&insn[i], &ja, sizeof(ja)))
continue;
err = verifier_remove_insns(env, i, 1);
if (err)
return err;
insn_cnt--;
i--;
}
return 0;
}
static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
const union bpf_attr *attr)
{
struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
struct bpf_insn_aux_data *aux = env->insn_aux_data;
int i, patch_len, delta = 0, len = env->prog->len;
struct bpf_insn *insns = env->prog->insnsi;
struct bpf_prog *new_prog;
bool rnd_hi32;
rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
zext_patch[1] = BPF_ZEXT_REG(0);
rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
for (i = 0; i < len; i++) {
int adj_idx = i + delta;
struct bpf_insn insn;
int load_reg;
insn = insns[adj_idx];
load_reg = insn_def_regno(&insn);
if (!aux[adj_idx].zext_dst) {
u8 code, class;
u32 imm_rnd;
if (!rnd_hi32)
continue;
code = insn.code;
class = BPF_CLASS(code);
if (load_reg == -1)
continue;
/* NOTE: arg "reg" (the fourth one) is only used for
* BPF_STX + SRC_OP, so it is safe to pass NULL
* here.
*/
if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
if (class == BPF_LD &&
BPF_MODE(code) == BPF_IMM)
i++;
continue;
}
/* ctx load could be transformed into wider load. */
if (class == BPF_LDX &&
aux[adj_idx].ptr_type == PTR_TO_CTX)
continue;
imm_rnd = get_random_int();
rnd_hi32_patch[0] = insn;
rnd_hi32_patch[1].imm = imm_rnd;
rnd_hi32_patch[3].dst_reg = load_reg;
patch = rnd_hi32_patch;
patch_len = 4;
goto apply_patch_buffer;
}
/* Add in an zero-extend instruction if a) the JIT has requested
* it or b) it's a CMPXCHG.
*
* The latter is because: BPF_CMPXCHG always loads a value into
* R0, therefore always zero-extends. However some archs'
* equivalent instruction only does this load when the
* comparison is successful. This detail of CMPXCHG is
* orthogonal to the general zero-extension behaviour of the
* CPU, so it's treated independently of bpf_jit_needs_zext.
*/
if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
continue;
if (WARN_ON(load_reg == -1)) {
verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
return -EFAULT;
}
zext_patch[0] = insn;
zext_patch[1].dst_reg = load_reg;
zext_patch[1].src_reg = load_reg;
patch = zext_patch;
patch_len = 2;
apply_patch_buffer:
new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
if (!new_prog)
return -ENOMEM;
env->prog = new_prog;
insns = new_prog->insnsi;
aux = env->insn_aux_data;
delta += patch_len - 1;
}
return 0;
}
/* convert load instructions that access fields of a context type into a
* sequence of instructions that access fields of the underlying structure:
* struct __sk_buff -> struct sk_buff
* struct bpf_sock_ops -> struct sock
*/
static int convert_ctx_accesses(struct bpf_verifier_env *env)
{
const struct bpf_verifier_ops *ops = env->ops;
int i, cnt, size, ctx_field_size, delta = 0;
const int insn_cnt = env->prog->len;
struct bpf_insn insn_buf[16], *insn;
u32 target_size, size_default, off;
struct bpf_prog *new_prog;
enum bpf_access_type type;
bool is_narrower_load;
if (ops->gen_prologue || env->seen_direct_write) {
if (!ops->gen_prologue) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
env->prog);
if (cnt >= ARRAY_SIZE(insn_buf)) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
} else if (cnt) {
new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
env->prog = new_prog;
delta += cnt - 1;
}
}
if (bpf_prog_is_dev_bound(env->prog->aux))
return 0;
insn = env->prog->insnsi + delta;
for (i = 0; i < insn_cnt; i++, insn++) {
bpf_convert_ctx_access_t convert_ctx_access;
bool ctx_access;
if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
type = BPF_READ;
ctx_access = true;
} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
type = BPF_WRITE;
ctx_access = BPF_CLASS(insn->code) == BPF_STX;
} else {
continue;
}
if (type == BPF_WRITE &&
env->insn_aux_data[i + delta].sanitize_stack_spill) {
struct bpf_insn patch[] = {
*insn,
BPF_ST_NOSPEC(),
};
cnt = ARRAY_SIZE(patch);
new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
if (!ctx_access)
continue;
switch (env->insn_aux_data[i + delta].ptr_type) {
case PTR_TO_CTX:
if (!ops->convert_ctx_access)
continue;
convert_ctx_access = ops->convert_ctx_access;
break;
case PTR_TO_SOCKET:
case PTR_TO_SOCK_COMMON:
convert_ctx_access = bpf_sock_convert_ctx_access;
break;
case PTR_TO_TCP_SOCK:
convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
break;
case PTR_TO_XDP_SOCK:
convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
break;
case PTR_TO_BTF_ID:
if (type == BPF_READ) {
insn->code = BPF_LDX | BPF_PROBE_MEM |
BPF_SIZE((insn)->code);
env->prog->aux->num_exentries++;
} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
verbose(env, "Writes through BTF pointers are not allowed\n");
return -EINVAL;
}
continue;
default:
continue;
}
ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
size = BPF_LDST_BYTES(insn);
/* If the read access is a narrower load of the field,
* convert to a 4/8-byte load, to minimum program type specific
* convert_ctx_access changes. If conversion is successful,
* we will apply proper mask to the result.
*/
is_narrower_load = size < ctx_field_size;
size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
off = insn->off;
if (is_narrower_load) {
u8 size_code;
if (type == BPF_WRITE) {
verbose(env, "bpf verifier narrow ctx access misconfigured\n");
return -EINVAL;
}
size_code = BPF_H;
if (ctx_field_size == 4)
size_code = BPF_W;
else if (ctx_field_size == 8)
size_code = BPF_DW;
insn->off = off & ~(size_default - 1);
insn->code = BPF_LDX | BPF_MEM | size_code;
}
target_size = 0;
cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
&target_size);
if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
(ctx_field_size && !target_size)) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
if (is_narrower_load && size < target_size) {
u8 shift = bpf_ctx_narrow_access_offset(
off, size, size_default) * 8;
if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
verbose(env, "bpf verifier narrow ctx load misconfigured\n");
return -EINVAL;
}
if (ctx_field_size <= 4) {
if (shift)
insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
insn->dst_reg,
shift);
insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
(1 << size * 8) - 1);
} else {
if (shift)
insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
insn->dst_reg,
shift);
insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
(1ULL << size * 8) - 1);
}
}
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
/* keep walking new program and skip insns we just inserted */
env->prog = new_prog;
insn = new_prog->insnsi + i + delta;
}
return 0;
}
static int jit_subprogs(struct bpf_verifier_env *env)
{
struct bpf_prog *prog = env->prog, **func, *tmp;
int i, j, subprog_start, subprog_end = 0, len, subprog;
struct bpf_map *map_ptr;
struct bpf_insn *insn;
void *old_bpf_func;
int err, num_exentries;
if (env->subprog_cnt <= 1)
return 0;
for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
if (bpf_pseudo_func(insn)) {
env->insn_aux_data[i].call_imm = insn->imm;
/* subprog is encoded in insn[1].imm */
continue;
}
if (!bpf_pseudo_call(insn))
continue;
/* Upon error here we cannot fall back to interpreter but
* need a hard reject of the program. Thus -EFAULT is
* propagated in any case.
*/
subprog = find_subprog(env, i + insn->imm + 1);
if (subprog < 0) {
WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
i + insn->imm + 1);
return -EFAULT;
}
/* temporarily remember subprog id inside insn instead of
* aux_data, since next loop will split up all insns into funcs
*/
insn->off = subprog;
/* remember original imm in case JIT fails and fallback
* to interpreter will be needed
*/
env->insn_aux_data[i].call_imm = insn->imm;
/* point imm to __bpf_call_base+1 from JITs point of view */
insn->imm = 1;
}
err = bpf_prog_alloc_jited_linfo(prog);
if (err)
goto out_undo_insn;
err = -ENOMEM;
func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
if (!func)
goto out_undo_insn;
for (i = 0; i < env->subprog_cnt; i++) {
subprog_start = subprog_end;
subprog_end = env->subprog_info[i + 1].start;
len = subprog_end - subprog_start;
/* bpf_prog_run() doesn't call subprogs directly,
* hence main prog stats include the runtime of subprogs.
* subprogs don't have IDs and not reachable via prog_get_next_id
* func[i]->stats will never be accessed and stays NULL
*/
func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
if (!func[i])
goto out_free;
memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
len * sizeof(struct bpf_insn));
func[i]->type = prog->type;
func[i]->len = len;
if (bpf_prog_calc_tag(func[i]))
goto out_free;
func[i]->is_func = 1;
func[i]->aux->func_idx = i;
/* Below members will be freed only at prog->aux */
func[i]->aux->btf = prog->aux->btf;
func[i]->aux->func_info = prog->aux->func_info;
func[i]->aux->poke_tab = prog->aux->poke_tab;
func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
for (j = 0; j < prog->aux->size_poke_tab; j++) {
struct bpf_jit_poke_descriptor *poke;
poke = &prog->aux->poke_tab[j];
if (poke->insn_idx < subprog_end &&
poke->insn_idx >= subprog_start)
poke->aux = func[i]->aux;
}
/* Use bpf_prog_F_tag to indicate functions in stack traces.
* Long term would need debug info to populate names
*/
func[i]->aux->name[0] = 'F';
func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
func[i]->jit_requested = 1;
func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
func[i]->aux->linfo = prog->aux->linfo;
func[i]->aux->nr_linfo = prog->aux->nr_linfo;
func[i]->aux->jited_linfo = prog->aux->jited_linfo;
func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
num_exentries = 0;
insn = func[i]->insnsi;
for (j = 0; j < func[i]->len; j++, insn++) {
if (BPF_CLASS(insn->code) == BPF_LDX &&
BPF_MODE(insn->code) == BPF_PROBE_MEM)
num_exentries++;
}
func[i]->aux->num_exentries = num_exentries;
func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
func[i] = bpf_int_jit_compile(func[i]);
if (!func[i]->jited) {
err = -ENOTSUPP;
goto out_free;
}
cond_resched();
}
/* at this point all bpf functions were successfully JITed
* now populate all bpf_calls with correct addresses and
* run last pass of JIT
*/
for (i = 0; i < env->subprog_cnt; i++) {
insn = func[i]->insnsi;
for (j = 0; j < func[i]->len; j++, insn++) {
if (bpf_pseudo_func(insn)) {
subprog = insn[1].imm;
insn[0].imm = (u32)(long)func[subprog]->bpf_func;
insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
continue;
}
if (!bpf_pseudo_call(insn))
continue;
subprog = insn->off;
insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
__bpf_call_base;
}
/* we use the aux data to keep a list of the start addresses
* of the JITed images for each function in the program
*
* for some architectures, such as powerpc64, the imm field
* might not be large enough to hold the offset of the start
* address of the callee's JITed image from __bpf_call_base
*
* in such cases, we can lookup the start address of a callee
* by using its subprog id, available from the off field of
* the call instruction, as an index for this list
*/
func[i]->aux->func = func;
func[i]->aux->func_cnt = env->subprog_cnt;
}
for (i = 0; i < env->subprog_cnt; i++) {
old_bpf_func = func[i]->bpf_func;
tmp = bpf_int_jit_compile(func[i]);
if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
err = -ENOTSUPP;
goto out_free;
}
cond_resched();
}
/* finally lock prog and jit images for all functions and
* populate kallsysm
*/
for (i = 0; i < env->subprog_cnt; i++) {
bpf_prog_lock_ro(func[i]);
bpf_prog_kallsyms_add(func[i]);
}
/* Last step: make now unused interpreter insns from main
* prog consistent for later dump requests, so they can
* later look the same as if they were interpreted only.
*/
for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
if (bpf_pseudo_func(insn)) {
insn[0].imm = env->insn_aux_data[i].call_imm;
insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
continue;
}
if (!bpf_pseudo_call(insn))
continue;
insn->off = env->insn_aux_data[i].call_imm;
subprog = find_subprog(env, i + insn->off + 1);
insn->imm = subprog;
}
prog->jited = 1;
prog->bpf_func = func[0]->bpf_func;
prog->aux->func = func;
prog->aux->func_cnt = env->subprog_cnt;
bpf_prog_jit_attempt_done(prog);
return 0;
out_free:
/* We failed JIT'ing, so at this point we need to unregister poke
* descriptors from subprogs, so that kernel is not attempting to
* patch it anymore as we're freeing the subprog JIT memory.
*/
for (i = 0; i < prog->aux->size_poke_tab; i++) {
map_ptr = prog->aux->poke_tab[i].tail_call.map;
map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
}
/* At this point we're guaranteed that poke descriptors are not
* live anymore. We can just unlink its descriptor table as it's
* released with the main prog.
*/
for (i = 0; i < env->subprog_cnt; i++) {
if (!func[i])
continue;
func[i]->aux->poke_tab = NULL;
bpf_jit_free(func[i]);
}
kfree(func);
out_undo_insn:
/* cleanup main prog to be interpreted */
prog->jit_requested = 0;
for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
if (!bpf_pseudo_call(insn))
continue;
insn->off = 0;
insn->imm = env->insn_aux_data[i].call_imm;
}
bpf_prog_jit_attempt_done(prog);
return err;
}
static int fixup_call_args(struct bpf_verifier_env *env)
{
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
struct bpf_prog *prog = env->prog;
struct bpf_insn *insn = prog->insnsi;
bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
int i, depth;
#endif
int err = 0;
if (env->prog->jit_requested &&
!bpf_prog_is_dev_bound(env->prog->aux)) {
err = jit_subprogs(env);
if (err == 0)
return 0;
if (err == -EFAULT)
return err;
}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
if (has_kfunc_call) {
verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
return -EINVAL;
}
if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
/* When JIT fails the progs with bpf2bpf calls and tail_calls
* have to be rejected, since interpreter doesn't support them yet.
*/
verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
return -EINVAL;
}
for (i = 0; i < prog->len; i++, insn++) {
if (bpf_pseudo_func(insn)) {
/* When JIT fails the progs with callback calls
* have to be rejected, since interpreter doesn't support them yet.
*/
verbose(env, "callbacks are not allowed in non-JITed programs\n");
return -EINVAL;
}
if (!bpf_pseudo_call(insn))
continue;
depth = get_callee_stack_depth(env, insn, i);
if (depth < 0)
return depth;
bpf_patch_call_args(insn, depth);
}
err = 0;
#endif
return err;
}
static int fixup_kfunc_call(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
const struct bpf_kfunc_desc *desc;
/* insn->imm has the btf func_id. Replace it with
* an address (relative to __bpf_base_call).
*/
desc = find_kfunc_desc(env->prog, insn->imm);
if (!desc) {
verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
insn->imm);
return -EFAULT;
}
insn->imm = desc->imm;
return 0;
}
/* Do various post-verification rewrites in a single program pass.
* These rewrites simplify JIT and interpreter implementations.
*/
static int do_misc_fixups(struct bpf_verifier_env *env)
{
struct bpf_prog *prog = env->prog;
bool expect_blinding = bpf_jit_blinding_enabled(prog);
enum bpf_prog_type prog_type = resolve_prog_type(prog);
struct bpf_insn *insn = prog->insnsi;
const struct bpf_func_proto *fn;
const int insn_cnt = prog->len;
const struct bpf_map_ops *ops;
struct bpf_insn_aux_data *aux;
struct bpf_insn insn_buf[16];
struct bpf_prog *new_prog;
struct bpf_map *map_ptr;
int i, ret, cnt, delta = 0;
for (i = 0; i < insn_cnt; i++, insn++) {
/* Make divide-by-zero exceptions impossible. */
if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
bool isdiv = BPF_OP(insn->code) == BPF_DIV;
struct bpf_insn *patchlet;
struct bpf_insn chk_and_div[] = {
/* [R,W]x div 0 -> 0 */
BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
BPF_JNE | BPF_K, insn->src_reg,
0, 2, 0),
BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
*insn,
};
struct bpf_insn chk_and_mod[] = {
/* [R,W]x mod 0 -> [R,W]x */
BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
BPF_JEQ | BPF_K, insn->src_reg,
0, 1 + (is64 ? 0 : 1), 0),
*insn,
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
};
patchlet = isdiv ? chk_and_div : chk_and_mod;
cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
if (BPF_CLASS(insn->code) == BPF_LD &&
(BPF_MODE(insn->code) == BPF_ABS ||
BPF_MODE(insn->code) == BPF_IND)) {
cnt = env->ops->gen_ld_abs(insn, insn_buf);
if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
/* Rewrite pointer arithmetic to mitigate speculation attacks. */
if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
struct bpf_insn *patch = &insn_buf[0];
bool issrc, isneg, isimm;
u32 off_reg;
aux = &env->insn_aux_data[i + delta];
if (!aux->alu_state ||
aux->alu_state == BPF_ALU_NON_POINTER)
continue;
isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
BPF_ALU_SANITIZE_SRC;
isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
off_reg = issrc ? insn->src_reg : insn->dst_reg;
if (isimm) {
*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
} else {
if (isneg)
*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
}
if (!issrc)
*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
insn->src_reg = BPF_REG_AX;
if (isneg)
insn->code = insn->code == code_add ?
code_sub : code_add;
*patch++ = *insn;
if (issrc && isneg && !isimm)
*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
cnt = patch - insn_buf;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
if (insn->code != (BPF_JMP | BPF_CALL))
continue;
if (insn->src_reg == BPF_PSEUDO_CALL)
continue;
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
ret = fixup_kfunc_call(env, insn);
if (ret)
return ret;
continue;
}
if (insn->imm == BPF_FUNC_get_route_realm)
prog->dst_needed = 1;
if (insn->imm == BPF_FUNC_get_prandom_u32)
bpf_user_rnd_init_once();
if (insn->imm == BPF_FUNC_override_return)
prog->kprobe_override = 1;
if (insn->imm == BPF_FUNC_tail_call) {
/* If we tail call into other programs, we
* cannot make any assumptions since they can
* be replaced dynamically during runtime in
* the program array.
*/
prog->cb_access = 1;
if (!allow_tail_call_in_subprogs(env))
prog->aux->stack_depth = MAX_BPF_STACK;
prog->aux->max_pkt_offset = MAX_PACKET_OFF;
/* mark bpf_tail_call as different opcode to avoid
* conditional branch in the interpreter for every normal
* call and to prevent accidental JITing by JIT compiler
* that doesn't support bpf_tail_call yet
*/
insn->imm = 0;
insn->code = BPF_JMP | BPF_TAIL_CALL;
aux = &env->insn_aux_data[i + delta];
if (env->bpf_capable && !expect_blinding &&
prog->jit_requested &&
!bpf_map_key_poisoned(aux) &&
!bpf_map_ptr_poisoned(aux) &&
!bpf_map_ptr_unpriv(aux)) {
struct bpf_jit_poke_descriptor desc = {
.reason = BPF_POKE_REASON_TAIL_CALL,
.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
.tail_call.key = bpf_map_key_immediate(aux),
.insn_idx = i + delta,
};
ret = bpf_jit_add_poke_descriptor(prog, &desc);
if (ret < 0) {
verbose(env, "adding tail call poke descriptor failed\n");
return ret;
}
insn->imm = ret + 1;
continue;
}
if (!bpf_map_ptr_unpriv(aux))
continue;
/* instead of changing every JIT dealing with tail_call
* emit two extra insns:
* if (index >= max_entries) goto out;
* index &= array->index_mask;
* to avoid out-of-bounds cpu speculation
*/
if (bpf_map_ptr_poisoned(aux)) {
verbose(env, "tail_call abusing map_ptr\n");
return -EINVAL;
}
map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
map_ptr->max_entries, 2);
insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
container_of(map_ptr,
struct bpf_array,
map)->index_mask);
insn_buf[2] = *insn;
cnt = 3;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
if (insn->imm == BPF_FUNC_timer_set_callback) {
/* The verifier will process callback_fn as many times as necessary
* with different maps and the register states prepared by
* set_timer_callback_state will be accurate.
*
* The following use case is valid:
* map1 is shared by prog1, prog2, prog3.
* prog1 calls bpf_timer_init for some map1 elements
* prog2 calls bpf_timer_set_callback for some map1 elements.
* Those that were not bpf_timer_init-ed will return -EINVAL.
* prog3 calls bpf_timer_start for some map1 elements.
* Those that were not both bpf_timer_init-ed and
* bpf_timer_set_callback-ed will return -EINVAL.
*/
struct bpf_insn ld_addrs[2] = {
BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
};
insn_buf[0] = ld_addrs[0];
insn_buf[1] = ld_addrs[1];
insn_buf[2] = *insn;
cnt = 3;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
goto patch_call_imm;
}
/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
* and other inlining handlers are currently limited to 64 bit
* only.
*/
if (prog->jit_requested && BITS_PER_LONG == 64 &&
(insn->imm == BPF_FUNC_map_lookup_elem ||
insn->imm == BPF_FUNC_map_update_elem ||
insn->imm == BPF_FUNC_map_delete_elem ||
insn->imm == BPF_FUNC_map_push_elem ||
insn->imm == BPF_FUNC_map_pop_elem ||
insn->imm == BPF_FUNC_map_peek_elem ||
insn->imm == BPF_FUNC_redirect_map)) {
aux = &env->insn_aux_data[i + delta];
if (bpf_map_ptr_poisoned(aux))
goto patch_call_imm;
map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
ops = map_ptr->ops;
if (insn->imm == BPF_FUNC_map_lookup_elem &&
ops->map_gen_lookup) {
cnt = ops->map_gen_lookup(map_ptr, insn_buf);
if (cnt == -EOPNOTSUPP)
goto patch_map_ops_generic;
if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
new_prog = bpf_patch_insn_data(env, i + delta,
insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
(void *(*)(struct bpf_map *map, void *key))NULL));
BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
(int (*)(struct bpf_map *map, void *key))NULL));
BUILD_BUG_ON(!__same_type(ops->map_update_elem,
(int (*)(struct bpf_map *map, void *key, void *value,
u64 flags))NULL));
BUILD_BUG_ON(!__same_type(ops->map_push_elem,
(int (*)(struct bpf_map *map, void *value,
u64 flags))NULL));
BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
(int (*)(struct bpf_map *map, void *value))NULL));
BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
(int (*)(struct bpf_map *map, void *value))NULL));
BUILD_BUG_ON(!__same_type(ops->map_redirect,
(int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
patch_map_ops_generic:
switch (insn->imm) {
case BPF_FUNC_map_lookup_elem:
insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
__bpf_call_base;
continue;
case BPF_FUNC_map_update_elem:
insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
__bpf_call_base;
continue;
case BPF_FUNC_map_delete_elem:
insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
__bpf_call_base;
continue;
case BPF_FUNC_map_push_elem:
insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
__bpf_call_base;
continue;
case BPF_FUNC_map_pop_elem:
insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
__bpf_call_base;
continue;
case BPF_FUNC_map_peek_elem:
insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
__bpf_call_base;
continue;
case BPF_FUNC_redirect_map:
insn->imm = BPF_CAST_CALL(ops->map_redirect) -
__bpf_call_base;
continue;
}
goto patch_call_imm;
}
/* Implement bpf_jiffies64 inline. */
if (prog->jit_requested && BITS_PER_LONG == 64 &&
insn->imm == BPF_FUNC_jiffies64) {
struct bpf_insn ld_jiffies_addr[2] = {
BPF_LD_IMM64(BPF_REG_0,
(unsigned long)&jiffies),
};
insn_buf[0] = ld_jiffies_addr[0];
insn_buf[1] = ld_jiffies_addr[1];
insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
BPF_REG_0, 0);
cnt = 3;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
/* Implement bpf_get_func_ip inline. */
if (prog_type == BPF_PROG_TYPE_TRACING &&
insn->imm == BPF_FUNC_get_func_ip) {
/* Load IP address from ctx - 8 */
insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
if (!new_prog)
return -ENOMEM;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
patch_call_imm:
fn = env->ops->get_func_proto(insn->imm, env->prog);
/* all functions that have prototype and verifier allowed
* programs to call them, must be real in-kernel functions
*/
if (!fn->func) {
verbose(env,
"kernel subsystem misconfigured func %s#%d\n",
func_id_name(insn->imm), insn->imm);
return -EFAULT;
}
insn->imm = fn->func - __bpf_call_base;
}
/* Since poke tab is now finalized, publish aux to tracker. */
for (i = 0; i < prog->aux->size_poke_tab; i++) {
map_ptr = prog->aux->poke_tab[i].tail_call.map;
if (!map_ptr->ops->map_poke_track ||
!map_ptr->ops->map_poke_untrack ||
!map_ptr->ops->map_poke_run) {
verbose(env, "bpf verifier is misconfigured\n");
return -EINVAL;
}
ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
if (ret < 0) {
verbose(env, "tracking tail call prog failed\n");
return ret;
}
}
sort_kfunc_descs_by_imm(env->prog);
return 0;
}
static void free_states(struct bpf_verifier_env *env)
{
struct bpf_verifier_state_list *sl, *sln;
int i;
sl = env->free_list;
while (sl) {
sln = sl->next;
free_verifier_state(&sl->state, false);
kfree(sl);
sl = sln;
}
env->free_list = NULL;
if (!env->explored_states)
return;
for (i = 0; i < state_htab_size(env); i++) {
sl = env->explored_states[i];
while (sl) {
sln = sl->next;
free_verifier_state(&sl->state, false);
kfree(sl);
sl = sln;
}
env->explored_states[i] = NULL;
}
}
static int do_check_common(struct bpf_verifier_env *env, int subprog)
{
bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
struct bpf_verifier_state *state;
struct bpf_reg_state *regs;
int ret, i;
env->prev_linfo = NULL;
env->pass_cnt++;
state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->curframe = 0;
state->speculative = false;
state->branches = 1;
state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
if (!state->frame[0]) {
kfree(state);
return -ENOMEM;
}
env->cur_state = state;
init_func_state(env, state->frame[0],
BPF_MAIN_FUNC /* callsite */,
0 /* frameno */,
subprog);
regs = state->frame[state->curframe]->regs;
if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
ret = btf_prepare_func_args(env, subprog, regs);
if (ret)
goto out;
for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
if (regs[i].type == PTR_TO_CTX)
mark_reg_known_zero(env, regs, i);
else if (regs[i].type == SCALAR_VALUE)
mark_reg_unknown(env, regs, i);
else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
const u32 mem_size = regs[i].mem_size;
mark_reg_known_zero(env, regs, i);
regs[i].mem_size = mem_size;
regs[i].id = ++env->id_gen;
}
}
} else {
/* 1st arg to a function */
regs[BPF_REG_1].type = PTR_TO_CTX;
mark_reg_known_zero(env, regs, BPF_REG_1);
ret = btf_check_subprog_arg_match(env, subprog, regs);
if (ret == -EFAULT)
/* unlikely verifier bug. abort.
* ret == 0 and ret < 0 are sadly acceptable for
* main() function due to backward compatibility.
* Like socket filter program may be written as:
* int bpf_prog(struct pt_regs *ctx)
* and never dereference that ctx in the program.
* 'struct pt_regs' is a type mismatch for socket
* filter that should be using 'struct __sk_buff'.
*/
goto out;
}
ret = do_check(env);
out:
/* check for NULL is necessary, since cur_state can be freed inside
* do_check() under memory pressure.
*/
if (env->cur_state) {
free_verifier_state(env->cur_state, true);
env->cur_state = NULL;
}
while (!pop_stack(env, NULL, NULL, false));
if (!ret && pop_log)
bpf_vlog_reset(&env->log, 0);
free_states(env);
return ret;
}
/* Verify all global functions in a BPF program one by one based on their BTF.
* All global functions must pass verification. Otherwise the whole program is rejected.
* Consider:
* int bar(int);
* int foo(int f)
* {
* return bar(f);
* }
* int bar(int b)
* {
* ...
* }
* foo() will be verified first for R1=any_scalar_value. During verification it
* will be assumed that bar() already verified successfully and call to bar()
* from foo() will be checked for type match only. Later bar() will be verified
* independently to check that it's safe for R1=any_scalar_value.
*/
static int do_check_subprogs(struct bpf_verifier_env *env)
{
struct bpf_prog_aux *aux = env->prog->aux;
int i, ret;
if (!aux->func_info)
return 0;
for (i = 1; i < env->subprog_cnt; i++) {
if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
continue;
env->insn_idx = env->subprog_info[i].start;
WARN_ON_ONCE(env->insn_idx == 0);
ret = do_check_common(env, i);
if (ret) {
return ret;
} else if (env->log.level & BPF_LOG_LEVEL) {
verbose(env,
"Func#%d is safe for any args that match its prototype\n",
i);
}
}
return 0;
}
static int do_check_main(struct bpf_verifier_env *env)
{
int ret;
env->insn_idx = 0;
ret = do_check_common(env, 0);
if (!ret)
env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
return ret;
}
static void print_verification_stats(struct bpf_verifier_env *env)
{
int i;
if (env->log.level & BPF_LOG_STATS) {
verbose(env, "verification time %lld usec\n",
div_u64(env->verification_time, 1000));
verbose(env, "stack depth ");
for (i = 0; i < env->subprog_cnt; i++) {
u32 depth = env->subprog_info[i].stack_depth;
verbose(env, "%d", depth);
if (i + 1 < env->subprog_cnt)
verbose(env, "+");
}
verbose(env, "\n");
}
verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
"total_states %d peak_states %d mark_read %d\n",
env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
env->max_states_per_insn, env->total_states,
env->peak_states, env->longest_mark_read_walk);
}
static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
{
const struct btf_type *t, *func_proto;
const struct bpf_struct_ops *st_ops;
const struct btf_member *member;
struct bpf_prog *prog = env->prog;
u32 btf_id, member_idx;
const char *mname;
if (!prog->gpl_compatible) {
verbose(env, "struct ops programs must have a GPL compatible license\n");
return -EINVAL;
}
btf_id = prog->aux->attach_btf_id;
st_ops = bpf_struct_ops_find(btf_id);
if (!st_ops) {
verbose(env, "attach_btf_id %u is not a supported struct\n",
btf_id);
return -ENOTSUPP;
}
t = st_ops->type;
member_idx = prog->expected_attach_type;
if (member_idx >= btf_type_vlen(t)) {
verbose(env, "attach to invalid member idx %u of struct %s\n",
member_idx, st_ops->name);
return -EINVAL;
}
member = &btf_type_member(t)[member_idx];
mname = btf_name_by_offset(btf_vmlinux, member->name_off);
func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
NULL);
if (!func_proto) {
verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
mname, member_idx, st_ops->name);
return -EINVAL;
}
if (st_ops->check_member) {
int err = st_ops->check_member(t, member);
if (err) {
verbose(env, "attach to unsupported member %s of struct %s\n",
mname, st_ops->name);
return err;
}
}
prog->aux->attach_func_proto = func_proto;
prog->aux->attach_func_name = mname;
env->ops = st_ops->verifier_ops;
return 0;
}
#define SECURITY_PREFIX "security_"
static int check_attach_modify_return(unsigned long addr, const char *func_name)
{
if (within_error_injection_list(addr) ||
!strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
return 0;
return -EINVAL;
}
/* list of non-sleepable functions that are otherwise on
* ALLOW_ERROR_INJECTION list
*/
BTF_SET_START(btf_non_sleepable_error_inject)
/* Three functions below can be called from sleepable and non-sleepable context.
* Assume non-sleepable from bpf safety point of view.
*/
BTF_ID(func, __add_to_page_cache_locked)
BTF_ID(func, should_fail_alloc_page)
BTF_ID(func, should_failslab)
BTF_SET_END(btf_non_sleepable_error_inject)
static int check_non_sleepable_error_inject(u32 btf_id)
{
return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
}
int bpf_check_attach_target(struct bpf_verifier_log *log,
const struct bpf_prog *prog,
const struct bpf_prog *tgt_prog,
u32 btf_id,
struct bpf_attach_target_info *tgt_info)
{
bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
const char prefix[] = "btf_trace_";
int ret = 0, subprog = -1, i;
const struct btf_type *t;
bool conservative = true;
const char *tname;
struct btf *btf;
long addr = 0;
if (!btf_id) {
bpf_log(log, "Tracing programs must provide btf_id\n");
return -EINVAL;
}
btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
if (!btf) {
bpf_log(log,
"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
return -EINVAL;
}
t = btf_type_by_id(btf, btf_id);
if (!t) {
bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
return -EINVAL;
}
tname = btf_name_by_offset(btf, t->name_off);
if (!tname) {
bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
return -EINVAL;
}
if (tgt_prog) {
struct bpf_prog_aux *aux = tgt_prog->aux;
for (i = 0; i < aux->func_info_cnt; i++)
if (aux->func_info[i].type_id == btf_id) {
subprog = i;
break;
}
if (subprog == -1) {
bpf_log(log, "Subprog %s doesn't exist\n", tname);
return -EINVAL;
}
conservative = aux->func_info_aux[subprog].unreliable;
if (prog_extension) {
if (conservative) {
bpf_log(log,
"Cannot replace static functions\n");
return -EINVAL;
}
if (!prog->jit_requested) {
bpf_log(log,
"Extension programs should be JITed\n");
return -EINVAL;
}
}
if (!tgt_prog->jited) {
bpf_log(log, "Can attach to only JITed progs\n");
return -EINVAL;
}
if (tgt_prog->type == prog->type) {
/* Cannot fentry/fexit another fentry/fexit program.
* Cannot attach program extension to another extension.
* It's ok to attach fentry/fexit to extension program.
*/
bpf_log(log, "Cannot recursively attach\n");
return -EINVAL;
}
if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
prog_extension &&
(tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
/* Program extensions can extend all program types
* except fentry/fexit. The reason is the following.
* The fentry/fexit programs are used for performance
* analysis, stats and can be attached to any program
* type except themselves. When extension program is
* replacing XDP function it is necessary to allow
* performance analysis of all functions. Both original
* XDP program and its program extension. Hence
* attaching fentry/fexit to BPF_PROG_TYPE_EXT is
* allowed. If extending of fentry/fexit was allowed it
* would be possible to create long call chain
* fentry->extension->fentry->extension beyond
* reasonable stack size. Hence extending fentry is not
* allowed.
*/
bpf_log(log, "Cannot extend fentry/fexit\n");
return -EINVAL;
}
} else {
if (prog_extension) {
bpf_log(log, "Cannot replace kernel functions\n");
return -EINVAL;
}
}
switch (prog->expected_attach_type) {
case BPF_TRACE_RAW_TP:
if (tgt_prog) {
bpf_log(log,
"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
return -EINVAL;
}
if (!btf_type_is_typedef(t)) {
bpf_log(log, "attach_btf_id %u is not a typedef\n",
btf_id);
return -EINVAL;
}
if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
btf_id, tname);
return -EINVAL;
}
tname += sizeof(prefix) - 1;
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_ptr(t))
/* should never happen in valid vmlinux build */
return -EINVAL;
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_func_proto(t))
/* should never happen in valid vmlinux build */
return -EINVAL;
break;
case BPF_TRACE_ITER:
if (!btf_type_is_func(t)) {
bpf_log(log, "attach_btf_id %u is not a function\n",
btf_id);
return -EINVAL;
}
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_func_proto(t))
return -EINVAL;
ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
if (ret)
return ret;
break;
default:
if (!prog_extension)
return -EINVAL;
fallthrough;
case BPF_MODIFY_RETURN:
case BPF_LSM_MAC:
case BPF_TRACE_FENTRY:
case BPF_TRACE_FEXIT:
if (!btf_type_is_func(t)) {
bpf_log(log, "attach_btf_id %u is not a function\n",
btf_id);
return -EINVAL;
}
if (prog_extension &&
btf_check_type_match(log, prog, btf, t))
return -EINVAL;
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_func_proto(t))
return -EINVAL;
if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
(!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
return -EINVAL;
if (tgt_prog && conservative)
t = NULL;
ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
if (ret < 0)
return ret;
if (tgt_prog) {
if (subprog == 0)
addr = (long) tgt_prog->bpf_func;
else
addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
} else {
addr = kallsyms_lookup_name(tname);
if (!addr) {
bpf_log(log,
"The address of function %s cannot be found\n",
tname);
return -ENOENT;
}
}
if (prog->aux->sleepable) {
ret = -EINVAL;
switch (prog->type) {
case BPF_PROG_TYPE_TRACING:
/* fentry/fexit/fmod_ret progs can be sleepable only if they are
* attached to ALLOW_ERROR_INJECTION and are not in denylist.
*/
if (!check_non_sleepable_error_inject(btf_id) &&
within_error_injection_list(addr))
ret = 0;
break;
case BPF_PROG_TYPE_LSM:
/* LSM progs check that they are attached to bpf_lsm_*() funcs.
* Only some of them are sleepable.
*/
if (bpf_lsm_is_sleepable_hook(btf_id))
ret = 0;
break;
default:
break;
}
if (ret) {
bpf_log(log, "%s is not sleepable\n", tname);
return ret;
}
} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
if (tgt_prog) {
bpf_log(log, "can't modify return codes of BPF programs\n");
return -EINVAL;
}
ret = check_attach_modify_return(addr, tname);
if (ret) {
bpf_log(log, "%s() is not modifiable\n", tname);
return ret;
}
}
break;
}
tgt_info->tgt_addr = addr;
tgt_info->tgt_name = tname;
tgt_info->tgt_type = t;
return 0;
}
BTF_SET_START(btf_id_deny)
BTF_ID_UNUSED
#ifdef CONFIG_SMP
BTF_ID(func, migrate_disable)
BTF_ID(func, migrate_enable)
#endif
#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
BTF_ID(func, rcu_read_unlock_strict)
#endif
BTF_SET_END(btf_id_deny)
static int check_attach_btf_id(struct bpf_verifier_env *env)
{
struct bpf_prog *prog = env->prog;
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
struct bpf_attach_target_info tgt_info = {};
u32 btf_id = prog->aux->attach_btf_id;
struct bpf_trampoline *tr;
int ret;
u64 key;
if (prog->type == BPF_PROG_TYPE_SYSCALL) {
if (prog->aux->sleepable)
/* attach_btf_id checked to be zero already */
return 0;
verbose(env, "Syscall programs can only be sleepable\n");
return -EINVAL;
}
if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
prog->type != BPF_PROG_TYPE_LSM) {
verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
return -EINVAL;
}
if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
return check_struct_ops_btf_id(env);
if (prog->type != BPF_PROG_TYPE_TRACING &&
prog->type != BPF_PROG_TYPE_LSM &&
prog->type != BPF_PROG_TYPE_EXT)
return 0;
ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
if (ret)
return ret;
if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
/* to make freplace equivalent to their targets, they need to
* inherit env->ops and expected_attach_type for the rest of the
* verification
*/
env->ops = bpf_verifier_ops[tgt_prog->type];
prog->expected_attach_type = tgt_prog->expected_attach_type;
}
/* store info about the attachment target that will be used later */
prog->aux->attach_func_proto = tgt_info.tgt_type;
prog->aux->attach_func_name = tgt_info.tgt_name;
if (tgt_prog) {
prog->aux->saved_dst_prog_type = tgt_prog->type;
prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
}
if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
prog->aux->attach_btf_trace = true;
return 0;
} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
if (!bpf_iter_prog_supported(prog))
return -EINVAL;
return 0;
}
if (prog->type == BPF_PROG_TYPE_LSM) {
ret = bpf_lsm_verify_prog(&env->log, prog);
if (ret < 0)
return ret;
} else if (prog->type == BPF_PROG_TYPE_TRACING &&
btf_id_set_contains(&btf_id_deny, btf_id)) {
return -EINVAL;
}
key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
tr = bpf_trampoline_get(key, &tgt_info);
if (!tr)
return -ENOMEM;
prog->aux->dst_trampoline = tr;
return 0;
}
struct btf *bpf_get_btf_vmlinux(void)
{
if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
mutex_lock(&bpf_verifier_lock);
if (!btf_vmlinux)
btf_vmlinux = btf_parse_vmlinux();
mutex_unlock(&bpf_verifier_lock);
}
return btf_vmlinux;
}
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
{
u64 start_time = ktime_get_ns();
struct bpf_verifier_env *env;
struct bpf_verifier_log *log;
int i, len, ret = -EINVAL;
bool is_priv;
/* no program is valid */
if (ARRAY_SIZE(bpf_verifier_ops) == 0)
return -EINVAL;
/* 'struct bpf_verifier_env' can be global, but since it's not small,
* allocate/free it every time bpf_check() is called
*/
env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
if (!env)
return -ENOMEM;
log = &env->log;
len = (*prog)->len;
env->insn_aux_data =
vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
ret = -ENOMEM;
if (!env->insn_aux_data)
goto err_free_env;
for (i = 0; i < len; i++)
env->insn_aux_data[i].orig_idx = i;
env->prog = *prog;
env->ops = bpf_verifier_ops[env->prog->type];
env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
is_priv = bpf_capable();
bpf_get_btf_vmlinux();
/* grab the mutex to protect few globals used by verifier */
if (!is_priv)
mutex_lock(&bpf_verifier_lock);
if (attr->log_level || attr->log_buf || attr->log_size) {
/* user requested verbose verifier output
* and supplied buffer to store the verification trace
*/
log->level = attr->log_level;
log->ubuf = (char __user *) (unsigned long) attr->log_buf;
log->len_total = attr->log_size;
ret = -EINVAL;
/* log attributes have to be sane */
if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
!log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
goto err_unlock;
}
if (IS_ERR(btf_vmlinux)) {
/* Either gcc or pahole or kernel are broken. */
verbose(env, "in-kernel BTF is malformed\n");
ret = PTR_ERR(btf_vmlinux);
goto skip_full_check;
}
env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
env->strict_alignment = true;
if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
env->strict_alignment = false;
env->allow_ptr_leaks = bpf_allow_ptr_leaks();
env->allow_uninit_stack = bpf_allow_uninit_stack();
env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
env->bypass_spec_v1 = bpf_bypass_spec_v1();
env->bypass_spec_v4 = bpf_bypass_spec_v4();
env->bpf_capable = bpf_capable();
if (is_priv)
env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
env->explored_states = kvcalloc(state_htab_size(env),
sizeof(struct bpf_verifier_state_list *),
GFP_USER);
ret = -ENOMEM;
if (!env->explored_states)
goto skip_full_check;
ret = add_subprog_and_kfunc(env);
if (ret < 0)
goto skip_full_check;
ret = check_subprogs(env);
if (ret < 0)
goto skip_full_check;
ret = check_btf_info(env, attr, uattr);
if (ret < 0)
goto skip_full_check;
ret = check_attach_btf_id(env);
if (ret)
goto skip_full_check;
ret = resolve_pseudo_ldimm64(env);
if (ret < 0)
goto skip_full_check;
if (bpf_prog_is_dev_bound(env->prog->aux)) {
ret = bpf_prog_offload_verifier_prep(env->prog);
if (ret)
goto skip_full_check;
}
ret = check_cfg(env);
if (ret < 0)
goto skip_full_check;
ret = do_check_subprogs(env);
ret = ret ?: do_check_main(env);
if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
ret = bpf_prog_offload_finalize(env);
skip_full_check:
kvfree(env->explored_states);
if (ret == 0)
ret = check_max_stack_depth(env);
/* instruction rewrites happen after this point */
if (is_priv) {
if (ret == 0)
opt_hard_wire_dead_code_branches(env);
if (ret == 0)
ret = opt_remove_dead_code(env);
if (ret == 0)
ret = opt_remove_nops(env);
} else {
if (ret == 0)
sanitize_dead_code(env);
}
if (ret == 0)
/* program is valid, convert *(u32*)(ctx + off) accesses */
ret = convert_ctx_accesses(env);
if (ret == 0)
ret = do_misc_fixups(env);
/* do 32-bit optimization after insn patching has done so those patched
* insns could be handled correctly.
*/
if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
: false;
}
if (ret == 0)
ret = fixup_call_args(env);
env->verification_time = ktime_get_ns() - start_time;
print_verification_stats(env);
if (log->level && bpf_verifier_log_full(log))
ret = -ENOSPC;
if (log->level && !log->ubuf) {
ret = -EFAULT;
goto err_release_maps;
}
if (ret)
goto err_release_maps;
if (env->used_map_cnt) {
/* if program passed verifier, update used_maps in bpf_prog_info */
env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
sizeof(env->used_maps[0]),
GFP_KERNEL);
if (!env->prog->aux->used_maps) {
ret = -ENOMEM;
goto err_release_maps;
}
memcpy(env->prog->aux->used_maps, env->used_maps,
sizeof(env->used_maps[0]) * env->used_map_cnt);
env->prog->aux->used_map_cnt = env->used_map_cnt;
}
if (env->used_btf_cnt) {
/* if program passed verifier, update used_btfs in bpf_prog_aux */
env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
sizeof(env->used_btfs[0]),
GFP_KERNEL);
if (!env->prog->aux->used_btfs) {
ret = -ENOMEM;
goto err_release_maps;
}
memcpy(env->prog->aux->used_btfs, env->used_btfs,
sizeof(env->used_btfs[0]) * env->used_btf_cnt);
env->prog->aux->used_btf_cnt = env->used_btf_cnt;
}
if (env->used_map_cnt || env->used_btf_cnt) {
/* program is valid. Convert pseudo bpf_ld_imm64 into generic
* bpf_ld_imm64 instructions
*/
convert_pseudo_ld_imm64(env);
}
adjust_btf_func(env);
err_release_maps:
if (!env->prog->aux->used_maps)
/* if we didn't copy map pointers into bpf_prog_info, release
* them now. Otherwise free_used_maps() will release them.
*/
release_maps(env);
if (!env->prog->aux->used_btfs)
release_btfs(env);
/* extension progs temporarily inherit the attach_type of their targets
for verification purposes, so set it back to zero before returning
*/
if (env->prog->type == BPF_PROG_TYPE_EXT)
env->prog->expected_attach_type = 0;
*prog = env->prog;
err_unlock:
if (!is_priv)
mutex_unlock(&bpf_verifier_lock);
vfree(env->insn_aux_data);
err_free_env:
kfree(env);
return ret;
}