Greg Ungerer 064bff1c9f net: add support for NS8390 based eth controllers on some ColdFire CPU boards
A number of older ColdFire CPU based boards use NS8390 based network
controllers. Most use the Davicom 9008F or the UMC 9008F. This driver
provides the support code to get these devices working on these platforms.

Generally the NS8390 based eth device is direct connected via the general
purpose bus of the ColdFire CPU. So its addressing and interrupt setup is
fixed on each of the different platforms (classic platform setup).

This driver is based on the other drivers/net/ethernet/8390 drivers, and
includes the lib8390.c code. It uses the existing definitions of the
board NS8390 device addresses, interrupts and access types from the
arch/m68k/include/asm/mcf8390.h, but moves the IO access functions into
the driver code and out of that header.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-12 07:54:45 -07:00

481 lines
12 KiB
C

/*
* Support for ColdFire CPU based boards using a NS8390 Ethernet device.
*
* Derived from the many other 8390 drivers.
*
* (C) Copyright 2012, Greg Ungerer <gerg@uclinux.org>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/jiffies.h>
#include <linux/io.h>
#include <asm/mcf8390.h>
static const char version[] =
"mcf8390.c: (15-06-2012) Greg Ungerer <gerg@uclinux.org>";
#define NE_CMD 0x00
#define NE_DATAPORT 0x10 /* NatSemi-defined port window offset */
#define NE_RESET 0x1f /* Issue a read to reset ,a write to clear */
#define NE_EN0_ISR 0x07
#define NE_EN0_DCFG 0x0e
#define NE_EN0_RSARLO 0x08
#define NE_EN0_RSARHI 0x09
#define NE_EN0_RCNTLO 0x0a
#define NE_EN0_RXCR 0x0c
#define NE_EN0_TXCR 0x0d
#define NE_EN0_RCNTHI 0x0b
#define NE_EN0_IMR 0x0f
#define NESM_START_PG 0x40 /* First page of TX buffer */
#define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */
#ifdef NE2000_ODDOFFSET
/*
* A lot of the ColdFire boards use a separate address region for odd offset
* register addresses. The following functions convert and map as required.
* Note that the data port accesses are treated a little differently, and
* always accessed via the insX/outsX functions.
*/
static inline u32 NE_PTR(u32 addr)
{
if (addr & 1)
return addr - 1 + NE2000_ODDOFFSET;
return addr;
}
static inline u32 NE_DATA_PTR(u32 addr)
{
return addr;
}
void ei_outb(u32 val, u32 addr)
{
NE2000_BYTE *rp;
rp = (NE2000_BYTE *) NE_PTR(addr);
*rp = RSWAP(val);
}
#define ei_inb ei_inb
u8 ei_inb(u32 addr)
{
NE2000_BYTE *rp, val;
rp = (NE2000_BYTE *) NE_PTR(addr);
val = *rp;
return (u8) (RSWAP(val) & 0xff);
}
void ei_insb(u32 addr, void *vbuf, int len)
{
NE2000_BYTE *rp, val;
u8 *buf;
buf = (u8 *) vbuf;
rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
for (; (len > 0); len--) {
val = *rp;
*buf++ = RSWAP(val);
}
}
void ei_insw(u32 addr, void *vbuf, int len)
{
volatile u16 *rp;
u16 w, *buf;
buf = (u16 *) vbuf;
rp = (volatile u16 *) NE_DATA_PTR(addr);
for (; (len > 0); len--) {
w = *rp;
*buf++ = BSWAP(w);
}
}
void ei_outsb(u32 addr, const void *vbuf, int len)
{
NE2000_BYTE *rp, val;
u8 *buf;
buf = (u8 *) vbuf;
rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
for (; (len > 0); len--) {
val = *buf++;
*rp = RSWAP(val);
}
}
void ei_outsw(u32 addr, const void *vbuf, int len)
{
volatile u16 *rp;
u16 w, *buf;
buf = (u16 *) vbuf;
rp = (volatile u16 *) NE_DATA_PTR(addr);
for (; (len > 0); len--) {
w = *buf++;
*rp = BSWAP(w);
}
}
#else /* !NE2000_ODDOFFSET */
#define ei_inb inb
#define ei_outb outb
#define ei_insb insb
#define ei_insw insw
#define ei_outsb outsb
#define ei_outsw outsw
#endif /* !NE2000_ODDOFFSET */
#define ei_inb_p ei_inb
#define ei_outb_p ei_outb
#include "lib8390.c"
/*
* Hard reset the card. This used to pause for the same period that a
* 8390 reset command required, but that shouldn't be necessary.
*/
static void mcf8390_reset_8390(struct net_device *dev)
{
unsigned long reset_start_time = jiffies;
u32 addr = dev->base_addr;
if (ei_debug > 1)
netdev_dbg(dev, "resetting the 8390 t=%ld...\n", jiffies);
ei_outb(ei_inb(addr + NE_RESET), addr + NE_RESET);
ei_status.txing = 0;
ei_status.dmaing = 0;
/* This check _should_not_ be necessary, omit eventually. */
while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RESET) == 0) {
if (time_after(jiffies, reset_start_time + 2 * HZ / 100)) {
netdev_warn(dev, "%s: did not complete\n", __func__);
break;
}
}
ei_outb(ENISR_RESET, addr + NE_EN0_ISR);
}
/*
* This *shouldn't* happen.
* If it does, it's the last thing you'll see
*/
static void mcf8390_dmaing_err(const char *func, struct net_device *dev,
struct ei_device *ei_local)
{
netdev_err(dev, "%s: DMAing conflict [DMAstat:%d][irqlock:%d]\n",
func, ei_local->dmaing, ei_local->irqlock);
}
/*
* Grab the 8390 specific header. Similar to the block_input routine, but
* we don't need to be concerned with ring wrap as the header will be at
* the start of a page, so we optimize accordingly.
*/
static void mcf8390_get_8390_hdr(struct net_device *dev,
struct e8390_pkt_hdr *hdr, int ring_page)
{
struct ei_device *ei_local = netdev_priv(dev);
u32 addr = dev->base_addr;
if (ei_local->dmaing) {
mcf8390_dmaing_err(__func__, dev, ei_local);
return;
}
ei_local->dmaing |= 0x01;
ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
ei_outb(sizeof(struct e8390_pkt_hdr), addr + NE_EN0_RCNTLO);
ei_outb(0, addr + NE_EN0_RCNTHI);
ei_outb(0, addr + NE_EN0_RSARLO); /* On page boundary */
ei_outb(ring_page, addr + NE_EN0_RSARHI);
ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
ei_insw(addr + NE_DATAPORT, hdr, sizeof(struct e8390_pkt_hdr) >> 1);
outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
ei_local->dmaing &= ~0x01;
hdr->count = cpu_to_le16(hdr->count);
}
/*
* Block input and output, similar to the Crynwr packet driver.
* If you are porting to a new ethercard, look at the packet driver source
* for hints. The NEx000 doesn't share the on-board packet memory --
* you have to put the packet out through the "remote DMA" dataport
* using z_writeb.
*/
static void mcf8390_block_input(struct net_device *dev, int count,
struct sk_buff *skb, int ring_offset)
{
struct ei_device *ei_local = netdev_priv(dev);
u32 addr = dev->base_addr;
char *buf = skb->data;
if (ei_local->dmaing) {
mcf8390_dmaing_err(__func__, dev, ei_local);
return;
}
ei_local->dmaing |= 0x01;
ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
ei_outb(ring_offset & 0xff, addr + NE_EN0_RSARLO);
ei_outb(ring_offset >> 8, addr + NE_EN0_RSARHI);
ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
ei_insw(addr + NE_DATAPORT, buf, count >> 1);
if (count & 1)
buf[count - 1] = ei_inb(addr + NE_DATAPORT);
ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
ei_local->dmaing &= ~0x01;
}
static void mcf8390_block_output(struct net_device *dev, int count,
const unsigned char *buf,
const int start_page)
{
struct ei_device *ei_local = netdev_priv(dev);
u32 addr = dev->base_addr;
unsigned long dma_start;
/* Make sure we transfer all bytes if 16bit IO writes */
if (count & 0x1)
count++;
if (ei_local->dmaing) {
mcf8390_dmaing_err(__func__, dev, ei_local);
return;
}
ei_local->dmaing |= 0x01;
/* We should already be in page 0, but to be safe... */
ei_outb(E8390_PAGE0 + E8390_START + E8390_NODMA, addr + NE_CMD);
ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
/* Now the normal output. */
ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
ei_outb(0x00, addr + NE_EN0_RSARLO);
ei_outb(start_page, addr + NE_EN0_RSARHI);
ei_outb(E8390_RWRITE + E8390_START, addr + NE_CMD);
ei_outsw(addr + NE_DATAPORT, buf, count >> 1);
dma_start = jiffies;
while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RDC) == 0) {
if (time_after(jiffies, dma_start + 2 * HZ / 100)) { /* 20ms */
netdev_err(dev, "timeout waiting for Tx RDC\n");
mcf8390_reset_8390(dev);
__NS8390_init(dev, 1);
break;
}
}
ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
ei_local->dmaing &= ~0x01;
}
static const struct net_device_ops mcf8390_netdev_ops = {
.ndo_open = __ei_open,
.ndo_stop = __ei_close,
.ndo_start_xmit = __ei_start_xmit,
.ndo_tx_timeout = __ei_tx_timeout,
.ndo_get_stats = __ei_get_stats,
.ndo_set_rx_mode = __ei_set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_change_mtu = eth_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = __ei_poll,
#endif
};
static int mcf8390_init(struct net_device *dev)
{
static u32 offsets[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};
struct ei_device *ei_local = netdev_priv(dev);
unsigned char SA_prom[32];
u32 addr = dev->base_addr;
int start_page, stop_page;
int i, ret;
mcf8390_reset_8390(dev);
/*
* Read the 16 bytes of station address PROM.
* We must first initialize registers,
* similar to NS8390_init(eifdev, 0).
* We can't reliably read the SAPROM address without this.
* (I learned the hard way!).
*/
{
static const struct {
u32 value;
u32 offset;
} program_seq[] = {
{E8390_NODMA + E8390_PAGE0 + E8390_STOP, NE_CMD},
/* Select page 0 */
{0x48, NE_EN0_DCFG}, /* 0x48: Set byte-wide access */
{0x00, NE_EN0_RCNTLO}, /* Clear the count regs */
{0x00, NE_EN0_RCNTHI},
{0x00, NE_EN0_IMR}, /* Mask completion irq */
{0xFF, NE_EN0_ISR},
{E8390_RXOFF, NE_EN0_RXCR}, /* 0x20 Set to monitor */
{E8390_TXOFF, NE_EN0_TXCR}, /* 0x02 and loopback mode */
{32, NE_EN0_RCNTLO},
{0x00, NE_EN0_RCNTHI},
{0x00, NE_EN0_RSARLO}, /* DMA starting at 0x0000 */
{0x00, NE_EN0_RSARHI},
{E8390_RREAD + E8390_START, NE_CMD},
};
for (i = 0; i < ARRAY_SIZE(program_seq); i++) {
ei_outb(program_seq[i].value,
addr + program_seq[i].offset);
}
}
for (i = 0; i < 16; i++) {
SA_prom[i] = ei_inb(addr + NE_DATAPORT);
ei_inb(addr + NE_DATAPORT);
}
/* We must set the 8390 for word mode. */
ei_outb(0x49, addr + NE_EN0_DCFG);
start_page = NESM_START_PG;
stop_page = NESM_STOP_PG;
/* Install the Interrupt handler */
ret = request_irq(dev->irq, __ei_interrupt, 0, dev->name, dev);
if (ret)
return ret;
for (i = 0; i < ETH_ALEN; i++)
dev->dev_addr[i] = SA_prom[i];
netdev_dbg(dev, "Found ethernet address: %pM\n", dev->dev_addr);
ei_local->name = "mcf8390";
ei_local->tx_start_page = start_page;
ei_local->stop_page = stop_page;
ei_local->word16 = 1;
ei_local->rx_start_page = start_page + TX_PAGES;
ei_local->reset_8390 = mcf8390_reset_8390;
ei_local->block_input = mcf8390_block_input;
ei_local->block_output = mcf8390_block_output;
ei_local->get_8390_hdr = mcf8390_get_8390_hdr;
ei_local->reg_offset = offsets;
dev->netdev_ops = &mcf8390_netdev_ops;
__NS8390_init(dev, 0);
ret = register_netdev(dev);
if (ret) {
free_irq(dev->irq, dev);
return ret;
}
netdev_info(dev, "addr=0x%08x irq=%d, Ethernet Address %pM\n",
addr, dev->irq, dev->dev_addr);
return 0;
}
static int mcf8390_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct ei_device *ei_local;
struct resource *mem, *irq;
resource_size_t msize;
int ret;
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (irq == NULL) {
dev_err(&pdev->dev, "no IRQ specified?\n");
return -ENXIO;
}
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (mem == NULL) {
dev_err(&pdev->dev, "no memory address specified?\n");
return -ENXIO;
}
msize = resource_size(mem);
if (!request_mem_region(mem->start, msize, pdev->name))
return -EBUSY;
dev = ____alloc_ei_netdev(0);
if (dev == NULL) {
release_mem_region(mem->start, msize);
return -ENOMEM;
}
SET_NETDEV_DEV(dev, &pdev->dev);
platform_set_drvdata(pdev, dev);
ei_local = netdev_priv(dev);
dev->irq = irq->start;
dev->base_addr = mem->start;
ret = mcf8390_init(dev);
if (ret) {
release_mem_region(mem->start, msize);
free_netdev(dev);
return ret;
}
return 0;
}
static int mcf8390_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct resource *mem;
unregister_netdev(dev);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (mem)
release_mem_region(mem->start, resource_size(mem));
free_netdev(dev);
return 0;
}
static struct platform_driver mcf8390_drv = {
.driver = {
.name = "mcf8390",
.owner = THIS_MODULE,
},
.probe = mcf8390_probe,
.remove = mcf8390_remove,
};
module_platform_driver(mcf8390_drv);
MODULE_DESCRIPTION("MCF8390 ColdFire NS8390 driver");
MODULE_AUTHOR("Greg Ungerer <gerg@uclinux.org>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mcf8390");