de0f938739
As Linux kernel separates KERNEL and USER address spaces, there is therefore no need to flag USER access at page level. Today, the 8xx TLB handlers already handle user access in the L1 entry through Access Protection Groups, it is then natural to move the user access handling at PMD level once _PAGE_NA allows to handle PAGE_NONE protection without _PAGE_USER In the mean time, as we free up one bit in the PTE, we can use it to include SPS (page size flag) in the PTE and avoid handling it at every TLB miss hence removing special handling based on compiled page size. For _PAGE_EXEC, we rework it to use PP PTE bits, avoiding the copy of _PAGE_EXEC bit into the L1 entry. Unfortunatly we are not able to put it at the correct location as it conflicts with NA/RO/RW bits for data entries. Upper bits of APG in L1 entry overlap with PMD base address. In order to avoid having to filter that out, we set up all groups so that upper bits can have any value. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
891 lines
22 KiB
C
891 lines
22 KiB
C
/*
|
|
* PPC Huge TLB Page Support for Kernel.
|
|
*
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
* Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
|
|
*
|
|
* Based on the IA-32 version:
|
|
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/export.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/hugetlb.h>
|
|
#include <asm/pte-walk.h>
|
|
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
|
|
#define PAGE_SHIFT_64K 16
|
|
#define PAGE_SHIFT_512K 19
|
|
#define PAGE_SHIFT_8M 23
|
|
#define PAGE_SHIFT_16M 24
|
|
#define PAGE_SHIFT_16G 34
|
|
|
|
unsigned int HPAGE_SHIFT;
|
|
EXPORT_SYMBOL(HPAGE_SHIFT);
|
|
|
|
#define hugepd_none(hpd) (hpd_val(hpd) == 0)
|
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
|
|
{
|
|
/*
|
|
* Only called for hugetlbfs pages, hence can ignore THP and the
|
|
* irq disabled walk.
|
|
*/
|
|
return __find_linux_pte(mm->pgd, addr, NULL, NULL);
|
|
}
|
|
|
|
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
|
|
unsigned long address, unsigned pdshift, unsigned pshift)
|
|
{
|
|
struct kmem_cache *cachep;
|
|
pte_t *new;
|
|
int i;
|
|
int num_hugepd;
|
|
|
|
if (pshift >= pdshift) {
|
|
cachep = hugepte_cache;
|
|
num_hugepd = 1 << (pshift - pdshift);
|
|
} else {
|
|
cachep = PGT_CACHE(pdshift - pshift);
|
|
num_hugepd = 1;
|
|
}
|
|
|
|
new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
|
|
|
|
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
|
|
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
|
|
|
|
if (! new)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Make sure other cpus find the hugepd set only after a
|
|
* properly initialized page table is visible to them.
|
|
* For more details look for comment in __pte_alloc().
|
|
*/
|
|
smp_wmb();
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
/*
|
|
* We have multiple higher-level entries that point to the same
|
|
* actual pte location. Fill in each as we go and backtrack on error.
|
|
* We need all of these so the DTLB pgtable walk code can find the
|
|
* right higher-level entry without knowing if it's a hugepage or not.
|
|
*/
|
|
for (i = 0; i < num_hugepd; i++, hpdp++) {
|
|
if (unlikely(!hugepd_none(*hpdp)))
|
|
break;
|
|
else {
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
*hpdp = __hugepd(__pa(new) |
|
|
(shift_to_mmu_psize(pshift) << 2));
|
|
#elif defined(CONFIG_PPC_8xx)
|
|
*hpdp = __hugepd(__pa(new) | _PMD_USER |
|
|
(pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
|
|
_PMD_PAGE_512K) | _PMD_PRESENT);
|
|
#else
|
|
/* We use the old format for PPC_FSL_BOOK3E */
|
|
*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
|
|
#endif
|
|
}
|
|
}
|
|
/* If we bailed from the for loop early, an error occurred, clean up */
|
|
if (i < num_hugepd) {
|
|
for (i = i - 1 ; i >= 0; i--, hpdp--)
|
|
*hpdp = __hugepd(0);
|
|
kmem_cache_free(cachep, new);
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* These macros define how to determine which level of the page table holds
|
|
* the hpdp.
|
|
*/
|
|
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
|
|
#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
|
|
#define HUGEPD_PUD_SHIFT PUD_SHIFT
|
|
#else
|
|
#define HUGEPD_PGD_SHIFT PUD_SHIFT
|
|
#define HUGEPD_PUD_SHIFT PMD_SHIFT
|
|
#endif
|
|
|
|
/*
|
|
* At this point we do the placement change only for BOOK3S 64. This would
|
|
* possibly work on other subarchs.
|
|
*/
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pg;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
hugepd_t *hpdp = NULL;
|
|
unsigned pshift = __ffs(sz);
|
|
unsigned pdshift = PGDIR_SHIFT;
|
|
|
|
addr &= ~(sz-1);
|
|
pg = pgd_offset(mm, addr);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (pshift == PGDIR_SHIFT)
|
|
/* 16GB huge page */
|
|
return (pte_t *) pg;
|
|
else if (pshift > PUD_SHIFT)
|
|
/*
|
|
* We need to use hugepd table
|
|
*/
|
|
hpdp = (hugepd_t *)pg;
|
|
else {
|
|
pdshift = PUD_SHIFT;
|
|
pu = pud_alloc(mm, pg, addr);
|
|
if (pshift == PUD_SHIFT)
|
|
return (pte_t *)pu;
|
|
else if (pshift > PMD_SHIFT)
|
|
hpdp = (hugepd_t *)pu;
|
|
else {
|
|
pdshift = PMD_SHIFT;
|
|
pm = pmd_alloc(mm, pu, addr);
|
|
if (pshift == PMD_SHIFT)
|
|
/* 16MB hugepage */
|
|
return (pte_t *)pm;
|
|
else
|
|
hpdp = (hugepd_t *)pm;
|
|
}
|
|
}
|
|
#else
|
|
if (pshift >= HUGEPD_PGD_SHIFT) {
|
|
hpdp = (hugepd_t *)pg;
|
|
} else {
|
|
pdshift = PUD_SHIFT;
|
|
pu = pud_alloc(mm, pg, addr);
|
|
if (pshift >= HUGEPD_PUD_SHIFT) {
|
|
hpdp = (hugepd_t *)pu;
|
|
} else {
|
|
pdshift = PMD_SHIFT;
|
|
pm = pmd_alloc(mm, pu, addr);
|
|
hpdp = (hugepd_t *)pm;
|
|
}
|
|
}
|
|
#endif
|
|
if (!hpdp)
|
|
return NULL;
|
|
|
|
BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
|
|
|
|
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
|
|
return NULL;
|
|
|
|
return hugepte_offset(*hpdp, addr, pdshift);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* Tracks gpages after the device tree is scanned and before the
|
|
* huge_boot_pages list is ready on pseries.
|
|
*/
|
|
#define MAX_NUMBER_GPAGES 1024
|
|
__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
|
|
__initdata static unsigned nr_gpages;
|
|
|
|
/*
|
|
* Build list of addresses of gigantic pages. This function is used in early
|
|
* boot before the buddy allocator is setup.
|
|
*/
|
|
void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
|
|
{
|
|
if (!addr)
|
|
return;
|
|
while (number_of_pages > 0) {
|
|
gpage_freearray[nr_gpages] = addr;
|
|
nr_gpages++;
|
|
number_of_pages--;
|
|
addr += page_size;
|
|
}
|
|
}
|
|
|
|
int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
|
|
{
|
|
struct huge_bootmem_page *m;
|
|
if (nr_gpages == 0)
|
|
return 0;
|
|
m = phys_to_virt(gpage_freearray[--nr_gpages]);
|
|
gpage_freearray[nr_gpages] = 0;
|
|
list_add(&m->list, &huge_boot_pages);
|
|
m->hstate = hstate;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
|
|
int __init alloc_bootmem_huge_page(struct hstate *h)
|
|
{
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
|
|
return pseries_alloc_bootmem_huge_page(h);
|
|
#endif
|
|
return __alloc_bootmem_huge_page(h);
|
|
}
|
|
|
|
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
|
|
#define HUGEPD_FREELIST_SIZE \
|
|
((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
|
|
|
|
struct hugepd_freelist {
|
|
struct rcu_head rcu;
|
|
unsigned int index;
|
|
void *ptes[0];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
|
|
|
|
static void hugepd_free_rcu_callback(struct rcu_head *head)
|
|
{
|
|
struct hugepd_freelist *batch =
|
|
container_of(head, struct hugepd_freelist, rcu);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < batch->index; i++)
|
|
kmem_cache_free(hugepte_cache, batch->ptes[i]);
|
|
|
|
free_page((unsigned long)batch);
|
|
}
|
|
|
|
static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
|
|
{
|
|
struct hugepd_freelist **batchp;
|
|
|
|
batchp = &get_cpu_var(hugepd_freelist_cur);
|
|
|
|
if (atomic_read(&tlb->mm->mm_users) < 2 ||
|
|
mm_is_thread_local(tlb->mm)) {
|
|
kmem_cache_free(hugepte_cache, hugepte);
|
|
put_cpu_var(hugepd_freelist_cur);
|
|
return;
|
|
}
|
|
|
|
if (*batchp == NULL) {
|
|
*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
|
|
(*batchp)->index = 0;
|
|
}
|
|
|
|
(*batchp)->ptes[(*batchp)->index++] = hugepte;
|
|
if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
|
|
call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
|
|
*batchp = NULL;
|
|
}
|
|
put_cpu_var(hugepd_freelist_cur);
|
|
}
|
|
#else
|
|
static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
|
|
#endif
|
|
|
|
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pte_t *hugepte = hugepd_page(*hpdp);
|
|
int i;
|
|
|
|
unsigned long pdmask = ~((1UL << pdshift) - 1);
|
|
unsigned int num_hugepd = 1;
|
|
unsigned int shift = hugepd_shift(*hpdp);
|
|
|
|
/* Note: On fsl the hpdp may be the first of several */
|
|
if (shift > pdshift)
|
|
num_hugepd = 1 << (shift - pdshift);
|
|
|
|
start &= pdmask;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= pdmask;
|
|
if (! ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
for (i = 0; i < num_hugepd; i++, hpdp++)
|
|
*hpdp = __hugepd(0);
|
|
|
|
if (shift >= pdshift)
|
|
hugepd_free(tlb, hugepte);
|
|
else
|
|
pgtable_free_tlb(tlb, hugepte, pdshift - shift);
|
|
}
|
|
|
|
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
do {
|
|
unsigned long more;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
next = pmd_addr_end(addr, end);
|
|
if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
|
|
/*
|
|
* if it is not hugepd pointer, we should already find
|
|
* it cleared.
|
|
*/
|
|
WARN_ON(!pmd_none_or_clear_bad(pmd));
|
|
continue;
|
|
}
|
|
/*
|
|
* Increment next by the size of the huge mapping since
|
|
* there may be more than one entry at this level for a
|
|
* single hugepage, but all of them point to
|
|
* the same kmem cache that holds the hugepte.
|
|
*/
|
|
more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
|
|
if (more > next)
|
|
next = more;
|
|
|
|
free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
} while (addr = next, addr != end);
|
|
|
|
start &= PUD_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PUD_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, start);
|
|
pud_clear(pud);
|
|
pmd_free_tlb(tlb, pmd, start);
|
|
mm_dec_nr_pmds(tlb->mm);
|
|
}
|
|
|
|
static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
do {
|
|
pud = pud_offset(pgd, addr);
|
|
next = pud_addr_end(addr, end);
|
|
if (!is_hugepd(__hugepd(pud_val(*pud)))) {
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
|
|
ceiling);
|
|
} else {
|
|
unsigned long more;
|
|
/*
|
|
* Increment next by the size of the huge mapping since
|
|
* there may be more than one entry at this level for a
|
|
* single hugepage, but all of them point to
|
|
* the same kmem cache that holds the hugepte.
|
|
*/
|
|
more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
|
|
if (more > next)
|
|
next = more;
|
|
|
|
free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
}
|
|
} while (addr = next, addr != end);
|
|
|
|
start &= PGDIR_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PGDIR_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pud = pud_offset(pgd, start);
|
|
pgd_clear(pgd);
|
|
pud_free_tlb(tlb, pud, start);
|
|
mm_dec_nr_puds(tlb->mm);
|
|
}
|
|
|
|
/*
|
|
* This function frees user-level page tables of a process.
|
|
*/
|
|
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
/*
|
|
* Because there are a number of different possible pagetable
|
|
* layouts for hugepage ranges, we limit knowledge of how
|
|
* things should be laid out to the allocation path
|
|
* (huge_pte_alloc(), above). Everything else works out the
|
|
* structure as it goes from information in the hugepd
|
|
* pointers. That means that we can't here use the
|
|
* optimization used in the normal page free_pgd_range(), of
|
|
* checking whether we're actually covering a large enough
|
|
* range to have to do anything at the top level of the walk
|
|
* instead of at the bottom.
|
|
*
|
|
* To make sense of this, you should probably go read the big
|
|
* block comment at the top of the normal free_pgd_range(),
|
|
* too.
|
|
*/
|
|
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
pgd = pgd_offset(tlb->mm, addr);
|
|
if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
|
|
} else {
|
|
unsigned long more;
|
|
/*
|
|
* Increment next by the size of the huge mapping since
|
|
* there may be more than one entry at the pgd level
|
|
* for a single hugepage, but all of them point to the
|
|
* same kmem cache that holds the hugepte.
|
|
*/
|
|
more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
|
|
if (more > next)
|
|
next = more;
|
|
|
|
free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
}
|
|
} while (addr = next, addr != end);
|
|
}
|
|
|
|
struct page *follow_huge_pd(struct vm_area_struct *vma,
|
|
unsigned long address, hugepd_t hpd,
|
|
int flags, int pdshift)
|
|
{
|
|
pte_t *ptep;
|
|
spinlock_t *ptl;
|
|
struct page *page = NULL;
|
|
unsigned long mask;
|
|
int shift = hugepd_shift(hpd);
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
retry:
|
|
ptl = &mm->page_table_lock;
|
|
spin_lock(ptl);
|
|
|
|
ptep = hugepte_offset(hpd, address, pdshift);
|
|
if (pte_present(*ptep)) {
|
|
mask = (1UL << shift) - 1;
|
|
page = pte_page(*ptep);
|
|
page += ((address & mask) >> PAGE_SHIFT);
|
|
if (flags & FOLL_GET)
|
|
get_page(page);
|
|
} else {
|
|
if (is_hugetlb_entry_migration(*ptep)) {
|
|
spin_unlock(ptl);
|
|
__migration_entry_wait(mm, ptep, ptl);
|
|
goto retry;
|
|
}
|
|
}
|
|
spin_unlock(ptl);
|
|
return page;
|
|
}
|
|
|
|
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
|
|
unsigned long sz)
|
|
{
|
|
unsigned long __boundary = (addr + sz) & ~(sz-1);
|
|
return (__boundary - 1 < end - 1) ? __boundary : end;
|
|
}
|
|
|
|
int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long sz = 1UL << hugepd_shift(hugepd);
|
|
unsigned long next;
|
|
|
|
ptep = hugepte_offset(hugepd, addr, pdshift);
|
|
do {
|
|
next = hugepte_addr_end(addr, end, sz);
|
|
if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
|
|
return 0;
|
|
} while (ptep++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_MM_SLICES
|
|
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct hstate *hstate = hstate_file(file);
|
|
int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
|
|
|
|
if (radix_enabled())
|
|
return radix__hugetlb_get_unmapped_area(file, addr, len,
|
|
pgoff, flags);
|
|
return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
|
|
}
|
|
#endif
|
|
|
|
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
|
|
{
|
|
#ifdef CONFIG_PPC_MM_SLICES
|
|
unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
|
|
/* With radix we don't use slice, so derive it from vma*/
|
|
if (!radix_enabled())
|
|
return 1UL << mmu_psize_to_shift(psize);
|
|
#endif
|
|
if (!is_vm_hugetlb_page(vma))
|
|
return PAGE_SIZE;
|
|
|
|
return huge_page_size(hstate_vma(vma));
|
|
}
|
|
|
|
static inline bool is_power_of_4(unsigned long x)
|
|
{
|
|
if (is_power_of_2(x))
|
|
return (__ilog2(x) % 2) ? false : true;
|
|
return false;
|
|
}
|
|
|
|
static int __init add_huge_page_size(unsigned long long size)
|
|
{
|
|
int shift = __ffs(size);
|
|
int mmu_psize;
|
|
|
|
/* Check that it is a page size supported by the hardware and
|
|
* that it fits within pagetable and slice limits. */
|
|
if (size <= PAGE_SIZE)
|
|
return -EINVAL;
|
|
#if defined(CONFIG_PPC_FSL_BOOK3E)
|
|
if (!is_power_of_4(size))
|
|
return -EINVAL;
|
|
#elif !defined(CONFIG_PPC_8xx)
|
|
if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* We need to make sure that for different page sizes reported by
|
|
* firmware we only add hugetlb support for page sizes that can be
|
|
* supported by linux page table layout.
|
|
* For now we have
|
|
* Radix: 2M
|
|
* Hash: 16M and 16G
|
|
*/
|
|
if (radix_enabled()) {
|
|
if (mmu_psize != MMU_PAGE_2M) {
|
|
if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
|
|
(mmu_psize != MMU_PAGE_1G))
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
|
|
|
|
/* Return if huge page size has already been setup */
|
|
if (size_to_hstate(size))
|
|
return 0;
|
|
|
|
hugetlb_add_hstate(shift - PAGE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init hugepage_setup_sz(char *str)
|
|
{
|
|
unsigned long long size;
|
|
|
|
size = memparse(str, &str);
|
|
|
|
if (add_huge_page_size(size) != 0) {
|
|
hugetlb_bad_size();
|
|
pr_err("Invalid huge page size specified(%llu)\n", size);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
__setup("hugepagesz=", hugepage_setup_sz);
|
|
|
|
struct kmem_cache *hugepte_cache;
|
|
static int __init hugetlbpage_init(void)
|
|
{
|
|
int psize;
|
|
|
|
#if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
|
|
if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
|
|
return -ENODEV;
|
|
#endif
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
unsigned shift;
|
|
unsigned pdshift;
|
|
|
|
if (!mmu_psize_defs[psize].shift)
|
|
continue;
|
|
|
|
shift = mmu_psize_to_shift(psize);
|
|
|
|
if (add_huge_page_size(1ULL << shift) < 0)
|
|
continue;
|
|
|
|
if (shift < HUGEPD_PUD_SHIFT)
|
|
pdshift = PMD_SHIFT;
|
|
else if (shift < HUGEPD_PGD_SHIFT)
|
|
pdshift = PUD_SHIFT;
|
|
else
|
|
pdshift = PGDIR_SHIFT;
|
|
/*
|
|
* if we have pdshift and shift value same, we don't
|
|
* use pgt cache for hugepd.
|
|
*/
|
|
if (pdshift > shift)
|
|
pgtable_cache_add(pdshift - shift, NULL);
|
|
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
|
|
else if (!hugepte_cache) {
|
|
/*
|
|
* Create a kmem cache for hugeptes. The bottom bits in
|
|
* the pte have size information encoded in them, so
|
|
* align them to allow this
|
|
*/
|
|
hugepte_cache = kmem_cache_create("hugepte-cache",
|
|
sizeof(pte_t),
|
|
HUGEPD_SHIFT_MASK + 1,
|
|
0, NULL);
|
|
if (hugepte_cache == NULL)
|
|
panic("%s: Unable to create kmem cache "
|
|
"for hugeptes\n", __func__);
|
|
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
|
|
/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
|
|
if (mmu_psize_defs[MMU_PAGE_4M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
|
|
else if (mmu_psize_defs[MMU_PAGE_512K].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
|
|
#else
|
|
/* Set default large page size. Currently, we pick 16M or 1M
|
|
* depending on what is available
|
|
*/
|
|
if (mmu_psize_defs[MMU_PAGE_16M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
|
|
else if (mmu_psize_defs[MMU_PAGE_1M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
|
|
else if (mmu_psize_defs[MMU_PAGE_2M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(hugetlbpage_init);
|
|
|
|
void flush_dcache_icache_hugepage(struct page *page)
|
|
{
|
|
int i;
|
|
void *start;
|
|
|
|
BUG_ON(!PageCompound(page));
|
|
|
|
for (i = 0; i < (1UL << compound_order(page)); i++) {
|
|
if (!PageHighMem(page)) {
|
|
__flush_dcache_icache(page_address(page+i));
|
|
} else {
|
|
start = kmap_atomic(page+i);
|
|
__flush_dcache_icache(start);
|
|
kunmap_atomic(start);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
/*
|
|
* We have 4 cases for pgds and pmds:
|
|
* (1) invalid (all zeroes)
|
|
* (2) pointer to next table, as normal; bottom 6 bits == 0
|
|
* (3) leaf pte for huge page _PAGE_PTE set
|
|
* (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
|
|
*
|
|
* So long as we atomically load page table pointers we are safe against teardown,
|
|
* we can follow the address down to the the page and take a ref on it.
|
|
* This function need to be called with interrupts disabled. We use this variant
|
|
* when we have MSR[EE] = 0 but the paca->soft_enabled = 1
|
|
*/
|
|
pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
|
|
bool *is_thp, unsigned *hpage_shift)
|
|
{
|
|
pgd_t pgd, *pgdp;
|
|
pud_t pud, *pudp;
|
|
pmd_t pmd, *pmdp;
|
|
pte_t *ret_pte;
|
|
hugepd_t *hpdp = NULL;
|
|
unsigned pdshift = PGDIR_SHIFT;
|
|
|
|
if (hpage_shift)
|
|
*hpage_shift = 0;
|
|
|
|
if (is_thp)
|
|
*is_thp = false;
|
|
|
|
pgdp = pgdir + pgd_index(ea);
|
|
pgd = READ_ONCE(*pgdp);
|
|
/*
|
|
* Always operate on the local stack value. This make sure the
|
|
* value don't get updated by a parallel THP split/collapse,
|
|
* page fault or a page unmap. The return pte_t * is still not
|
|
* stable. So should be checked there for above conditions.
|
|
*/
|
|
if (pgd_none(pgd))
|
|
return NULL;
|
|
else if (pgd_huge(pgd)) {
|
|
ret_pte = (pte_t *) pgdp;
|
|
goto out;
|
|
} else if (is_hugepd(__hugepd(pgd_val(pgd))))
|
|
hpdp = (hugepd_t *)&pgd;
|
|
else {
|
|
/*
|
|
* Even if we end up with an unmap, the pgtable will not
|
|
* be freed, because we do an rcu free and here we are
|
|
* irq disabled
|
|
*/
|
|
pdshift = PUD_SHIFT;
|
|
pudp = pud_offset(&pgd, ea);
|
|
pud = READ_ONCE(*pudp);
|
|
|
|
if (pud_none(pud))
|
|
return NULL;
|
|
else if (pud_huge(pud)) {
|
|
ret_pte = (pte_t *) pudp;
|
|
goto out;
|
|
} else if (is_hugepd(__hugepd(pud_val(pud))))
|
|
hpdp = (hugepd_t *)&pud;
|
|
else {
|
|
pdshift = PMD_SHIFT;
|
|
pmdp = pmd_offset(&pud, ea);
|
|
pmd = READ_ONCE(*pmdp);
|
|
/*
|
|
* A hugepage collapse is captured by pmd_none, because
|
|
* it mark the pmd none and do a hpte invalidate.
|
|
*/
|
|
if (pmd_none(pmd))
|
|
return NULL;
|
|
|
|
if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
|
|
if (is_thp)
|
|
*is_thp = true;
|
|
ret_pte = (pte_t *) pmdp;
|
|
goto out;
|
|
}
|
|
|
|
if (pmd_huge(pmd)) {
|
|
ret_pte = (pte_t *) pmdp;
|
|
goto out;
|
|
} else if (is_hugepd(__hugepd(pmd_val(pmd))))
|
|
hpdp = (hugepd_t *)&pmd;
|
|
else
|
|
return pte_offset_kernel(&pmd, ea);
|
|
}
|
|
}
|
|
if (!hpdp)
|
|
return NULL;
|
|
|
|
ret_pte = hugepte_offset(*hpdp, ea, pdshift);
|
|
pdshift = hugepd_shift(*hpdp);
|
|
out:
|
|
if (hpage_shift)
|
|
*hpage_shift = pdshift;
|
|
return ret_pte;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__find_linux_pte);
|
|
|
|
int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long pte_end;
|
|
struct page *head, *page;
|
|
pte_t pte;
|
|
int refs;
|
|
|
|
pte_end = (addr + sz) & ~(sz-1);
|
|
if (pte_end < end)
|
|
end = pte_end;
|
|
|
|
pte = READ_ONCE(*ptep);
|
|
|
|
if (!pte_access_permitted(pte, write))
|
|
return 0;
|
|
|
|
/* hugepages are never "special" */
|
|
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
|
|
refs = 0;
|
|
head = pte_page(pte);
|
|
|
|
page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
|
|
do {
|
|
VM_BUG_ON(compound_head(page) != head);
|
|
pages[*nr] = page;
|
|
(*nr)++;
|
|
page++;
|
|
refs++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
|
|
if (!page_cache_add_speculative(head, refs)) {
|
|
*nr -= refs;
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
|
|
/* Could be optimized better */
|
|
*nr -= refs;
|
|
while (refs--)
|
|
put_page(head);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|