linux/arch/x86/kvm/mtrr.c
Xiao Guangrong de9aef5e1a KVM: MTRR: introduce fixed_mtrr_segment table
This table summarizes the information of fixed MTRRs and introduce some APIs
to abstract its operation which helps us to clean up the code and will be
used in later patches

Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Change range_size to range_shift, in order to avoid udivdi3 errors.
 - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-06-19 17:16:28 +02:00

449 lines
10 KiB
C

/*
* vMTRR implementation
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
* Copyright(C) 2015 Intel Corporation.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
* Marcelo Tosatti <mtosatti@redhat.com>
* Paolo Bonzini <pbonzini@redhat.com>
* Xiao Guangrong <guangrong.xiao@linux.intel.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#include <linux/kvm_host.h>
#include <asm/mtrr.h>
#include "cpuid.h"
#include "mmu.h"
#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
static bool msr_mtrr_valid(unsigned msr)
{
switch (msr) {
case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
case MSR_MTRRfix64K_00000:
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
case MSR_MTRRdefType:
case MSR_IA32_CR_PAT:
return true;
case 0x2f8:
return true;
}
return false;
}
static bool valid_pat_type(unsigned t)
{
return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
}
static bool valid_mtrr_type(unsigned t)
{
return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
}
bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
int i;
u64 mask;
if (!msr_mtrr_valid(msr))
return false;
if (msr == MSR_IA32_CR_PAT) {
for (i = 0; i < 8; i++)
if (!valid_pat_type((data >> (i * 8)) & 0xff))
return false;
return true;
} else if (msr == MSR_MTRRdefType) {
if (data & ~0xcff)
return false;
return valid_mtrr_type(data & 0xff);
} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
for (i = 0; i < 8 ; i++)
if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
return false;
return true;
}
/* variable MTRRs */
WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
if ((msr & 1) == 0) {
/* MTRR base */
if (!valid_mtrr_type(data & 0xff))
return false;
mask |= 0xf00;
} else
/* MTRR mask */
mask |= 0x7ff;
if (data & mask) {
kvm_inject_gp(vcpu, 0);
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
{
return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
}
static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
{
return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
}
static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
{
return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
}
/*
* Three terms are used in the following code:
* - segment, it indicates the address segments covered by fixed MTRRs.
* - unit, it corresponds to the MSR entry in the segment.
* - range, a range is covered in one memory cache type.
*/
struct fixed_mtrr_segment {
u64 start;
u64 end;
int range_shift;
/* the start position in kvm_mtrr.fixed_ranges[]. */
int range_start;
};
static struct fixed_mtrr_segment fixed_seg_table[] = {
/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
{
.start = 0x0,
.end = 0x80000,
.range_shift = 16, /* 64K */
.range_start = 0,
},
/*
* MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
* 16K fixed mtrr.
*/
{
.start = 0x80000,
.end = 0xc0000,
.range_shift = 14, /* 16K */
.range_start = 8,
},
/*
* MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
* 4K fixed mtrr.
*/
{
.start = 0xc0000,
.end = 0x100000,
.range_shift = 12, /* 12K */
.range_start = 24,
}
};
/*
* The size of unit is covered in one MSR, one MSR entry contains
* 8 ranges so that unit size is always 8 * 2^range_shift.
*/
static u64 fixed_mtrr_seg_unit_size(int seg)
{
return 8 << fixed_seg_table[seg].range_shift;
}
static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
{
switch (msr) {
case MSR_MTRRfix64K_00000:
*seg = 0;
*unit = 0;
break;
case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
*seg = 1;
*unit = msr - MSR_MTRRfix16K_80000;
break;
case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
*seg = 2;
*unit = msr - MSR_MTRRfix4K_C0000;
break;
default:
return false;
}
return true;
}
static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
{
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
u64 unit_size = fixed_mtrr_seg_unit_size(seg);
*start = mtrr_seg->start + unit * unit_size;
*end = *start + unit_size;
WARN_ON(*end > mtrr_seg->end);
}
static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
{
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
> mtrr_seg->end);
/* each unit has 8 ranges. */
return mtrr_seg->range_start + 8 * unit;
}
static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
{
int seg, unit;
if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
return false;
fixed_mtrr_seg_unit_range(seg, unit, start, end);
return true;
}
static int fixed_msr_to_range_index(u32 msr)
{
int seg, unit;
if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
return -1;
return fixed_mtrr_seg_unit_range_index(seg, unit);
}
static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
{
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
gfn_t start, end, mask;
int index;
if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
!kvm_arch_has_noncoherent_dma(vcpu->kvm))
return;
if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
return;
/* fixed MTRRs. */
if (fixed_msr_to_range(msr, &start, &end)) {
if (!fixed_mtrr_is_enabled(mtrr_state))
return;
} else if (msr == MSR_MTRRdefType) {
start = 0x0;
end = ~0ULL;
} else {
/* variable range MTRRs. */
index = (msr - 0x200) / 2;
start = mtrr_state->var_ranges[index].base & PAGE_MASK;
mask = mtrr_state->var_ranges[index].mask & PAGE_MASK;
mask |= ~0ULL << cpuid_maxphyaddr(vcpu);
end = ((start & mask) | ~mask) + 1;
}
kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
}
int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
int index;
if (!kvm_mtrr_valid(vcpu, msr, data))
return 1;
index = fixed_msr_to_range_index(msr);
if (index >= 0)
*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
else if (msr == MSR_MTRRdefType)
vcpu->arch.mtrr_state.deftype = data;
else if (msr == MSR_IA32_CR_PAT)
vcpu->arch.pat = data;
else { /* Variable MTRRs */
int is_mtrr_mask;
index = (msr - 0x200) / 2;
is_mtrr_mask = msr - 0x200 - 2 * index;
if (!is_mtrr_mask)
vcpu->arch.mtrr_state.var_ranges[index].base = data;
else
vcpu->arch.mtrr_state.var_ranges[index].mask = data;
}
update_mtrr(vcpu, msr);
return 0;
}
int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
int index;
/* MSR_MTRRcap is a readonly MSR. */
if (msr == MSR_MTRRcap) {
/*
* SMRR = 0
* WC = 1
* FIX = 1
* VCNT = KVM_NR_VAR_MTRR
*/
*pdata = 0x500 | KVM_NR_VAR_MTRR;
return 0;
}
if (!msr_mtrr_valid(msr))
return 1;
index = fixed_msr_to_range_index(msr);
if (index >= 0)
*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
else if (msr == MSR_MTRRdefType)
*pdata = vcpu->arch.mtrr_state.deftype;
else if (msr == MSR_IA32_CR_PAT)
*pdata = vcpu->arch.pat;
else { /* Variable MTRRs */
int is_mtrr_mask;
index = (msr - 0x200) / 2;
is_mtrr_mask = msr - 0x200 - 2 * index;
if (!is_mtrr_mask)
*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
else
*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
}
return 0;
}
u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
{
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
u64 base, mask, start;
int i, num_var_ranges, type;
const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
| (1 << MTRR_TYPE_WRTHROUGH);
start = gfn_to_gpa(gfn);
num_var_ranges = KVM_NR_VAR_MTRR;
type = -1;
/* MTRR is completely disabled, use UC for all of physical memory. */
if (!mtrr_is_enabled(mtrr_state))
return MTRR_TYPE_UNCACHABLE;
/* Look in fixed ranges. Just return the type as per start */
if (fixed_mtrr_is_enabled(mtrr_state) && (start < 0x100000)) {
int idx;
if (start < 0x80000) {
idx = 0;
idx += (start >> 16);
return mtrr_state->fixed_ranges[idx];
} else if (start < 0xC0000) {
idx = 1 * 8;
idx += ((start - 0x80000) >> 14);
return mtrr_state->fixed_ranges[idx];
} else if (start < 0x1000000) {
idx = 3 * 8;
idx += ((start - 0xC0000) >> 12);
return mtrr_state->fixed_ranges[idx];
}
}
/*
* Look in variable ranges
* Look of multiple ranges matching this address and pick type
* as per MTRR precedence
*/
for (i = 0; i < num_var_ranges; ++i) {
int curr_type;
if (!(mtrr_state->var_ranges[i].mask & (1 << 11)))
continue;
base = mtrr_state->var_ranges[i].base & PAGE_MASK;
mask = mtrr_state->var_ranges[i].mask & PAGE_MASK;
if ((start & mask) != (base & mask))
continue;
/*
* Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
* Precedences.
*/
curr_type = mtrr_state->var_ranges[i].base & 0xff;
if (type == -1) {
type = curr_type;
continue;
}
/*
* If two or more variable memory ranges match and the
* memory types are identical, then that memory type is
* used.
*/
if (type == curr_type)
continue;
/*
* If two or more variable memory ranges match and one of
* the memory types is UC, the UC memory type used.
*/
if (curr_type == MTRR_TYPE_UNCACHABLE)
return MTRR_TYPE_UNCACHABLE;
/*
* If two or more variable memory ranges match and the
* memory types are WT and WB, the WT memory type is used.
*/
if (((1 << type) & wt_wb_mask) &&
((1 << curr_type) & wt_wb_mask)) {
type = MTRR_TYPE_WRTHROUGH;
continue;
}
/*
* For overlaps not defined by the above rules, processor
* behavior is undefined.
*/
/* We use WB for this undefined behavior. :( */
return MTRR_TYPE_WRBACK;
}
if (type != -1)
return type;
return mtrr_default_type(mtrr_state);
}
EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);