Signed-off-by: Dmytro Laktyushkin <Dmytro.Laktyushkin@amd.com> Reviewed-by: Tony Cheng <Tony.Cheng@amd.com> Acked-by: Harry Wentland <harry.wentland@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
596 lines
12 KiB
C
596 lines
12 KiB
C
/*
|
|
* Copyright 2012-15 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: AMD
|
|
*
|
|
*/
|
|
|
|
#include "dm_services.h"
|
|
#include "include/fixed31_32.h"
|
|
|
|
static inline uint64_t abs_i64(
|
|
int64_t arg)
|
|
{
|
|
if (arg > 0)
|
|
return (uint64_t)arg;
|
|
else
|
|
return (uint64_t)(-arg);
|
|
}
|
|
|
|
/*
|
|
* @brief
|
|
* result = dividend / divisor
|
|
* *remainder = dividend % divisor
|
|
*/
|
|
static inline uint64_t complete_integer_division_u64(
|
|
uint64_t dividend,
|
|
uint64_t divisor,
|
|
uint64_t *remainder)
|
|
{
|
|
uint64_t result;
|
|
|
|
ASSERT(divisor);
|
|
|
|
result = div64_u64_rem(dividend, divisor, remainder);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
#define FRACTIONAL_PART_MASK \
|
|
((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
|
|
|
|
#define GET_INTEGER_PART(x) \
|
|
((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
|
|
|
|
#define GET_FRACTIONAL_PART(x) \
|
|
(FRACTIONAL_PART_MASK & (x))
|
|
|
|
struct fixed31_32 dal_fixed31_32_from_fraction(
|
|
int64_t numerator,
|
|
int64_t denominator)
|
|
{
|
|
struct fixed31_32 res;
|
|
|
|
bool arg1_negative = numerator < 0;
|
|
bool arg2_negative = denominator < 0;
|
|
|
|
uint64_t arg1_value = arg1_negative ? -numerator : numerator;
|
|
uint64_t arg2_value = arg2_negative ? -denominator : denominator;
|
|
|
|
uint64_t remainder;
|
|
|
|
/* determine integer part */
|
|
|
|
uint64_t res_value = complete_integer_division_u64(
|
|
arg1_value, arg2_value, &remainder);
|
|
|
|
ASSERT(res_value <= LONG_MAX);
|
|
|
|
/* determine fractional part */
|
|
{
|
|
uint32_t i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
|
|
|
|
do {
|
|
remainder <<= 1;
|
|
|
|
res_value <<= 1;
|
|
|
|
if (remainder >= arg2_value) {
|
|
res_value |= 1;
|
|
remainder -= arg2_value;
|
|
}
|
|
} while (--i != 0);
|
|
}
|
|
|
|
/* round up LSB */
|
|
{
|
|
uint64_t summand = (remainder << 1) >= arg2_value;
|
|
|
|
ASSERT(res_value <= LLONG_MAX - summand);
|
|
|
|
res_value += summand;
|
|
}
|
|
|
|
res.value = (int64_t)res_value;
|
|
|
|
if (arg1_negative ^ arg2_negative)
|
|
res.value = -res.value;
|
|
|
|
return res;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_from_int_nonconst(
|
|
int64_t arg)
|
|
{
|
|
struct fixed31_32 res;
|
|
|
|
ASSERT((LONG_MIN <= arg) && (arg <= LONG_MAX));
|
|
|
|
res.value = arg << FIXED31_32_BITS_PER_FRACTIONAL_PART;
|
|
|
|
return res;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_shl(
|
|
struct fixed31_32 arg,
|
|
uint8_t shift)
|
|
{
|
|
struct fixed31_32 res;
|
|
|
|
ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) ||
|
|
((arg.value < 0) && (arg.value >= LLONG_MIN >> shift)));
|
|
|
|
res.value = arg.value << shift;
|
|
|
|
return res;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_add(
|
|
struct fixed31_32 arg1,
|
|
struct fixed31_32 arg2)
|
|
{
|
|
struct fixed31_32 res;
|
|
|
|
ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) ||
|
|
((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value)));
|
|
|
|
res.value = arg1.value + arg2.value;
|
|
|
|
return res;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_sub(
|
|
struct fixed31_32 arg1,
|
|
struct fixed31_32 arg2)
|
|
{
|
|
struct fixed31_32 res;
|
|
|
|
ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) ||
|
|
((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value)));
|
|
|
|
res.value = arg1.value - arg2.value;
|
|
|
|
return res;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_mul(
|
|
struct fixed31_32 arg1,
|
|
struct fixed31_32 arg2)
|
|
{
|
|
struct fixed31_32 res;
|
|
|
|
bool arg1_negative = arg1.value < 0;
|
|
bool arg2_negative = arg2.value < 0;
|
|
|
|
uint64_t arg1_value = arg1_negative ? -arg1.value : arg1.value;
|
|
uint64_t arg2_value = arg2_negative ? -arg2.value : arg2.value;
|
|
|
|
uint64_t arg1_int = GET_INTEGER_PART(arg1_value);
|
|
uint64_t arg2_int = GET_INTEGER_PART(arg2_value);
|
|
|
|
uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value);
|
|
uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value);
|
|
|
|
uint64_t tmp;
|
|
|
|
res.value = arg1_int * arg2_int;
|
|
|
|
ASSERT(res.value <= LONG_MAX);
|
|
|
|
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
|
|
|
|
tmp = arg1_int * arg2_fra;
|
|
|
|
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
|
|
|
|
res.value += tmp;
|
|
|
|
tmp = arg2_int * arg1_fra;
|
|
|
|
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
|
|
|
|
res.value += tmp;
|
|
|
|
tmp = arg1_fra * arg2_fra;
|
|
|
|
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
|
|
(tmp >= (uint64_t)dal_fixed31_32_half.value);
|
|
|
|
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
|
|
|
|
res.value += tmp;
|
|
|
|
if (arg1_negative ^ arg2_negative)
|
|
res.value = -res.value;
|
|
|
|
return res;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_sqr(
|
|
struct fixed31_32 arg)
|
|
{
|
|
struct fixed31_32 res;
|
|
|
|
uint64_t arg_value = abs_i64(arg.value);
|
|
|
|
uint64_t arg_int = GET_INTEGER_PART(arg_value);
|
|
|
|
uint64_t arg_fra = GET_FRACTIONAL_PART(arg_value);
|
|
|
|
uint64_t tmp;
|
|
|
|
res.value = arg_int * arg_int;
|
|
|
|
ASSERT(res.value <= LONG_MAX);
|
|
|
|
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
|
|
|
|
tmp = arg_int * arg_fra;
|
|
|
|
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
|
|
|
|
res.value += tmp;
|
|
|
|
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
|
|
|
|
res.value += tmp;
|
|
|
|
tmp = arg_fra * arg_fra;
|
|
|
|
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
|
|
(tmp >= (uint64_t)dal_fixed31_32_half.value);
|
|
|
|
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
|
|
|
|
res.value += tmp;
|
|
|
|
return res;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_recip(
|
|
struct fixed31_32 arg)
|
|
{
|
|
/*
|
|
* @note
|
|
* Good idea to use Newton's method
|
|
*/
|
|
|
|
ASSERT(arg.value);
|
|
|
|
return dal_fixed31_32_from_fraction(
|
|
dal_fixed31_32_one.value,
|
|
arg.value);
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_sinc(
|
|
struct fixed31_32 arg)
|
|
{
|
|
struct fixed31_32 square;
|
|
|
|
struct fixed31_32 res = dal_fixed31_32_one;
|
|
|
|
int32_t n = 27;
|
|
|
|
struct fixed31_32 arg_norm = arg;
|
|
|
|
if (dal_fixed31_32_le(
|
|
dal_fixed31_32_two_pi,
|
|
dal_fixed31_32_abs(arg))) {
|
|
arg_norm = dal_fixed31_32_sub(
|
|
arg_norm,
|
|
dal_fixed31_32_mul_int(
|
|
dal_fixed31_32_two_pi,
|
|
(int32_t)div64_s64(
|
|
arg_norm.value,
|
|
dal_fixed31_32_two_pi.value)));
|
|
}
|
|
|
|
square = dal_fixed31_32_sqr(arg_norm);
|
|
|
|
do {
|
|
res = dal_fixed31_32_sub(
|
|
dal_fixed31_32_one,
|
|
dal_fixed31_32_div_int(
|
|
dal_fixed31_32_mul(
|
|
square,
|
|
res),
|
|
n * (n - 1)));
|
|
|
|
n -= 2;
|
|
} while (n > 2);
|
|
|
|
if (arg.value != arg_norm.value)
|
|
res = dal_fixed31_32_div(
|
|
dal_fixed31_32_mul(res, arg_norm),
|
|
arg);
|
|
|
|
return res;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_sin(
|
|
struct fixed31_32 arg)
|
|
{
|
|
return dal_fixed31_32_mul(
|
|
arg,
|
|
dal_fixed31_32_sinc(arg));
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_cos(
|
|
struct fixed31_32 arg)
|
|
{
|
|
/* TODO implement argument normalization */
|
|
|
|
const struct fixed31_32 square = dal_fixed31_32_sqr(arg);
|
|
|
|
struct fixed31_32 res = dal_fixed31_32_one;
|
|
|
|
int32_t n = 26;
|
|
|
|
do {
|
|
res = dal_fixed31_32_sub(
|
|
dal_fixed31_32_one,
|
|
dal_fixed31_32_div_int(
|
|
dal_fixed31_32_mul(
|
|
square,
|
|
res),
|
|
n * (n - 1)));
|
|
|
|
n -= 2;
|
|
} while (n != 0);
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* @brief
|
|
* result = exp(arg),
|
|
* where abs(arg) < 1
|
|
*
|
|
* Calculated as Taylor series.
|
|
*/
|
|
static struct fixed31_32 fixed31_32_exp_from_taylor_series(
|
|
struct fixed31_32 arg)
|
|
{
|
|
uint32_t n = 9;
|
|
|
|
struct fixed31_32 res = dal_fixed31_32_from_fraction(
|
|
n + 2,
|
|
n + 1);
|
|
/* TODO find correct res */
|
|
|
|
ASSERT(dal_fixed31_32_lt(arg, dal_fixed31_32_one));
|
|
|
|
do
|
|
res = dal_fixed31_32_add(
|
|
dal_fixed31_32_one,
|
|
dal_fixed31_32_div_int(
|
|
dal_fixed31_32_mul(
|
|
arg,
|
|
res),
|
|
n));
|
|
while (--n != 1);
|
|
|
|
return dal_fixed31_32_add(
|
|
dal_fixed31_32_one,
|
|
dal_fixed31_32_mul(
|
|
arg,
|
|
res));
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_exp(
|
|
struct fixed31_32 arg)
|
|
{
|
|
/*
|
|
* @brief
|
|
* Main equation is:
|
|
* exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
|
|
* where m = round(x / ln(2)), r = x - m * ln(2)
|
|
*/
|
|
|
|
if (dal_fixed31_32_le(
|
|
dal_fixed31_32_ln2_div_2,
|
|
dal_fixed31_32_abs(arg))) {
|
|
int32_t m = dal_fixed31_32_round(
|
|
dal_fixed31_32_div(
|
|
arg,
|
|
dal_fixed31_32_ln2));
|
|
|
|
struct fixed31_32 r = dal_fixed31_32_sub(
|
|
arg,
|
|
dal_fixed31_32_mul_int(
|
|
dal_fixed31_32_ln2,
|
|
m));
|
|
|
|
ASSERT(m != 0);
|
|
|
|
ASSERT(dal_fixed31_32_lt(
|
|
dal_fixed31_32_abs(r),
|
|
dal_fixed31_32_one));
|
|
|
|
if (m > 0)
|
|
return dal_fixed31_32_shl(
|
|
fixed31_32_exp_from_taylor_series(r),
|
|
(uint8_t)m);
|
|
else
|
|
return dal_fixed31_32_div_int(
|
|
fixed31_32_exp_from_taylor_series(r),
|
|
1LL << -m);
|
|
} else if (arg.value != 0)
|
|
return fixed31_32_exp_from_taylor_series(arg);
|
|
else
|
|
return dal_fixed31_32_one;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_log(
|
|
struct fixed31_32 arg)
|
|
{
|
|
struct fixed31_32 res = dal_fixed31_32_neg(dal_fixed31_32_one);
|
|
/* TODO improve 1st estimation */
|
|
|
|
struct fixed31_32 error;
|
|
|
|
ASSERT(arg.value > 0);
|
|
/* TODO if arg is negative, return NaN */
|
|
/* TODO if arg is zero, return -INF */
|
|
|
|
do {
|
|
struct fixed31_32 res1 = dal_fixed31_32_add(
|
|
dal_fixed31_32_sub(
|
|
res,
|
|
dal_fixed31_32_one),
|
|
dal_fixed31_32_div(
|
|
arg,
|
|
dal_fixed31_32_exp(res)));
|
|
|
|
error = dal_fixed31_32_sub(
|
|
res,
|
|
res1);
|
|
|
|
res = res1;
|
|
/* TODO determine max_allowed_error based on quality of exp() */
|
|
} while (abs_i64(error.value) > 100ULL);
|
|
|
|
return res;
|
|
}
|
|
|
|
struct fixed31_32 dal_fixed31_32_pow(
|
|
struct fixed31_32 arg1,
|
|
struct fixed31_32 arg2)
|
|
{
|
|
return dal_fixed31_32_exp(
|
|
dal_fixed31_32_mul(
|
|
dal_fixed31_32_log(arg1),
|
|
arg2));
|
|
}
|
|
|
|
int32_t dal_fixed31_32_floor(
|
|
struct fixed31_32 arg)
|
|
{
|
|
uint64_t arg_value = abs_i64(arg.value);
|
|
|
|
if (arg.value >= 0)
|
|
return (int32_t)GET_INTEGER_PART(arg_value);
|
|
else
|
|
return -(int32_t)GET_INTEGER_PART(arg_value);
|
|
}
|
|
|
|
int32_t dal_fixed31_32_round(
|
|
struct fixed31_32 arg)
|
|
{
|
|
uint64_t arg_value = abs_i64(arg.value);
|
|
|
|
const int64_t summand = dal_fixed31_32_half.value;
|
|
|
|
ASSERT(LLONG_MAX - (int64_t)arg_value >= summand);
|
|
|
|
arg_value += summand;
|
|
|
|
if (arg.value >= 0)
|
|
return (int32_t)GET_INTEGER_PART(arg_value);
|
|
else
|
|
return -(int32_t)GET_INTEGER_PART(arg_value);
|
|
}
|
|
|
|
int32_t dal_fixed31_32_ceil(
|
|
struct fixed31_32 arg)
|
|
{
|
|
uint64_t arg_value = abs_i64(arg.value);
|
|
|
|
const int64_t summand = dal_fixed31_32_one.value -
|
|
dal_fixed31_32_epsilon.value;
|
|
|
|
ASSERT(LLONG_MAX - (int64_t)arg_value >= summand);
|
|
|
|
arg_value += summand;
|
|
|
|
if (arg.value >= 0)
|
|
return (int32_t)GET_INTEGER_PART(arg_value);
|
|
else
|
|
return -(int32_t)GET_INTEGER_PART(arg_value);
|
|
}
|
|
|
|
/* this function is a generic helper to translate fixed point value to
|
|
* specified integer format that will consist of integer_bits integer part and
|
|
* fractional_bits fractional part. For example it is used in
|
|
* dal_fixed31_32_u2d19 to receive 2 bits integer part and 19 bits fractional
|
|
* part in 32 bits. It is used in hw programming (scaler)
|
|
*/
|
|
|
|
static inline uint32_t ux_dy(
|
|
int64_t value,
|
|
uint32_t integer_bits,
|
|
uint32_t fractional_bits)
|
|
{
|
|
/* 1. create mask of integer part */
|
|
uint32_t result = (1 << integer_bits) - 1;
|
|
/* 2. mask out fractional part */
|
|
uint32_t fractional_part = FRACTIONAL_PART_MASK & value;
|
|
/* 3. shrink fixed point integer part to be of integer_bits width*/
|
|
result &= GET_INTEGER_PART(value);
|
|
/* 4. make space for fractional part to be filled in after integer */
|
|
result <<= fractional_bits;
|
|
/* 5. shrink fixed point fractional part to of fractional_bits width*/
|
|
fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
|
|
/* 6. merge the result */
|
|
return result | fractional_part;
|
|
}
|
|
|
|
static inline uint32_t clamp_ux_dy(
|
|
int64_t value,
|
|
uint32_t integer_bits,
|
|
uint32_t fractional_bits,
|
|
uint32_t min_clamp)
|
|
{
|
|
uint32_t truncated_val = ux_dy(value, integer_bits, fractional_bits);
|
|
|
|
if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
|
|
return (1 << (integer_bits + fractional_bits)) - 1;
|
|
else if (truncated_val > min_clamp)
|
|
return truncated_val;
|
|
else
|
|
return min_clamp;
|
|
}
|
|
|
|
uint32_t dal_fixed31_32_u2d19(
|
|
struct fixed31_32 arg)
|
|
{
|
|
return ux_dy(arg.value, 2, 19);
|
|
}
|
|
|
|
uint32_t dal_fixed31_32_u0d19(
|
|
struct fixed31_32 arg)
|
|
{
|
|
return ux_dy(arg.value, 0, 19);
|
|
}
|
|
|
|
uint32_t dal_fixed31_32_clamp_u0d14(
|
|
struct fixed31_32 arg)
|
|
{
|
|
return clamp_ux_dy(arg.value, 0, 14, 1);
|
|
}
|
|
|
|
uint32_t dal_fixed31_32_clamp_u0d10(
|
|
struct fixed31_32 arg)
|
|
{
|
|
return clamp_ux_dy(arg.value, 0, 10, 1);
|
|
}
|