linux/fs/btrfs/backref.h
Filipe Manana eb96e22193 btrfs: fix unwritten extent buffer after snapshotting a new subvolume
When creating a snapshot of a subvolume that was created in the current
transaction, we can end up not persisting a dirty extent buffer that is
referenced by the snapshot, resulting in IO errors due to checksum failures
when trying to read the extent buffer later from disk. A sequence of steps
that leads to this is the following:

1) At ioctl.c:create_subvol() we allocate an extent buffer, with logical
   address 36007936, for the leaf/root of a new subvolume that has an ID
   of 291. We mark the extent buffer as dirty, and at this point the
   subvolume tree has a single node/leaf which is also its root (level 0);

2) We no longer commit the transaction used to create the subvolume at
   create_subvol(). We used to, but that was recently removed in
   commit 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol
   create");

3) The transaction used to create the subvolume has an ID of 33, so the
   extent buffer 36007936 has a generation of 33;

4) Several updates happen to subvolume 291 during transaction 33, several
   files created and its tree height changes from 0 to 1, so we end up with
   a new root at level 1 and the extent buffer 36007936 is now a leaf of
   that new root node, which is extent buffer 36048896.

   The commit root remains as 36007936, since we are still at transaction
   33;

5) Creation of a snapshot of subvolume 291, with an ID of 292, starts at
   ioctl.c:create_snapshot(). This triggers a commit of transaction 33 and
   we end up at transaction.c:create_pending_snapshot(), in the critical
   section of a transaction commit.

   There we COW the root of subvolume 291, which is extent buffer 36048896.
   The COW operation returns extent buffer 36048896, since there's no need
   to COW because the extent buffer was created in this transaction and it
   was not written yet.

   The we call btrfs_copy_root() against the root node 36048896. During
   this operation we allocate a new extent buffer to turn into the root
   node of the snapshot, copy the contents of the root node 36048896 into
   this snapshot root extent buffer, set the owner to 292 (the ID of the
   snapshot), etc, and then we call btrfs_inc_ref(). This will create a
   delayed reference for each leaf pointed by the root node with a
   reference root of 292 - this includes a reference for the leaf
   36007936.

   After that we set the bit BTRFS_ROOT_FORCE_COW in the root's state.

   Then we call btrfs_insert_dir_item(), to create the directory entry in
   in the tree of subvolume 291 that points to the snapshot. This ends up
   needing to modify leaf 36007936 to insert the respective directory
   items. Because the bit BTRFS_ROOT_FORCE_COW is set for the root's state,
   we need to COW the leaf. We end up at btrfs_force_cow_block() and then
   at update_ref_for_cow().

   At update_ref_for_cow() we call btrfs_block_can_be_shared() which
   returns false, despite the fact the leaf 36007936 is shared - the
   subvolume's root and the snapshot's root point to that leaf. The
   reason that it incorrectly returns false is because the commit root
   of the subvolume is extent buffer 36007936 - it was the initial root
   of the subvolume when we created it. So btrfs_block_can_be_shared()
   which has the following logic:

   int btrfs_block_can_be_shared(struct btrfs_root *root,
                                 struct extent_buffer *buf)
   {
       if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
           buf != root->node && buf != root->commit_root &&
           (btrfs_header_generation(buf) <=
            btrfs_root_last_snapshot(&root->root_item) ||
            btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
               return 1;

       return 0;
   }

   Returns false (0) since 'buf' (extent buffer 36007936) matches the
   root's commit root.

   As a result, at update_ref_for_cow(), we don't check for the number
   of references for extent buffer 36007936, we just assume it's not
   shared and therefore that it has only 1 reference, so we set the local
   variable 'refs' to 1.

   Later on, in the final if-else statement at update_ref_for_cow():

   static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
                                          struct btrfs_root *root,
                                          struct extent_buffer *buf,
                                          struct extent_buffer *cow,
                                          int *last_ref)
   {
      (...)
      if (refs > 1) {
          (...)
      } else {
          (...)
          btrfs_clear_buffer_dirty(trans, buf);
          *last_ref = 1;
      }
   }

   So we mark the extent buffer 36007936 as not dirty, and as a result
   we don't write it to disk later in the transaction commit, despite the
   fact that the snapshot's root points to it.

   Attempting to access the leaf or dumping the tree for example shows
   that the extent buffer was not written:

   $ btrfs inspect-internal dump-tree -t 292 /dev/sdb
   btrfs-progs v6.2.2
   file tree key (292 ROOT_ITEM 33)
   node 36110336 level 1 items 2 free space 119 generation 33 owner 292
   node 36110336 flags 0x1(WRITTEN) backref revision 1
   checksum stored a8103e3e
   checksum calced a8103e3e
   fs uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79
   chunk uuid e8c9c885-78f4-4d31-85fe-89e5f5fd4a07
           key (256 INODE_ITEM 0) block 36007936 gen 33
           key (257 EXTENT_DATA 0) block 36052992 gen 33
   checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
   checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
   total bytes 107374182400
   bytes used 38572032
   uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79

   The respective on disk region is full of zeroes as the device was
   trimmed at mkfs time.

   Obviously 'btrfs check' also detects and complains about this:

   $ btrfs check /dev/sdb
   Opening filesystem to check...
   Checking filesystem on /dev/sdb
   UUID: 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79
   generation: 33 (33)
   [1/7] checking root items
   [2/7] checking extents
   checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
   checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
   checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
   bad tree block 36007936, bytenr mismatch, want=36007936, have=0
   owner ref check failed [36007936 4096]
   ERROR: errors found in extent allocation tree or chunk allocation
   [3/7] checking free space tree
   [4/7] checking fs roots
   checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
   checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
   checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
   bad tree block 36007936, bytenr mismatch, want=36007936, have=0
   The following tree block(s) is corrupted in tree 292:
        tree block bytenr: 36110336, level: 1, node key: (256, 1, 0)
   root 292 root dir 256 not found
   ERROR: errors found in fs roots
   found 38572032 bytes used, error(s) found
   total csum bytes: 16048
   total tree bytes: 1265664
   total fs tree bytes: 1118208
   total extent tree bytes: 65536
   btree space waste bytes: 562598
   file data blocks allocated: 65978368
    referenced 36569088

Fix this by updating btrfs_block_can_be_shared() to consider that an
extent buffer may be shared if it matches the commit root and if its
generation matches the current transaction's generation.

This can be reproduced with the following script:

   $ cat test.sh
   #!/bin/bash

   MNT=/mnt/sdi
   DEV=/dev/sdi

   # Use a filesystem with a 64K node size so that we have the same node
   # size on every machine regardless of its page size (on x86_64 default
   # node size is 16K due to the 4K page size, while on PPC it's 64K by
   # default). This way we can make sure we are able to create a btree for
   # the subvolume with a height of 2.
   mkfs.btrfs -f -n 64K $DEV
   mount $DEV $MNT

   btrfs subvolume create $MNT/subvol

   # Create a few empty files on the subvolume, this bumps its btree
   # height to 2 (root node at level 1 and 2 leaves).
   for ((i = 1; i <= 300; i++)); do
       echo -n > $MNT/subvol/file_$i
   done

   btrfs subvolume snapshot -r $MNT/subvol $MNT/subvol/snap

   umount $DEV

   btrfs check $DEV

Running it on a 6.5 kernel (or any 6.6-rc kernel at the moment):

   $ ./test.sh
   Create subvolume '/mnt/sdi/subvol'
   Create a readonly snapshot of '/mnt/sdi/subvol' in '/mnt/sdi/subvol/snap'
   Opening filesystem to check...
   Checking filesystem on /dev/sdi
   UUID: bbdde2ff-7d02-45ca-8a73-3c36f23755a1
   [1/7] checking root items
   [2/7] checking extents
   parent transid verify failed on 30539776 wanted 7 found 5
   parent transid verify failed on 30539776 wanted 7 found 5
   parent transid verify failed on 30539776 wanted 7 found 5
   Ignoring transid failure
   owner ref check failed [30539776 65536]
   ERROR: errors found in extent allocation tree or chunk allocation
   [3/7] checking free space tree
   [4/7] checking fs roots
   parent transid verify failed on 30539776 wanted 7 found 5
   Ignoring transid failure
   Wrong key of child node/leaf, wanted: (256, 1, 0), have: (2, 132, 0)
   Wrong generation of child node/leaf, wanted: 5, have: 7
   root 257 root dir 256 not found
   ERROR: errors found in fs roots
   found 917504 bytes used, error(s) found
   total csum bytes: 0
   total tree bytes: 851968
   total fs tree bytes: 393216
   total extent tree bytes: 65536
   btree space waste bytes: 736550
   file data blocks allocated: 0
    referenced 0

A test case for fstests will follow soon.

Fixes: 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create")
CC: stable@vger.kernel.org # 6.5+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-23 17:17:30 +02:00

557 lines
17 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2011 STRATO. All rights reserved.
*/
#ifndef BTRFS_BACKREF_H
#define BTRFS_BACKREF_H
#include <linux/btrfs.h>
#include "messages.h"
#include "ulist.h"
#include "disk-io.h"
#include "extent_io.h"
/*
* Used by implementations of iterate_extent_inodes_t (see definition below) to
* signal that backref iteration can stop immediately and no error happened.
* The value must be non-negative and must not be 0, 1 (which is a common return
* value from things like btrfs_search_slot() and used internally in the backref
* walking code) and different from BACKREF_FOUND_SHARED and
* BACKREF_FOUND_NOT_SHARED
*/
#define BTRFS_ITERATE_EXTENT_INODES_STOP 5
/*
* Should return 0 if no errors happened and iteration of backrefs should
* continue. Can return BTRFS_ITERATE_EXTENT_INODES_STOP or any other non-zero
* value to immediately stop iteration and possibly signal an error back to
* the caller.
*/
typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 num_bytes,
u64 root, void *ctx);
/*
* Context and arguments for backref walking functions. Some of the fields are
* to be filled by the caller of such functions while other are filled by the
* functions themselves, as described below.
*/
struct btrfs_backref_walk_ctx {
/*
* The address of the extent for which we are doing backref walking.
* Can be either a data extent or a metadata extent.
*
* Must always be set by the top level caller.
*/
u64 bytenr;
/*
* Offset relative to the target extent. This is only used for data
* extents, and it's meaningful because we can have file extent items
* that point only to a section of a data extent ("bookend" extents),
* and we want to filter out any that don't point to a section of the
* data extent containing the given offset.
*
* Must always be set by the top level caller.
*/
u64 extent_item_pos;
/*
* If true and bytenr corresponds to a data extent, then references from
* all file extent items that point to the data extent are considered,
* @extent_item_pos is ignored.
*/
bool ignore_extent_item_pos;
/*
* If true and bytenr corresponds to a data extent, then the inode list
* (each member describing inode number, file offset and root) is not
* added to each reference added to the @refs ulist.
*/
bool skip_inode_ref_list;
/* A valid transaction handle or NULL. */
struct btrfs_trans_handle *trans;
/*
* The file system's info object, can not be NULL.
*
* Must always be set by the top level caller.
*/
struct btrfs_fs_info *fs_info;
/*
* Time sequence acquired from btrfs_get_tree_mod_seq(), in case the
* caller joined the tree mod log to get a consistent view of b+trees
* while we do backref walking, or BTRFS_SEQ_LAST.
* When using BTRFS_SEQ_LAST, delayed refs are not checked and it uses
* commit roots when searching b+trees - this is a special case for
* qgroups used during a transaction commit.
*/
u64 time_seq;
/*
* Used to collect the bytenr of metadata extents that point to the
* target extent.
*/
struct ulist *refs;
/*
* List used to collect the IDs of the roots from which the target
* extent is accessible. Can be NULL in case the caller does not care
* about collecting root IDs.
*/
struct ulist *roots;
/*
* Used by iterate_extent_inodes() and the main backref walk code
* (find_parent_nodes()). Lookup and store functions for an optional
* cache which maps the logical address (bytenr) of leaves to an array
* of root IDs.
*/
bool (*cache_lookup)(u64 leaf_bytenr, void *user_ctx,
const u64 **root_ids_ret, int *root_count_ret);
void (*cache_store)(u64 leaf_bytenr, const struct ulist *root_ids,
void *user_ctx);
/*
* If this is not NULL, then the backref walking code will call this
* for each indirect data extent reference as soon as it finds one,
* before collecting all the remaining backrefs and before resolving
* indirect backrefs. This allows for the caller to terminate backref
* walking as soon as it finds one backref that matches some specific
* criteria. The @cache_lookup and @cache_store callbacks should not
* be NULL in order to use this callback.
*/
iterate_extent_inodes_t *indirect_ref_iterator;
/*
* If this is not NULL, then the backref walking code will call this for
* each extent item it's meant to process before it actually starts
* processing it. If this returns anything other than 0, then it stops
* the backref walking code immediately.
*/
int (*check_extent_item)(u64 bytenr, const struct btrfs_extent_item *ei,
const struct extent_buffer *leaf, void *user_ctx);
/*
* If this is not NULL, then the backref walking code will call this for
* each extent data ref it finds (BTRFS_EXTENT_DATA_REF_KEY keys) before
* processing that data ref. If this callback return false, then it will
* ignore this data ref and it will never resolve the indirect data ref,
* saving time searching for leaves in a fs tree with file extent items
* matching the data ref.
*/
bool (*skip_data_ref)(u64 root, u64 ino, u64 offset, void *user_ctx);
/* Context object to pass to the callbacks defined above. */
void *user_ctx;
};
struct inode_fs_paths {
struct btrfs_path *btrfs_path;
struct btrfs_root *fs_root;
struct btrfs_data_container *fspath;
};
struct btrfs_backref_shared_cache_entry {
u64 bytenr;
u64 gen;
bool is_shared;
};
#define BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE 8
struct btrfs_backref_share_check_ctx {
/* Ulists used during backref walking. */
struct ulist refs;
/*
* The current leaf the caller of btrfs_is_data_extent_shared() is at.
* Typically the caller (at the moment only fiemap) tries to determine
* the sharedness of data extents point by file extent items from entire
* leaves.
*/
u64 curr_leaf_bytenr;
/*
* The previous leaf the caller was at in the previous call to
* btrfs_is_data_extent_shared(). This may be the same as the current
* leaf. On the first call it must be 0.
*/
u64 prev_leaf_bytenr;
/*
* A path from a root to a leaf that has a file extent item pointing to
* a given data extent should never exceed the maximum b+tree height.
*/
struct btrfs_backref_shared_cache_entry path_cache_entries[BTRFS_MAX_LEVEL];
bool use_path_cache;
/*
* Cache the sharedness result for the last few extents we have found,
* but only for extents for which we have multiple file extent items
* that point to them.
* It's very common to have several file extent items that point to the
* same extent (bytenr) but with different offsets and lengths. This
* typically happens for COW writes, partial writes into prealloc
* extents, NOCOW writes after snapshoting a root, hole punching or
* reflinking within the same file (less common perhaps).
* So keep a small cache with the lookup results for the extent pointed
* by the last few file extent items. This cache is checked, with a
* linear scan, whenever btrfs_is_data_extent_shared() is called, so
* it must be small so that it does not negatively affect performance in
* case we don't have multiple file extent items that point to the same
* data extent.
*/
struct {
u64 bytenr;
bool is_shared;
} prev_extents_cache[BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE];
/*
* The slot in the prev_extents_cache array that will be used for
* storing the sharedness result of a new data extent.
*/
int prev_extents_cache_slot;
};
struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void);
void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx);
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
struct btrfs_path *path, struct btrfs_key *found_key,
u64 *flags);
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
struct btrfs_key *key, struct btrfs_extent_item *ei,
u32 item_size, u64 *out_root, u8 *out_level);
int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
bool search_commit_root,
iterate_extent_inodes_t *iterate, void *user_ctx);
int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
struct btrfs_path *path, void *ctx,
bool ignore_offset);
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath);
int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx);
int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
bool skip_commit_root_sem);
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
u32 name_len, unsigned long name_off,
struct extent_buffer *eb_in, u64 parent,
char *dest, u32 size);
struct btrfs_data_container *init_data_container(u32 total_bytes);
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
struct btrfs_path *path);
void free_ipath(struct inode_fs_paths *ipath);
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
u64 start_off, struct btrfs_path *path,
struct btrfs_inode_extref **ret_extref,
u64 *found_off);
int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
u64 extent_gen,
struct btrfs_backref_share_check_ctx *ctx);
int __init btrfs_prelim_ref_init(void);
void __cold btrfs_prelim_ref_exit(void);
struct prelim_ref {
struct rb_node rbnode;
u64 root_id;
struct btrfs_key key_for_search;
int level;
int count;
struct extent_inode_elem *inode_list;
u64 parent;
u64 wanted_disk_byte;
};
/*
* Iterate backrefs of one extent.
*
* Now it only supports iteration of tree block in commit root.
*/
struct btrfs_backref_iter {
u64 bytenr;
struct btrfs_path *path;
struct btrfs_fs_info *fs_info;
struct btrfs_key cur_key;
u32 item_ptr;
u32 cur_ptr;
u32 end_ptr;
};
struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info);
static inline void btrfs_backref_iter_free(struct btrfs_backref_iter *iter)
{
if (!iter)
return;
btrfs_free_path(iter->path);
kfree(iter);
}
static inline struct extent_buffer *btrfs_backref_get_eb(
struct btrfs_backref_iter *iter)
{
if (!iter)
return NULL;
return iter->path->nodes[0];
}
/*
* For metadata with EXTENT_ITEM key (non-skinny) case, the first inline data
* is btrfs_tree_block_info, without a btrfs_extent_inline_ref header.
*
* This helper determines if that's the case.
*/
static inline bool btrfs_backref_has_tree_block_info(
struct btrfs_backref_iter *iter)
{
if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY &&
iter->cur_ptr - iter->item_ptr == sizeof(struct btrfs_extent_item))
return true;
return false;
}
int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr);
int btrfs_backref_iter_next(struct btrfs_backref_iter *iter);
static inline bool btrfs_backref_iter_is_inline_ref(
struct btrfs_backref_iter *iter)
{
if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
return true;
return false;
}
static inline void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
{
iter->bytenr = 0;
iter->item_ptr = 0;
iter->cur_ptr = 0;
iter->end_ptr = 0;
btrfs_release_path(iter->path);
memset(&iter->cur_key, 0, sizeof(iter->cur_key));
}
/*
* Backref cache related structures
*
* The whole objective of backref_cache is to build a bi-directional map
* of tree blocks (represented by backref_node) and all their parents.
*/
/*
* Represent a tree block in the backref cache
*/
struct btrfs_backref_node {
struct {
struct rb_node rb_node;
u64 bytenr;
}; /* Use rb_simple_node for search/insert */
u64 new_bytenr;
/* Objectid of tree block owner, can be not uptodate */
u64 owner;
/* Link to pending, changed or detached list */
struct list_head list;
/* List of upper level edges, which link this node to its parents */
struct list_head upper;
/* List of lower level edges, which link this node to its children */
struct list_head lower;
/* NULL if this node is not tree root */
struct btrfs_root *root;
/* Extent buffer got by COWing the block */
struct extent_buffer *eb;
/* Level of the tree block */
unsigned int level:8;
/* Is the block in a non-shareable tree */
unsigned int cowonly:1;
/* 1 if no child node is in the cache */
unsigned int lowest:1;
/* Is the extent buffer locked */
unsigned int locked:1;
/* Has the block been processed */
unsigned int processed:1;
/* Have backrefs of this block been checked */
unsigned int checked:1;
/*
* 1 if corresponding block has been COWed but some upper level block
* pointers may not point to the new location
*/
unsigned int pending:1;
/* 1 if the backref node isn't connected to any other backref node */
unsigned int detached:1;
/*
* For generic purpose backref cache, where we only care if it's a reloc
* root, doesn't care the source subvolid.
*/
unsigned int is_reloc_root:1;
};
#define LOWER 0
#define UPPER 1
/*
* Represent an edge connecting upper and lower backref nodes.
*/
struct btrfs_backref_edge {
/*
* list[LOWER] is linked to btrfs_backref_node::upper of lower level
* node, and list[UPPER] is linked to btrfs_backref_node::lower of
* upper level node.
*
* Also, build_backref_tree() uses list[UPPER] for pending edges, before
* linking list[UPPER] to its upper level nodes.
*/
struct list_head list[2];
/* Two related nodes */
struct btrfs_backref_node *node[2];
};
struct btrfs_backref_cache {
/* Red black tree of all backref nodes in the cache */
struct rb_root rb_root;
/* For passing backref nodes to btrfs_reloc_cow_block */
struct btrfs_backref_node *path[BTRFS_MAX_LEVEL];
/*
* List of blocks that have been COWed but some block pointers in upper
* level blocks may not reflect the new location
*/
struct list_head pending[BTRFS_MAX_LEVEL];
/* List of backref nodes with no child node */
struct list_head leaves;
/* List of blocks that have been COWed in current transaction */
struct list_head changed;
/* List of detached backref node. */
struct list_head detached;
u64 last_trans;
int nr_nodes;
int nr_edges;
/* List of unchecked backref edges during backref cache build */
struct list_head pending_edge;
/* List of useless backref nodes during backref cache build */
struct list_head useless_node;
struct btrfs_fs_info *fs_info;
/*
* Whether this cache is for relocation
*
* Reloction backref cache require more info for reloc root compared
* to generic backref cache.
*/
unsigned int is_reloc;
};
void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
struct btrfs_backref_cache *cache, int is_reloc);
struct btrfs_backref_node *btrfs_backref_alloc_node(
struct btrfs_backref_cache *cache, u64 bytenr, int level);
struct btrfs_backref_edge *btrfs_backref_alloc_edge(
struct btrfs_backref_cache *cache);
#define LINK_LOWER (1 << 0)
#define LINK_UPPER (1 << 1)
static inline void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
struct btrfs_backref_node *lower,
struct btrfs_backref_node *upper,
int link_which)
{
ASSERT(upper && lower && upper->level == lower->level + 1);
edge->node[LOWER] = lower;
edge->node[UPPER] = upper;
if (link_which & LINK_LOWER)
list_add_tail(&edge->list[LOWER], &lower->upper);
if (link_which & LINK_UPPER)
list_add_tail(&edge->list[UPPER], &upper->lower);
}
static inline void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
struct btrfs_backref_node *node)
{
if (node) {
ASSERT(list_empty(&node->list));
ASSERT(list_empty(&node->lower));
ASSERT(node->eb == NULL);
cache->nr_nodes--;
btrfs_put_root(node->root);
kfree(node);
}
}
static inline void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
struct btrfs_backref_edge *edge)
{
if (edge) {
cache->nr_edges--;
kfree(edge);
}
}
static inline void btrfs_backref_unlock_node_buffer(
struct btrfs_backref_node *node)
{
if (node->locked) {
btrfs_tree_unlock(node->eb);
node->locked = 0;
}
}
static inline void btrfs_backref_drop_node_buffer(
struct btrfs_backref_node *node)
{
if (node->eb) {
btrfs_backref_unlock_node_buffer(node);
free_extent_buffer(node->eb);
node->eb = NULL;
}
}
/*
* Drop the backref node from cache without cleaning up its children
* edges.
*
* This can only be called on node without parent edges.
* The children edges are still kept as is.
*/
static inline void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
struct btrfs_backref_node *node)
{
ASSERT(list_empty(&node->upper));
btrfs_backref_drop_node_buffer(node);
list_del_init(&node->list);
list_del_init(&node->lower);
if (!RB_EMPTY_NODE(&node->rb_node))
rb_erase(&node->rb_node, &tree->rb_root);
btrfs_backref_free_node(tree, node);
}
void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
struct btrfs_backref_node *node);
void btrfs_backref_release_cache(struct btrfs_backref_cache *cache);
static inline void btrfs_backref_panic(struct btrfs_fs_info *fs_info,
u64 bytenr, int errno)
{
btrfs_panic(fs_info, errno,
"Inconsistency in backref cache found at offset %llu",
bytenr);
}
int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
struct btrfs_backref_cache *cache,
struct btrfs_path *path,
struct btrfs_backref_iter *iter,
struct btrfs_key *node_key,
struct btrfs_backref_node *cur);
int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
struct btrfs_backref_node *start);
void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
struct btrfs_backref_node *node);
#endif