72ea15f0dd
fsverity_operations::write_merkle_tree_block is passed the index of the block to write and the log base 2 of the block size. However, all implementations of it use these parameters only to calculate the position and the size of the block, in bytes. Therefore, make ->write_merkle_tree_block take 'pos' and 'size' parameters instead of 'index' and 'log_blocksize'. Suggested-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Dave Chinner <dchinner@redhat.com> Link: https://lore.kernel.org/r/20221214224304.145712-5-ebiggers@kernel.org
814 lines
22 KiB
C
814 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/security.h>
|
|
#include <linux/posix_acl_xattr.h>
|
|
#include <linux/iversion.h>
|
|
#include <linux/fsverity.h>
|
|
#include <linux/sched/mm.h>
|
|
#include "messages.h"
|
|
#include "ctree.h"
|
|
#include "btrfs_inode.h"
|
|
#include "transaction.h"
|
|
#include "disk-io.h"
|
|
#include "locking.h"
|
|
#include "fs.h"
|
|
#include "accessors.h"
|
|
#include "ioctl.h"
|
|
#include "verity.h"
|
|
#include "orphan.h"
|
|
|
|
/*
|
|
* Implementation of the interface defined in struct fsverity_operations.
|
|
*
|
|
* The main question is how and where to store the verity descriptor and the
|
|
* Merkle tree. We store both in dedicated btree items in the filesystem tree,
|
|
* together with the rest of the inode metadata. This means we'll need to do
|
|
* extra work to encrypt them once encryption is supported in btrfs, but btrfs
|
|
* has a lot of careful code around i_size and it seems better to make a new key
|
|
* type than try and adjust all of our expectations for i_size.
|
|
*
|
|
* Note that this differs from the implementation in ext4 and f2fs, where
|
|
* this data is stored as if it were in the file, but past EOF. However, btrfs
|
|
* does not have a widespread mechanism for caching opaque metadata pages, so we
|
|
* do pretend that the Merkle tree pages themselves are past EOF for the
|
|
* purposes of caching them (as opposed to creating a virtual inode).
|
|
*
|
|
* fs verity items are stored under two different key types on disk.
|
|
* The descriptor items:
|
|
* [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
|
|
*
|
|
* At offset 0, we store a btrfs_verity_descriptor_item which tracks the
|
|
* size of the descriptor item and some extra data for encryption.
|
|
* Starting at offset 1, these hold the generic fs verity descriptor.
|
|
* The latter are opaque to btrfs, we just read and write them as a blob for
|
|
* the higher level verity code. The most common descriptor size is 256 bytes.
|
|
*
|
|
* The merkle tree items:
|
|
* [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
|
|
*
|
|
* These also start at offset 0, and correspond to the merkle tree bytes.
|
|
* So when fsverity asks for page 0 of the merkle tree, we pull up one page
|
|
* starting at offset 0 for this key type. These are also opaque to btrfs,
|
|
* we're blindly storing whatever fsverity sends down.
|
|
*
|
|
* Another important consideration is the fact that the Merkle tree data scales
|
|
* linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
|
|
* ~1/127th the size) so for large files, writing the tree can be a lengthy
|
|
* operation. For that reason, we guard the whole enable verity operation
|
|
* (between begin_enable_verity and end_enable_verity) with an orphan item.
|
|
* Again, because the data can be pretty large, it's quite possible that we
|
|
* could run out of space writing it, so we try our best to handle errors by
|
|
* stopping and rolling back rather than aborting the victim transaction.
|
|
*/
|
|
|
|
#define MERKLE_START_ALIGN 65536
|
|
|
|
/*
|
|
* Compute the logical file offset where we cache the Merkle tree.
|
|
*
|
|
* @inode: inode of the verity file
|
|
*
|
|
* For the purposes of caching the Merkle tree pages, as required by
|
|
* fs-verity, it is convenient to do size computations in terms of a file
|
|
* offset, rather than in terms of page indices.
|
|
*
|
|
* Use 64K to be sure it's past the last page in the file, even with 64K pages.
|
|
* That rounding operation itself can overflow loff_t, so we do it in u64 and
|
|
* check.
|
|
*
|
|
* Returns the file offset on success, negative error code on failure.
|
|
*/
|
|
static loff_t merkle_file_pos(const struct inode *inode)
|
|
{
|
|
u64 sz = inode->i_size;
|
|
u64 rounded = round_up(sz, MERKLE_START_ALIGN);
|
|
|
|
if (rounded > inode->i_sb->s_maxbytes)
|
|
return -EFBIG;
|
|
|
|
return rounded;
|
|
}
|
|
|
|
/*
|
|
* Drop all the items for this inode with this key_type.
|
|
*
|
|
* @inode: inode to drop items for
|
|
* @key_type: type of items to drop (BTRFS_VERITY_DESC_ITEM or
|
|
* BTRFS_VERITY_MERKLE_ITEM)
|
|
*
|
|
* Before doing a verity enable we cleanup any existing verity items.
|
|
* This is also used to clean up if a verity enable failed half way through.
|
|
*
|
|
* Returns number of dropped items on success, negative error code on failure.
|
|
*/
|
|
static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
int count = 0;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
/* 1 for the item being dropped */
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Walk backwards through all the items until we find one that
|
|
* isn't from our key type or objectid
|
|
*/
|
|
key.objectid = btrfs_ino(inode);
|
|
key.type = key_type;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
/* No more keys of this type, we're done */
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
path->slots[0]--;
|
|
} else if (ret < 0) {
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
|
|
/* No more keys of this type, we're done */
|
|
if (key.objectid != btrfs_ino(inode) || key.type != key_type)
|
|
break;
|
|
|
|
/*
|
|
* This shouldn't be a performance sensitive function because
|
|
* it's not used as part of truncate. If it ever becomes
|
|
* perf sensitive, change this to walk forward and bulk delete
|
|
* items
|
|
*/
|
|
ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
count++;
|
|
btrfs_release_path(path);
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
ret = count;
|
|
btrfs_end_transaction(trans);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Drop all verity items
|
|
*
|
|
* @inode: inode to drop verity items for
|
|
*
|
|
* In most contexts where we are dropping verity items, we want to do it for all
|
|
* the types of verity items, not a particular one.
|
|
*
|
|
* Returns: 0 on success, negative error code on failure.
|
|
*/
|
|
int btrfs_drop_verity_items(struct btrfs_inode *inode)
|
|
{
|
|
int ret;
|
|
|
|
ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Insert and write inode items with a given key type and offset.
|
|
*
|
|
* @inode: inode to insert for
|
|
* @key_type: key type to insert
|
|
* @offset: item offset to insert at
|
|
* @src: source data to write
|
|
* @len: length of source data to write
|
|
*
|
|
* Write len bytes from src into items of up to 2K length.
|
|
* The inserted items will have key (ino, key_type, offset + off) where off is
|
|
* consecutively increasing from 0 up to the last item ending at offset + len.
|
|
*
|
|
* Returns 0 on success and a negative error code on failure.
|
|
*/
|
|
static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
|
|
const char *src, u64 len)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = inode->root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
unsigned long copy_bytes;
|
|
unsigned long src_offset = 0;
|
|
void *data;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
while (len > 0) {
|
|
/* 1 for the new item being inserted */
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
break;
|
|
}
|
|
|
|
key.objectid = btrfs_ino(inode);
|
|
key.type = key_type;
|
|
key.offset = offset;
|
|
|
|
/*
|
|
* Insert 2K at a time mostly to be friendly for smaller leaf
|
|
* size filesystems
|
|
*/
|
|
copy_bytes = min_t(u64, len, 2048);
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans);
|
|
break;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
data = btrfs_item_ptr(leaf, path->slots[0], void);
|
|
write_extent_buffer(leaf, src + src_offset,
|
|
(unsigned long)data, copy_bytes);
|
|
offset += copy_bytes;
|
|
src_offset += copy_bytes;
|
|
len -= copy_bytes;
|
|
|
|
btrfs_release_path(path);
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Read inode items of the given key type and offset from the btree.
|
|
*
|
|
* @inode: inode to read items of
|
|
* @key_type: key type to read
|
|
* @offset: item offset to read from
|
|
* @dest: Buffer to read into. This parameter has slightly tricky
|
|
* semantics. If it is NULL, the function will not do any copying
|
|
* and will just return the size of all the items up to len bytes.
|
|
* If dest_page is passed, then the function will kmap_local the
|
|
* page and ignore dest, but it must still be non-NULL to avoid the
|
|
* counting-only behavior.
|
|
* @len: length in bytes to read
|
|
* @dest_page: copy into this page instead of the dest buffer
|
|
*
|
|
* Helper function to read items from the btree. This returns the number of
|
|
* bytes read or < 0 for errors. We can return short reads if the items don't
|
|
* exist on disk or aren't big enough to fill the desired length. Supports
|
|
* reading into a provided buffer (dest) or into the page cache
|
|
*
|
|
* Returns number of bytes read or a negative error code on failure.
|
|
*/
|
|
static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
|
|
char *dest, u64 len, struct page *dest_page)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = inode->root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
u64 item_end;
|
|
u64 copy_end;
|
|
int copied = 0;
|
|
u32 copy_offset;
|
|
unsigned long copy_bytes;
|
|
unsigned long dest_offset = 0;
|
|
void *data;
|
|
char *kaddr = dest;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
if (dest_page)
|
|
path->reada = READA_FORWARD;
|
|
|
|
key.objectid = btrfs_ino(inode);
|
|
key.type = key_type;
|
|
key.offset = offset;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = 0;
|
|
if (path->slots[0] == 0)
|
|
goto out;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
while (len > 0) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.objectid != btrfs_ino(inode) || key.type != key_type)
|
|
break;
|
|
|
|
item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;
|
|
|
|
if (copied > 0) {
|
|
/*
|
|
* Once we've copied something, we want all of the items
|
|
* to be sequential
|
|
*/
|
|
if (key.offset != offset)
|
|
break;
|
|
} else {
|
|
/*
|
|
* Our initial offset might be in the middle of an
|
|
* item. Make sure it all makes sense.
|
|
*/
|
|
if (key.offset > offset)
|
|
break;
|
|
if (item_end <= offset)
|
|
break;
|
|
}
|
|
|
|
/* desc = NULL to just sum all the item lengths */
|
|
if (!dest)
|
|
copy_end = item_end;
|
|
else
|
|
copy_end = min(offset + len, item_end);
|
|
|
|
/* Number of bytes in this item we want to copy */
|
|
copy_bytes = copy_end - offset;
|
|
|
|
/* Offset from the start of item for copying */
|
|
copy_offset = offset - key.offset;
|
|
|
|
if (dest) {
|
|
if (dest_page)
|
|
kaddr = kmap_local_page(dest_page);
|
|
|
|
data = btrfs_item_ptr(leaf, path->slots[0], void);
|
|
read_extent_buffer(leaf, kaddr + dest_offset,
|
|
(unsigned long)data + copy_offset,
|
|
copy_bytes);
|
|
|
|
if (dest_page)
|
|
kunmap_local(kaddr);
|
|
}
|
|
|
|
offset += copy_bytes;
|
|
dest_offset += copy_bytes;
|
|
len -= copy_bytes;
|
|
copied += copy_bytes;
|
|
|
|
path->slots[0]++;
|
|
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
|
|
/*
|
|
* We've reached the last slot in this leaf and we need
|
|
* to go to the next leaf.
|
|
*/
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
break;
|
|
} else if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
if (!ret)
|
|
ret = copied;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Delete an fsverity orphan
|
|
*
|
|
* @trans: transaction to do the delete in
|
|
* @inode: inode to orphan
|
|
*
|
|
* Capture verity orphan specific logic that is repeated in the couple places
|
|
* we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
|
|
* with 0 links.
|
|
*
|
|
* Returns zero on success or a negative error code on failure.
|
|
*/
|
|
static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
int ret;
|
|
|
|
/*
|
|
* If the inode has no links, it is either already unlinked, or was
|
|
* created with O_TMPFILE. In either case, it should have an orphan from
|
|
* that other operation. Rather than reference count the orphans, we
|
|
* simply ignore them here, because we only invoke the verity path in
|
|
* the orphan logic when i_nlink is 1.
|
|
*/
|
|
if (!inode->vfs_inode.i_nlink)
|
|
return 0;
|
|
|
|
ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
|
|
if (ret == -ENOENT)
|
|
ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Rollback in-progress verity if we encounter an error.
|
|
*
|
|
* @inode: inode verity had an error for
|
|
*
|
|
* We try to handle recoverable errors while enabling verity by rolling it back
|
|
* and just failing the operation, rather than having an fs level error no
|
|
* matter what. However, any error in rollback is unrecoverable.
|
|
*
|
|
* Returns 0 on success, negative error code on failure.
|
|
*/
|
|
static int rollback_verity(struct btrfs_inode *inode)
|
|
{
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct btrfs_root *root = inode->root;
|
|
int ret;
|
|
|
|
ASSERT(inode_is_locked(&inode->vfs_inode));
|
|
truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
|
|
clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
|
|
ret = btrfs_drop_verity_items(inode);
|
|
if (ret) {
|
|
btrfs_handle_fs_error(root->fs_info, ret,
|
|
"failed to drop verity items in rollback %llu",
|
|
(u64)inode->vfs_inode.i_ino);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* 1 for updating the inode flag
|
|
* 1 for deleting the orphan
|
|
*/
|
|
trans = btrfs_start_transaction(root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
btrfs_handle_fs_error(root->fs_info, ret,
|
|
"failed to start transaction in verity rollback %llu",
|
|
(u64)inode->vfs_inode.i_ino);
|
|
goto out;
|
|
}
|
|
inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
|
|
btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
ret = del_orphan(trans, inode);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
out:
|
|
if (trans)
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Finalize making the file a valid verity file
|
|
*
|
|
* @inode: inode to be marked as verity
|
|
* @desc: contents of the verity descriptor to write (not NULL)
|
|
* @desc_size: size of the verity descriptor
|
|
*
|
|
* Do the actual work of finalizing verity after successfully writing the Merkle
|
|
* tree:
|
|
*
|
|
* - write out the descriptor items
|
|
* - mark the inode with the verity flag
|
|
* - delete the orphan item
|
|
* - mark the ro compat bit
|
|
* - clear the in progress bit
|
|
*
|
|
* Returns 0 on success, negative error code on failure.
|
|
*/
|
|
static int finish_verity(struct btrfs_inode *inode, const void *desc,
|
|
size_t desc_size)
|
|
{
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_verity_descriptor_item item;
|
|
int ret;
|
|
|
|
/* Write out the descriptor item */
|
|
memset(&item, 0, sizeof(item));
|
|
btrfs_set_stack_verity_descriptor_size(&item, desc_size);
|
|
ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
|
|
(const char *)&item, sizeof(item));
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Write out the descriptor itself */
|
|
ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
|
|
desc, desc_size);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* 1 for updating the inode flag
|
|
* 1 for deleting the orphan
|
|
*/
|
|
trans = btrfs_start_transaction(root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
inode->ro_flags |= BTRFS_INODE_RO_VERITY;
|
|
btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret)
|
|
goto end_trans;
|
|
ret = del_orphan(trans, inode);
|
|
if (ret)
|
|
goto end_trans;
|
|
clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
|
|
btrfs_set_fs_compat_ro(root->fs_info, VERITY);
|
|
end_trans:
|
|
btrfs_end_transaction(trans);
|
|
out:
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
* fsverity op that begins enabling verity.
|
|
*
|
|
* @filp: file to enable verity on
|
|
*
|
|
* Begin enabling fsverity for the file. We drop any existing verity items, add
|
|
* an orphan and set the in progress bit.
|
|
*
|
|
* Returns 0 on success, negative error code on failure.
|
|
*/
|
|
static int btrfs_begin_enable_verity(struct file *filp)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
ASSERT(inode_is_locked(file_inode(filp)));
|
|
|
|
if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* This should almost never do anything, but theoretically, it's
|
|
* possible that we failed to enable verity on a file, then were
|
|
* interrupted or failed while rolling back, failed to cleanup the
|
|
* orphan, and finally attempt to enable verity again.
|
|
*/
|
|
ret = btrfs_drop_verity_items(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* 1 for the orphan item */
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_orphan_add(trans, inode);
|
|
if (!ret)
|
|
set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
|
|
btrfs_end_transaction(trans);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fsverity op that ends enabling verity.
|
|
*
|
|
* @filp: file we are finishing enabling verity on
|
|
* @desc: verity descriptor to write out (NULL in error conditions)
|
|
* @desc_size: size of the verity descriptor (variable with signatures)
|
|
* @merkle_tree_size: size of the merkle tree in bytes
|
|
*
|
|
* If desc is null, then VFS is signaling an error occurred during verity
|
|
* enable, and we should try to rollback. Otherwise, attempt to finish verity.
|
|
*
|
|
* Returns 0 on success, negative error code on error.
|
|
*/
|
|
static int btrfs_end_enable_verity(struct file *filp, const void *desc,
|
|
size_t desc_size, u64 merkle_tree_size)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
|
|
int ret = 0;
|
|
int rollback_ret;
|
|
|
|
ASSERT(inode_is_locked(file_inode(filp)));
|
|
|
|
if (desc == NULL)
|
|
goto rollback;
|
|
|
|
ret = finish_verity(inode, desc, desc_size);
|
|
if (ret)
|
|
goto rollback;
|
|
return ret;
|
|
|
|
rollback:
|
|
rollback_ret = rollback_verity(inode);
|
|
if (rollback_ret)
|
|
btrfs_err(inode->root->fs_info,
|
|
"failed to rollback verity items: %d", rollback_ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* fsverity op that gets the struct fsverity_descriptor.
|
|
*
|
|
* @inode: inode to get the descriptor of
|
|
* @buf: output buffer for the descriptor contents
|
|
* @buf_size: size of the output buffer. 0 to query the size
|
|
*
|
|
* fsverity does a two pass setup for reading the descriptor, in the first pass
|
|
* it calls with buf_size = 0 to query the size of the descriptor, and then in
|
|
* the second pass it actually reads the descriptor off disk.
|
|
*
|
|
* Returns the size on success or a negative error code on failure.
|
|
*/
|
|
int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size)
|
|
{
|
|
u64 true_size;
|
|
int ret = 0;
|
|
struct btrfs_verity_descriptor_item item;
|
|
|
|
memset(&item, 0, sizeof(item));
|
|
ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
|
|
(char *)&item, sizeof(item), NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (item.reserved[0] != 0 || item.reserved[1] != 0)
|
|
return -EUCLEAN;
|
|
|
|
true_size = btrfs_stack_verity_descriptor_size(&item);
|
|
if (true_size > INT_MAX)
|
|
return -EUCLEAN;
|
|
|
|
if (buf_size == 0)
|
|
return true_size;
|
|
if (buf_size < true_size)
|
|
return -ERANGE;
|
|
|
|
ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
|
|
buf, buf_size, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret != true_size)
|
|
return -EIO;
|
|
|
|
return true_size;
|
|
}
|
|
|
|
/*
|
|
* fsverity op that reads and caches a merkle tree page.
|
|
*
|
|
* @inode: inode to read a merkle tree page for
|
|
* @index: page index relative to the start of the merkle tree
|
|
* @num_ra_pages: number of pages to readahead. Optional, we ignore it
|
|
*
|
|
* The Merkle tree is stored in the filesystem btree, but its pages are cached
|
|
* with a logical position past EOF in the inode's mapping.
|
|
*
|
|
* Returns the page we read, or an ERR_PTR on error.
|
|
*/
|
|
static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
|
|
pgoff_t index,
|
|
unsigned long num_ra_pages)
|
|
{
|
|
struct page *page;
|
|
u64 off = (u64)index << PAGE_SHIFT;
|
|
loff_t merkle_pos = merkle_file_pos(inode);
|
|
int ret;
|
|
|
|
if (merkle_pos < 0)
|
|
return ERR_PTR(merkle_pos);
|
|
if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
|
|
return ERR_PTR(-EFBIG);
|
|
index += merkle_pos >> PAGE_SHIFT;
|
|
again:
|
|
page = find_get_page_flags(inode->i_mapping, index, FGP_ACCESSED);
|
|
if (page) {
|
|
if (PageUptodate(page))
|
|
return page;
|
|
|
|
lock_page(page);
|
|
/*
|
|
* We only insert uptodate pages, so !Uptodate has to be
|
|
* an error
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
page = __page_cache_alloc(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Merkle item keys are indexed from byte 0 in the merkle tree.
|
|
* They have the form:
|
|
*
|
|
* [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
|
|
*/
|
|
ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
|
|
page_address(page), PAGE_SIZE, page);
|
|
if (ret < 0) {
|
|
put_page(page);
|
|
return ERR_PTR(ret);
|
|
}
|
|
if (ret < PAGE_SIZE)
|
|
memzero_page(page, ret, PAGE_SIZE - ret);
|
|
|
|
SetPageUptodate(page);
|
|
ret = add_to_page_cache_lru(page, inode->i_mapping, index, GFP_NOFS);
|
|
|
|
if (!ret) {
|
|
/* Inserted and ready for fsverity */
|
|
unlock_page(page);
|
|
} else {
|
|
put_page(page);
|
|
/* Did someone race us into inserting this page? */
|
|
if (ret == -EEXIST)
|
|
goto again;
|
|
page = ERR_PTR(ret);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* fsverity op that writes a Merkle tree block into the btree.
|
|
*
|
|
* @inode: inode to write a Merkle tree block for
|
|
* @buf: Merkle tree block to write
|
|
* @pos: the position of the block in the Merkle tree (in bytes)
|
|
* @size: the Merkle tree block size (in bytes)
|
|
*
|
|
* Returns 0 on success or negative error code on failure
|
|
*/
|
|
static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
|
|
u64 pos, unsigned int size)
|
|
{
|
|
loff_t merkle_pos = merkle_file_pos(inode);
|
|
|
|
if (merkle_pos < 0)
|
|
return merkle_pos;
|
|
if (merkle_pos > inode->i_sb->s_maxbytes - pos - size)
|
|
return -EFBIG;
|
|
|
|
return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
|
|
pos, buf, size);
|
|
}
|
|
|
|
const struct fsverity_operations btrfs_verityops = {
|
|
.begin_enable_verity = btrfs_begin_enable_verity,
|
|
.end_enable_verity = btrfs_end_enable_verity,
|
|
.get_verity_descriptor = btrfs_get_verity_descriptor,
|
|
.read_merkle_tree_page = btrfs_read_merkle_tree_page,
|
|
.write_merkle_tree_block = btrfs_write_merkle_tree_block,
|
|
};
|