Sriram R 046d2e7c50 mac80211: prepare sta handling for MLO support
Currently in mac80211 each STA object is represented
using sta_info datastructure with the associated
STA specific information and drivers access ieee80211_sta
part of it.

With MLO (Multi Link Operation) support being added
in 802.11be standard, though the association is logically
with a single Multi Link capable STA, at the physical level
communication can happen via different advertised
links (uniquely identified by Channel, operating class,
BSSID) and hence the need to handle multiple link
STA parameters within a composite sta_info object
called the MLD STA. The different link STA part of
MLD STA are identified using the link address which can
be same or different as the MLD STA address and unique
link id based on the link vif.

To support extension of such a model, the sta_info
datastructure is modified to hold multiple link STA
objects with link specific params currently within
sta_info moved to this new structure. Similarly this is
done for ieee80211_sta as well which will be accessed
within mac80211 as well as by drivers, hence trivial
driver changes are expected to support this.

For current non MLO supported drivers, only one link STA
is present and link information is accessed via 'deflink'
member.

For MLO drivers, we still need to define the APIs etc. to
get the correct link ID and access the correct part of
the station info.

Currently in mac80211, all link STA info are accessed directly
via deflink. These will be updated to access via link pointers
indexed by link id with MLO support patches, with link id
being 0 for non MLO supported cases.

Except for couple of macro related changes, below spatch takes
care of updating mac80211 and driver code to access to the
link STA info via deflink.

  @ieee80211_sta@
  struct ieee80211_sta *s;
  struct sta_info *si;
  identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr};
  @@

  (
    s->
  -    var
  +    deflink.var
  |
   si->sta.
  -    var
  +    deflink.var
  )

  @sta_info@
  struct sta_info *si;
  identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth};
  @@

  (
    si->
  -    var
  +    deflink.var
  )

Signed-off-by: Sriram R <quic_srirrama@quicinc.com>
Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com
[remove MLO-drivers notes from commit message, not clear yet; run spatch]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-11 16:42:03 +02:00

238 lines
7.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* HE handling
*
* Copyright(c) 2017 Intel Deutschland GmbH
* Copyright(c) 2019 - 2020 Intel Corporation
*/
#include "ieee80211_i.h"
static void
ieee80211_update_from_he_6ghz_capa(const struct ieee80211_he_6ghz_capa *he_6ghz_capa,
struct sta_info *sta)
{
enum ieee80211_smps_mode smps_mode;
if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
switch (le16_get_bits(he_6ghz_capa->capa,
IEEE80211_HE_6GHZ_CAP_SM_PS)) {
case WLAN_HT_CAP_SM_PS_INVALID:
case WLAN_HT_CAP_SM_PS_STATIC:
smps_mode = IEEE80211_SMPS_STATIC;
break;
case WLAN_HT_CAP_SM_PS_DYNAMIC:
smps_mode = IEEE80211_SMPS_DYNAMIC;
break;
case WLAN_HT_CAP_SM_PS_DISABLED:
smps_mode = IEEE80211_SMPS_OFF;
break;
}
sta->sta.smps_mode = smps_mode;
} else {
sta->sta.smps_mode = IEEE80211_SMPS_OFF;
}
switch (le16_get_bits(he_6ghz_capa->capa,
IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN)) {
case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454:
sta->sta.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_VHT_11454;
break;
case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991:
sta->sta.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_VHT_7991;
break;
case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895:
default:
sta->sta.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_VHT_3895;
break;
}
sta->sta.deflink.he_6ghz_capa = *he_6ghz_capa;
}
static void ieee80211_he_mcs_disable(__le16 *he_mcs)
{
u32 i;
for (i = 0; i < 8; i++)
*he_mcs |= cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << i * 2);
}
static void ieee80211_he_mcs_intersection(__le16 *he_own_rx, __le16 *he_peer_rx,
__le16 *he_own_tx, __le16 *he_peer_tx)
{
u32 i;
u16 own_rx, own_tx, peer_rx, peer_tx;
for (i = 0; i < 8; i++) {
own_rx = le16_to_cpu(*he_own_rx);
own_rx = (own_rx >> i * 2) & IEEE80211_HE_MCS_NOT_SUPPORTED;
own_tx = le16_to_cpu(*he_own_tx);
own_tx = (own_tx >> i * 2) & IEEE80211_HE_MCS_NOT_SUPPORTED;
peer_rx = le16_to_cpu(*he_peer_rx);
peer_rx = (peer_rx >> i * 2) & IEEE80211_HE_MCS_NOT_SUPPORTED;
peer_tx = le16_to_cpu(*he_peer_tx);
peer_tx = (peer_tx >> i * 2) & IEEE80211_HE_MCS_NOT_SUPPORTED;
if (peer_tx != IEEE80211_HE_MCS_NOT_SUPPORTED) {
if (own_rx == IEEE80211_HE_MCS_NOT_SUPPORTED)
peer_tx = IEEE80211_HE_MCS_NOT_SUPPORTED;
else if (own_rx < peer_tx)
peer_tx = own_rx;
}
if (peer_rx != IEEE80211_HE_MCS_NOT_SUPPORTED) {
if (own_tx == IEEE80211_HE_MCS_NOT_SUPPORTED)
peer_rx = IEEE80211_HE_MCS_NOT_SUPPORTED;
else if (own_tx < peer_rx)
peer_rx = own_tx;
}
*he_peer_rx &=
~cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << i * 2);
*he_peer_rx |= cpu_to_le16(peer_rx << i * 2);
*he_peer_tx &=
~cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << i * 2);
*he_peer_tx |= cpu_to_le16(peer_tx << i * 2);
}
}
void
ieee80211_he_cap_ie_to_sta_he_cap(struct ieee80211_sub_if_data *sdata,
struct ieee80211_supported_band *sband,
const u8 *he_cap_ie, u8 he_cap_len,
const struct ieee80211_he_6ghz_capa *he_6ghz_capa,
struct sta_info *sta)
{
struct ieee80211_sta_he_cap *he_cap = &sta->sta.deflink.he_cap;
struct ieee80211_sta_he_cap own_he_cap;
struct ieee80211_he_cap_elem *he_cap_ie_elem = (void *)he_cap_ie;
u8 he_ppe_size;
u8 mcs_nss_size;
u8 he_total_size;
bool own_160, peer_160, own_80p80, peer_80p80;
memset(he_cap, 0, sizeof(*he_cap));
if (!he_cap_ie ||
!ieee80211_get_he_iftype_cap(sband,
ieee80211_vif_type_p2p(&sdata->vif)))
return;
own_he_cap = sband->iftype_data->he_cap;
/* Make sure size is OK */
mcs_nss_size = ieee80211_he_mcs_nss_size(he_cap_ie_elem);
he_ppe_size =
ieee80211_he_ppe_size(he_cap_ie[sizeof(he_cap->he_cap_elem) +
mcs_nss_size],
he_cap_ie_elem->phy_cap_info);
he_total_size = sizeof(he_cap->he_cap_elem) + mcs_nss_size +
he_ppe_size;
if (he_cap_len < he_total_size)
return;
memcpy(&he_cap->he_cap_elem, he_cap_ie, sizeof(he_cap->he_cap_elem));
/* HE Tx/Rx HE MCS NSS Support Field */
memcpy(&he_cap->he_mcs_nss_supp,
&he_cap_ie[sizeof(he_cap->he_cap_elem)], mcs_nss_size);
/* Check if there are (optional) PPE Thresholds */
if (he_cap->he_cap_elem.phy_cap_info[6] &
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT)
memcpy(he_cap->ppe_thres,
&he_cap_ie[sizeof(he_cap->he_cap_elem) + mcs_nss_size],
he_ppe_size);
he_cap->has_he = true;
sta->deflink.cur_max_bandwidth = ieee80211_sta_cap_rx_bw(sta);
sta->sta.deflink.bandwidth = ieee80211_sta_cur_vht_bw(sta);
if (sband->band == NL80211_BAND_6GHZ && he_6ghz_capa)
ieee80211_update_from_he_6ghz_capa(he_6ghz_capa, sta);
ieee80211_he_mcs_intersection(&own_he_cap.he_mcs_nss_supp.rx_mcs_80,
&he_cap->he_mcs_nss_supp.rx_mcs_80,
&own_he_cap.he_mcs_nss_supp.tx_mcs_80,
&he_cap->he_mcs_nss_supp.tx_mcs_80);
own_160 = own_he_cap.he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
peer_160 = he_cap->he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
if (peer_160 && own_160) {
ieee80211_he_mcs_intersection(&own_he_cap.he_mcs_nss_supp.rx_mcs_160,
&he_cap->he_mcs_nss_supp.rx_mcs_160,
&own_he_cap.he_mcs_nss_supp.tx_mcs_160,
&he_cap->he_mcs_nss_supp.tx_mcs_160);
} else if (peer_160 && !own_160) {
ieee80211_he_mcs_disable(&he_cap->he_mcs_nss_supp.rx_mcs_160);
ieee80211_he_mcs_disable(&he_cap->he_mcs_nss_supp.tx_mcs_160);
he_cap->he_cap_elem.phy_cap_info[0] &=
~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
}
own_80p80 = own_he_cap.he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
peer_80p80 = he_cap->he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
if (peer_80p80 && own_80p80) {
ieee80211_he_mcs_intersection(&own_he_cap.he_mcs_nss_supp.rx_mcs_80p80,
&he_cap->he_mcs_nss_supp.rx_mcs_80p80,
&own_he_cap.he_mcs_nss_supp.tx_mcs_80p80,
&he_cap->he_mcs_nss_supp.tx_mcs_80p80);
} else if (peer_80p80 && !own_80p80) {
ieee80211_he_mcs_disable(&he_cap->he_mcs_nss_supp.rx_mcs_80p80);
ieee80211_he_mcs_disable(&he_cap->he_mcs_nss_supp.tx_mcs_80p80);
he_cap->he_cap_elem.phy_cap_info[0] &=
~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
}
}
void
ieee80211_he_op_ie_to_bss_conf(struct ieee80211_vif *vif,
const struct ieee80211_he_operation *he_op_ie)
{
memset(&vif->bss_conf.he_oper, 0, sizeof(vif->bss_conf.he_oper));
if (!he_op_ie)
return;
vif->bss_conf.he_oper.params = __le32_to_cpu(he_op_ie->he_oper_params);
vif->bss_conf.he_oper.nss_set = __le16_to_cpu(he_op_ie->he_mcs_nss_set);
}
void
ieee80211_he_spr_ie_to_bss_conf(struct ieee80211_vif *vif,
const struct ieee80211_he_spr *he_spr_ie_elem)
{
struct ieee80211_he_obss_pd *he_obss_pd =
&vif->bss_conf.he_obss_pd;
const u8 *data;
memset(he_obss_pd, 0, sizeof(*he_obss_pd));
if (!he_spr_ie_elem)
return;
data = he_spr_ie_elem->optional;
if (he_spr_ie_elem->he_sr_control &
IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
data++;
if (he_spr_ie_elem->he_sr_control &
IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) {
he_obss_pd->max_offset = *data++;
he_obss_pd->min_offset = *data++;
he_obss_pd->enable = true;
}
}