linux/fs/io_uring.c
Linus Torvalds 5695e51619 io_uring-worker.v3-2021-02-25
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmA4JRkQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpoWqD/9dbbqe8L701U6May1A/4hRsqL4THTA2flx
 vNCNRBl6XV3l/wBCtL6waKy6tyO4lyM8XdUdEvo3Kxl2kGPb8eVfpyYL/+77HqyH
 ctT4RMrs+84Mxn+5N6cM97hS1qVI2moTxxyvOEl/JTB7BYrutz9gvAoeY3/Dto47
 J66oSaPeuqJ32TyihxfQHVxQopJcqFzDjyoYHGDu6ATio1PXfaIdTu8ywVYSECAh
 pWI4rwnqdurGuHMNpxyL1bA6CT/jC7s+sqU7bUYUCgtYI3eG0u3V0bp5gAQQIgl9
 5sxxE3DidYGAkYZsosrelshBtzGddLdz4Qrt2ungMYv8RsGNpFQ095jDPKDwFaZj
 bSvSsfplCo7iFsJByb1TtpNEOW8eAwi81PmBDVQ9Oq5P5ygTYno9GBDc/20ql0Fk
 q6wcX28coE3IBw44ne0hIwvBOtXV4WJyluG/gqOxfbTH+kOy3pDsN8lWcY/P4X0U
 yzdU2MLHe8BNMyYlUiBF47Amzt4ltr85P4XD3WZ4bX71iwri6HvrdGWLuuKwX+Ie
 66QiIDDQIYZQ6NMMJWS9DGW3y3DBizpSXGxONbOw1J2bQdNmtToR0D2UnK/9UnKp
 msnvkUNk8fkYGS4aptpJ6HxbmjMEG5YtbiGlPj6fz5/7MTvhRjPxt7A0LWrUIdqR
 f88+sHUMqg==
 =oc8u
 -----END PGP SIGNATURE-----

Merge tag 'io_uring-worker.v3-2021-02-25' of git://git.kernel.dk/linux-block

Pull io_uring thread rewrite from Jens Axboe:
 "This converts the io-wq workers to be forked off the tasks in question
  instead of being kernel threads that assume various bits of the
  original task identity.

  This kills > 400 lines of code from io_uring/io-wq, and it's the worst
  part of the code. We've had several bugs in this area, and the worry
  is always that we could be missing some pieces for file types doing
  unusual things (recent /dev/tty example comes to mind, userfaultfd
  reads installing file descriptors is another fun one... - both of
  which need special handling, and I bet it's not the last weird oddity
  we'll find).

  With these identical workers, we can have full confidence that we're
  never missing anything. That, in itself, is a huge win. Outside of
  that, it's also more efficient since we're not wasting space and code
  on tracking state, or switching between different states.

  I'm sure we're going to find little things to patch up after this
  series, but testing has been pretty thorough, from the usual
  regression suite to production. Any issue that may crop up should be
  manageable.

  There's also a nice series of further reductions we can do on top of
  this, but I wanted to get the meat of it out sooner rather than later.
  The general worry here isn't that it's fundamentally broken. Most of
  the little issues we've found over the last week have been related to
  just changes in how thread startup/exit is done, since that's the main
  difference between using kthreads and these kinds of threads. In fact,
  if all goes according to plan, I want to get this into the 5.10 and
  5.11 stable branches as well.

  That said, the changes outside of io_uring/io-wq are:

   - arch setup, simple one-liner to each arch copy_thread()
     implementation.

   - Removal of net and proc restrictions for io_uring, they are no
     longer needed or useful"

* tag 'io_uring-worker.v3-2021-02-25' of git://git.kernel.dk/linux-block: (30 commits)
  io-wq: remove now unused IO_WQ_BIT_ERROR
  io_uring: fix SQPOLL thread handling over exec
  io-wq: improve manager/worker handling over exec
  io_uring: ensure SQPOLL startup is triggered before error shutdown
  io-wq: make buffered file write hashed work map per-ctx
  io-wq: fix race around io_worker grabbing
  io-wq: fix races around manager/worker creation and task exit
  io_uring: ensure io-wq context is always destroyed for tasks
  arch: ensure parisc/powerpc handle PF_IO_WORKER in copy_thread()
  io_uring: cleanup ->user usage
  io-wq: remove nr_process accounting
  io_uring: flag new native workers with IORING_FEAT_NATIVE_WORKERS
  net: remove cmsg restriction from io_uring based send/recvmsg calls
  Revert "proc: don't allow async path resolution of /proc/self components"
  Revert "proc: don't allow async path resolution of /proc/thread-self components"
  io_uring: move SQPOLL thread io-wq forked worker
  io-wq: make io_wq_fork_thread() available to other users
  io-wq: only remove worker from free_list, if it was there
  io_uring: remove io_identity
  io_uring: remove any grabbing of context
  ...
2021-02-27 08:29:02 -08:00

9946 lines
240 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Shared application/kernel submission and completion ring pairs, for
* supporting fast/efficient IO.
*
* A note on the read/write ordering memory barriers that are matched between
* the application and kernel side.
*
* After the application reads the CQ ring tail, it must use an
* appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
* before writing the tail (using smp_load_acquire to read the tail will
* do). It also needs a smp_mb() before updating CQ head (ordering the
* entry load(s) with the head store), pairing with an implicit barrier
* through a control-dependency in io_get_cqring (smp_store_release to
* store head will do). Failure to do so could lead to reading invalid
* CQ entries.
*
* Likewise, the application must use an appropriate smp_wmb() before
* writing the SQ tail (ordering SQ entry stores with the tail store),
* which pairs with smp_load_acquire in io_get_sqring (smp_store_release
* to store the tail will do). And it needs a barrier ordering the SQ
* head load before writing new SQ entries (smp_load_acquire to read
* head will do).
*
* When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
* needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
* updating the SQ tail; a full memory barrier smp_mb() is needed
* between.
*
* Also see the examples in the liburing library:
*
* git://git.kernel.dk/liburing
*
* io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
* from data shared between the kernel and application. This is done both
* for ordering purposes, but also to ensure that once a value is loaded from
* data that the application could potentially modify, it remains stable.
*
* Copyright (C) 2018-2019 Jens Axboe
* Copyright (c) 2018-2019 Christoph Hellwig
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <net/compat.h>
#include <linux/refcount.h>
#include <linux/uio.h>
#include <linux/bits.h>
#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bvec.h>
#include <linux/net.h>
#include <net/sock.h>
#include <net/af_unix.h>
#include <net/scm.h>
#include <linux/anon_inodes.h>
#include <linux/sched/mm.h>
#include <linux/uaccess.h>
#include <linux/nospec.h>
#include <linux/sizes.h>
#include <linux/hugetlb.h>
#include <linux/highmem.h>
#include <linux/namei.h>
#include <linux/fsnotify.h>
#include <linux/fadvise.h>
#include <linux/eventpoll.h>
#include <linux/fs_struct.h>
#include <linux/splice.h>
#include <linux/task_work.h>
#include <linux/pagemap.h>
#include <linux/io_uring.h>
#include <linux/blk-cgroup.h>
#include <linux/audit.h>
#define CREATE_TRACE_POINTS
#include <trace/events/io_uring.h>
#include <uapi/linux/io_uring.h>
#include "internal.h"
#include "io-wq.h"
#define IORING_MAX_ENTRIES 32768
#define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
/*
* Shift of 9 is 512 entries, or exactly one page on 64-bit archs
*/
#define IORING_FILE_TABLE_SHIFT 9
#define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
#define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
#define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
#define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
IORING_REGISTER_LAST + IORING_OP_LAST)
#define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
IOSQE_BUFFER_SELECT)
struct io_uring {
u32 head ____cacheline_aligned_in_smp;
u32 tail ____cacheline_aligned_in_smp;
};
/*
* This data is shared with the application through the mmap at offsets
* IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
*
* The offsets to the member fields are published through struct
* io_sqring_offsets when calling io_uring_setup.
*/
struct io_rings {
/*
* Head and tail offsets into the ring; the offsets need to be
* masked to get valid indices.
*
* The kernel controls head of the sq ring and the tail of the cq ring,
* and the application controls tail of the sq ring and the head of the
* cq ring.
*/
struct io_uring sq, cq;
/*
* Bitmasks to apply to head and tail offsets (constant, equals
* ring_entries - 1)
*/
u32 sq_ring_mask, cq_ring_mask;
/* Ring sizes (constant, power of 2) */
u32 sq_ring_entries, cq_ring_entries;
/*
* Number of invalid entries dropped by the kernel due to
* invalid index stored in array
*
* Written by the kernel, shouldn't be modified by the
* application (i.e. get number of "new events" by comparing to
* cached value).
*
* After a new SQ head value was read by the application this
* counter includes all submissions that were dropped reaching
* the new SQ head (and possibly more).
*/
u32 sq_dropped;
/*
* Runtime SQ flags
*
* Written by the kernel, shouldn't be modified by the
* application.
*
* The application needs a full memory barrier before checking
* for IORING_SQ_NEED_WAKEUP after updating the sq tail.
*/
u32 sq_flags;
/*
* Runtime CQ flags
*
* Written by the application, shouldn't be modified by the
* kernel.
*/
u32 cq_flags;
/*
* Number of completion events lost because the queue was full;
* this should be avoided by the application by making sure
* there are not more requests pending than there is space in
* the completion queue.
*
* Written by the kernel, shouldn't be modified by the
* application (i.e. get number of "new events" by comparing to
* cached value).
*
* As completion events come in out of order this counter is not
* ordered with any other data.
*/
u32 cq_overflow;
/*
* Ring buffer of completion events.
*
* The kernel writes completion events fresh every time they are
* produced, so the application is allowed to modify pending
* entries.
*/
struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
};
enum io_uring_cmd_flags {
IO_URING_F_NONBLOCK = 1,
IO_URING_F_COMPLETE_DEFER = 2,
};
struct io_mapped_ubuf {
u64 ubuf;
size_t len;
struct bio_vec *bvec;
unsigned int nr_bvecs;
unsigned long acct_pages;
};
struct io_ring_ctx;
struct io_rsrc_put {
struct list_head list;
union {
void *rsrc;
struct file *file;
};
};
struct fixed_rsrc_table {
struct file **files;
};
struct fixed_rsrc_ref_node {
struct percpu_ref refs;
struct list_head node;
struct list_head rsrc_list;
struct fixed_rsrc_data *rsrc_data;
void (*rsrc_put)(struct io_ring_ctx *ctx,
struct io_rsrc_put *prsrc);
struct llist_node llist;
bool done;
};
struct fixed_rsrc_data {
struct fixed_rsrc_table *table;
struct io_ring_ctx *ctx;
struct fixed_rsrc_ref_node *node;
struct percpu_ref refs;
struct completion done;
bool quiesce;
};
struct io_buffer {
struct list_head list;
__u64 addr;
__s32 len;
__u16 bid;
};
struct io_restriction {
DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
u8 sqe_flags_allowed;
u8 sqe_flags_required;
bool registered;
};
enum {
IO_SQ_THREAD_SHOULD_STOP = 0,
IO_SQ_THREAD_SHOULD_PARK,
};
struct io_sq_data {
refcount_t refs;
struct mutex lock;
/* ctx's that are using this sqd */
struct list_head ctx_list;
struct list_head ctx_new_list;
struct mutex ctx_lock;
struct task_struct *thread;
struct wait_queue_head wait;
unsigned sq_thread_idle;
int sq_cpu;
pid_t task_pid;
unsigned long state;
struct completion startup;
struct completion completion;
struct completion exited;
};
#define IO_IOPOLL_BATCH 8
#define IO_COMPL_BATCH 32
#define IO_REQ_CACHE_SIZE 32
#define IO_REQ_ALLOC_BATCH 8
struct io_comp_state {
struct io_kiocb *reqs[IO_COMPL_BATCH];
unsigned int nr;
unsigned int locked_free_nr;
/* inline/task_work completion list, under ->uring_lock */
struct list_head free_list;
/* IRQ completion list, under ->completion_lock */
struct list_head locked_free_list;
};
struct io_submit_link {
struct io_kiocb *head;
struct io_kiocb *last;
};
struct io_submit_state {
struct blk_plug plug;
struct io_submit_link link;
/*
* io_kiocb alloc cache
*/
void *reqs[IO_REQ_CACHE_SIZE];
unsigned int free_reqs;
bool plug_started;
/*
* Batch completion logic
*/
struct io_comp_state comp;
/*
* File reference cache
*/
struct file *file;
unsigned int fd;
unsigned int file_refs;
unsigned int ios_left;
};
struct io_ring_ctx {
struct {
struct percpu_ref refs;
} ____cacheline_aligned_in_smp;
struct {
unsigned int flags;
unsigned int compat: 1;
unsigned int cq_overflow_flushed: 1;
unsigned int drain_next: 1;
unsigned int eventfd_async: 1;
unsigned int restricted: 1;
unsigned int sqo_dead: 1;
unsigned int sqo_exec: 1;
/*
* Ring buffer of indices into array of io_uring_sqe, which is
* mmapped by the application using the IORING_OFF_SQES offset.
*
* This indirection could e.g. be used to assign fixed
* io_uring_sqe entries to operations and only submit them to
* the queue when needed.
*
* The kernel modifies neither the indices array nor the entries
* array.
*/
u32 *sq_array;
unsigned cached_sq_head;
unsigned sq_entries;
unsigned sq_mask;
unsigned sq_thread_idle;
unsigned cached_sq_dropped;
unsigned cached_cq_overflow;
unsigned long sq_check_overflow;
/* hashed buffered write serialization */
struct io_wq_hash *hash_map;
struct list_head defer_list;
struct list_head timeout_list;
struct list_head cq_overflow_list;
struct io_uring_sqe *sq_sqes;
} ____cacheline_aligned_in_smp;
struct {
struct mutex uring_lock;
wait_queue_head_t wait;
} ____cacheline_aligned_in_smp;
struct io_submit_state submit_state;
struct io_rings *rings;
/*
* For SQPOLL usage
*/
struct task_struct *sqo_task;
/* Only used for accounting purposes */
struct mm_struct *mm_account;
struct io_sq_data *sq_data; /* if using sq thread polling */
struct wait_queue_head sqo_sq_wait;
struct list_head sqd_list;
/*
* If used, fixed file set. Writers must ensure that ->refs is dead,
* readers must ensure that ->refs is alive as long as the file* is
* used. Only updated through io_uring_register(2).
*/
struct fixed_rsrc_data *file_data;
unsigned nr_user_files;
/* if used, fixed mapped user buffers */
unsigned nr_user_bufs;
struct io_mapped_ubuf *user_bufs;
struct user_struct *user;
struct completion ref_comp;
struct completion sq_thread_comp;
#if defined(CONFIG_UNIX)
struct socket *ring_sock;
#endif
struct idr io_buffer_idr;
struct idr personality_idr;
struct {
unsigned cached_cq_tail;
unsigned cq_entries;
unsigned cq_mask;
atomic_t cq_timeouts;
unsigned cq_last_tm_flush;
unsigned long cq_check_overflow;
struct wait_queue_head cq_wait;
struct fasync_struct *cq_fasync;
struct eventfd_ctx *cq_ev_fd;
} ____cacheline_aligned_in_smp;
struct {
spinlock_t completion_lock;
/*
* ->iopoll_list is protected by the ctx->uring_lock for
* io_uring instances that don't use IORING_SETUP_SQPOLL.
* For SQPOLL, only the single threaded io_sq_thread() will
* manipulate the list, hence no extra locking is needed there.
*/
struct list_head iopoll_list;
struct hlist_head *cancel_hash;
unsigned cancel_hash_bits;
bool poll_multi_file;
spinlock_t inflight_lock;
struct list_head inflight_list;
} ____cacheline_aligned_in_smp;
struct delayed_work rsrc_put_work;
struct llist_head rsrc_put_llist;
struct list_head rsrc_ref_list;
spinlock_t rsrc_ref_lock;
struct io_restriction restrictions;
/* exit task_work */
struct callback_head *exit_task_work;
struct wait_queue_head hash_wait;
/* Keep this last, we don't need it for the fast path */
struct work_struct exit_work;
};
/*
* First field must be the file pointer in all the
* iocb unions! See also 'struct kiocb' in <linux/fs.h>
*/
struct io_poll_iocb {
struct file *file;
struct wait_queue_head *head;
__poll_t events;
bool done;
bool canceled;
struct wait_queue_entry wait;
};
struct io_poll_remove {
struct file *file;
u64 addr;
};
struct io_close {
struct file *file;
int fd;
};
struct io_timeout_data {
struct io_kiocb *req;
struct hrtimer timer;
struct timespec64 ts;
enum hrtimer_mode mode;
};
struct io_accept {
struct file *file;
struct sockaddr __user *addr;
int __user *addr_len;
int flags;
unsigned long nofile;
};
struct io_sync {
struct file *file;
loff_t len;
loff_t off;
int flags;
int mode;
};
struct io_cancel {
struct file *file;
u64 addr;
};
struct io_timeout {
struct file *file;
u32 off;
u32 target_seq;
struct list_head list;
/* head of the link, used by linked timeouts only */
struct io_kiocb *head;
};
struct io_timeout_rem {
struct file *file;
u64 addr;
/* timeout update */
struct timespec64 ts;
u32 flags;
};
struct io_rw {
/* NOTE: kiocb has the file as the first member, so don't do it here */
struct kiocb kiocb;
u64 addr;
u64 len;
};
struct io_connect {
struct file *file;
struct sockaddr __user *addr;
int addr_len;
};
struct io_sr_msg {
struct file *file;
union {
struct user_msghdr __user *umsg;
void __user *buf;
};
int msg_flags;
int bgid;
size_t len;
struct io_buffer *kbuf;
};
struct io_open {
struct file *file;
int dfd;
struct filename *filename;
struct open_how how;
unsigned long nofile;
};
struct io_rsrc_update {
struct file *file;
u64 arg;
u32 nr_args;
u32 offset;
};
struct io_fadvise {
struct file *file;
u64 offset;
u32 len;
u32 advice;
};
struct io_madvise {
struct file *file;
u64 addr;
u32 len;
u32 advice;
};
struct io_epoll {
struct file *file;
int epfd;
int op;
int fd;
struct epoll_event event;
};
struct io_splice {
struct file *file_out;
struct file *file_in;
loff_t off_out;
loff_t off_in;
u64 len;
unsigned int flags;
};
struct io_provide_buf {
struct file *file;
__u64 addr;
__s32 len;
__u32 bgid;
__u16 nbufs;
__u16 bid;
};
struct io_statx {
struct file *file;
int dfd;
unsigned int mask;
unsigned int flags;
const char __user *filename;
struct statx __user *buffer;
};
struct io_shutdown {
struct file *file;
int how;
};
struct io_rename {
struct file *file;
int old_dfd;
int new_dfd;
struct filename *oldpath;
struct filename *newpath;
int flags;
};
struct io_unlink {
struct file *file;
int dfd;
int flags;
struct filename *filename;
};
struct io_completion {
struct file *file;
struct list_head list;
int cflags;
};
struct io_async_connect {
struct sockaddr_storage address;
};
struct io_async_msghdr {
struct iovec fast_iov[UIO_FASTIOV];
/* points to an allocated iov, if NULL we use fast_iov instead */
struct iovec *free_iov;
struct sockaddr __user *uaddr;
struct msghdr msg;
struct sockaddr_storage addr;
};
struct io_async_rw {
struct iovec fast_iov[UIO_FASTIOV];
const struct iovec *free_iovec;
struct iov_iter iter;
size_t bytes_done;
struct wait_page_queue wpq;
};
enum {
REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
REQ_F_FAIL_LINK_BIT,
REQ_F_INFLIGHT_BIT,
REQ_F_CUR_POS_BIT,
REQ_F_NOWAIT_BIT,
REQ_F_LINK_TIMEOUT_BIT,
REQ_F_ISREG_BIT,
REQ_F_NEED_CLEANUP_BIT,
REQ_F_POLLED_BIT,
REQ_F_BUFFER_SELECTED_BIT,
REQ_F_NO_FILE_TABLE_BIT,
REQ_F_WORK_INITIALIZED_BIT,
REQ_F_LTIMEOUT_ACTIVE_BIT,
REQ_F_COMPLETE_INLINE_BIT,
/* not a real bit, just to check we're not overflowing the space */
__REQ_F_LAST_BIT,
};
enum {
/* ctx owns file */
REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
/* drain existing IO first */
REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
/* linked sqes */
REQ_F_LINK = BIT(REQ_F_LINK_BIT),
/* doesn't sever on completion < 0 */
REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
/* IOSQE_ASYNC */
REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
/* IOSQE_BUFFER_SELECT */
REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
/* fail rest of links */
REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
/* on inflight list */
REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
/* read/write uses file position */
REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
/* must not punt to workers */
REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
/* has or had linked timeout */
REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
/* regular file */
REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
/* needs cleanup */
REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
/* already went through poll handler */
REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
/* buffer already selected */
REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
/* doesn't need file table for this request */
REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
/* io_wq_work is initialized */
REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
/* linked timeout is active, i.e. prepared by link's head */
REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
/* completion is deferred through io_comp_state */
REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
};
struct async_poll {
struct io_poll_iocb poll;
struct io_poll_iocb *double_poll;
};
struct io_task_work {
struct io_wq_work_node node;
task_work_func_t func;
};
/*
* NOTE! Each of the iocb union members has the file pointer
* as the first entry in their struct definition. So you can
* access the file pointer through any of the sub-structs,
* or directly as just 'ki_filp' in this struct.
*/
struct io_kiocb {
union {
struct file *file;
struct io_rw rw;
struct io_poll_iocb poll;
struct io_poll_remove poll_remove;
struct io_accept accept;
struct io_sync sync;
struct io_cancel cancel;
struct io_timeout timeout;
struct io_timeout_rem timeout_rem;
struct io_connect connect;
struct io_sr_msg sr_msg;
struct io_open open;
struct io_close close;
struct io_rsrc_update rsrc_update;
struct io_fadvise fadvise;
struct io_madvise madvise;
struct io_epoll epoll;
struct io_splice splice;
struct io_provide_buf pbuf;
struct io_statx statx;
struct io_shutdown shutdown;
struct io_rename rename;
struct io_unlink unlink;
/* use only after cleaning per-op data, see io_clean_op() */
struct io_completion compl;
};
/* opcode allocated if it needs to store data for async defer */
void *async_data;
u8 opcode;
/* polled IO has completed */
u8 iopoll_completed;
u16 buf_index;
u32 result;
struct io_ring_ctx *ctx;
unsigned int flags;
refcount_t refs;
struct task_struct *task;
u64 user_data;
struct io_kiocb *link;
struct percpu_ref *fixed_rsrc_refs;
/*
* 1. used with ctx->iopoll_list with reads/writes
* 2. to track reqs with ->files (see io_op_def::file_table)
*/
struct list_head inflight_entry;
union {
struct io_task_work io_task_work;
struct callback_head task_work;
};
/* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
struct hlist_node hash_node;
struct async_poll *apoll;
struct io_wq_work work;
};
struct io_defer_entry {
struct list_head list;
struct io_kiocb *req;
u32 seq;
};
struct io_op_def {
/* needs req->file assigned */
unsigned needs_file : 1;
/* hash wq insertion if file is a regular file */
unsigned hash_reg_file : 1;
/* unbound wq insertion if file is a non-regular file */
unsigned unbound_nonreg_file : 1;
/* opcode is not supported by this kernel */
unsigned not_supported : 1;
/* set if opcode supports polled "wait" */
unsigned pollin : 1;
unsigned pollout : 1;
/* op supports buffer selection */
unsigned buffer_select : 1;
/* must always have async data allocated */
unsigned needs_async_data : 1;
/* should block plug */
unsigned plug : 1;
/* size of async data needed, if any */
unsigned short async_size;
};
static const struct io_op_def io_op_defs[] = {
[IORING_OP_NOP] = {},
[IORING_OP_READV] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.buffer_select = 1,
.needs_async_data = 1,
.plug = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_WRITEV] = {
.needs_file = 1,
.hash_reg_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.needs_async_data = 1,
.plug = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_FSYNC] = {
.needs_file = 1,
},
[IORING_OP_READ_FIXED] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.plug = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_WRITE_FIXED] = {
.needs_file = 1,
.hash_reg_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.plug = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_POLL_ADD] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
},
[IORING_OP_POLL_REMOVE] = {},
[IORING_OP_SYNC_FILE_RANGE] = {
.needs_file = 1,
},
[IORING_OP_SENDMSG] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.needs_async_data = 1,
.async_size = sizeof(struct io_async_msghdr),
},
[IORING_OP_RECVMSG] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.buffer_select = 1,
.needs_async_data = 1,
.async_size = sizeof(struct io_async_msghdr),
},
[IORING_OP_TIMEOUT] = {
.needs_async_data = 1,
.async_size = sizeof(struct io_timeout_data),
},
[IORING_OP_TIMEOUT_REMOVE] = {
/* used by timeout updates' prep() */
},
[IORING_OP_ACCEPT] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
},
[IORING_OP_ASYNC_CANCEL] = {},
[IORING_OP_LINK_TIMEOUT] = {
.needs_async_data = 1,
.async_size = sizeof(struct io_timeout_data),
},
[IORING_OP_CONNECT] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.needs_async_data = 1,
.async_size = sizeof(struct io_async_connect),
},
[IORING_OP_FALLOCATE] = {
.needs_file = 1,
},
[IORING_OP_OPENAT] = {},
[IORING_OP_CLOSE] = {},
[IORING_OP_FILES_UPDATE] = {},
[IORING_OP_STATX] = {},
[IORING_OP_READ] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.buffer_select = 1,
.plug = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_WRITE] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.plug = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_FADVISE] = {
.needs_file = 1,
},
[IORING_OP_MADVISE] = {},
[IORING_OP_SEND] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
},
[IORING_OP_RECV] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.buffer_select = 1,
},
[IORING_OP_OPENAT2] = {
},
[IORING_OP_EPOLL_CTL] = {
.unbound_nonreg_file = 1,
},
[IORING_OP_SPLICE] = {
.needs_file = 1,
.hash_reg_file = 1,
.unbound_nonreg_file = 1,
},
[IORING_OP_PROVIDE_BUFFERS] = {},
[IORING_OP_REMOVE_BUFFERS] = {},
[IORING_OP_TEE] = {
.needs_file = 1,
.hash_reg_file = 1,
.unbound_nonreg_file = 1,
},
[IORING_OP_SHUTDOWN] = {
.needs_file = 1,
},
[IORING_OP_RENAMEAT] = {},
[IORING_OP_UNLINKAT] = {},
};
static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
struct task_struct *task,
struct files_struct *files);
static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx);
static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node);
static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
struct io_ring_ctx *ctx);
static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
static bool io_rw_reissue(struct io_kiocb *req);
static void io_cqring_fill_event(struct io_kiocb *req, long res);
static void io_put_req(struct io_kiocb *req);
static void io_put_req_deferred(struct io_kiocb *req, int nr);
static void io_double_put_req(struct io_kiocb *req);
static void io_dismantle_req(struct io_kiocb *req);
static void io_put_task(struct task_struct *task, int nr);
static void io_queue_next(struct io_kiocb *req);
static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
static void __io_queue_linked_timeout(struct io_kiocb *req);
static void io_queue_linked_timeout(struct io_kiocb *req);
static int __io_sqe_files_update(struct io_ring_ctx *ctx,
struct io_uring_rsrc_update *ip,
unsigned nr_args);
static void __io_clean_op(struct io_kiocb *req);
static struct file *io_file_get(struct io_submit_state *state,
struct io_kiocb *req, int fd, bool fixed);
static void __io_queue_sqe(struct io_kiocb *req);
static void io_rsrc_put_work(struct work_struct *work);
static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
struct iov_iter *iter, bool needs_lock);
static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
const struct iovec *fast_iov,
struct iov_iter *iter, bool force);
static void io_req_task_queue(struct io_kiocb *req);
static void io_submit_flush_completions(struct io_comp_state *cs,
struct io_ring_ctx *ctx);
static struct kmem_cache *req_cachep;
static const struct file_operations io_uring_fops;
struct sock *io_uring_get_socket(struct file *file)
{
#if defined(CONFIG_UNIX)
if (file->f_op == &io_uring_fops) {
struct io_ring_ctx *ctx = file->private_data;
return ctx->ring_sock->sk;
}
#endif
return NULL;
}
EXPORT_SYMBOL(io_uring_get_socket);
#define io_for_each_link(pos, head) \
for (pos = (head); pos; pos = pos->link)
static inline void io_clean_op(struct io_kiocb *req)
{
if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
__io_clean_op(req);
}
static inline void io_set_resource_node(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
if (!req->fixed_rsrc_refs) {
req->fixed_rsrc_refs = &ctx->file_data->node->refs;
percpu_ref_get(req->fixed_rsrc_refs);
}
}
static bool io_match_task(struct io_kiocb *head,
struct task_struct *task,
struct files_struct *files)
{
struct io_kiocb *req;
if (task && head->task != task) {
/* in terms of cancelation, always match if req task is dead */
if (head->task->flags & PF_EXITING)
return true;
return false;
}
if (!files)
return true;
io_for_each_link(req, head) {
if (!(req->flags & REQ_F_WORK_INITIALIZED))
continue;
if (req->file && req->file->f_op == &io_uring_fops)
return true;
if (req->task->files == files)
return true;
}
return false;
}
static inline void req_set_fail_links(struct io_kiocb *req)
{
if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
req->flags |= REQ_F_FAIL_LINK;
}
static inline void __io_req_init_async(struct io_kiocb *req)
{
memset(&req->work, 0, sizeof(req->work));
req->flags |= REQ_F_WORK_INITIALIZED;
}
/*
* Note: must call io_req_init_async() for the first time you
* touch any members of io_wq_work.
*/
static inline void io_req_init_async(struct io_kiocb *req)
{
if (req->flags & REQ_F_WORK_INITIALIZED)
return;
__io_req_init_async(req);
}
static void io_ring_ctx_ref_free(struct percpu_ref *ref)
{
struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
complete(&ctx->ref_comp);
}
static inline bool io_is_timeout_noseq(struct io_kiocb *req)
{
return !req->timeout.off;
}
static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
{
struct io_ring_ctx *ctx;
int hash_bits;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
/*
* Use 5 bits less than the max cq entries, that should give us around
* 32 entries per hash list if totally full and uniformly spread.
*/
hash_bits = ilog2(p->cq_entries);
hash_bits -= 5;
if (hash_bits <= 0)
hash_bits = 1;
ctx->cancel_hash_bits = hash_bits;
ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
GFP_KERNEL);
if (!ctx->cancel_hash)
goto err;
__hash_init(ctx->cancel_hash, 1U << hash_bits);
if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
goto err;
ctx->flags = p->flags;
init_waitqueue_head(&ctx->sqo_sq_wait);
INIT_LIST_HEAD(&ctx->sqd_list);
init_waitqueue_head(&ctx->cq_wait);
INIT_LIST_HEAD(&ctx->cq_overflow_list);
init_completion(&ctx->ref_comp);
init_completion(&ctx->sq_thread_comp);
idr_init(&ctx->io_buffer_idr);
idr_init(&ctx->personality_idr);
mutex_init(&ctx->uring_lock);
init_waitqueue_head(&ctx->wait);
spin_lock_init(&ctx->completion_lock);
INIT_LIST_HEAD(&ctx->iopoll_list);
INIT_LIST_HEAD(&ctx->defer_list);
INIT_LIST_HEAD(&ctx->timeout_list);
spin_lock_init(&ctx->inflight_lock);
INIT_LIST_HEAD(&ctx->inflight_list);
spin_lock_init(&ctx->rsrc_ref_lock);
INIT_LIST_HEAD(&ctx->rsrc_ref_list);
INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
init_llist_head(&ctx->rsrc_put_llist);
INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
return ctx;
err:
kfree(ctx->cancel_hash);
kfree(ctx);
return NULL;
}
static bool req_need_defer(struct io_kiocb *req, u32 seq)
{
if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
struct io_ring_ctx *ctx = req->ctx;
return seq != ctx->cached_cq_tail
+ READ_ONCE(ctx->cached_cq_overflow);
}
return false;
}
static void io_req_clean_work(struct io_kiocb *req)
{
if (!(req->flags & REQ_F_WORK_INITIALIZED))
return;
if (req->work.creds) {
put_cred(req->work.creds);
req->work.creds = NULL;
}
if (req->flags & REQ_F_INFLIGHT) {
struct io_ring_ctx *ctx = req->ctx;
struct io_uring_task *tctx = req->task->io_uring;
unsigned long flags;
spin_lock_irqsave(&ctx->inflight_lock, flags);
list_del(&req->inflight_entry);
spin_unlock_irqrestore(&ctx->inflight_lock, flags);
req->flags &= ~REQ_F_INFLIGHT;
if (atomic_read(&tctx->in_idle))
wake_up(&tctx->wait);
}
req->flags &= ~REQ_F_WORK_INITIALIZED;
}
static void io_req_track_inflight(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
if (!(req->flags & REQ_F_INFLIGHT)) {
io_req_init_async(req);
req->flags |= REQ_F_INFLIGHT;
spin_lock_irq(&ctx->inflight_lock);
list_add(&req->inflight_entry, &ctx->inflight_list);
spin_unlock_irq(&ctx->inflight_lock);
}
}
static void io_prep_async_work(struct io_kiocb *req)
{
const struct io_op_def *def = &io_op_defs[req->opcode];
struct io_ring_ctx *ctx = req->ctx;
io_req_init_async(req);
if (req->flags & REQ_F_FORCE_ASYNC)
req->work.flags |= IO_WQ_WORK_CONCURRENT;
if (req->flags & REQ_F_ISREG) {
if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
io_wq_hash_work(&req->work, file_inode(req->file));
} else {
if (def->unbound_nonreg_file)
req->work.flags |= IO_WQ_WORK_UNBOUND;
}
if (!req->work.creds)
req->work.creds = get_current_cred();
}
static void io_prep_async_link(struct io_kiocb *req)
{
struct io_kiocb *cur;
io_for_each_link(cur, req)
io_prep_async_work(cur);
}
static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_kiocb *link = io_prep_linked_timeout(req);
struct io_uring_task *tctx = req->task->io_uring;
BUG_ON(!tctx);
BUG_ON(!tctx->io_wq);
trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
&req->work, req->flags);
io_wq_enqueue(tctx->io_wq, &req->work);
return link;
}
static void io_queue_async_work(struct io_kiocb *req)
{
struct io_kiocb *link;
/* init ->work of the whole link before punting */
io_prep_async_link(req);
link = __io_queue_async_work(req);
if (link)
io_queue_linked_timeout(link);
}
static void io_kill_timeout(struct io_kiocb *req)
{
struct io_timeout_data *io = req->async_data;
int ret;
ret = hrtimer_try_to_cancel(&io->timer);
if (ret != -1) {
atomic_set(&req->ctx->cq_timeouts,
atomic_read(&req->ctx->cq_timeouts) + 1);
list_del_init(&req->timeout.list);
io_cqring_fill_event(req, 0);
io_put_req_deferred(req, 1);
}
}
/*
* Returns true if we found and killed one or more timeouts
*/
static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
struct files_struct *files)
{
struct io_kiocb *req, *tmp;
int canceled = 0;
spin_lock_irq(&ctx->completion_lock);
list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
if (io_match_task(req, tsk, files)) {
io_kill_timeout(req);
canceled++;
}
}
spin_unlock_irq(&ctx->completion_lock);
return canceled != 0;
}
static void __io_queue_deferred(struct io_ring_ctx *ctx)
{
do {
struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
struct io_defer_entry, list);
if (req_need_defer(de->req, de->seq))
break;
list_del_init(&de->list);
io_req_task_queue(de->req);
kfree(de);
} while (!list_empty(&ctx->defer_list));
}
static void io_flush_timeouts(struct io_ring_ctx *ctx)
{
u32 seq;
if (list_empty(&ctx->timeout_list))
return;
seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
do {
u32 events_needed, events_got;
struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
struct io_kiocb, timeout.list);
if (io_is_timeout_noseq(req))
break;
/*
* Since seq can easily wrap around over time, subtract
* the last seq at which timeouts were flushed before comparing.
* Assuming not more than 2^31-1 events have happened since,
* these subtractions won't have wrapped, so we can check if
* target is in [last_seq, current_seq] by comparing the two.
*/
events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
events_got = seq - ctx->cq_last_tm_flush;
if (events_got < events_needed)
break;
list_del_init(&req->timeout.list);
io_kill_timeout(req);
} while (!list_empty(&ctx->timeout_list));
ctx->cq_last_tm_flush = seq;
}
static void io_commit_cqring(struct io_ring_ctx *ctx)
{
io_flush_timeouts(ctx);
/* order cqe stores with ring update */
smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
if (unlikely(!list_empty(&ctx->defer_list)))
__io_queue_deferred(ctx);
}
static inline bool io_sqring_full(struct io_ring_ctx *ctx)
{
struct io_rings *r = ctx->rings;
return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
}
static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
{
return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
}
static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
{
struct io_rings *rings = ctx->rings;
unsigned tail;
/*
* writes to the cq entry need to come after reading head; the
* control dependency is enough as we're using WRITE_ONCE to
* fill the cq entry
*/
if (__io_cqring_events(ctx) == rings->cq_ring_entries)
return NULL;
tail = ctx->cached_cq_tail++;
return &rings->cqes[tail & ctx->cq_mask];
}
static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
{
if (!ctx->cq_ev_fd)
return false;
if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
return false;
if (!ctx->eventfd_async)
return true;
return io_wq_current_is_worker();
}
static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
{
/* see waitqueue_active() comment */
smp_mb();
if (waitqueue_active(&ctx->wait))
wake_up(&ctx->wait);
if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
wake_up(&ctx->sq_data->wait);
if (io_should_trigger_evfd(ctx))
eventfd_signal(ctx->cq_ev_fd, 1);
if (waitqueue_active(&ctx->cq_wait)) {
wake_up_interruptible(&ctx->cq_wait);
kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
}
}
static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
{
/* see waitqueue_active() comment */
smp_mb();
if (ctx->flags & IORING_SETUP_SQPOLL) {
if (waitqueue_active(&ctx->wait))
wake_up(&ctx->wait);
}
if (io_should_trigger_evfd(ctx))
eventfd_signal(ctx->cq_ev_fd, 1);
if (waitqueue_active(&ctx->cq_wait)) {
wake_up_interruptible(&ctx->cq_wait);
kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
}
}
/* Returns true if there are no backlogged entries after the flush */
static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
struct task_struct *tsk,
struct files_struct *files)
{
struct io_rings *rings = ctx->rings;
struct io_kiocb *req, *tmp;
struct io_uring_cqe *cqe;
unsigned long flags;
bool all_flushed, posted;
LIST_HEAD(list);
if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
return false;
posted = false;
spin_lock_irqsave(&ctx->completion_lock, flags);
list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
if (!io_match_task(req, tsk, files))
continue;
cqe = io_get_cqring(ctx);
if (!cqe && !force)
break;
list_move(&req->compl.list, &list);
if (cqe) {
WRITE_ONCE(cqe->user_data, req->user_data);
WRITE_ONCE(cqe->res, req->result);
WRITE_ONCE(cqe->flags, req->compl.cflags);
} else {
ctx->cached_cq_overflow++;
WRITE_ONCE(ctx->rings->cq_overflow,
ctx->cached_cq_overflow);
}
posted = true;
}
all_flushed = list_empty(&ctx->cq_overflow_list);
if (all_flushed) {
clear_bit(0, &ctx->sq_check_overflow);
clear_bit(0, &ctx->cq_check_overflow);
ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
}
if (posted)
io_commit_cqring(ctx);
spin_unlock_irqrestore(&ctx->completion_lock, flags);
if (posted)
io_cqring_ev_posted(ctx);
while (!list_empty(&list)) {
req = list_first_entry(&list, struct io_kiocb, compl.list);
list_del(&req->compl.list);
io_put_req(req);
}
return all_flushed;
}
static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
struct task_struct *tsk,
struct files_struct *files)
{
if (test_bit(0, &ctx->cq_check_overflow)) {
/* iopoll syncs against uring_lock, not completion_lock */
if (ctx->flags & IORING_SETUP_IOPOLL)
mutex_lock(&ctx->uring_lock);
__io_cqring_overflow_flush(ctx, force, tsk, files);
if (ctx->flags & IORING_SETUP_IOPOLL)
mutex_unlock(&ctx->uring_lock);
}
}
static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_uring_cqe *cqe;
trace_io_uring_complete(ctx, req->user_data, res);
/*
* If we can't get a cq entry, userspace overflowed the
* submission (by quite a lot). Increment the overflow count in
* the ring.
*/
cqe = io_get_cqring(ctx);
if (likely(cqe)) {
WRITE_ONCE(cqe->user_data, req->user_data);
WRITE_ONCE(cqe->res, res);
WRITE_ONCE(cqe->flags, cflags);
} else if (ctx->cq_overflow_flushed ||
atomic_read(&req->task->io_uring->in_idle)) {
/*
* If we're in ring overflow flush mode, or in task cancel mode,
* then we cannot store the request for later flushing, we need
* to drop it on the floor.
*/
ctx->cached_cq_overflow++;
WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
} else {
if (list_empty(&ctx->cq_overflow_list)) {
set_bit(0, &ctx->sq_check_overflow);
set_bit(0, &ctx->cq_check_overflow);
ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
}
io_clean_op(req);
req->result = res;
req->compl.cflags = cflags;
refcount_inc(&req->refs);
list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
}
}
static void io_cqring_fill_event(struct io_kiocb *req, long res)
{
__io_cqring_fill_event(req, res, 0);
}
static inline void io_req_complete_post(struct io_kiocb *req, long res,
unsigned int cflags)
{
struct io_ring_ctx *ctx = req->ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->completion_lock, flags);
__io_cqring_fill_event(req, res, cflags);
io_commit_cqring(ctx);
/*
* If we're the last reference to this request, add to our locked
* free_list cache.
*/
if (refcount_dec_and_test(&req->refs)) {
struct io_comp_state *cs = &ctx->submit_state.comp;
io_dismantle_req(req);
io_put_task(req->task, 1);
list_add(&req->compl.list, &cs->locked_free_list);
cs->locked_free_nr++;
} else
req = NULL;
spin_unlock_irqrestore(&ctx->completion_lock, flags);
io_cqring_ev_posted(ctx);
if (req) {
io_queue_next(req);
percpu_ref_put(&ctx->refs);
}
}
static void io_req_complete_state(struct io_kiocb *req, long res,
unsigned int cflags)
{
io_clean_op(req);
req->result = res;
req->compl.cflags = cflags;
req->flags |= REQ_F_COMPLETE_INLINE;
}
static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
long res, unsigned cflags)
{
if (issue_flags & IO_URING_F_COMPLETE_DEFER)
io_req_complete_state(req, res, cflags);
else
io_req_complete_post(req, res, cflags);
}
static inline void io_req_complete(struct io_kiocb *req, long res)
{
__io_req_complete(req, 0, res, 0);
}
static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
{
struct io_submit_state *state = &ctx->submit_state;
struct io_comp_state *cs = &state->comp;
struct io_kiocb *req = NULL;
/*
* If we have more than a batch's worth of requests in our IRQ side
* locked cache, grab the lock and move them over to our submission
* side cache.
*/
if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH) {
spin_lock_irq(&ctx->completion_lock);
list_splice_init(&cs->locked_free_list, &cs->free_list);
cs->locked_free_nr = 0;
spin_unlock_irq(&ctx->completion_lock);
}
while (!list_empty(&cs->free_list)) {
req = list_first_entry(&cs->free_list, struct io_kiocb,
compl.list);
list_del(&req->compl.list);
state->reqs[state->free_reqs++] = req;
if (state->free_reqs == ARRAY_SIZE(state->reqs))
break;
}
return req != NULL;
}
static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
{
struct io_submit_state *state = &ctx->submit_state;
BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
if (!state->free_reqs) {
gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
int ret;
if (io_flush_cached_reqs(ctx))
goto got_req;
ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
state->reqs);
/*
* Bulk alloc is all-or-nothing. If we fail to get a batch,
* retry single alloc to be on the safe side.
*/
if (unlikely(ret <= 0)) {
state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
if (!state->reqs[0])
return NULL;
ret = 1;
}
state->free_reqs = ret;
}
got_req:
state->free_reqs--;
return state->reqs[state->free_reqs];
}
static inline void io_put_file(struct io_kiocb *req, struct file *file,
bool fixed)
{
if (!fixed)
fput(file);
}
static void io_dismantle_req(struct io_kiocb *req)
{
io_clean_op(req);
if (req->async_data)
kfree(req->async_data);
if (req->file)
io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
if (req->fixed_rsrc_refs)
percpu_ref_put(req->fixed_rsrc_refs);
io_req_clean_work(req);
}
static inline void io_put_task(struct task_struct *task, int nr)
{
struct io_uring_task *tctx = task->io_uring;
percpu_counter_sub(&tctx->inflight, nr);
if (unlikely(atomic_read(&tctx->in_idle)))
wake_up(&tctx->wait);
put_task_struct_many(task, nr);
}
static void __io_free_req(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
io_dismantle_req(req);
io_put_task(req->task, 1);
kmem_cache_free(req_cachep, req);
percpu_ref_put(&ctx->refs);
}
static inline void io_remove_next_linked(struct io_kiocb *req)
{
struct io_kiocb *nxt = req->link;
req->link = nxt->link;
nxt->link = NULL;
}
static void io_kill_linked_timeout(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_kiocb *link;
bool cancelled = false;
unsigned long flags;
spin_lock_irqsave(&ctx->completion_lock, flags);
link = req->link;
/*
* Can happen if a linked timeout fired and link had been like
* req -> link t-out -> link t-out [-> ...]
*/
if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
struct io_timeout_data *io = link->async_data;
int ret;
io_remove_next_linked(req);
link->timeout.head = NULL;
ret = hrtimer_try_to_cancel(&io->timer);
if (ret != -1) {
io_cqring_fill_event(link, -ECANCELED);
io_commit_cqring(ctx);
cancelled = true;
}
}
req->flags &= ~REQ_F_LINK_TIMEOUT;
spin_unlock_irqrestore(&ctx->completion_lock, flags);
if (cancelled) {
io_cqring_ev_posted(ctx);
io_put_req(link);
}
}
static void io_fail_links(struct io_kiocb *req)
{
struct io_kiocb *link, *nxt;
struct io_ring_ctx *ctx = req->ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->completion_lock, flags);
link = req->link;
req->link = NULL;
while (link) {
nxt = link->link;
link->link = NULL;
trace_io_uring_fail_link(req, link);
io_cqring_fill_event(link, -ECANCELED);
/*
* It's ok to free under spinlock as they're not linked anymore,
* but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
* work.fs->lock.
*/
if (link->flags & REQ_F_WORK_INITIALIZED)
io_put_req_deferred(link, 2);
else
io_double_put_req(link);
link = nxt;
}
io_commit_cqring(ctx);
spin_unlock_irqrestore(&ctx->completion_lock, flags);
io_cqring_ev_posted(ctx);
}
static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
{
if (req->flags & REQ_F_LINK_TIMEOUT)
io_kill_linked_timeout(req);
/*
* If LINK is set, we have dependent requests in this chain. If we
* didn't fail this request, queue the first one up, moving any other
* dependencies to the next request. In case of failure, fail the rest
* of the chain.
*/
if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
struct io_kiocb *nxt = req->link;
req->link = NULL;
return nxt;
}
io_fail_links(req);
return NULL;
}
static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
{
if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
return NULL;
return __io_req_find_next(req);
}
static bool __tctx_task_work(struct io_uring_task *tctx)
{
struct io_ring_ctx *ctx = NULL;
struct io_wq_work_list list;
struct io_wq_work_node *node;
if (wq_list_empty(&tctx->task_list))
return false;
spin_lock_irq(&tctx->task_lock);
list = tctx->task_list;
INIT_WQ_LIST(&tctx->task_list);
spin_unlock_irq(&tctx->task_lock);
node = list.first;
while (node) {
struct io_wq_work_node *next = node->next;
struct io_ring_ctx *this_ctx;
struct io_kiocb *req;
req = container_of(node, struct io_kiocb, io_task_work.node);
this_ctx = req->ctx;
req->task_work.func(&req->task_work);
node = next;
if (!ctx) {
ctx = this_ctx;
} else if (ctx != this_ctx) {
mutex_lock(&ctx->uring_lock);
io_submit_flush_completions(&ctx->submit_state.comp, ctx);
mutex_unlock(&ctx->uring_lock);
ctx = this_ctx;
}
}
if (ctx && ctx->submit_state.comp.nr) {
mutex_lock(&ctx->uring_lock);
io_submit_flush_completions(&ctx->submit_state.comp, ctx);
mutex_unlock(&ctx->uring_lock);
}
return list.first != NULL;
}
static void tctx_task_work(struct callback_head *cb)
{
struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
while (__tctx_task_work(tctx))
cond_resched();
clear_bit(0, &tctx->task_state);
}
static int io_task_work_add(struct task_struct *tsk, struct io_kiocb *req,
enum task_work_notify_mode notify)
{
struct io_uring_task *tctx = tsk->io_uring;
struct io_wq_work_node *node, *prev;
unsigned long flags;
int ret;
WARN_ON_ONCE(!tctx);
spin_lock_irqsave(&tctx->task_lock, flags);
wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
spin_unlock_irqrestore(&tctx->task_lock, flags);
/* task_work already pending, we're done */
if (test_bit(0, &tctx->task_state) ||
test_and_set_bit(0, &tctx->task_state))
return 0;
if (!task_work_add(tsk, &tctx->task_work, notify))
return 0;
/*
* Slow path - we failed, find and delete work. if the work is not
* in the list, it got run and we're fine.
*/
ret = 0;
spin_lock_irqsave(&tctx->task_lock, flags);
wq_list_for_each(node, prev, &tctx->task_list) {
if (&req->io_task_work.node == node) {
wq_list_del(&tctx->task_list, node, prev);
ret = 1;
break;
}
}
spin_unlock_irqrestore(&tctx->task_lock, flags);
clear_bit(0, &tctx->task_state);
return ret;
}
static int io_req_task_work_add(struct io_kiocb *req)
{
struct task_struct *tsk = req->task;
struct io_ring_ctx *ctx = req->ctx;
enum task_work_notify_mode notify;
int ret;
if (tsk->flags & PF_EXITING)
return -ESRCH;
/*
* SQPOLL kernel thread doesn't need notification, just a wakeup. For
* all other cases, use TWA_SIGNAL unconditionally to ensure we're
* processing task_work. There's no reliable way to tell if TWA_RESUME
* will do the job.
*/
notify = TWA_NONE;
if (!(ctx->flags & IORING_SETUP_SQPOLL))
notify = TWA_SIGNAL;
ret = io_task_work_add(tsk, req, notify);
if (!ret)
wake_up_process(tsk);
return ret;
}
static void io_req_task_work_add_fallback(struct io_kiocb *req,
task_work_func_t cb)
{
struct io_ring_ctx *ctx = req->ctx;
struct callback_head *head;
init_task_work(&req->task_work, cb);
do {
head = READ_ONCE(ctx->exit_task_work);
req->task_work.next = head;
} while (cmpxchg(&ctx->exit_task_work, head, &req->task_work) != head);
}
static void __io_req_task_cancel(struct io_kiocb *req, int error)
{
struct io_ring_ctx *ctx = req->ctx;
spin_lock_irq(&ctx->completion_lock);
io_cqring_fill_event(req, error);
io_commit_cqring(ctx);
spin_unlock_irq(&ctx->completion_lock);
io_cqring_ev_posted(ctx);
req_set_fail_links(req);
io_double_put_req(req);
}
static void io_req_task_cancel(struct callback_head *cb)
{
struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
struct io_ring_ctx *ctx = req->ctx;
mutex_lock(&ctx->uring_lock);
__io_req_task_cancel(req, req->result);
mutex_unlock(&ctx->uring_lock);
percpu_ref_put(&ctx->refs);
}
static void __io_req_task_submit(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
/* ctx stays valid until unlock, even if we drop all ours ctx->refs */
mutex_lock(&ctx->uring_lock);
if (!ctx->sqo_dead && !(current->flags & PF_EXITING) && !current->in_execve)
__io_queue_sqe(req);
else
__io_req_task_cancel(req, -EFAULT);
mutex_unlock(&ctx->uring_lock);
}
static void io_req_task_submit(struct callback_head *cb)
{
struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
__io_req_task_submit(req);
}
static void io_req_task_queue(struct io_kiocb *req)
{
int ret;
req->task_work.func = io_req_task_submit;
ret = io_req_task_work_add(req);
if (unlikely(ret)) {
req->result = -ECANCELED;
percpu_ref_get(&req->ctx->refs);
io_req_task_work_add_fallback(req, io_req_task_cancel);
}
}
static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
{
percpu_ref_get(&req->ctx->refs);
req->result = ret;
req->task_work.func = io_req_task_cancel;
if (unlikely(io_req_task_work_add(req)))
io_req_task_work_add_fallback(req, io_req_task_cancel);
}
static inline void io_queue_next(struct io_kiocb *req)
{
struct io_kiocb *nxt = io_req_find_next(req);
if (nxt)
io_req_task_queue(nxt);
}
static void io_free_req(struct io_kiocb *req)
{
io_queue_next(req);
__io_free_req(req);
}
struct req_batch {
struct task_struct *task;
int task_refs;
int ctx_refs;
};
static inline void io_init_req_batch(struct req_batch *rb)
{
rb->task_refs = 0;
rb->ctx_refs = 0;
rb->task = NULL;
}
static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
struct req_batch *rb)
{
if (rb->task)
io_put_task(rb->task, rb->task_refs);
if (rb->ctx_refs)
percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
}
static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
struct io_submit_state *state)
{
io_queue_next(req);
if (req->task != rb->task) {
if (rb->task)
io_put_task(rb->task, rb->task_refs);
rb->task = req->task;
rb->task_refs = 0;
}
rb->task_refs++;
rb->ctx_refs++;
io_dismantle_req(req);
if (state->free_reqs != ARRAY_SIZE(state->reqs))
state->reqs[state->free_reqs++] = req;
else
list_add(&req->compl.list, &state->comp.free_list);
}
static void io_submit_flush_completions(struct io_comp_state *cs,
struct io_ring_ctx *ctx)
{
int i, nr = cs->nr;
struct io_kiocb *req;
struct req_batch rb;
io_init_req_batch(&rb);
spin_lock_irq(&ctx->completion_lock);
for (i = 0; i < nr; i++) {
req = cs->reqs[i];
__io_cqring_fill_event(req, req->result, req->compl.cflags);
}
io_commit_cqring(ctx);
spin_unlock_irq(&ctx->completion_lock);
io_cqring_ev_posted(ctx);
for (i = 0; i < nr; i++) {
req = cs->reqs[i];
/* submission and completion refs */
if (refcount_sub_and_test(2, &req->refs))
io_req_free_batch(&rb, req, &ctx->submit_state);
}
io_req_free_batch_finish(ctx, &rb);
cs->nr = 0;
}
/*
* Drop reference to request, return next in chain (if there is one) if this
* was the last reference to this request.
*/
static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
{
struct io_kiocb *nxt = NULL;
if (refcount_dec_and_test(&req->refs)) {
nxt = io_req_find_next(req);
__io_free_req(req);
}
return nxt;
}
static void io_put_req(struct io_kiocb *req)
{
if (refcount_dec_and_test(&req->refs))
io_free_req(req);
}
static void io_put_req_deferred_cb(struct callback_head *cb)
{
struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
io_free_req(req);
}
static void io_free_req_deferred(struct io_kiocb *req)
{
int ret;
req->task_work.func = io_put_req_deferred_cb;
ret = io_req_task_work_add(req);
if (unlikely(ret))
io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
}
static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
{
if (refcount_sub_and_test(refs, &req->refs))
io_free_req_deferred(req);
}
static void io_double_put_req(struct io_kiocb *req)
{
/* drop both submit and complete references */
if (refcount_sub_and_test(2, &req->refs))
io_free_req(req);
}
static unsigned io_cqring_events(struct io_ring_ctx *ctx)
{
/* See comment at the top of this file */
smp_rmb();
return __io_cqring_events(ctx);
}
static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
{
struct io_rings *rings = ctx->rings;
/* make sure SQ entry isn't read before tail */
return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
}
static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
{
unsigned int cflags;
cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
cflags |= IORING_CQE_F_BUFFER;
req->flags &= ~REQ_F_BUFFER_SELECTED;
kfree(kbuf);
return cflags;
}
static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
{
struct io_buffer *kbuf;
kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
return io_put_kbuf(req, kbuf);
}
static inline bool io_run_task_work(void)
{
/*
* Not safe to run on exiting task, and the task_work handling will
* not add work to such a task.
*/
if (unlikely(current->flags & PF_EXITING))
return false;
if (current->task_works) {
__set_current_state(TASK_RUNNING);
task_work_run();
return true;
}
return false;
}
/*
* Find and free completed poll iocbs
*/
static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
struct list_head *done)
{
struct req_batch rb;
struct io_kiocb *req;
/* order with ->result store in io_complete_rw_iopoll() */
smp_rmb();
io_init_req_batch(&rb);
while (!list_empty(done)) {
int cflags = 0;
req = list_first_entry(done, struct io_kiocb, inflight_entry);
list_del(&req->inflight_entry);
if (READ_ONCE(req->result) == -EAGAIN) {
req->iopoll_completed = 0;
if (io_rw_reissue(req))
continue;
}
if (req->flags & REQ_F_BUFFER_SELECTED)
cflags = io_put_rw_kbuf(req);
__io_cqring_fill_event(req, req->result, cflags);
(*nr_events)++;
if (refcount_dec_and_test(&req->refs))
io_req_free_batch(&rb, req, &ctx->submit_state);
}
io_commit_cqring(ctx);
io_cqring_ev_posted_iopoll(ctx);
io_req_free_batch_finish(ctx, &rb);
}
static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
long min)
{
struct io_kiocb *req, *tmp;
LIST_HEAD(done);
bool spin;
int ret;
/*
* Only spin for completions if we don't have multiple devices hanging
* off our complete list, and we're under the requested amount.
*/
spin = !ctx->poll_multi_file && *nr_events < min;
ret = 0;
list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
struct kiocb *kiocb = &req->rw.kiocb;
/*
* Move completed and retryable entries to our local lists.
* If we find a request that requires polling, break out
* and complete those lists first, if we have entries there.
*/
if (READ_ONCE(req->iopoll_completed)) {
list_move_tail(&req->inflight_entry, &done);
continue;
}
if (!list_empty(&done))
break;
ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
if (ret < 0)
break;
/* iopoll may have completed current req */
if (READ_ONCE(req->iopoll_completed))
list_move_tail(&req->inflight_entry, &done);
if (ret && spin)
spin = false;
ret = 0;
}
if (!list_empty(&done))
io_iopoll_complete(ctx, nr_events, &done);
return ret;
}
/*
* Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
* non-spinning poll check - we'll still enter the driver poll loop, but only
* as a non-spinning completion check.
*/
static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
long min)
{
while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
int ret;
ret = io_do_iopoll(ctx, nr_events, min);
if (ret < 0)
return ret;
if (*nr_events >= min)
return 0;
}
return 1;
}
/*
* We can't just wait for polled events to come to us, we have to actively
* find and complete them.
*/
static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
{
if (!(ctx->flags & IORING_SETUP_IOPOLL))
return;
mutex_lock(&ctx->uring_lock);
while (!list_empty(&ctx->iopoll_list)) {
unsigned int nr_events = 0;
io_do_iopoll(ctx, &nr_events, 0);
/* let it sleep and repeat later if can't complete a request */
if (nr_events == 0)
break;
/*
* Ensure we allow local-to-the-cpu processing to take place,
* in this case we need to ensure that we reap all events.
* Also let task_work, etc. to progress by releasing the mutex
*/
if (need_resched()) {
mutex_unlock(&ctx->uring_lock);
cond_resched();
mutex_lock(&ctx->uring_lock);
}
}
mutex_unlock(&ctx->uring_lock);
}
static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
{
unsigned int nr_events = 0;
int iters = 0, ret = 0;
/*
* We disallow the app entering submit/complete with polling, but we
* still need to lock the ring to prevent racing with polled issue
* that got punted to a workqueue.
*/
mutex_lock(&ctx->uring_lock);
do {
/*
* Don't enter poll loop if we already have events pending.
* If we do, we can potentially be spinning for commands that
* already triggered a CQE (eg in error).
*/
if (test_bit(0, &ctx->cq_check_overflow))
__io_cqring_overflow_flush(ctx, false, NULL, NULL);
if (io_cqring_events(ctx))
break;
/*
* If a submit got punted to a workqueue, we can have the
* application entering polling for a command before it gets
* issued. That app will hold the uring_lock for the duration
* of the poll right here, so we need to take a breather every
* now and then to ensure that the issue has a chance to add
* the poll to the issued list. Otherwise we can spin here
* forever, while the workqueue is stuck trying to acquire the
* very same mutex.
*/
if (!(++iters & 7)) {
mutex_unlock(&ctx->uring_lock);
io_run_task_work();
mutex_lock(&ctx->uring_lock);
}
ret = io_iopoll_getevents(ctx, &nr_events, min);
if (ret <= 0)
break;
ret = 0;
} while (min && !nr_events && !need_resched());
mutex_unlock(&ctx->uring_lock);
return ret;
}
static void kiocb_end_write(struct io_kiocb *req)
{
/*
* Tell lockdep we inherited freeze protection from submission
* thread.
*/
if (req->flags & REQ_F_ISREG) {
struct inode *inode = file_inode(req->file);
__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
}
file_end_write(req->file);
}
#ifdef CONFIG_BLOCK
static bool io_resubmit_prep(struct io_kiocb *req)
{
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
int rw, ret;
struct iov_iter iter;
/* already prepared */
if (req->async_data)
return true;
switch (req->opcode) {
case IORING_OP_READV:
case IORING_OP_READ_FIXED:
case IORING_OP_READ:
rw = READ;
break;
case IORING_OP_WRITEV:
case IORING_OP_WRITE_FIXED:
case IORING_OP_WRITE:
rw = WRITE;
break;
default:
printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
req->opcode);
return false;
}
ret = io_import_iovec(rw, req, &iovec, &iter, false);
if (ret < 0)
return false;
return !io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
}
#endif
static bool io_rw_reissue(struct io_kiocb *req)
{
#ifdef CONFIG_BLOCK
umode_t mode = file_inode(req->file)->i_mode;
if (!S_ISBLK(mode) && !S_ISREG(mode))
return false;
if ((req->flags & REQ_F_NOWAIT) || io_wq_current_is_worker())
return false;
/*
* If ref is dying, we might be running poll reap from the exit work.
* Don't attempt to reissue from that path, just let it fail with
* -EAGAIN.
*/
if (percpu_ref_is_dying(&req->ctx->refs))
return false;
lockdep_assert_held(&req->ctx->uring_lock);
if (io_resubmit_prep(req)) {
refcount_inc(&req->refs);
io_queue_async_work(req);
return true;
}
req_set_fail_links(req);
#endif
return false;
}
static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
unsigned int issue_flags)
{
int cflags = 0;
if ((res == -EAGAIN || res == -EOPNOTSUPP) && io_rw_reissue(req))
return;
if (res != req->result)
req_set_fail_links(req);
if (req->rw.kiocb.ki_flags & IOCB_WRITE)
kiocb_end_write(req);
if (req->flags & REQ_F_BUFFER_SELECTED)
cflags = io_put_rw_kbuf(req);
__io_req_complete(req, issue_flags, res, cflags);
}
static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
{
struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
__io_complete_rw(req, res, res2, 0);
}
static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
{
struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
if (kiocb->ki_flags & IOCB_WRITE)
kiocb_end_write(req);
if (res != -EAGAIN && res != req->result)
req_set_fail_links(req);
WRITE_ONCE(req->result, res);
/* order with io_poll_complete() checking ->result */
smp_wmb();
WRITE_ONCE(req->iopoll_completed, 1);
}
/*
* After the iocb has been issued, it's safe to be found on the poll list.
* Adding the kiocb to the list AFTER submission ensures that we don't
* find it from a io_iopoll_getevents() thread before the issuer is done
* accessing the kiocb cookie.
*/
static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
{
struct io_ring_ctx *ctx = req->ctx;
/*
* Track whether we have multiple files in our lists. This will impact
* how we do polling eventually, not spinning if we're on potentially
* different devices.
*/
if (list_empty(&ctx->iopoll_list)) {
ctx->poll_multi_file = false;
} else if (!ctx->poll_multi_file) {
struct io_kiocb *list_req;
list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
inflight_entry);
if (list_req->file != req->file)
ctx->poll_multi_file = true;
}
/*
* For fast devices, IO may have already completed. If it has, add
* it to the front so we find it first.
*/
if (READ_ONCE(req->iopoll_completed))
list_add(&req->inflight_entry, &ctx->iopoll_list);
else
list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
/*
* If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
* task context or in io worker task context. If current task context is
* sq thread, we don't need to check whether should wake up sq thread.
*/
if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
wq_has_sleeper(&ctx->sq_data->wait))
wake_up(&ctx->sq_data->wait);
}
static inline void io_state_file_put(struct io_submit_state *state)
{
if (state->file_refs) {
fput_many(state->file, state->file_refs);
state->file_refs = 0;
}
}
/*
* Get as many references to a file as we have IOs left in this submission,
* assuming most submissions are for one file, or at least that each file
* has more than one submission.
*/
static struct file *__io_file_get(struct io_submit_state *state, int fd)
{
if (!state)
return fget(fd);
if (state->file_refs) {
if (state->fd == fd) {
state->file_refs--;
return state->file;
}
io_state_file_put(state);
}
state->file = fget_many(fd, state->ios_left);
if (unlikely(!state->file))
return NULL;
state->fd = fd;
state->file_refs = state->ios_left - 1;
return state->file;
}
static bool io_bdev_nowait(struct block_device *bdev)
{
return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
}
/*
* If we tracked the file through the SCM inflight mechanism, we could support
* any file. For now, just ensure that anything potentially problematic is done
* inline.
*/
static bool io_file_supports_async(struct file *file, int rw)
{
umode_t mode = file_inode(file)->i_mode;
if (S_ISBLK(mode)) {
if (IS_ENABLED(CONFIG_BLOCK) &&
io_bdev_nowait(I_BDEV(file->f_mapping->host)))
return true;
return false;
}
if (S_ISCHR(mode) || S_ISSOCK(mode))
return true;
if (S_ISREG(mode)) {
if (IS_ENABLED(CONFIG_BLOCK) &&
io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
file->f_op != &io_uring_fops)
return true;
return false;
}
/* any ->read/write should understand O_NONBLOCK */
if (file->f_flags & O_NONBLOCK)
return true;
if (!(file->f_mode & FMODE_NOWAIT))
return false;
if (rw == READ)
return file->f_op->read_iter != NULL;
return file->f_op->write_iter != NULL;
}
static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_ring_ctx *ctx = req->ctx;
struct kiocb *kiocb = &req->rw.kiocb;
struct file *file = req->file;
unsigned ioprio;
int ret;
if (S_ISREG(file_inode(file)->i_mode))
req->flags |= REQ_F_ISREG;
kiocb->ki_pos = READ_ONCE(sqe->off);
if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
req->flags |= REQ_F_CUR_POS;
kiocb->ki_pos = file->f_pos;
}
kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
if (unlikely(ret))
return ret;
/* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
req->flags |= REQ_F_NOWAIT;
ioprio = READ_ONCE(sqe->ioprio);
if (ioprio) {
ret = ioprio_check_cap(ioprio);
if (ret)
return ret;
kiocb->ki_ioprio = ioprio;
} else
kiocb->ki_ioprio = get_current_ioprio();
if (ctx->flags & IORING_SETUP_IOPOLL) {
if (!(kiocb->ki_flags & IOCB_DIRECT) ||
!kiocb->ki_filp->f_op->iopoll)
return -EOPNOTSUPP;
kiocb->ki_flags |= IOCB_HIPRI;
kiocb->ki_complete = io_complete_rw_iopoll;
req->iopoll_completed = 0;
} else {
if (kiocb->ki_flags & IOCB_HIPRI)
return -EINVAL;
kiocb->ki_complete = io_complete_rw;
}
req->rw.addr = READ_ONCE(sqe->addr);
req->rw.len = READ_ONCE(sqe->len);
req->buf_index = READ_ONCE(sqe->buf_index);
return 0;
}
static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
{
switch (ret) {
case -EIOCBQUEUED:
break;
case -ERESTARTSYS:
case -ERESTARTNOINTR:
case -ERESTARTNOHAND:
case -ERESTART_RESTARTBLOCK:
/*
* We can't just restart the syscall, since previously
* submitted sqes may already be in progress. Just fail this
* IO with EINTR.
*/
ret = -EINTR;
fallthrough;
default:
kiocb->ki_complete(kiocb, ret, 0);
}
}
static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
unsigned int issue_flags)
{
struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
struct io_async_rw *io = req->async_data;
/* add previously done IO, if any */
if (io && io->bytes_done > 0) {
if (ret < 0)
ret = io->bytes_done;
else
ret += io->bytes_done;
}
if (req->flags & REQ_F_CUR_POS)
req->file->f_pos = kiocb->ki_pos;
if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
__io_complete_rw(req, ret, 0, issue_flags);
else
io_rw_done(kiocb, ret);
}
static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
{
struct io_ring_ctx *ctx = req->ctx;
size_t len = req->rw.len;
struct io_mapped_ubuf *imu;
u16 index, buf_index = req->buf_index;
size_t offset;
u64 buf_addr;
if (unlikely(buf_index >= ctx->nr_user_bufs))
return -EFAULT;
index = array_index_nospec(buf_index, ctx->nr_user_bufs);
imu = &ctx->user_bufs[index];
buf_addr = req->rw.addr;
/* overflow */
if (buf_addr + len < buf_addr)
return -EFAULT;
/* not inside the mapped region */
if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
return -EFAULT;
/*
* May not be a start of buffer, set size appropriately
* and advance us to the beginning.
*/
offset = buf_addr - imu->ubuf;
iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
if (offset) {
/*
* Don't use iov_iter_advance() here, as it's really slow for
* using the latter parts of a big fixed buffer - it iterates
* over each segment manually. We can cheat a bit here, because
* we know that:
*
* 1) it's a BVEC iter, we set it up
* 2) all bvecs are PAGE_SIZE in size, except potentially the
* first and last bvec
*
* So just find our index, and adjust the iterator afterwards.
* If the offset is within the first bvec (or the whole first
* bvec, just use iov_iter_advance(). This makes it easier
* since we can just skip the first segment, which may not
* be PAGE_SIZE aligned.
*/
const struct bio_vec *bvec = imu->bvec;
if (offset <= bvec->bv_len) {
iov_iter_advance(iter, offset);
} else {
unsigned long seg_skip;
/* skip first vec */
offset -= bvec->bv_len;
seg_skip = 1 + (offset >> PAGE_SHIFT);
iter->bvec = bvec + seg_skip;
iter->nr_segs -= seg_skip;
iter->count -= bvec->bv_len + offset;
iter->iov_offset = offset & ~PAGE_MASK;
}
}
return 0;
}
static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
{
if (needs_lock)
mutex_unlock(&ctx->uring_lock);
}
static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
{
/*
* "Normal" inline submissions always hold the uring_lock, since we
* grab it from the system call. Same is true for the SQPOLL offload.
* The only exception is when we've detached the request and issue it
* from an async worker thread, grab the lock for that case.
*/
if (needs_lock)
mutex_lock(&ctx->uring_lock);
}
static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
int bgid, struct io_buffer *kbuf,
bool needs_lock)
{
struct io_buffer *head;
if (req->flags & REQ_F_BUFFER_SELECTED)
return kbuf;
io_ring_submit_lock(req->ctx, needs_lock);
lockdep_assert_held(&req->ctx->uring_lock);
head = idr_find(&req->ctx->io_buffer_idr, bgid);
if (head) {
if (!list_empty(&head->list)) {
kbuf = list_last_entry(&head->list, struct io_buffer,
list);
list_del(&kbuf->list);
} else {
kbuf = head;
idr_remove(&req->ctx->io_buffer_idr, bgid);
}
if (*len > kbuf->len)
*len = kbuf->len;
} else {
kbuf = ERR_PTR(-ENOBUFS);
}
io_ring_submit_unlock(req->ctx, needs_lock);
return kbuf;
}
static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
bool needs_lock)
{
struct io_buffer *kbuf;
u16 bgid;
kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
bgid = req->buf_index;
kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
if (IS_ERR(kbuf))
return kbuf;
req->rw.addr = (u64) (unsigned long) kbuf;
req->flags |= REQ_F_BUFFER_SELECTED;
return u64_to_user_ptr(kbuf->addr);
}
#ifdef CONFIG_COMPAT
static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
bool needs_lock)
{
struct compat_iovec __user *uiov;
compat_ssize_t clen;
void __user *buf;
ssize_t len;
uiov = u64_to_user_ptr(req->rw.addr);
if (!access_ok(uiov, sizeof(*uiov)))
return -EFAULT;
if (__get_user(clen, &uiov->iov_len))
return -EFAULT;
if (clen < 0)
return -EINVAL;
len = clen;
buf = io_rw_buffer_select(req, &len, needs_lock);
if (IS_ERR(buf))
return PTR_ERR(buf);
iov[0].iov_base = buf;
iov[0].iov_len = (compat_size_t) len;
return 0;
}
#endif
static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
bool needs_lock)
{
struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
void __user *buf;
ssize_t len;
if (copy_from_user(iov, uiov, sizeof(*uiov)))
return -EFAULT;
len = iov[0].iov_len;
if (len < 0)
return -EINVAL;
buf = io_rw_buffer_select(req, &len, needs_lock);
if (IS_ERR(buf))
return PTR_ERR(buf);
iov[0].iov_base = buf;
iov[0].iov_len = len;
return 0;
}
static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
bool needs_lock)
{
if (req->flags & REQ_F_BUFFER_SELECTED) {
struct io_buffer *kbuf;
kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
iov[0].iov_len = kbuf->len;
return 0;
}
if (req->rw.len != 1)
return -EINVAL;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
return io_compat_import(req, iov, needs_lock);
#endif
return __io_iov_buffer_select(req, iov, needs_lock);
}
static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
struct iov_iter *iter, bool needs_lock)
{
void __user *buf = u64_to_user_ptr(req->rw.addr);
size_t sqe_len = req->rw.len;
u8 opcode = req->opcode;
ssize_t ret;
if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
*iovec = NULL;
return io_import_fixed(req, rw, iter);
}
/* buffer index only valid with fixed read/write, or buffer select */
if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
return -EINVAL;
if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
if (req->flags & REQ_F_BUFFER_SELECT) {
buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
if (IS_ERR(buf))
return PTR_ERR(buf);
req->rw.len = sqe_len;
}
ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
*iovec = NULL;
return ret;
}
if (req->flags & REQ_F_BUFFER_SELECT) {
ret = io_iov_buffer_select(req, *iovec, needs_lock);
if (!ret)
iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
*iovec = NULL;
return ret;
}
return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
req->ctx->compat);
}
static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
{
return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
}
/*
* For files that don't have ->read_iter() and ->write_iter(), handle them
* by looping over ->read() or ->write() manually.
*/
static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
{
struct kiocb *kiocb = &req->rw.kiocb;
struct file *file = req->file;
ssize_t ret = 0;
/*
* Don't support polled IO through this interface, and we can't
* support non-blocking either. For the latter, this just causes
* the kiocb to be handled from an async context.
*/
if (kiocb->ki_flags & IOCB_HIPRI)
return -EOPNOTSUPP;
if (kiocb->ki_flags & IOCB_NOWAIT)
return -EAGAIN;
while (iov_iter_count(iter)) {
struct iovec iovec;
ssize_t nr;
if (!iov_iter_is_bvec(iter)) {
iovec = iov_iter_iovec(iter);
} else {
iovec.iov_base = u64_to_user_ptr(req->rw.addr);
iovec.iov_len = req->rw.len;
}
if (rw == READ) {
nr = file->f_op->read(file, iovec.iov_base,
iovec.iov_len, io_kiocb_ppos(kiocb));
} else {
nr = file->f_op->write(file, iovec.iov_base,
iovec.iov_len, io_kiocb_ppos(kiocb));
}
if (nr < 0) {
if (!ret)
ret = nr;
break;
}
ret += nr;
if (nr != iovec.iov_len)
break;
req->rw.len -= nr;
req->rw.addr += nr;
iov_iter_advance(iter, nr);
}
return ret;
}
static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
const struct iovec *fast_iov, struct iov_iter *iter)
{
struct io_async_rw *rw = req->async_data;
memcpy(&rw->iter, iter, sizeof(*iter));
rw->free_iovec = iovec;
rw->bytes_done = 0;
/* can only be fixed buffers, no need to do anything */
if (iov_iter_is_bvec(iter))
return;
if (!iovec) {
unsigned iov_off = 0;
rw->iter.iov = rw->fast_iov;
if (iter->iov != fast_iov) {
iov_off = iter->iov - fast_iov;
rw->iter.iov += iov_off;
}
if (rw->fast_iov != fast_iov)
memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
sizeof(struct iovec) * iter->nr_segs);
} else {
req->flags |= REQ_F_NEED_CLEANUP;
}
}
static inline int __io_alloc_async_data(struct io_kiocb *req)
{
WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
return req->async_data == NULL;
}
static int io_alloc_async_data(struct io_kiocb *req)
{
if (!io_op_defs[req->opcode].needs_async_data)
return 0;
return __io_alloc_async_data(req);
}
static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
const struct iovec *fast_iov,
struct iov_iter *iter, bool force)
{
if (!force && !io_op_defs[req->opcode].needs_async_data)
return 0;
if (!req->async_data) {
if (__io_alloc_async_data(req)) {
kfree(iovec);
return -ENOMEM;
}
io_req_map_rw(req, iovec, fast_iov, iter);
}
return 0;
}
static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
{
struct io_async_rw *iorw = req->async_data;
struct iovec *iov = iorw->fast_iov;
int ret;
ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
if (unlikely(ret < 0))
return ret;
iorw->bytes_done = 0;
iorw->free_iovec = iov;
if (iov)
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
if (unlikely(!(req->file->f_mode & FMODE_READ)))
return -EBADF;
return io_prep_rw(req, sqe);
}
/*
* This is our waitqueue callback handler, registered through lock_page_async()
* when we initially tried to do the IO with the iocb armed our waitqueue.
* This gets called when the page is unlocked, and we generally expect that to
* happen when the page IO is completed and the page is now uptodate. This will
* queue a task_work based retry of the operation, attempting to copy the data
* again. If the latter fails because the page was NOT uptodate, then we will
* do a thread based blocking retry of the operation. That's the unexpected
* slow path.
*/
static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
int sync, void *arg)
{
struct wait_page_queue *wpq;
struct io_kiocb *req = wait->private;
struct wait_page_key *key = arg;
wpq = container_of(wait, struct wait_page_queue, wait);
if (!wake_page_match(wpq, key))
return 0;
req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
list_del_init(&wait->entry);
/* submit ref gets dropped, acquire a new one */
refcount_inc(&req->refs);
io_req_task_queue(req);
return 1;
}
/*
* This controls whether a given IO request should be armed for async page
* based retry. If we return false here, the request is handed to the async
* worker threads for retry. If we're doing buffered reads on a regular file,
* we prepare a private wait_page_queue entry and retry the operation. This
* will either succeed because the page is now uptodate and unlocked, or it
* will register a callback when the page is unlocked at IO completion. Through
* that callback, io_uring uses task_work to setup a retry of the operation.
* That retry will attempt the buffered read again. The retry will generally
* succeed, or in rare cases where it fails, we then fall back to using the
* async worker threads for a blocking retry.
*/
static bool io_rw_should_retry(struct io_kiocb *req)
{
struct io_async_rw *rw = req->async_data;
struct wait_page_queue *wait = &rw->wpq;
struct kiocb *kiocb = &req->rw.kiocb;
/* never retry for NOWAIT, we just complete with -EAGAIN */
if (req->flags & REQ_F_NOWAIT)
return false;
/* Only for buffered IO */
if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
return false;
/*
* just use poll if we can, and don't attempt if the fs doesn't
* support callback based unlocks
*/
if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
return false;
wait->wait.func = io_async_buf_func;
wait->wait.private = req;
wait->wait.flags = 0;
INIT_LIST_HEAD(&wait->wait.entry);
kiocb->ki_flags |= IOCB_WAITQ;
kiocb->ki_flags &= ~IOCB_NOWAIT;
kiocb->ki_waitq = wait;
return true;
}
static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
{
if (req->file->f_op->read_iter)
return call_read_iter(req->file, &req->rw.kiocb, iter);
else if (req->file->f_op->read)
return loop_rw_iter(READ, req, iter);
else
return -EINVAL;
}
static int io_read(struct io_kiocb *req, unsigned int issue_flags)
{
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
struct kiocb *kiocb = &req->rw.kiocb;
struct iov_iter __iter, *iter = &__iter;
struct io_async_rw *rw = req->async_data;
ssize_t io_size, ret, ret2;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
if (rw) {
iter = &rw->iter;
iovec = NULL;
} else {
ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
if (ret < 0)
return ret;
}
io_size = iov_iter_count(iter);
req->result = io_size;
/* Ensure we clear previously set non-block flag */
if (!force_nonblock)
kiocb->ki_flags &= ~IOCB_NOWAIT;
else
kiocb->ki_flags |= IOCB_NOWAIT;
/* If the file doesn't support async, just async punt */
if (force_nonblock && !io_file_supports_async(req->file, READ)) {
ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
return ret ?: -EAGAIN;
}
ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
if (unlikely(ret)) {
kfree(iovec);
return ret;
}
ret = io_iter_do_read(req, iter);
if (ret == -EIOCBQUEUED) {
goto out_free;
} else if (ret == -EAGAIN) {
/* IOPOLL retry should happen for io-wq threads */
if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
goto done;
/* no retry on NONBLOCK nor RWF_NOWAIT */
if (req->flags & REQ_F_NOWAIT)
goto done;
/* some cases will consume bytes even on error returns */
iov_iter_revert(iter, io_size - iov_iter_count(iter));
ret = 0;
} else if (ret <= 0 || ret == io_size || !force_nonblock ||
(req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
/* read all, failed, already did sync or don't want to retry */
goto done;
}
ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
if (ret2)
return ret2;
iovec = NULL;
rw = req->async_data;
/* now use our persistent iterator, if we aren't already */
iter = &rw->iter;
do {
io_size -= ret;
rw->bytes_done += ret;
/* if we can retry, do so with the callbacks armed */
if (!io_rw_should_retry(req)) {
kiocb->ki_flags &= ~IOCB_WAITQ;
return -EAGAIN;
}
/*
* Now retry read with the IOCB_WAITQ parts set in the iocb. If
* we get -EIOCBQUEUED, then we'll get a notification when the
* desired page gets unlocked. We can also get a partial read
* here, and if we do, then just retry at the new offset.
*/
ret = io_iter_do_read(req, iter);
if (ret == -EIOCBQUEUED)
return 0;
/* we got some bytes, but not all. retry. */
} while (ret > 0 && ret < io_size);
done:
kiocb_done(kiocb, ret, issue_flags);
out_free:
/* it's faster to check here then delegate to kfree */
if (iovec)
kfree(iovec);
return 0;
}
static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
return -EBADF;
return io_prep_rw(req, sqe);
}
static int io_write(struct io_kiocb *req, unsigned int issue_flags)
{
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
struct kiocb *kiocb = &req->rw.kiocb;
struct iov_iter __iter, *iter = &__iter;
struct io_async_rw *rw = req->async_data;
ssize_t ret, ret2, io_size;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
if (rw) {
iter = &rw->iter;
iovec = NULL;
} else {
ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
if (ret < 0)
return ret;
}
io_size = iov_iter_count(iter);
req->result = io_size;
/* Ensure we clear previously set non-block flag */
if (!force_nonblock)
kiocb->ki_flags &= ~IOCB_NOWAIT;
else
kiocb->ki_flags |= IOCB_NOWAIT;
/* If the file doesn't support async, just async punt */
if (force_nonblock && !io_file_supports_async(req->file, WRITE))
goto copy_iov;
/* file path doesn't support NOWAIT for non-direct_IO */
if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
(req->flags & REQ_F_ISREG))
goto copy_iov;
ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
if (unlikely(ret))
goto out_free;
/*
* Open-code file_start_write here to grab freeze protection,
* which will be released by another thread in
* io_complete_rw(). Fool lockdep by telling it the lock got
* released so that it doesn't complain about the held lock when
* we return to userspace.
*/
if (req->flags & REQ_F_ISREG) {
sb_start_write(file_inode(req->file)->i_sb);
__sb_writers_release(file_inode(req->file)->i_sb,
SB_FREEZE_WRITE);
}
kiocb->ki_flags |= IOCB_WRITE;
if (req->file->f_op->write_iter)
ret2 = call_write_iter(req->file, kiocb, iter);
else if (req->file->f_op->write)
ret2 = loop_rw_iter(WRITE, req, iter);
else
ret2 = -EINVAL;
/*
* Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
* retry them without IOCB_NOWAIT.
*/
if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
ret2 = -EAGAIN;
/* no retry on NONBLOCK nor RWF_NOWAIT */
if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
goto done;
if (!force_nonblock || ret2 != -EAGAIN) {
/* IOPOLL retry should happen for io-wq threads */
if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
goto copy_iov;
done:
kiocb_done(kiocb, ret2, issue_flags);
} else {
copy_iov:
/* some cases will consume bytes even on error returns */
iov_iter_revert(iter, io_size - iov_iter_count(iter));
ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
return ret ?: -EAGAIN;
}
out_free:
/* it's reportedly faster than delegating the null check to kfree() */
if (iovec)
kfree(iovec);
return ret;
}
static int io_renameat_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_rename *ren = &req->rename;
const char __user *oldf, *newf;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
ren->old_dfd = READ_ONCE(sqe->fd);
oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
ren->new_dfd = READ_ONCE(sqe->len);
ren->flags = READ_ONCE(sqe->rename_flags);
ren->oldpath = getname(oldf);
if (IS_ERR(ren->oldpath))
return PTR_ERR(ren->oldpath);
ren->newpath = getname(newf);
if (IS_ERR(ren->newpath)) {
putname(ren->oldpath);
return PTR_ERR(ren->newpath);
}
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_rename *ren = &req->rename;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
ren->newpath, ren->flags);
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
static int io_unlinkat_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_unlink *un = &req->unlink;
const char __user *fname;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
un->dfd = READ_ONCE(sqe->fd);
un->flags = READ_ONCE(sqe->unlink_flags);
if (un->flags & ~AT_REMOVEDIR)
return -EINVAL;
fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
un->filename = getname(fname);
if (IS_ERR(un->filename))
return PTR_ERR(un->filename);
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_unlink *un = &req->unlink;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
if (un->flags & AT_REMOVEDIR)
ret = do_rmdir(un->dfd, un->filename);
else
ret = do_unlinkat(un->dfd, un->filename);
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
static int io_shutdown_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
#if defined(CONFIG_NET)
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
sqe->buf_index)
return -EINVAL;
req->shutdown.how = READ_ONCE(sqe->len);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
{
#if defined(CONFIG_NET)
struct socket *sock;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
ret = __sys_shutdown_sock(sock, req->shutdown.how);
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int __io_splice_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_splice* sp = &req->splice;
unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
sp->file_in = NULL;
sp->len = READ_ONCE(sqe->len);
sp->flags = READ_ONCE(sqe->splice_flags);
if (unlikely(sp->flags & ~valid_flags))
return -EINVAL;
sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
(sp->flags & SPLICE_F_FD_IN_FIXED));
if (!sp->file_in)
return -EBADF;
req->flags |= REQ_F_NEED_CLEANUP;
if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
/*
* Splice operation will be punted aync, and here need to
* modify io_wq_work.flags, so initialize io_wq_work firstly.
*/
io_req_init_async(req);
req->work.flags |= IO_WQ_WORK_UNBOUND;
}
return 0;
}
static int io_tee_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
return -EINVAL;
return __io_splice_prep(req, sqe);
}
static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_splice *sp = &req->splice;
struct file *in = sp->file_in;
struct file *out = sp->file_out;
unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
long ret = 0;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
if (sp->len)
ret = do_tee(in, out, sp->len, flags);
io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret != sp->len)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_splice* sp = &req->splice;
sp->off_in = READ_ONCE(sqe->splice_off_in);
sp->off_out = READ_ONCE(sqe->off);
return __io_splice_prep(req, sqe);
}
static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_splice *sp = &req->splice;
struct file *in = sp->file_in;
struct file *out = sp->file_out;
unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
loff_t *poff_in, *poff_out;
long ret = 0;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
if (sp->len)
ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret != sp->len)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
/*
* IORING_OP_NOP just posts a completion event, nothing else.
*/
static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
__io_req_complete(req, issue_flags, 0, 0);
return 0;
}
static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_ring_ctx *ctx = req->ctx;
if (!req->file)
return -EBADF;
if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
return -EINVAL;
req->sync.flags = READ_ONCE(sqe->fsync_flags);
if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
return -EINVAL;
req->sync.off = READ_ONCE(sqe->off);
req->sync.len = READ_ONCE(sqe->len);
return 0;
}
static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
{
loff_t end = req->sync.off + req->sync.len;
int ret;
/* fsync always requires a blocking context */
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = vfs_fsync_range(req->file, req->sync.off,
end > 0 ? end : LLONG_MAX,
req->sync.flags & IORING_FSYNC_DATASYNC);
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
static int io_fallocate_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
return -EINVAL;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
req->sync.off = READ_ONCE(sqe->off);
req->sync.len = READ_ONCE(sqe->addr);
req->sync.mode = READ_ONCE(sqe->len);
return 0;
}
static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
{
int ret;
/* fallocate always requiring blocking context */
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
req->sync.len);
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
const char __user *fname;
int ret;
if (unlikely(sqe->ioprio || sqe->buf_index))
return -EINVAL;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
/* open.how should be already initialised */
if (!(req->open.how.flags & O_PATH) && force_o_largefile())
req->open.how.flags |= O_LARGEFILE;
req->open.dfd = READ_ONCE(sqe->fd);
fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
req->open.filename = getname(fname);
if (IS_ERR(req->open.filename)) {
ret = PTR_ERR(req->open.filename);
req->open.filename = NULL;
return ret;
}
req->open.nofile = rlimit(RLIMIT_NOFILE);
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
u64 flags, mode;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
mode = READ_ONCE(sqe->len);
flags = READ_ONCE(sqe->open_flags);
req->open.how = build_open_how(flags, mode);
return __io_openat_prep(req, sqe);
}
static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct open_how __user *how;
size_t len;
int ret;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
len = READ_ONCE(sqe->len);
if (len < OPEN_HOW_SIZE_VER0)
return -EINVAL;
ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
len);
if (ret)
return ret;
return __io_openat_prep(req, sqe);
}
static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
{
struct open_flags op;
struct file *file;
bool nonblock_set;
bool resolve_nonblock;
int ret;
ret = build_open_flags(&req->open.how, &op);
if (ret)
goto err;
nonblock_set = op.open_flag & O_NONBLOCK;
resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
if (issue_flags & IO_URING_F_NONBLOCK) {
/*
* Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
* it'll always -EAGAIN
*/
if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
return -EAGAIN;
op.lookup_flags |= LOOKUP_CACHED;
op.open_flag |= O_NONBLOCK;
}
ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
if (ret < 0)
goto err;
file = do_filp_open(req->open.dfd, req->open.filename, &op);
/* only retry if RESOLVE_CACHED wasn't already set by application */
if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
file == ERR_PTR(-EAGAIN)) {
/*
* We could hang on to this 'fd', but seems like marginal
* gain for something that is now known to be a slower path.
* So just put it, and we'll get a new one when we retry.
*/
put_unused_fd(ret);
return -EAGAIN;
}
if (IS_ERR(file)) {
put_unused_fd(ret);
ret = PTR_ERR(file);
} else {
if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
file->f_flags &= ~O_NONBLOCK;
fsnotify_open(file);
fd_install(ret, file);
}
err:
putname(req->open.filename);
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
{
return io_openat2(req, issue_flags & IO_URING_F_NONBLOCK);
}
static int io_remove_buffers_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_provide_buf *p = &req->pbuf;
u64 tmp;
if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
return -EINVAL;
tmp = READ_ONCE(sqe->fd);
if (!tmp || tmp > USHRT_MAX)
return -EINVAL;
memset(p, 0, sizeof(*p));
p->nbufs = tmp;
p->bgid = READ_ONCE(sqe->buf_group);
return 0;
}
static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
int bgid, unsigned nbufs)
{
unsigned i = 0;
/* shouldn't happen */
if (!nbufs)
return 0;
/* the head kbuf is the list itself */
while (!list_empty(&buf->list)) {
struct io_buffer *nxt;
nxt = list_first_entry(&buf->list, struct io_buffer, list);
list_del(&nxt->list);
kfree(nxt);
if (++i == nbufs)
return i;
}
i++;
kfree(buf);
idr_remove(&ctx->io_buffer_idr, bgid);
return i;
}
static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_provide_buf *p = &req->pbuf;
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer *head;
int ret = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
io_ring_submit_lock(ctx, !force_nonblock);
lockdep_assert_held(&ctx->uring_lock);
ret = -ENOENT;
head = idr_find(&ctx->io_buffer_idr, p->bgid);
if (head)
ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
if (ret < 0)
req_set_fail_links(req);
/* need to hold the lock to complete IOPOLL requests */
if (ctx->flags & IORING_SETUP_IOPOLL) {
__io_req_complete(req, issue_flags, ret, 0);
io_ring_submit_unlock(ctx, !force_nonblock);
} else {
io_ring_submit_unlock(ctx, !force_nonblock);
__io_req_complete(req, issue_flags, ret, 0);
}
return 0;
}
static int io_provide_buffers_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_provide_buf *p = &req->pbuf;
u64 tmp;
if (sqe->ioprio || sqe->rw_flags)
return -EINVAL;
tmp = READ_ONCE(sqe->fd);
if (!tmp || tmp > USHRT_MAX)
return -E2BIG;
p->nbufs = tmp;
p->addr = READ_ONCE(sqe->addr);
p->len = READ_ONCE(sqe->len);
if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
return -EFAULT;
p->bgid = READ_ONCE(sqe->buf_group);
tmp = READ_ONCE(sqe->off);
if (tmp > USHRT_MAX)
return -E2BIG;
p->bid = tmp;
return 0;
}
static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
{
struct io_buffer *buf;
u64 addr = pbuf->addr;
int i, bid = pbuf->bid;
for (i = 0; i < pbuf->nbufs; i++) {
buf = kmalloc(sizeof(*buf), GFP_KERNEL);
if (!buf)
break;
buf->addr = addr;
buf->len = pbuf->len;
buf->bid = bid;
addr += pbuf->len;
bid++;
if (!*head) {
INIT_LIST_HEAD(&buf->list);
*head = buf;
} else {
list_add_tail(&buf->list, &(*head)->list);
}
}
return i ? i : -ENOMEM;
}
static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_provide_buf *p = &req->pbuf;
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer *head, *list;
int ret = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
io_ring_submit_lock(ctx, !force_nonblock);
lockdep_assert_held(&ctx->uring_lock);
list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
ret = io_add_buffers(p, &head);
if (ret < 0)
goto out;
if (!list) {
ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
GFP_KERNEL);
if (ret < 0) {
__io_remove_buffers(ctx, head, p->bgid, -1U);
goto out;
}
}
out:
if (ret < 0)
req_set_fail_links(req);
/* need to hold the lock to complete IOPOLL requests */
if (ctx->flags & IORING_SETUP_IOPOLL) {
__io_req_complete(req, issue_flags, ret, 0);
io_ring_submit_unlock(ctx, !force_nonblock);
} else {
io_ring_submit_unlock(ctx, !force_nonblock);
__io_req_complete(req, issue_flags, ret, 0);
}
return 0;
}
static int io_epoll_ctl_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
#if defined(CONFIG_EPOLL)
if (sqe->ioprio || sqe->buf_index)
return -EINVAL;
if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
return -EINVAL;
req->epoll.epfd = READ_ONCE(sqe->fd);
req->epoll.op = READ_ONCE(sqe->len);
req->epoll.fd = READ_ONCE(sqe->off);
if (ep_op_has_event(req->epoll.op)) {
struct epoll_event __user *ev;
ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
return -EFAULT;
}
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
{
#if defined(CONFIG_EPOLL)
struct io_epoll *ie = &req->epoll;
int ret;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
if (force_nonblock && ret == -EAGAIN)
return -EAGAIN;
if (ret < 0)
req_set_fail_links(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
if (sqe->ioprio || sqe->buf_index || sqe->off)
return -EINVAL;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
req->madvise.addr = READ_ONCE(sqe->addr);
req->madvise.len = READ_ONCE(sqe->len);
req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
{
#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
struct io_madvise *ma = &req->madvise;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
if (sqe->ioprio || sqe->buf_index || sqe->addr)
return -EINVAL;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
req->fadvise.offset = READ_ONCE(sqe->off);
req->fadvise.len = READ_ONCE(sqe->len);
req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
return 0;
}
static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_fadvise *fa = &req->fadvise;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK) {
switch (fa->advice) {
case POSIX_FADV_NORMAL:
case POSIX_FADV_RANDOM:
case POSIX_FADV_SEQUENTIAL:
break;
default:
return -EAGAIN;
}
}
ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
return -EINVAL;
if (sqe->ioprio || sqe->buf_index)
return -EINVAL;
if (req->flags & REQ_F_FIXED_FILE)
return -EBADF;
req->statx.dfd = READ_ONCE(sqe->fd);
req->statx.mask = READ_ONCE(sqe->len);
req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
req->statx.flags = READ_ONCE(sqe->statx_flags);
return 0;
}
static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_statx *ctx = &req->statx;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK) {
/* only need file table for an actual valid fd */
if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
req->flags |= REQ_F_NO_FILE_TABLE;
return -EAGAIN;
}
ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
ctx->buffer);
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
sqe->rw_flags || sqe->buf_index)
return -EINVAL;
if (req->flags & REQ_F_FIXED_FILE)
return -EBADF;
req->close.fd = READ_ONCE(sqe->fd);
return 0;
}
static int io_close(struct io_kiocb *req, unsigned int issue_flags)
{
struct files_struct *files = current->files;
struct io_close *close = &req->close;
struct fdtable *fdt;
struct file *file;
int ret;
file = NULL;
ret = -EBADF;
spin_lock(&files->file_lock);
fdt = files_fdtable(files);
if (close->fd >= fdt->max_fds) {
spin_unlock(&files->file_lock);
goto err;
}
file = fdt->fd[close->fd];
if (!file) {
spin_unlock(&files->file_lock);
goto err;
}
if (file->f_op == &io_uring_fops) {
spin_unlock(&files->file_lock);
file = NULL;
goto err;
}
/* if the file has a flush method, be safe and punt to async */
if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
spin_unlock(&files->file_lock);
return -EAGAIN;
}
ret = __close_fd_get_file(close->fd, &file);
spin_unlock(&files->file_lock);
if (ret < 0) {
if (ret == -ENOENT)
ret = -EBADF;
goto err;
}
/* No ->flush() or already async, safely close from here */
ret = filp_close(file, current->files);
err:
if (ret < 0)
req_set_fail_links(req);
if (file)
fput(file);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_ring_ctx *ctx = req->ctx;
if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
return -EINVAL;
req->sync.off = READ_ONCE(sqe->off);
req->sync.len = READ_ONCE(sqe->len);
req->sync.flags = READ_ONCE(sqe->sync_range_flags);
return 0;
}
static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
{
int ret;
/* sync_file_range always requires a blocking context */
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = sync_file_range(req->file, req->sync.off, req->sync.len,
req->sync.flags);
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
#if defined(CONFIG_NET)
static int io_setup_async_msg(struct io_kiocb *req,
struct io_async_msghdr *kmsg)
{
struct io_async_msghdr *async_msg = req->async_data;
if (async_msg)
return -EAGAIN;
if (io_alloc_async_data(req)) {
kfree(kmsg->free_iov);
return -ENOMEM;
}
async_msg = req->async_data;
req->flags |= REQ_F_NEED_CLEANUP;
memcpy(async_msg, kmsg, sizeof(*kmsg));
async_msg->msg.msg_name = &async_msg->addr;
/* if were using fast_iov, set it to the new one */
if (!async_msg->free_iov)
async_msg->msg.msg_iter.iov = async_msg->fast_iov;
return -EAGAIN;
}
static int io_sendmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
iomsg->msg.msg_name = &iomsg->addr;
iomsg->free_iov = iomsg->fast_iov;
return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
req->sr_msg.msg_flags, &iomsg->free_iov);
}
static int io_sendmsg_prep_async(struct io_kiocb *req)
{
int ret;
if (!io_op_defs[req->opcode].needs_async_data)
return 0;
ret = io_sendmsg_copy_hdr(req, req->async_data);
if (!ret)
req->flags |= REQ_F_NEED_CLEANUP;
return ret;
}
static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = &req->sr_msg;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
sr->msg_flags = READ_ONCE(sqe->msg_flags);
sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
sr->len = READ_ONCE(sqe->len);
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
sr->msg_flags |= MSG_CMSG_COMPAT;
#endif
return 0;
}
static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_async_msghdr iomsg, *kmsg;
struct socket *sock;
unsigned flags;
int ret;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
kmsg = req->async_data;
if (!kmsg) {
ret = io_sendmsg_copy_hdr(req, &iomsg);
if (ret)
return ret;
kmsg = &iomsg;
}
flags = req->sr_msg.msg_flags;
if (flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
else if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
return io_setup_async_msg(req, kmsg);
if (ret == -ERESTARTSYS)
ret = -EINTR;
/* fast path, check for non-NULL to avoid function call */
if (kmsg->free_iov)
kfree(kmsg->free_iov);
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret < 0)
req_set_fail_links(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_send(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = &req->sr_msg;
struct msghdr msg;
struct iovec iov;
struct socket *sock;
unsigned flags;
int ret;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
if (unlikely(ret))
return ret;
msg.msg_name = NULL;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_namelen = 0;
flags = req->sr_msg.msg_flags;
if (flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
else if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
msg.msg_flags = flags;
ret = sock_sendmsg(sock, &msg);
if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
return -EAGAIN;
if (ret == -ERESTARTSYS)
ret = -EINTR;
if (ret < 0)
req_set_fail_links(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
struct io_sr_msg *sr = &req->sr_msg;
struct iovec __user *uiov;
size_t iov_len;
int ret;
ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
&iomsg->uaddr, &uiov, &iov_len);
if (ret)
return ret;
if (req->flags & REQ_F_BUFFER_SELECT) {
if (iov_len > 1)
return -EINVAL;
if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
return -EFAULT;
sr->len = iomsg->fast_iov[0].iov_len;
iomsg->free_iov = NULL;
} else {
iomsg->free_iov = iomsg->fast_iov;
ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
&iomsg->free_iov, &iomsg->msg.msg_iter,
false);
if (ret > 0)
ret = 0;
}
return ret;
}
#ifdef CONFIG_COMPAT
static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
struct compat_msghdr __user *msg_compat;
struct io_sr_msg *sr = &req->sr_msg;
struct compat_iovec __user *uiov;
compat_uptr_t ptr;
compat_size_t len;
int ret;
msg_compat = (struct compat_msghdr __user *) sr->umsg;
ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
&ptr, &len);
if (ret)
return ret;
uiov = compat_ptr(ptr);
if (req->flags & REQ_F_BUFFER_SELECT) {
compat_ssize_t clen;
if (len > 1)
return -EINVAL;
if (!access_ok(uiov, sizeof(*uiov)))
return -EFAULT;
if (__get_user(clen, &uiov->iov_len))
return -EFAULT;
if (clen < 0)
return -EINVAL;
sr->len = clen;
iomsg->free_iov = NULL;
} else {
iomsg->free_iov = iomsg->fast_iov;
ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
UIO_FASTIOV, &iomsg->free_iov,
&iomsg->msg.msg_iter, true);
if (ret < 0)
return ret;
}
return 0;
}
#endif
static int io_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
iomsg->msg.msg_name = &iomsg->addr;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
return __io_compat_recvmsg_copy_hdr(req, iomsg);
#endif
return __io_recvmsg_copy_hdr(req, iomsg);
}
static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
bool needs_lock)
{
struct io_sr_msg *sr = &req->sr_msg;
struct io_buffer *kbuf;
kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
if (IS_ERR(kbuf))
return kbuf;
sr->kbuf = kbuf;
req->flags |= REQ_F_BUFFER_SELECTED;
return kbuf;
}
static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
{
return io_put_kbuf(req, req->sr_msg.kbuf);
}
static int io_recvmsg_prep_async(struct io_kiocb *req)
{
int ret;
if (!io_op_defs[req->opcode].needs_async_data)
return 0;
ret = io_recvmsg_copy_hdr(req, req->async_data);
if (!ret)
req->flags |= REQ_F_NEED_CLEANUP;
return ret;
}
static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = &req->sr_msg;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
sr->msg_flags = READ_ONCE(sqe->msg_flags);
sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
sr->len = READ_ONCE(sqe->len);
sr->bgid = READ_ONCE(sqe->buf_group);
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
sr->msg_flags |= MSG_CMSG_COMPAT;
#endif
return 0;
}
static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_async_msghdr iomsg, *kmsg;
struct socket *sock;
struct io_buffer *kbuf;
unsigned flags;
int ret, cflags = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
kmsg = req->async_data;
if (!kmsg) {
ret = io_recvmsg_copy_hdr(req, &iomsg);
if (ret)
return ret;
kmsg = &iomsg;
}
if (req->flags & REQ_F_BUFFER_SELECT) {
kbuf = io_recv_buffer_select(req, !force_nonblock);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
kmsg->fast_iov[0].iov_len = req->sr_msg.len;
iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
1, req->sr_msg.len);
}
flags = req->sr_msg.msg_flags;
if (flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
else if (force_nonblock)
flags |= MSG_DONTWAIT;
ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
kmsg->uaddr, flags);
if (force_nonblock && ret == -EAGAIN)
return io_setup_async_msg(req, kmsg);
if (ret == -ERESTARTSYS)
ret = -EINTR;
if (req->flags & REQ_F_BUFFER_SELECTED)
cflags = io_put_recv_kbuf(req);
/* fast path, check for non-NULL to avoid function call */
if (kmsg->free_iov)
kfree(kmsg->free_iov);
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret < 0)
req_set_fail_links(req);
__io_req_complete(req, issue_flags, ret, cflags);
return 0;
}
static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_buffer *kbuf;
struct io_sr_msg *sr = &req->sr_msg;
struct msghdr msg;
void __user *buf = sr->buf;
struct socket *sock;
struct iovec iov;
unsigned flags;
int ret, cflags = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (req->flags & REQ_F_BUFFER_SELECT) {
kbuf = io_recv_buffer_select(req, !force_nonblock);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
buf = u64_to_user_ptr(kbuf->addr);
}
ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
if (unlikely(ret))
goto out_free;
msg.msg_name = NULL;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_namelen = 0;
msg.msg_iocb = NULL;
msg.msg_flags = 0;
flags = req->sr_msg.msg_flags;
if (flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
else if (force_nonblock)
flags |= MSG_DONTWAIT;
ret = sock_recvmsg(sock, &msg, flags);
if (force_nonblock && ret == -EAGAIN)
return -EAGAIN;
if (ret == -ERESTARTSYS)
ret = -EINTR;
out_free:
if (req->flags & REQ_F_BUFFER_SELECTED)
cflags = io_put_recv_kbuf(req);
if (ret < 0)
req_set_fail_links(req);
__io_req_complete(req, issue_flags, ret, cflags);
return 0;
}
static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_accept *accept = &req->accept;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (sqe->ioprio || sqe->len || sqe->buf_index)
return -EINVAL;
accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
accept->flags = READ_ONCE(sqe->accept_flags);
accept->nofile = rlimit(RLIMIT_NOFILE);
return 0;
}
static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_accept *accept = &req->accept;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
int ret;
if (req->file->f_flags & O_NONBLOCK)
req->flags |= REQ_F_NOWAIT;
ret = __sys_accept4_file(req->file, file_flags, accept->addr,
accept->addr_len, accept->flags,
accept->nofile);
if (ret == -EAGAIN && force_nonblock)
return -EAGAIN;
if (ret < 0) {
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail_links(req);
}
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_connect_prep_async(struct io_kiocb *req)
{
struct io_async_connect *io = req->async_data;
struct io_connect *conn = &req->connect;
return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
}
static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_connect *conn = &req->connect;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
return -EINVAL;
conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
conn->addr_len = READ_ONCE(sqe->addr2);
return 0;
}
static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_async_connect __io, *io;
unsigned file_flags;
int ret;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
if (req->async_data) {
io = req->async_data;
} else {
ret = move_addr_to_kernel(req->connect.addr,
req->connect.addr_len,
&__io.address);
if (ret)
goto out;
io = &__io;
}
file_flags = force_nonblock ? O_NONBLOCK : 0;
ret = __sys_connect_file(req->file, &io->address,
req->connect.addr_len, file_flags);
if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
if (req->async_data)
return -EAGAIN;
if (io_alloc_async_data(req)) {
ret = -ENOMEM;
goto out;
}
io = req->async_data;
memcpy(req->async_data, &__io, sizeof(__io));
return -EAGAIN;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
out:
if (ret < 0)
req_set_fail_links(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
#else /* !CONFIG_NET */
#define IO_NETOP_FN(op) \
static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
{ \
return -EOPNOTSUPP; \
}
#define IO_NETOP_PREP(op) \
IO_NETOP_FN(op) \
static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
{ \
return -EOPNOTSUPP; \
} \
#define IO_NETOP_PREP_ASYNC(op) \
IO_NETOP_PREP(op) \
static int io_##op##_prep_async(struct io_kiocb *req) \
{ \
return -EOPNOTSUPP; \
}
IO_NETOP_PREP_ASYNC(sendmsg);
IO_NETOP_PREP_ASYNC(recvmsg);
IO_NETOP_PREP_ASYNC(connect);
IO_NETOP_PREP(accept);
IO_NETOP_FN(send);
IO_NETOP_FN(recv);
#endif /* CONFIG_NET */
struct io_poll_table {
struct poll_table_struct pt;
struct io_kiocb *req;
int error;
};
static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
__poll_t mask, task_work_func_t func)
{
int ret;
/* for instances that support it check for an event match first: */
if (mask && !(mask & poll->events))
return 0;
trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
list_del_init(&poll->wait.entry);
req->result = mask;
req->task_work.func = func;
percpu_ref_get(&req->ctx->refs);
/*
* If this fails, then the task is exiting. When a task exits, the
* work gets canceled, so just cancel this request as well instead
* of executing it. We can't safely execute it anyway, as we may not
* have the needed state needed for it anyway.
*/
ret = io_req_task_work_add(req);
if (unlikely(ret)) {
WRITE_ONCE(poll->canceled, true);
io_req_task_work_add_fallback(req, func);
}
return 1;
}
static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
__acquires(&req->ctx->completion_lock)
{
struct io_ring_ctx *ctx = req->ctx;
if (!req->result && !READ_ONCE(poll->canceled)) {
struct poll_table_struct pt = { ._key = poll->events };
req->result = vfs_poll(req->file, &pt) & poll->events;
}
spin_lock_irq(&ctx->completion_lock);
if (!req->result && !READ_ONCE(poll->canceled)) {
add_wait_queue(poll->head, &poll->wait);
return true;
}
return false;
}
static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
{
/* pure poll stashes this in ->async_data, poll driven retry elsewhere */
if (req->opcode == IORING_OP_POLL_ADD)
return req->async_data;
return req->apoll->double_poll;
}
static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
{
if (req->opcode == IORING_OP_POLL_ADD)
return &req->poll;
return &req->apoll->poll;
}
static void io_poll_remove_double(struct io_kiocb *req)
{
struct io_poll_iocb *poll = io_poll_get_double(req);
lockdep_assert_held(&req->ctx->completion_lock);
if (poll && poll->head) {
struct wait_queue_head *head = poll->head;
spin_lock(&head->lock);
list_del_init(&poll->wait.entry);
if (poll->wait.private)
refcount_dec(&req->refs);
poll->head = NULL;
spin_unlock(&head->lock);
}
}
static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
{
struct io_ring_ctx *ctx = req->ctx;
io_poll_remove_double(req);
req->poll.done = true;
io_cqring_fill_event(req, error ? error : mangle_poll(mask));
io_commit_cqring(ctx);
}
static void io_poll_task_func(struct callback_head *cb)
{
struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
struct io_ring_ctx *ctx = req->ctx;
struct io_kiocb *nxt;
if (io_poll_rewait(req, &req->poll)) {
spin_unlock_irq(&ctx->completion_lock);
} else {
hash_del(&req->hash_node);
io_poll_complete(req, req->result, 0);
spin_unlock_irq(&ctx->completion_lock);
nxt = io_put_req_find_next(req);
io_cqring_ev_posted(ctx);
if (nxt)
__io_req_task_submit(nxt);
}
percpu_ref_put(&ctx->refs);
}
static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
int sync, void *key)
{
struct io_kiocb *req = wait->private;
struct io_poll_iocb *poll = io_poll_get_single(req);
__poll_t mask = key_to_poll(key);
/* for instances that support it check for an event match first: */
if (mask && !(mask & poll->events))
return 0;
list_del_init(&wait->entry);
if (poll && poll->head) {
bool done;
spin_lock(&poll->head->lock);
done = list_empty(&poll->wait.entry);
if (!done)
list_del_init(&poll->wait.entry);
/* make sure double remove sees this as being gone */
wait->private = NULL;
spin_unlock(&poll->head->lock);
if (!done) {
/* use wait func handler, so it matches the rq type */
poll->wait.func(&poll->wait, mode, sync, key);
}
}
refcount_dec(&req->refs);
return 1;
}
static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
wait_queue_func_t wake_func)
{
poll->head = NULL;
poll->done = false;
poll->canceled = false;
poll->events = events;
INIT_LIST_HEAD(&poll->wait.entry);
init_waitqueue_func_entry(&poll->wait, wake_func);
}
static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
struct wait_queue_head *head,
struct io_poll_iocb **poll_ptr)
{
struct io_kiocb *req = pt->req;
/*
* If poll->head is already set, it's because the file being polled
* uses multiple waitqueues for poll handling (eg one for read, one
* for write). Setup a separate io_poll_iocb if this happens.
*/
if (unlikely(poll->head)) {
struct io_poll_iocb *poll_one = poll;
/* already have a 2nd entry, fail a third attempt */
if (*poll_ptr) {
pt->error = -EINVAL;
return;
}
poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
if (!poll) {
pt->error = -ENOMEM;
return;
}
io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
refcount_inc(&req->refs);
poll->wait.private = req;
*poll_ptr = poll;
}
pt->error = 0;
poll->head = head;
if (poll->events & EPOLLEXCLUSIVE)
add_wait_queue_exclusive(head, &poll->wait);
else
add_wait_queue(head, &poll->wait);
}
static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
struct poll_table_struct *p)
{
struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
struct async_poll *apoll = pt->req->apoll;
__io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
}
static void io_async_task_func(struct callback_head *cb)
{
struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
struct async_poll *apoll = req->apoll;
struct io_ring_ctx *ctx = req->ctx;
trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
if (io_poll_rewait(req, &apoll->poll)) {
spin_unlock_irq(&ctx->completion_lock);
percpu_ref_put(&ctx->refs);
return;
}
/* If req is still hashed, it cannot have been canceled. Don't check. */
if (hash_hashed(&req->hash_node))
hash_del(&req->hash_node);
io_poll_remove_double(req);
spin_unlock_irq(&ctx->completion_lock);
if (!READ_ONCE(apoll->poll.canceled))
__io_req_task_submit(req);
else
__io_req_task_cancel(req, -ECANCELED);
percpu_ref_put(&ctx->refs);
kfree(apoll->double_poll);
kfree(apoll);
}
static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
void *key)
{
struct io_kiocb *req = wait->private;
struct io_poll_iocb *poll = &req->apoll->poll;
trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
key_to_poll(key));
return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
}
static void io_poll_req_insert(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
struct hlist_head *list;
list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
hlist_add_head(&req->hash_node, list);
}
static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
struct io_poll_iocb *poll,
struct io_poll_table *ipt, __poll_t mask,
wait_queue_func_t wake_func)
__acquires(&ctx->completion_lock)
{
struct io_ring_ctx *ctx = req->ctx;
bool cancel = false;
INIT_HLIST_NODE(&req->hash_node);
io_init_poll_iocb(poll, mask, wake_func);
poll->file = req->file;
poll->wait.private = req;
ipt->pt._key = mask;
ipt->req = req;
ipt->error = -EINVAL;
mask = vfs_poll(req->file, &ipt->pt) & poll->events;
spin_lock_irq(&ctx->completion_lock);
if (likely(poll->head)) {
spin_lock(&poll->head->lock);
if (unlikely(list_empty(&poll->wait.entry))) {
if (ipt->error)
cancel = true;
ipt->error = 0;
mask = 0;
}
if (mask || ipt->error)
list_del_init(&poll->wait.entry);
else if (cancel)
WRITE_ONCE(poll->canceled, true);
else if (!poll->done) /* actually waiting for an event */
io_poll_req_insert(req);
spin_unlock(&poll->head->lock);
}
return mask;
}
static bool io_arm_poll_handler(struct io_kiocb *req)
{
const struct io_op_def *def = &io_op_defs[req->opcode];
struct io_ring_ctx *ctx = req->ctx;
struct async_poll *apoll;
struct io_poll_table ipt;
__poll_t mask, ret;
int rw;
if (!req->file || !file_can_poll(req->file))
return false;
if (req->flags & REQ_F_POLLED)
return false;
if (def->pollin)
rw = READ;
else if (def->pollout)
rw = WRITE;
else
return false;
/* if we can't nonblock try, then no point in arming a poll handler */
if (!io_file_supports_async(req->file, rw))
return false;
apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
if (unlikely(!apoll))
return false;
apoll->double_poll = NULL;
req->flags |= REQ_F_POLLED;
req->apoll = apoll;
mask = 0;
if (def->pollin)
mask |= POLLIN | POLLRDNORM;
if (def->pollout)
mask |= POLLOUT | POLLWRNORM;
/* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
if ((req->opcode == IORING_OP_RECVMSG) &&
(req->sr_msg.msg_flags & MSG_ERRQUEUE))
mask &= ~POLLIN;
mask |= POLLERR | POLLPRI;
ipt.pt._qproc = io_async_queue_proc;
ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
io_async_wake);
if (ret || ipt.error) {
io_poll_remove_double(req);
spin_unlock_irq(&ctx->completion_lock);
kfree(apoll->double_poll);
kfree(apoll);
return false;
}
spin_unlock_irq(&ctx->completion_lock);
trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
apoll->poll.events);
return true;
}
static bool __io_poll_remove_one(struct io_kiocb *req,
struct io_poll_iocb *poll)
{
bool do_complete = false;
spin_lock(&poll->head->lock);
WRITE_ONCE(poll->canceled, true);
if (!list_empty(&poll->wait.entry)) {
list_del_init(&poll->wait.entry);
do_complete = true;
}
spin_unlock(&poll->head->lock);
hash_del(&req->hash_node);
return do_complete;
}
static bool io_poll_remove_one(struct io_kiocb *req)
{
bool do_complete;
io_poll_remove_double(req);
if (req->opcode == IORING_OP_POLL_ADD) {
do_complete = __io_poll_remove_one(req, &req->poll);
} else {
struct async_poll *apoll = req->apoll;
/* non-poll requests have submit ref still */
do_complete = __io_poll_remove_one(req, &apoll->poll);
if (do_complete) {
io_put_req(req);
kfree(apoll->double_poll);
kfree(apoll);
}
}
if (do_complete) {
io_cqring_fill_event(req, -ECANCELED);
io_commit_cqring(req->ctx);
req_set_fail_links(req);
io_put_req_deferred(req, 1);
}
return do_complete;
}
/*
* Returns true if we found and killed one or more poll requests
*/
static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
struct files_struct *files)
{
struct hlist_node *tmp;
struct io_kiocb *req;
int posted = 0, i;
spin_lock_irq(&ctx->completion_lock);
for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
struct hlist_head *list;
list = &ctx->cancel_hash[i];
hlist_for_each_entry_safe(req, tmp, list, hash_node) {
if (io_match_task(req, tsk, files))
posted += io_poll_remove_one(req);
}
}
spin_unlock_irq(&ctx->completion_lock);
if (posted)
io_cqring_ev_posted(ctx);
return posted != 0;
}
static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
{
struct hlist_head *list;
struct io_kiocb *req;
list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
hlist_for_each_entry(req, list, hash_node) {
if (sqe_addr != req->user_data)
continue;
if (io_poll_remove_one(req))
return 0;
return -EALREADY;
}
return -ENOENT;
}
static int io_poll_remove_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
sqe->poll_events)
return -EINVAL;
req->poll_remove.addr = READ_ONCE(sqe->addr);
return 0;
}
/*
* Find a running poll command that matches one specified in sqe->addr,
* and remove it if found.
*/
static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
int ret;
spin_lock_irq(&ctx->completion_lock);
ret = io_poll_cancel(ctx, req->poll_remove.addr);
spin_unlock_irq(&ctx->completion_lock);
if (ret < 0)
req_set_fail_links(req);
io_req_complete(req, ret);
return 0;
}
static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
void *key)
{
struct io_kiocb *req = wait->private;
struct io_poll_iocb *poll = &req->poll;
return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
}
static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
struct poll_table_struct *p)
{
struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
__io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
}
static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_poll_iocb *poll = &req->poll;
u32 events;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
return -EINVAL;
events = READ_ONCE(sqe->poll32_events);
#ifdef __BIG_ENDIAN
events = swahw32(events);
#endif
poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
(events & EPOLLEXCLUSIVE);
return 0;
}
static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_poll_iocb *poll = &req->poll;
struct io_ring_ctx *ctx = req->ctx;
struct io_poll_table ipt;
__poll_t mask;
ipt.pt._qproc = io_poll_queue_proc;
mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
io_poll_wake);
if (mask) { /* no async, we'd stolen it */
ipt.error = 0;
io_poll_complete(req, mask, 0);
}
spin_unlock_irq(&ctx->completion_lock);
if (mask) {
io_cqring_ev_posted(ctx);
io_put_req(req);
}
return ipt.error;
}
static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
{
struct io_timeout_data *data = container_of(timer,
struct io_timeout_data, timer);
struct io_kiocb *req = data->req;
struct io_ring_ctx *ctx = req->ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->completion_lock, flags);
list_del_init(&req->timeout.list);
atomic_set(&req->ctx->cq_timeouts,
atomic_read(&req->ctx->cq_timeouts) + 1);
io_cqring_fill_event(req, -ETIME);
io_commit_cqring(ctx);
spin_unlock_irqrestore(&ctx->completion_lock, flags);
io_cqring_ev_posted(ctx);
req_set_fail_links(req);
io_put_req(req);
return HRTIMER_NORESTART;
}
static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
__u64 user_data)
{
struct io_timeout_data *io;
struct io_kiocb *req;
int ret = -ENOENT;
list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
if (user_data == req->user_data) {
ret = 0;
break;
}
}
if (ret == -ENOENT)
return ERR_PTR(ret);
io = req->async_data;
ret = hrtimer_try_to_cancel(&io->timer);
if (ret == -1)
return ERR_PTR(-EALREADY);
list_del_init(&req->timeout.list);
return req;
}
static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
{
struct io_kiocb *req = io_timeout_extract(ctx, user_data);
if (IS_ERR(req))
return PTR_ERR(req);
req_set_fail_links(req);
io_cqring_fill_event(req, -ECANCELED);
io_put_req_deferred(req, 1);
return 0;
}
static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
struct timespec64 *ts, enum hrtimer_mode mode)
{
struct io_kiocb *req = io_timeout_extract(ctx, user_data);
struct io_timeout_data *data;
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout.off = 0; /* noseq */
data = req->async_data;
list_add_tail(&req->timeout.list, &ctx->timeout_list);
hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
data->timer.function = io_timeout_fn;
hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
return 0;
}
static int io_timeout_remove_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_timeout_rem *tr = &req->timeout_rem;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
return -EINVAL;
if (sqe->ioprio || sqe->buf_index || sqe->len)
return -EINVAL;
tr->addr = READ_ONCE(sqe->addr);
tr->flags = READ_ONCE(sqe->timeout_flags);
if (tr->flags & IORING_TIMEOUT_UPDATE) {
if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
return -EINVAL;
if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
return -EFAULT;
} else if (tr->flags) {
/* timeout removal doesn't support flags */
return -EINVAL;
}
return 0;
}
static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
{
return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL;
}
/*
* Remove or update an existing timeout command
*/
static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_timeout_rem *tr = &req->timeout_rem;
struct io_ring_ctx *ctx = req->ctx;
int ret;
spin_lock_irq(&ctx->completion_lock);
if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
ret = io_timeout_cancel(ctx, tr->addr);
else
ret = io_timeout_update(ctx, tr->addr, &tr->ts,
io_translate_timeout_mode(tr->flags));
io_cqring_fill_event(req, ret);
io_commit_cqring(ctx);
spin_unlock_irq(&ctx->completion_lock);
io_cqring_ev_posted(ctx);
if (ret < 0)
req_set_fail_links(req);
io_put_req(req);
return 0;
}
static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
bool is_timeout_link)
{
struct io_timeout_data *data;
unsigned flags;
u32 off = READ_ONCE(sqe->off);
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
return -EINVAL;
if (off && is_timeout_link)
return -EINVAL;
flags = READ_ONCE(sqe->timeout_flags);
if (flags & ~IORING_TIMEOUT_ABS)
return -EINVAL;
req->timeout.off = off;
if (!req->async_data && io_alloc_async_data(req))
return -ENOMEM;
data = req->async_data;
data->req = req;
if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
return -EFAULT;
data->mode = io_translate_timeout_mode(flags);
hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
return 0;
}
static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_timeout_data *data = req->async_data;
struct list_head *entry;
u32 tail, off = req->timeout.off;
spin_lock_irq(&ctx->completion_lock);
/*
* sqe->off holds how many events that need to occur for this
* timeout event to be satisfied. If it isn't set, then this is
* a pure timeout request, sequence isn't used.
*/
if (io_is_timeout_noseq(req)) {
entry = ctx->timeout_list.prev;
goto add;
}
tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
req->timeout.target_seq = tail + off;
/* Update the last seq here in case io_flush_timeouts() hasn't.
* This is safe because ->completion_lock is held, and submissions
* and completions are never mixed in the same ->completion_lock section.
*/
ctx->cq_last_tm_flush = tail;
/*
* Insertion sort, ensuring the first entry in the list is always
* the one we need first.
*/
list_for_each_prev(entry, &ctx->timeout_list) {
struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
timeout.list);
if (io_is_timeout_noseq(nxt))
continue;
/* nxt.seq is behind @tail, otherwise would've been completed */
if (off >= nxt->timeout.target_seq - tail)
break;
}
add:
list_add(&req->timeout.list, entry);
data->timer.function = io_timeout_fn;
hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
spin_unlock_irq(&ctx->completion_lock);
return 0;
}
static bool io_cancel_cb(struct io_wq_work *work, void *data)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
return req->user_data == (unsigned long) data;
}
static int io_async_cancel_one(struct io_uring_task *tctx, void *sqe_addr)
{
enum io_wq_cancel cancel_ret;
int ret = 0;
if (!tctx->io_wq)
return -ENOENT;
cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, sqe_addr, false);
switch (cancel_ret) {
case IO_WQ_CANCEL_OK:
ret = 0;
break;
case IO_WQ_CANCEL_RUNNING:
ret = -EALREADY;
break;
case IO_WQ_CANCEL_NOTFOUND:
ret = -ENOENT;
break;
}
return ret;
}
static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
struct io_kiocb *req, __u64 sqe_addr,
int success_ret)
{
unsigned long flags;
int ret;
ret = io_async_cancel_one(req->task->io_uring,
(void *) (unsigned long) sqe_addr);
if (ret != -ENOENT) {
spin_lock_irqsave(&ctx->completion_lock, flags);
goto done;
}
spin_lock_irqsave(&ctx->completion_lock, flags);
ret = io_timeout_cancel(ctx, sqe_addr);
if (ret != -ENOENT)
goto done;
ret = io_poll_cancel(ctx, sqe_addr);
done:
if (!ret)
ret = success_ret;
io_cqring_fill_event(req, ret);
io_commit_cqring(ctx);
spin_unlock_irqrestore(&ctx->completion_lock, flags);
io_cqring_ev_posted(ctx);
if (ret < 0)
req_set_fail_links(req);
io_put_req(req);
}
static int io_async_cancel_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
return -EINVAL;
if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
return -EINVAL;
req->cancel.addr = READ_ONCE(sqe->addr);
return 0;
}
static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
return 0;
}
static int io_rsrc_update_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
return -EINVAL;
if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
return -EINVAL;
if (sqe->ioprio || sqe->rw_flags)
return -EINVAL;
req->rsrc_update.offset = READ_ONCE(sqe->off);
req->rsrc_update.nr_args = READ_ONCE(sqe->len);
if (!req->rsrc_update.nr_args)
return -EINVAL;
req->rsrc_update.arg = READ_ONCE(sqe->addr);
return 0;
}
static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_uring_rsrc_update up;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
up.offset = req->rsrc_update.offset;
up.data = req->rsrc_update.arg;
mutex_lock(&ctx->uring_lock);
ret = __io_sqe_files_update(ctx, &up, req->rsrc_update.nr_args);
mutex_unlock(&ctx->uring_lock);
if (ret < 0)
req_set_fail_links(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
switch (req->opcode) {
case IORING_OP_NOP:
return 0;
case IORING_OP_READV:
case IORING_OP_READ_FIXED:
case IORING_OP_READ:
return io_read_prep(req, sqe);
case IORING_OP_WRITEV:
case IORING_OP_WRITE_FIXED:
case IORING_OP_WRITE:
return io_write_prep(req, sqe);
case IORING_OP_POLL_ADD:
return io_poll_add_prep(req, sqe);
case IORING_OP_POLL_REMOVE:
return io_poll_remove_prep(req, sqe);
case IORING_OP_FSYNC:
return io_fsync_prep(req, sqe);
case IORING_OP_SYNC_FILE_RANGE:
return io_sfr_prep(req, sqe);
case IORING_OP_SENDMSG:
case IORING_OP_SEND:
return io_sendmsg_prep(req, sqe);
case IORING_OP_RECVMSG:
case IORING_OP_RECV:
return io_recvmsg_prep(req, sqe);
case IORING_OP_CONNECT:
return io_connect_prep(req, sqe);
case IORING_OP_TIMEOUT:
return io_timeout_prep(req, sqe, false);
case IORING_OP_TIMEOUT_REMOVE:
return io_timeout_remove_prep(req, sqe);
case IORING_OP_ASYNC_CANCEL:
return io_async_cancel_prep(req, sqe);
case IORING_OP_LINK_TIMEOUT:
return io_timeout_prep(req, sqe, true);
case IORING_OP_ACCEPT:
return io_accept_prep(req, sqe);
case IORING_OP_FALLOCATE:
return io_fallocate_prep(req, sqe);
case IORING_OP_OPENAT:
return io_openat_prep(req, sqe);
case IORING_OP_CLOSE:
return io_close_prep(req, sqe);
case IORING_OP_FILES_UPDATE:
return io_rsrc_update_prep(req, sqe);
case IORING_OP_STATX:
return io_statx_prep(req, sqe);
case IORING_OP_FADVISE:
return io_fadvise_prep(req, sqe);
case IORING_OP_MADVISE:
return io_madvise_prep(req, sqe);
case IORING_OP_OPENAT2:
return io_openat2_prep(req, sqe);
case IORING_OP_EPOLL_CTL:
return io_epoll_ctl_prep(req, sqe);
case IORING_OP_SPLICE:
return io_splice_prep(req, sqe);
case IORING_OP_PROVIDE_BUFFERS:
return io_provide_buffers_prep(req, sqe);
case IORING_OP_REMOVE_BUFFERS:
return io_remove_buffers_prep(req, sqe);
case IORING_OP_TEE:
return io_tee_prep(req, sqe);
case IORING_OP_SHUTDOWN:
return io_shutdown_prep(req, sqe);
case IORING_OP_RENAMEAT:
return io_renameat_prep(req, sqe);
case IORING_OP_UNLINKAT:
return io_unlinkat_prep(req, sqe);
}
printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
req->opcode);
return-EINVAL;
}
static int io_req_prep_async(struct io_kiocb *req)
{
switch (req->opcode) {
case IORING_OP_READV:
case IORING_OP_READ_FIXED:
case IORING_OP_READ:
return io_rw_prep_async(req, READ);
case IORING_OP_WRITEV:
case IORING_OP_WRITE_FIXED:
case IORING_OP_WRITE:
return io_rw_prep_async(req, WRITE);
case IORING_OP_SENDMSG:
case IORING_OP_SEND:
return io_sendmsg_prep_async(req);
case IORING_OP_RECVMSG:
case IORING_OP_RECV:
return io_recvmsg_prep_async(req);
case IORING_OP_CONNECT:
return io_connect_prep_async(req);
}
return 0;
}
static int io_req_defer_prep(struct io_kiocb *req)
{
if (!io_op_defs[req->opcode].needs_async_data)
return 0;
/* some opcodes init it during the inital prep */
if (req->async_data)
return 0;
if (__io_alloc_async_data(req))
return -EAGAIN;
return io_req_prep_async(req);
}
static u32 io_get_sequence(struct io_kiocb *req)
{
struct io_kiocb *pos;
struct io_ring_ctx *ctx = req->ctx;
u32 total_submitted, nr_reqs = 0;
io_for_each_link(pos, req)
nr_reqs++;
total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
return total_submitted - nr_reqs;
}
static int io_req_defer(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_defer_entry *de;
int ret;
u32 seq;
/* Still need defer if there is pending req in defer list. */
if (likely(list_empty_careful(&ctx->defer_list) &&
!(req->flags & REQ_F_IO_DRAIN)))
return 0;
seq = io_get_sequence(req);
/* Still a chance to pass the sequence check */
if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
return 0;
ret = io_req_defer_prep(req);
if (ret)
return ret;
io_prep_async_link(req);
de = kmalloc(sizeof(*de), GFP_KERNEL);
if (!de)
return -ENOMEM;
spin_lock_irq(&ctx->completion_lock);
if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
spin_unlock_irq(&ctx->completion_lock);
kfree(de);
io_queue_async_work(req);
return -EIOCBQUEUED;
}
trace_io_uring_defer(ctx, req, req->user_data);
de->req = req;
de->seq = seq;
list_add_tail(&de->list, &ctx->defer_list);
spin_unlock_irq(&ctx->completion_lock);
return -EIOCBQUEUED;
}
static void __io_clean_op(struct io_kiocb *req)
{
if (req->flags & REQ_F_BUFFER_SELECTED) {
switch (req->opcode) {
case IORING_OP_READV:
case IORING_OP_READ_FIXED:
case IORING_OP_READ:
kfree((void *)(unsigned long)req->rw.addr);
break;
case IORING_OP_RECVMSG:
case IORING_OP_RECV:
kfree(req->sr_msg.kbuf);
break;
}
req->flags &= ~REQ_F_BUFFER_SELECTED;
}
if (req->flags & REQ_F_NEED_CLEANUP) {
switch (req->opcode) {
case IORING_OP_READV:
case IORING_OP_READ_FIXED:
case IORING_OP_READ:
case IORING_OP_WRITEV:
case IORING_OP_WRITE_FIXED:
case IORING_OP_WRITE: {
struct io_async_rw *io = req->async_data;
if (io->free_iovec)
kfree(io->free_iovec);
break;
}
case IORING_OP_RECVMSG:
case IORING_OP_SENDMSG: {
struct io_async_msghdr *io = req->async_data;
kfree(io->free_iov);
break;
}
case IORING_OP_SPLICE:
case IORING_OP_TEE:
io_put_file(req, req->splice.file_in,
(req->splice.flags & SPLICE_F_FD_IN_FIXED));
break;
case IORING_OP_OPENAT:
case IORING_OP_OPENAT2:
if (req->open.filename)
putname(req->open.filename);
break;
case IORING_OP_RENAMEAT:
putname(req->rename.oldpath);
putname(req->rename.newpath);
break;
case IORING_OP_UNLINKAT:
putname(req->unlink.filename);
break;
}
req->flags &= ~REQ_F_NEED_CLEANUP;
}
}
static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
int ret;
switch (req->opcode) {
case IORING_OP_NOP:
ret = io_nop(req, issue_flags);
break;
case IORING_OP_READV:
case IORING_OP_READ_FIXED:
case IORING_OP_READ:
ret = io_read(req, issue_flags);
break;
case IORING_OP_WRITEV:
case IORING_OP_WRITE_FIXED:
case IORING_OP_WRITE:
ret = io_write(req, issue_flags);
break;
case IORING_OP_FSYNC:
ret = io_fsync(req, issue_flags);
break;
case IORING_OP_POLL_ADD:
ret = io_poll_add(req, issue_flags);
break;
case IORING_OP_POLL_REMOVE:
ret = io_poll_remove(req, issue_flags);
break;
case IORING_OP_SYNC_FILE_RANGE:
ret = io_sync_file_range(req, issue_flags);
break;
case IORING_OP_SENDMSG:
ret = io_sendmsg(req, issue_flags);
break;
case IORING_OP_SEND:
ret = io_send(req, issue_flags);
break;
case IORING_OP_RECVMSG:
ret = io_recvmsg(req, issue_flags);
break;
case IORING_OP_RECV:
ret = io_recv(req, issue_flags);
break;
case IORING_OP_TIMEOUT:
ret = io_timeout(req, issue_flags);
break;
case IORING_OP_TIMEOUT_REMOVE:
ret = io_timeout_remove(req, issue_flags);
break;
case IORING_OP_ACCEPT:
ret = io_accept(req, issue_flags);
break;
case IORING_OP_CONNECT:
ret = io_connect(req, issue_flags);
break;
case IORING_OP_ASYNC_CANCEL:
ret = io_async_cancel(req, issue_flags);
break;
case IORING_OP_FALLOCATE:
ret = io_fallocate(req, issue_flags);
break;
case IORING_OP_OPENAT:
ret = io_openat(req, issue_flags);
break;
case IORING_OP_CLOSE:
ret = io_close(req, issue_flags);
break;
case IORING_OP_FILES_UPDATE:
ret = io_files_update(req, issue_flags);
break;
case IORING_OP_STATX:
ret = io_statx(req, issue_flags);
break;
case IORING_OP_FADVISE:
ret = io_fadvise(req, issue_flags);
break;
case IORING_OP_MADVISE:
ret = io_madvise(req, issue_flags);
break;
case IORING_OP_OPENAT2:
ret = io_openat2(req, issue_flags);
break;
case IORING_OP_EPOLL_CTL:
ret = io_epoll_ctl(req, issue_flags);
break;
case IORING_OP_SPLICE:
ret = io_splice(req, issue_flags);
break;
case IORING_OP_PROVIDE_BUFFERS:
ret = io_provide_buffers(req, issue_flags);
break;
case IORING_OP_REMOVE_BUFFERS:
ret = io_remove_buffers(req, issue_flags);
break;
case IORING_OP_TEE:
ret = io_tee(req, issue_flags);
break;
case IORING_OP_SHUTDOWN:
ret = io_shutdown(req, issue_flags);
break;
case IORING_OP_RENAMEAT:
ret = io_renameat(req, issue_flags);
break;
case IORING_OP_UNLINKAT:
ret = io_unlinkat(req, issue_flags);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
return ret;
/* If the op doesn't have a file, we're not polling for it */
if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
const bool in_async = io_wq_current_is_worker();
/* workqueue context doesn't hold uring_lock, grab it now */
if (in_async)
mutex_lock(&ctx->uring_lock);
io_iopoll_req_issued(req, in_async);
if (in_async)
mutex_unlock(&ctx->uring_lock);
}
return 0;
}
static void io_wq_submit_work(struct io_wq_work *work)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
struct io_kiocb *timeout;
int ret = 0;
timeout = io_prep_linked_timeout(req);
if (timeout)
io_queue_linked_timeout(timeout);
if (work->flags & IO_WQ_WORK_CANCEL)
ret = -ECANCELED;
if (!ret) {
do {
ret = io_issue_sqe(req, 0);
/*
* We can get EAGAIN for polled IO even though we're
* forcing a sync submission from here, since we can't
* wait for request slots on the block side.
*/
if (ret != -EAGAIN)
break;
cond_resched();
} while (1);
}
/* avoid locking problems by failing it from a clean context */
if (ret) {
/* io-wq is going to take one down */
refcount_inc(&req->refs);
io_req_task_queue_fail(req, ret);
}
}
static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
int index)
{
struct fixed_rsrc_table *table;
table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
return table->files[index & IORING_FILE_TABLE_MASK];
}
static struct file *io_file_get(struct io_submit_state *state,
struct io_kiocb *req, int fd, bool fixed)
{
struct io_ring_ctx *ctx = req->ctx;
struct file *file;
if (fixed) {
if (unlikely((unsigned int)fd >= ctx->nr_user_files))
return NULL;
fd = array_index_nospec(fd, ctx->nr_user_files);
file = io_file_from_index(ctx, fd);
io_set_resource_node(req);
} else {
trace_io_uring_file_get(ctx, fd);
file = __io_file_get(state, fd);
}
if (file && unlikely(file->f_op == &io_uring_fops))
io_req_track_inflight(req);
return file;
}
static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
{
struct io_timeout_data *data = container_of(timer,
struct io_timeout_data, timer);
struct io_kiocb *prev, *req = data->req;
struct io_ring_ctx *ctx = req->ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->completion_lock, flags);
prev = req->timeout.head;
req->timeout.head = NULL;
/*
* We don't expect the list to be empty, that will only happen if we
* race with the completion of the linked work.
*/
if (prev && refcount_inc_not_zero(&prev->refs))
io_remove_next_linked(prev);
else
prev = NULL;
spin_unlock_irqrestore(&ctx->completion_lock, flags);
if (prev) {
req_set_fail_links(prev);
io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
io_put_req_deferred(prev, 1);
} else {
io_req_complete_post(req, -ETIME, 0);
io_put_req_deferred(req, 1);
}
return HRTIMER_NORESTART;
}
static void __io_queue_linked_timeout(struct io_kiocb *req)
{
/*
* If the back reference is NULL, then our linked request finished
* before we got a chance to setup the timer
*/
if (req->timeout.head) {
struct io_timeout_data *data = req->async_data;
data->timer.function = io_link_timeout_fn;
hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
data->mode);
}
}
static void io_queue_linked_timeout(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
spin_lock_irq(&ctx->completion_lock);
__io_queue_linked_timeout(req);
spin_unlock_irq(&ctx->completion_lock);
/* drop submission reference */
io_put_req(req);
}
static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
{
struct io_kiocb *nxt = req->link;
if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
nxt->opcode != IORING_OP_LINK_TIMEOUT)
return NULL;
nxt->timeout.head = req;
nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
req->flags |= REQ_F_LINK_TIMEOUT;
return nxt;
}
static void __io_queue_sqe(struct io_kiocb *req)
{
struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
const struct cred *old_creds = NULL;
int ret;
if ((req->flags & REQ_F_WORK_INITIALIZED) && req->work.creds &&
req->work.creds != current_cred())
old_creds = override_creds(req->work.creds);
ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
if (old_creds)
revert_creds(old_creds);
/*
* We async punt it if the file wasn't marked NOWAIT, or if the file
* doesn't support non-blocking read/write attempts
*/
if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
if (!io_arm_poll_handler(req)) {
/*
* Queued up for async execution, worker will release
* submit reference when the iocb is actually submitted.
*/
io_queue_async_work(req);
}
} else if (likely(!ret)) {
/* drop submission reference */
if (req->flags & REQ_F_COMPLETE_INLINE) {
struct io_ring_ctx *ctx = req->ctx;
struct io_comp_state *cs = &ctx->submit_state.comp;
cs->reqs[cs->nr++] = req;
if (cs->nr == ARRAY_SIZE(cs->reqs))
io_submit_flush_completions(cs, ctx);
} else {
io_put_req(req);
}
} else {
req_set_fail_links(req);
io_put_req(req);
io_req_complete(req, ret);
}
if (linked_timeout)
io_queue_linked_timeout(linked_timeout);
}
static void io_queue_sqe(struct io_kiocb *req)
{
int ret;
ret = io_req_defer(req);
if (ret) {
if (ret != -EIOCBQUEUED) {
fail_req:
req_set_fail_links(req);
io_put_req(req);
io_req_complete(req, ret);
}
} else if (req->flags & REQ_F_FORCE_ASYNC) {
ret = io_req_defer_prep(req);
if (unlikely(ret))
goto fail_req;
io_queue_async_work(req);
} else {
__io_queue_sqe(req);
}
}
/*
* Check SQE restrictions (opcode and flags).
*
* Returns 'true' if SQE is allowed, 'false' otherwise.
*/
static inline bool io_check_restriction(struct io_ring_ctx *ctx,
struct io_kiocb *req,
unsigned int sqe_flags)
{
if (!ctx->restricted)
return true;
if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
return false;
if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
ctx->restrictions.sqe_flags_required)
return false;
if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
ctx->restrictions.sqe_flags_required))
return false;
return true;
}
static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_submit_state *state;
unsigned int sqe_flags;
int id, ret = 0;
req->opcode = READ_ONCE(sqe->opcode);
/* same numerical values with corresponding REQ_F_*, safe to copy */
req->flags = sqe_flags = READ_ONCE(sqe->flags);
req->user_data = READ_ONCE(sqe->user_data);
req->async_data = NULL;
req->file = NULL;
req->ctx = ctx;
req->link = NULL;
req->fixed_rsrc_refs = NULL;
/* one is dropped after submission, the other at completion */
refcount_set(&req->refs, 2);
req->task = current;
req->result = 0;
/* enforce forwards compatibility on users */
if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) {
req->flags = 0;
return -EINVAL;
}
if (unlikely(req->opcode >= IORING_OP_LAST))
return -EINVAL;
if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
return -EACCES;
if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
!io_op_defs[req->opcode].buffer_select)
return -EOPNOTSUPP;
id = READ_ONCE(sqe->personality);
if (id) {
__io_req_init_async(req);
req->work.creds = idr_find(&ctx->personality_idr, id);
if (unlikely(!req->work.creds))
return -EINVAL;
get_cred(req->work.creds);
}
state = &ctx->submit_state;
/*
* Plug now if we have more than 1 IO left after this, and the target
* is potentially a read/write to block based storage.
*/
if (!state->plug_started && state->ios_left > 1 &&
io_op_defs[req->opcode].plug) {
blk_start_plug(&state->plug);
state->plug_started = true;
}
if (io_op_defs[req->opcode].needs_file) {
bool fixed = req->flags & REQ_F_FIXED_FILE;
req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
if (unlikely(!req->file))
ret = -EBADF;
}
state->ios_left--;
return ret;
}
static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_submit_link *link = &ctx->submit_state.link;
int ret;
ret = io_init_req(ctx, req, sqe);
if (unlikely(ret)) {
fail_req:
io_put_req(req);
io_req_complete(req, ret);
if (link->head) {
/* fail even hard links since we don't submit */
link->head->flags |= REQ_F_FAIL_LINK;
io_put_req(link->head);
io_req_complete(link->head, -ECANCELED);
link->head = NULL;
}
return ret;
}
ret = io_req_prep(req, sqe);
if (unlikely(ret))
goto fail_req;
/* don't need @sqe from now on */
trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
true, ctx->flags & IORING_SETUP_SQPOLL);
/*
* If we already have a head request, queue this one for async
* submittal once the head completes. If we don't have a head but
* IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
* submitted sync once the chain is complete. If none of those
* conditions are true (normal request), then just queue it.
*/
if (link->head) {
struct io_kiocb *head = link->head;
/*
* Taking sequential execution of a link, draining both sides
* of the link also fullfils IOSQE_IO_DRAIN semantics for all
* requests in the link. So, it drains the head and the
* next after the link request. The last one is done via
* drain_next flag to persist the effect across calls.
*/
if (req->flags & REQ_F_IO_DRAIN) {
head->flags |= REQ_F_IO_DRAIN;
ctx->drain_next = 1;
}
ret = io_req_defer_prep(req);
if (unlikely(ret))
goto fail_req;
trace_io_uring_link(ctx, req, head);
link->last->link = req;
link->last = req;
/* last request of a link, enqueue the link */
if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
io_queue_sqe(head);
link->head = NULL;
}
} else {
if (unlikely(ctx->drain_next)) {
req->flags |= REQ_F_IO_DRAIN;
ctx->drain_next = 0;
}
if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
link->head = req;
link->last = req;
} else {
io_queue_sqe(req);
}
}
return 0;
}
/*
* Batched submission is done, ensure local IO is flushed out.
*/
static void io_submit_state_end(struct io_submit_state *state,
struct io_ring_ctx *ctx)
{
if (state->link.head)
io_queue_sqe(state->link.head);
if (state->comp.nr)
io_submit_flush_completions(&state->comp, ctx);
if (state->plug_started)
blk_finish_plug(&state->plug);
io_state_file_put(state);
}
/*
* Start submission side cache.
*/
static void io_submit_state_start(struct io_submit_state *state,
unsigned int max_ios)
{
state->plug_started = false;
state->ios_left = max_ios;
/* set only head, no need to init link_last in advance */
state->link.head = NULL;
}
static void io_commit_sqring(struct io_ring_ctx *ctx)
{
struct io_rings *rings = ctx->rings;
/*
* Ensure any loads from the SQEs are done at this point,
* since once we write the new head, the application could
* write new data to them.
*/
smp_store_release(&rings->sq.head, ctx->cached_sq_head);
}
/*
* Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
* that is mapped by userspace. This means that care needs to be taken to
* ensure that reads are stable, as we cannot rely on userspace always
* being a good citizen. If members of the sqe are validated and then later
* used, it's important that those reads are done through READ_ONCE() to
* prevent a re-load down the line.
*/
static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
{
u32 *sq_array = ctx->sq_array;
unsigned head;
/*
* The cached sq head (or cq tail) serves two purposes:
*
* 1) allows us to batch the cost of updating the user visible
* head updates.
* 2) allows the kernel side to track the head on its own, even
* though the application is the one updating it.
*/
head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
if (likely(head < ctx->sq_entries))
return &ctx->sq_sqes[head];
/* drop invalid entries */
ctx->cached_sq_dropped++;
WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
return NULL;
}
static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
{
int submitted = 0;
/* if we have a backlog and couldn't flush it all, return BUSY */
if (test_bit(0, &ctx->sq_check_overflow)) {
if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
return -EBUSY;
}
/* make sure SQ entry isn't read before tail */
nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
if (!percpu_ref_tryget_many(&ctx->refs, nr))
return -EAGAIN;
percpu_counter_add(&current->io_uring->inflight, nr);
refcount_add(nr, &current->usage);
io_submit_state_start(&ctx->submit_state, nr);
while (submitted < nr) {
const struct io_uring_sqe *sqe;
struct io_kiocb *req;
req = io_alloc_req(ctx);
if (unlikely(!req)) {
if (!submitted)
submitted = -EAGAIN;
break;
}
sqe = io_get_sqe(ctx);
if (unlikely(!sqe)) {
kmem_cache_free(req_cachep, req);
break;
}
/* will complete beyond this point, count as submitted */
submitted++;
if (io_submit_sqe(ctx, req, sqe))
break;
}
if (unlikely(submitted != nr)) {
int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
struct io_uring_task *tctx = current->io_uring;
int unused = nr - ref_used;
percpu_ref_put_many(&ctx->refs, unused);
percpu_counter_sub(&tctx->inflight, unused);
put_task_struct_many(current, unused);
}
io_submit_state_end(&ctx->submit_state, ctx);
/* Commit SQ ring head once we've consumed and submitted all SQEs */
io_commit_sqring(ctx);
return submitted;
}
static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
{
/* Tell userspace we may need a wakeup call */
spin_lock_irq(&ctx->completion_lock);
ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
spin_unlock_irq(&ctx->completion_lock);
}
static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
{
spin_lock_irq(&ctx->completion_lock);
ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
spin_unlock_irq(&ctx->completion_lock);
}
static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
{
unsigned int to_submit;
int ret = 0;
to_submit = io_sqring_entries(ctx);
/* if we're handling multiple rings, cap submit size for fairness */
if (cap_entries && to_submit > 8)
to_submit = 8;
if (!list_empty(&ctx->iopoll_list) || to_submit) {
unsigned nr_events = 0;
mutex_lock(&ctx->uring_lock);
if (!list_empty(&ctx->iopoll_list))
io_do_iopoll(ctx, &nr_events, 0);
if (to_submit && !ctx->sqo_dead &&
likely(!percpu_ref_is_dying(&ctx->refs)))
ret = io_submit_sqes(ctx, to_submit);
mutex_unlock(&ctx->uring_lock);
}
if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
wake_up(&ctx->sqo_sq_wait);
return ret;
}
static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
{
struct io_ring_ctx *ctx;
unsigned sq_thread_idle = 0;
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
if (sq_thread_idle < ctx->sq_thread_idle)
sq_thread_idle = ctx->sq_thread_idle;
}
sqd->sq_thread_idle = sq_thread_idle;
}
static void io_sqd_init_new(struct io_sq_data *sqd)
{
struct io_ring_ctx *ctx;
while (!list_empty(&sqd->ctx_new_list)) {
ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
complete(&ctx->sq_thread_comp);
}
io_sqd_update_thread_idle(sqd);
}
static bool io_sq_thread_should_stop(struct io_sq_data *sqd)
{
return test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
}
static bool io_sq_thread_should_park(struct io_sq_data *sqd)
{
return test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
}
static void io_sq_thread_parkme(struct io_sq_data *sqd)
{
for (;;) {
/*
* TASK_PARKED is a special state; we must serialize against
* possible pending wakeups to avoid store-store collisions on
* task->state.
*
* Such a collision might possibly result in the task state
* changin from TASK_PARKED and us failing the
* wait_task_inactive() in kthread_park().
*/
set_special_state(TASK_PARKED);
if (!test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state))
break;
/*
* Thread is going to call schedule(), do not preempt it,
* or the caller of kthread_park() may spend more time in
* wait_task_inactive().
*/
preempt_disable();
complete(&sqd->completion);
schedule_preempt_disabled();
preempt_enable();
}
__set_current_state(TASK_RUNNING);
}
static int io_sq_thread(void *data)
{
struct io_sq_data *sqd = data;
struct io_ring_ctx *ctx;
unsigned long timeout = 0;
char buf[TASK_COMM_LEN];
DEFINE_WAIT(wait);
sprintf(buf, "iou-sqp-%d", sqd->task_pid);
set_task_comm(current, buf);
sqd->thread = current;
current->pf_io_worker = NULL;
if (sqd->sq_cpu != -1)
set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
else
set_cpus_allowed_ptr(current, cpu_online_mask);
current->flags |= PF_NO_SETAFFINITY;
complete(&sqd->completion);
wait_for_completion(&sqd->startup);
while (!io_sq_thread_should_stop(sqd)) {
int ret;
bool cap_entries, sqt_spin, needs_sched;
/*
* Any changes to the sqd lists are synchronized through the
* thread parking. This synchronizes the thread vs users,
* the users are synchronized on the sqd->ctx_lock.
*/
if (io_sq_thread_should_park(sqd)) {
io_sq_thread_parkme(sqd);
continue;
}
if (unlikely(!list_empty(&sqd->ctx_new_list))) {
io_sqd_init_new(sqd);
timeout = jiffies + sqd->sq_thread_idle;
}
if (fatal_signal_pending(current))
break;
sqt_spin = false;
cap_entries = !list_is_singular(&sqd->ctx_list);
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
ret = __io_sq_thread(ctx, cap_entries);
if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
sqt_spin = true;
}
if (sqt_spin || !time_after(jiffies, timeout)) {
io_run_task_work();
cond_resched();
if (sqt_spin)
timeout = jiffies + sqd->sq_thread_idle;
continue;
}
needs_sched = true;
prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
if ((ctx->flags & IORING_SETUP_IOPOLL) &&
!list_empty_careful(&ctx->iopoll_list)) {
needs_sched = false;
break;
}
if (io_sqring_entries(ctx)) {
needs_sched = false;
break;
}
}
if (needs_sched && !io_sq_thread_should_park(sqd)) {
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
io_ring_set_wakeup_flag(ctx);
schedule();
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
io_ring_clear_wakeup_flag(ctx);
}
finish_wait(&sqd->wait, &wait);
timeout = jiffies + sqd->sq_thread_idle;
}
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
io_uring_cancel_sqpoll(ctx);
io_run_task_work();
/*
* Clear thread under lock so that concurrent parks work correctly
*/
complete_all(&sqd->completion);
mutex_lock(&sqd->lock);
sqd->thread = NULL;
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
ctx->sqo_exec = 1;
io_ring_set_wakeup_flag(ctx);
}
mutex_unlock(&sqd->lock);
complete(&sqd->exited);
do_exit(0);
}
struct io_wait_queue {
struct wait_queue_entry wq;
struct io_ring_ctx *ctx;
unsigned to_wait;
unsigned nr_timeouts;
};
static inline bool io_should_wake(struct io_wait_queue *iowq)
{
struct io_ring_ctx *ctx = iowq->ctx;
/*
* Wake up if we have enough events, or if a timeout occurred since we
* started waiting. For timeouts, we always want to return to userspace,
* regardless of event count.
*/
return io_cqring_events(ctx) >= iowq->to_wait ||
atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
}
static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
int wake_flags, void *key)
{
struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
wq);
/*
* Cannot safely flush overflowed CQEs from here, ensure we wake up
* the task, and the next invocation will do it.
*/
if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
return autoremove_wake_function(curr, mode, wake_flags, key);
return -1;
}
static int io_run_task_work_sig(void)
{
if (io_run_task_work())
return 1;
if (!signal_pending(current))
return 0;
if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
return -ERESTARTSYS;
return -EINTR;
}
/* when returns >0, the caller should retry */
static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
struct io_wait_queue *iowq,
signed long *timeout)
{
int ret;
/* make sure we run task_work before checking for signals */
ret = io_run_task_work_sig();
if (ret || io_should_wake(iowq))
return ret;
/* let the caller flush overflows, retry */
if (test_bit(0, &ctx->cq_check_overflow))
return 1;
*timeout = schedule_timeout(*timeout);
return !*timeout ? -ETIME : 1;
}
/*
* Wait until events become available, if we don't already have some. The
* application must reap them itself, as they reside on the shared cq ring.
*/
static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
const sigset_t __user *sig, size_t sigsz,
struct __kernel_timespec __user *uts)
{
struct io_wait_queue iowq = {
.wq = {
.private = current,
.func = io_wake_function,
.entry = LIST_HEAD_INIT(iowq.wq.entry),
},
.ctx = ctx,
.to_wait = min_events,
};
struct io_rings *rings = ctx->rings;
signed long timeout = MAX_SCHEDULE_TIMEOUT;
int ret;
do {
io_cqring_overflow_flush(ctx, false, NULL, NULL);
if (io_cqring_events(ctx) >= min_events)
return 0;
if (!io_run_task_work())
break;
} while (1);
if (sig) {
#ifdef CONFIG_COMPAT
if (in_compat_syscall())
ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
sigsz);
else
#endif
ret = set_user_sigmask(sig, sigsz);
if (ret)
return ret;
}
if (uts) {
struct timespec64 ts;
if (get_timespec64(&ts, uts))
return -EFAULT;
timeout = timespec64_to_jiffies(&ts);
}
iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
trace_io_uring_cqring_wait(ctx, min_events);
do {
io_cqring_overflow_flush(ctx, false, NULL, NULL);
prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
TASK_INTERRUPTIBLE);
ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
finish_wait(&ctx->wait, &iowq.wq);
} while (ret > 0);
restore_saved_sigmask_unless(ret == -EINTR);
return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
}
static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
{
#if defined(CONFIG_UNIX)
if (ctx->ring_sock) {
struct sock *sock = ctx->ring_sock->sk;
struct sk_buff *skb;
while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
kfree_skb(skb);
}
#else
int i;
for (i = 0; i < ctx->nr_user_files; i++) {
struct file *file;
file = io_file_from_index(ctx, i);
if (file)
fput(file);
}
#endif
}
static void io_rsrc_data_ref_zero(struct percpu_ref *ref)
{
struct fixed_rsrc_data *data;
data = container_of(ref, struct fixed_rsrc_data, refs);
complete(&data->done);
}
static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
{
spin_lock_bh(&ctx->rsrc_ref_lock);
}
static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
{
spin_unlock_bh(&ctx->rsrc_ref_lock);
}
static void io_sqe_rsrc_set_node(struct io_ring_ctx *ctx,
struct fixed_rsrc_data *rsrc_data,
struct fixed_rsrc_ref_node *ref_node)
{
io_rsrc_ref_lock(ctx);
rsrc_data->node = ref_node;
list_add_tail(&ref_node->node, &ctx->rsrc_ref_list);
io_rsrc_ref_unlock(ctx);
percpu_ref_get(&rsrc_data->refs);
}
static void io_sqe_rsrc_kill_node(struct io_ring_ctx *ctx, struct fixed_rsrc_data *data)
{
struct fixed_rsrc_ref_node *ref_node = NULL;
io_rsrc_ref_lock(ctx);
ref_node = data->node;
data->node = NULL;
io_rsrc_ref_unlock(ctx);
if (ref_node)
percpu_ref_kill(&ref_node->refs);
}
static int io_rsrc_ref_quiesce(struct fixed_rsrc_data *data,
struct io_ring_ctx *ctx,
void (*rsrc_put)(struct io_ring_ctx *ctx,
struct io_rsrc_put *prsrc))
{
struct fixed_rsrc_ref_node *backup_node;
int ret;
if (data->quiesce)
return -ENXIO;
data->quiesce = true;
do {
ret = -ENOMEM;
backup_node = alloc_fixed_rsrc_ref_node(ctx);
if (!backup_node)
break;
backup_node->rsrc_data = data;
backup_node->rsrc_put = rsrc_put;
io_sqe_rsrc_kill_node(ctx, data);
percpu_ref_kill(&data->refs);
flush_delayed_work(&ctx->rsrc_put_work);
ret = wait_for_completion_interruptible(&data->done);
if (!ret)
break;
percpu_ref_resurrect(&data->refs);
io_sqe_rsrc_set_node(ctx, data, backup_node);
backup_node = NULL;
reinit_completion(&data->done);
mutex_unlock(&ctx->uring_lock);
ret = io_run_task_work_sig();
mutex_lock(&ctx->uring_lock);
} while (ret >= 0);
data->quiesce = false;
if (backup_node)
destroy_fixed_rsrc_ref_node(backup_node);
return ret;
}
static struct fixed_rsrc_data *alloc_fixed_rsrc_data(struct io_ring_ctx *ctx)
{
struct fixed_rsrc_data *data;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return NULL;
if (percpu_ref_init(&data->refs, io_rsrc_data_ref_zero,
PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
kfree(data);
return NULL;
}
data->ctx = ctx;
init_completion(&data->done);
return data;
}
static void free_fixed_rsrc_data(struct fixed_rsrc_data *data)
{
percpu_ref_exit(&data->refs);
kfree(data->table);
kfree(data);
}
static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
{
struct fixed_rsrc_data *data = ctx->file_data;
unsigned nr_tables, i;
int ret;
/*
* percpu_ref_is_dying() is to stop parallel files unregister
* Since we possibly drop uring lock later in this function to
* run task work.
*/
if (!data || percpu_ref_is_dying(&data->refs))
return -ENXIO;
ret = io_rsrc_ref_quiesce(data, ctx, io_ring_file_put);
if (ret)
return ret;
__io_sqe_files_unregister(ctx);
nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
for (i = 0; i < nr_tables; i++)
kfree(data->table[i].files);
free_fixed_rsrc_data(data);
ctx->file_data = NULL;
ctx->nr_user_files = 0;
return 0;
}
static void io_sq_thread_unpark(struct io_sq_data *sqd)
__releases(&sqd->lock)
{
if (!sqd->thread)
return;
if (sqd->thread == current)
return;
clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
wake_up_state(sqd->thread, TASK_PARKED);
mutex_unlock(&sqd->lock);
}
static bool io_sq_thread_park(struct io_sq_data *sqd)
__acquires(&sqd->lock)
{
if (sqd->thread == current)
return true;
mutex_lock(&sqd->lock);
if (!sqd->thread) {
mutex_unlock(&sqd->lock);
return false;
}
set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
wake_up_process(sqd->thread);
wait_for_completion(&sqd->completion);
return true;
}
static void io_sq_thread_stop(struct io_sq_data *sqd)
{
if (!sqd->thread)
return;
set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state));
wake_up_process(sqd->thread);
wait_for_completion(&sqd->exited);
}
static void io_put_sq_data(struct io_sq_data *sqd)
{
if (refcount_dec_and_test(&sqd->refs)) {
io_sq_thread_stop(sqd);
kfree(sqd);
}
}
static void io_sq_thread_finish(struct io_ring_ctx *ctx)
{
struct io_sq_data *sqd = ctx->sq_data;
if (sqd) {
complete(&sqd->startup);
if (sqd->thread) {
wait_for_completion(&ctx->sq_thread_comp);
io_sq_thread_park(sqd);
}
mutex_lock(&sqd->ctx_lock);
list_del(&ctx->sqd_list);
io_sqd_update_thread_idle(sqd);
mutex_unlock(&sqd->ctx_lock);
if (sqd->thread)
io_sq_thread_unpark(sqd);
io_put_sq_data(sqd);
ctx->sq_data = NULL;
}
}
static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
{
struct io_ring_ctx *ctx_attach;
struct io_sq_data *sqd;
struct fd f;
f = fdget(p->wq_fd);
if (!f.file)
return ERR_PTR(-ENXIO);
if (f.file->f_op != &io_uring_fops) {
fdput(f);
return ERR_PTR(-EINVAL);
}
ctx_attach = f.file->private_data;
sqd = ctx_attach->sq_data;
if (!sqd) {
fdput(f);
return ERR_PTR(-EINVAL);
}
refcount_inc(&sqd->refs);
fdput(f);
return sqd;
}
static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
{
struct io_sq_data *sqd;
if (p->flags & IORING_SETUP_ATTACH_WQ)
return io_attach_sq_data(p);
sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
if (!sqd)
return ERR_PTR(-ENOMEM);
refcount_set(&sqd->refs, 1);
INIT_LIST_HEAD(&sqd->ctx_list);
INIT_LIST_HEAD(&sqd->ctx_new_list);
mutex_init(&sqd->ctx_lock);
mutex_init(&sqd->lock);
init_waitqueue_head(&sqd->wait);
init_completion(&sqd->startup);
init_completion(&sqd->completion);
init_completion(&sqd->exited);
return sqd;
}
#if defined(CONFIG_UNIX)
/*
* Ensure the UNIX gc is aware of our file set, so we are certain that
* the io_uring can be safely unregistered on process exit, even if we have
* loops in the file referencing.
*/
static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
{
struct sock *sk = ctx->ring_sock->sk;
struct scm_fp_list *fpl;
struct sk_buff *skb;
int i, nr_files;
fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
if (!fpl)
return -ENOMEM;
skb = alloc_skb(0, GFP_KERNEL);
if (!skb) {
kfree(fpl);
return -ENOMEM;
}
skb->sk = sk;
nr_files = 0;
fpl->user = get_uid(current_user());
for (i = 0; i < nr; i++) {
struct file *file = io_file_from_index(ctx, i + offset);
if (!file)
continue;
fpl->fp[nr_files] = get_file(file);
unix_inflight(fpl->user, fpl->fp[nr_files]);
nr_files++;
}
if (nr_files) {
fpl->max = SCM_MAX_FD;
fpl->count = nr_files;
UNIXCB(skb).fp = fpl;
skb->destructor = unix_destruct_scm;
refcount_add(skb->truesize, &sk->sk_wmem_alloc);
skb_queue_head(&sk->sk_receive_queue, skb);
for (i = 0; i < nr_files; i++)
fput(fpl->fp[i]);
} else {
kfree_skb(skb);
kfree(fpl);
}
return 0;
}
/*
* If UNIX sockets are enabled, fd passing can cause a reference cycle which
* causes regular reference counting to break down. We rely on the UNIX
* garbage collection to take care of this problem for us.
*/
static int io_sqe_files_scm(struct io_ring_ctx *ctx)
{
unsigned left, total;
int ret = 0;
total = 0;
left = ctx->nr_user_files;
while (left) {
unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
ret = __io_sqe_files_scm(ctx, this_files, total);
if (ret)
break;
left -= this_files;
total += this_files;
}
if (!ret)
return 0;
while (total < ctx->nr_user_files) {
struct file *file = io_file_from_index(ctx, total);
if (file)
fput(file);
total++;
}
return ret;
}
#else
static int io_sqe_files_scm(struct io_ring_ctx *ctx)
{
return 0;
}
#endif
static int io_sqe_alloc_file_tables(struct fixed_rsrc_data *file_data,
unsigned nr_tables, unsigned nr_files)
{
int i;
for (i = 0; i < nr_tables; i++) {
struct fixed_rsrc_table *table = &file_data->table[i];
unsigned this_files;
this_files = min(nr_files, IORING_MAX_FILES_TABLE);
table->files = kcalloc(this_files, sizeof(struct file *),
GFP_KERNEL);
if (!table->files)
break;
nr_files -= this_files;
}
if (i == nr_tables)
return 0;
for (i = 0; i < nr_tables; i++) {
struct fixed_rsrc_table *table = &file_data->table[i];
kfree(table->files);
}
return 1;
}
static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
{
struct file *file = prsrc->file;
#if defined(CONFIG_UNIX)
struct sock *sock = ctx->ring_sock->sk;
struct sk_buff_head list, *head = &sock->sk_receive_queue;
struct sk_buff *skb;
int i;
__skb_queue_head_init(&list);
/*
* Find the skb that holds this file in its SCM_RIGHTS. When found,
* remove this entry and rearrange the file array.
*/
skb = skb_dequeue(head);
while (skb) {
struct scm_fp_list *fp;
fp = UNIXCB(skb).fp;
for (i = 0; i < fp->count; i++) {
int left;
if (fp->fp[i] != file)
continue;
unix_notinflight(fp->user, fp->fp[i]);
left = fp->count - 1 - i;
if (left) {
memmove(&fp->fp[i], &fp->fp[i + 1],
left * sizeof(struct file *));
}
fp->count--;
if (!fp->count) {
kfree_skb(skb);
skb = NULL;
} else {
__skb_queue_tail(&list, skb);
}
fput(file);
file = NULL;
break;
}
if (!file)
break;
__skb_queue_tail(&list, skb);
skb = skb_dequeue(head);
}
if (skb_peek(&list)) {
spin_lock_irq(&head->lock);
while ((skb = __skb_dequeue(&list)) != NULL)
__skb_queue_tail(head, skb);
spin_unlock_irq(&head->lock);
}
#else
fput(file);
#endif
}
static void __io_rsrc_put_work(struct fixed_rsrc_ref_node *ref_node)
{
struct fixed_rsrc_data *rsrc_data = ref_node->rsrc_data;
struct io_ring_ctx *ctx = rsrc_data->ctx;
struct io_rsrc_put *prsrc, *tmp;
list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
list_del(&prsrc->list);
ref_node->rsrc_put(ctx, prsrc);
kfree(prsrc);
}
percpu_ref_exit(&ref_node->refs);
kfree(ref_node);
percpu_ref_put(&rsrc_data->refs);
}
static void io_rsrc_put_work(struct work_struct *work)
{
struct io_ring_ctx *ctx;
struct llist_node *node;
ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
node = llist_del_all(&ctx->rsrc_put_llist);
while (node) {
struct fixed_rsrc_ref_node *ref_node;
struct llist_node *next = node->next;
ref_node = llist_entry(node, struct fixed_rsrc_ref_node, llist);
__io_rsrc_put_work(ref_node);
node = next;
}
}
static struct file **io_fixed_file_slot(struct fixed_rsrc_data *file_data,
unsigned i)
{
struct fixed_rsrc_table *table;
table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
return &table->files[i & IORING_FILE_TABLE_MASK];
}
static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
{
struct fixed_rsrc_ref_node *ref_node;
struct fixed_rsrc_data *data;
struct io_ring_ctx *ctx;
bool first_add = false;
int delay = HZ;
ref_node = container_of(ref, struct fixed_rsrc_ref_node, refs);
data = ref_node->rsrc_data;
ctx = data->ctx;
io_rsrc_ref_lock(ctx);
ref_node->done = true;
while (!list_empty(&ctx->rsrc_ref_list)) {
ref_node = list_first_entry(&ctx->rsrc_ref_list,
struct fixed_rsrc_ref_node, node);
/* recycle ref nodes in order */
if (!ref_node->done)
break;
list_del(&ref_node->node);
first_add |= llist_add(&ref_node->llist, &ctx->rsrc_put_llist);
}
io_rsrc_ref_unlock(ctx);
if (percpu_ref_is_dying(&data->refs))
delay = 0;
if (!delay)
mod_delayed_work(system_wq, &ctx->rsrc_put_work, 0);
else if (first_add)
queue_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
}
static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
struct io_ring_ctx *ctx)
{
struct fixed_rsrc_ref_node *ref_node;
ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
if (!ref_node)
return NULL;
if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
0, GFP_KERNEL)) {
kfree(ref_node);
return NULL;
}
INIT_LIST_HEAD(&ref_node->node);
INIT_LIST_HEAD(&ref_node->rsrc_list);
ref_node->done = false;
return ref_node;
}
static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
struct fixed_rsrc_ref_node *ref_node)
{
ref_node->rsrc_data = ctx->file_data;
ref_node->rsrc_put = io_ring_file_put;
}
static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node)
{
percpu_ref_exit(&ref_node->refs);
kfree(ref_node);
}
static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
unsigned nr_args)
{
__s32 __user *fds = (__s32 __user *) arg;
unsigned nr_tables, i;
struct file *file;
int fd, ret = -ENOMEM;
struct fixed_rsrc_ref_node *ref_node;
struct fixed_rsrc_data *file_data;
if (ctx->file_data)
return -EBUSY;
if (!nr_args)
return -EINVAL;
if (nr_args > IORING_MAX_FIXED_FILES)
return -EMFILE;
file_data = alloc_fixed_rsrc_data(ctx);
if (!file_data)
return -ENOMEM;
ctx->file_data = file_data;
nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
GFP_KERNEL);
if (!file_data->table)
goto out_free;
if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
goto out_free;
for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
ret = -EFAULT;
goto out_fput;
}
/* allow sparse sets */
if (fd == -1)
continue;
file = fget(fd);
ret = -EBADF;
if (!file)
goto out_fput;
/*
* Don't allow io_uring instances to be registered. If UNIX
* isn't enabled, then this causes a reference cycle and this
* instance can never get freed. If UNIX is enabled we'll
* handle it just fine, but there's still no point in allowing
* a ring fd as it doesn't support regular read/write anyway.
*/
if (file->f_op == &io_uring_fops) {
fput(file);
goto out_fput;
}
*io_fixed_file_slot(file_data, i) = file;
}
ret = io_sqe_files_scm(ctx);
if (ret) {
io_sqe_files_unregister(ctx);
return ret;
}
ref_node = alloc_fixed_rsrc_ref_node(ctx);
if (!ref_node) {
io_sqe_files_unregister(ctx);
return -ENOMEM;
}
init_fixed_file_ref_node(ctx, ref_node);
io_sqe_rsrc_set_node(ctx, file_data, ref_node);
return ret;
out_fput:
for (i = 0; i < ctx->nr_user_files; i++) {
file = io_file_from_index(ctx, i);
if (file)
fput(file);
}
for (i = 0; i < nr_tables; i++)
kfree(file_data->table[i].files);
ctx->nr_user_files = 0;
out_free:
free_fixed_rsrc_data(ctx->file_data);
ctx->file_data = NULL;
return ret;
}
static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
int index)
{
#if defined(CONFIG_UNIX)
struct sock *sock = ctx->ring_sock->sk;
struct sk_buff_head *head = &sock->sk_receive_queue;
struct sk_buff *skb;
/*
* See if we can merge this file into an existing skb SCM_RIGHTS
* file set. If there's no room, fall back to allocating a new skb
* and filling it in.
*/
spin_lock_irq(&head->lock);
skb = skb_peek(head);
if (skb) {
struct scm_fp_list *fpl = UNIXCB(skb).fp;
if (fpl->count < SCM_MAX_FD) {
__skb_unlink(skb, head);
spin_unlock_irq(&head->lock);
fpl->fp[fpl->count] = get_file(file);
unix_inflight(fpl->user, fpl->fp[fpl->count]);
fpl->count++;
spin_lock_irq(&head->lock);
__skb_queue_head(head, skb);
} else {
skb = NULL;
}
}
spin_unlock_irq(&head->lock);
if (skb) {
fput(file);
return 0;
}
return __io_sqe_files_scm(ctx, 1, index);
#else
return 0;
#endif
}
static int io_queue_rsrc_removal(struct fixed_rsrc_data *data, void *rsrc)
{
struct io_rsrc_put *prsrc;
struct fixed_rsrc_ref_node *ref_node = data->node;
prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
if (!prsrc)
return -ENOMEM;
prsrc->rsrc = rsrc;
list_add(&prsrc->list, &ref_node->rsrc_list);
return 0;
}
static inline int io_queue_file_removal(struct fixed_rsrc_data *data,
struct file *file)
{
return io_queue_rsrc_removal(data, (void *)file);
}
static int __io_sqe_files_update(struct io_ring_ctx *ctx,
struct io_uring_rsrc_update *up,
unsigned nr_args)
{
struct fixed_rsrc_data *data = ctx->file_data;
struct fixed_rsrc_ref_node *ref_node;
struct file *file, **file_slot;
__s32 __user *fds;
int fd, i, err;
__u32 done;
bool needs_switch = false;
if (check_add_overflow(up->offset, nr_args, &done))
return -EOVERFLOW;
if (done > ctx->nr_user_files)
return -EINVAL;
ref_node = alloc_fixed_rsrc_ref_node(ctx);
if (!ref_node)
return -ENOMEM;
init_fixed_file_ref_node(ctx, ref_node);
fds = u64_to_user_ptr(up->data);
for (done = 0; done < nr_args; done++) {
err = 0;
if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
err = -EFAULT;
break;
}
if (fd == IORING_REGISTER_FILES_SKIP)
continue;
i = array_index_nospec(up->offset + done, ctx->nr_user_files);
file_slot = io_fixed_file_slot(ctx->file_data, i);
if (*file_slot) {
err = io_queue_file_removal(data, *file_slot);
if (err)
break;
*file_slot = NULL;
needs_switch = true;
}
if (fd != -1) {
file = fget(fd);
if (!file) {
err = -EBADF;
break;
}
/*
* Don't allow io_uring instances to be registered. If
* UNIX isn't enabled, then this causes a reference
* cycle and this instance can never get freed. If UNIX
* is enabled we'll handle it just fine, but there's
* still no point in allowing a ring fd as it doesn't
* support regular read/write anyway.
*/
if (file->f_op == &io_uring_fops) {
fput(file);
err = -EBADF;
break;
}
*file_slot = file;
err = io_sqe_file_register(ctx, file, i);
if (err) {
*file_slot = NULL;
fput(file);
break;
}
}
}
if (needs_switch) {
percpu_ref_kill(&data->node->refs);
io_sqe_rsrc_set_node(ctx, data, ref_node);
} else
destroy_fixed_rsrc_ref_node(ref_node);
return done ? done : err;
}
static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
unsigned nr_args)
{
struct io_uring_rsrc_update up;
if (!ctx->file_data)
return -ENXIO;
if (!nr_args)
return -EINVAL;
if (copy_from_user(&up, arg, sizeof(up)))
return -EFAULT;
if (up.resv)
return -EINVAL;
return __io_sqe_files_update(ctx, &up, nr_args);
}
static struct io_wq_work *io_free_work(struct io_wq_work *work)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
req = io_put_req_find_next(req);
return req ? &req->work : NULL;
}
static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx)
{
struct io_wq_hash *hash;
struct io_wq_data data;
unsigned int concurrency;
hash = ctx->hash_map;
if (!hash) {
hash = kzalloc(sizeof(*hash), GFP_KERNEL);
if (!hash)
return ERR_PTR(-ENOMEM);
refcount_set(&hash->refs, 1);
init_waitqueue_head(&hash->wait);
ctx->hash_map = hash;
}
data.hash = hash;
data.free_work = io_free_work;
data.do_work = io_wq_submit_work;
/* Do QD, or 4 * CPUS, whatever is smallest */
concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
return io_wq_create(concurrency, &data);
}
static int io_uring_alloc_task_context(struct task_struct *task,
struct io_ring_ctx *ctx)
{
struct io_uring_task *tctx;
int ret;
tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
if (unlikely(!tctx))
return -ENOMEM;
ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
if (unlikely(ret)) {
kfree(tctx);
return ret;
}
tctx->io_wq = io_init_wq_offload(ctx);
if (IS_ERR(tctx->io_wq)) {
ret = PTR_ERR(tctx->io_wq);
percpu_counter_destroy(&tctx->inflight);
kfree(tctx);
return ret;
}
xa_init(&tctx->xa);
init_waitqueue_head(&tctx->wait);
tctx->last = NULL;
atomic_set(&tctx->in_idle, 0);
tctx->sqpoll = false;
task->io_uring = tctx;
spin_lock_init(&tctx->task_lock);
INIT_WQ_LIST(&tctx->task_list);
tctx->task_state = 0;
init_task_work(&tctx->task_work, tctx_task_work);
return 0;
}
void __io_uring_free(struct task_struct *tsk)
{
struct io_uring_task *tctx = tsk->io_uring;
WARN_ON_ONCE(!xa_empty(&tctx->xa));
percpu_counter_destroy(&tctx->inflight);
kfree(tctx);
tsk->io_uring = NULL;
}
static int io_sq_thread_fork(struct io_sq_data *sqd, struct io_ring_ctx *ctx)
{
int ret;
clear_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
reinit_completion(&sqd->completion);
ctx->sqo_dead = ctx->sqo_exec = 0;
sqd->task_pid = current->pid;
current->flags |= PF_IO_WORKER;
ret = io_wq_fork_thread(io_sq_thread, sqd);
current->flags &= ~PF_IO_WORKER;
if (ret < 0) {
sqd->thread = NULL;
return ret;
}
wait_for_completion(&sqd->completion);
return io_uring_alloc_task_context(sqd->thread, ctx);
}
static int io_sq_offload_create(struct io_ring_ctx *ctx,
struct io_uring_params *p)
{
int ret;
/* Retain compatibility with failing for an invalid attach attempt */
if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
IORING_SETUP_ATTACH_WQ) {
struct fd f;
f = fdget(p->wq_fd);
if (!f.file)
return -ENXIO;
if (f.file->f_op != &io_uring_fops) {
fdput(f);
return -EINVAL;
}
fdput(f);
}
if (ctx->flags & IORING_SETUP_SQPOLL) {
struct io_sq_data *sqd;
ret = -EPERM;
if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
goto err;
sqd = io_get_sq_data(p);
if (IS_ERR(sqd)) {
ret = PTR_ERR(sqd);
goto err;
}
ctx->sq_data = sqd;
io_sq_thread_park(sqd);
mutex_lock(&sqd->ctx_lock);
list_add(&ctx->sqd_list, &sqd->ctx_new_list);
mutex_unlock(&sqd->ctx_lock);
io_sq_thread_unpark(sqd);
ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
if (!ctx->sq_thread_idle)
ctx->sq_thread_idle = HZ;
if (sqd->thread)
return 0;
if (p->flags & IORING_SETUP_SQ_AFF) {
int cpu = p->sq_thread_cpu;
ret = -EINVAL;
if (cpu >= nr_cpu_ids)
goto err;
if (!cpu_online(cpu))
goto err;
sqd->sq_cpu = cpu;
} else {
sqd->sq_cpu = -1;
}
sqd->task_pid = current->pid;
current->flags |= PF_IO_WORKER;
ret = io_wq_fork_thread(io_sq_thread, sqd);
current->flags &= ~PF_IO_WORKER;
if (ret < 0) {
sqd->thread = NULL;
goto err;
}
wait_for_completion(&sqd->completion);
ret = io_uring_alloc_task_context(sqd->thread, ctx);
if (ret)
goto err;
} else if (p->flags & IORING_SETUP_SQ_AFF) {
/* Can't have SQ_AFF without SQPOLL */
ret = -EINVAL;
goto err;
}
return 0;
err:
io_sq_thread_finish(ctx);
return ret;
}
static void io_sq_offload_start(struct io_ring_ctx *ctx)
{
struct io_sq_data *sqd = ctx->sq_data;
if (ctx->flags & IORING_SETUP_SQPOLL)
complete(&sqd->startup);
}
static inline void __io_unaccount_mem(struct user_struct *user,
unsigned long nr_pages)
{
atomic_long_sub(nr_pages, &user->locked_vm);
}
static inline int __io_account_mem(struct user_struct *user,
unsigned long nr_pages)
{
unsigned long page_limit, cur_pages, new_pages;
/* Don't allow more pages than we can safely lock */
page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
do {
cur_pages = atomic_long_read(&user->locked_vm);
new_pages = cur_pages + nr_pages;
if (new_pages > page_limit)
return -ENOMEM;
} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
new_pages) != cur_pages);
return 0;
}
static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
{
if (ctx->user)
__io_unaccount_mem(ctx->user, nr_pages);
if (ctx->mm_account)
atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
}
static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
{
int ret;
if (ctx->user) {
ret = __io_account_mem(ctx->user, nr_pages);
if (ret)
return ret;
}
if (ctx->mm_account)
atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
return 0;
}
static void io_mem_free(void *ptr)
{
struct page *page;
if (!ptr)
return;
page = virt_to_head_page(ptr);
if (put_page_testzero(page))
free_compound_page(page);
}
static void *io_mem_alloc(size_t size)
{
gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
__GFP_NORETRY | __GFP_ACCOUNT;
return (void *) __get_free_pages(gfp_flags, get_order(size));
}
static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
size_t *sq_offset)
{
struct io_rings *rings;
size_t off, sq_array_size;
off = struct_size(rings, cqes, cq_entries);
if (off == SIZE_MAX)
return SIZE_MAX;
#ifdef CONFIG_SMP
off = ALIGN(off, SMP_CACHE_BYTES);
if (off == 0)
return SIZE_MAX;
#endif
if (sq_offset)
*sq_offset = off;
sq_array_size = array_size(sizeof(u32), sq_entries);
if (sq_array_size == SIZE_MAX)
return SIZE_MAX;
if (check_add_overflow(off, sq_array_size, &off))
return SIZE_MAX;
return off;
}
static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
{
int i, j;
if (!ctx->user_bufs)
return -ENXIO;
for (i = 0; i < ctx->nr_user_bufs; i++) {
struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
for (j = 0; j < imu->nr_bvecs; j++)
unpin_user_page(imu->bvec[j].bv_page);
if (imu->acct_pages)
io_unaccount_mem(ctx, imu->acct_pages);
kvfree(imu->bvec);
imu->nr_bvecs = 0;
}
kfree(ctx->user_bufs);
ctx->user_bufs = NULL;
ctx->nr_user_bufs = 0;
return 0;
}
static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
void __user *arg, unsigned index)
{
struct iovec __user *src;
#ifdef CONFIG_COMPAT
if (ctx->compat) {
struct compat_iovec __user *ciovs;
struct compat_iovec ciov;
ciovs = (struct compat_iovec __user *) arg;
if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
return -EFAULT;
dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
dst->iov_len = ciov.iov_len;
return 0;
}
#endif
src = (struct iovec __user *) arg;
if (copy_from_user(dst, &src[index], sizeof(*dst)))
return -EFAULT;
return 0;
}
/*
* Not super efficient, but this is just a registration time. And we do cache
* the last compound head, so generally we'll only do a full search if we don't
* match that one.
*
* We check if the given compound head page has already been accounted, to
* avoid double accounting it. This allows us to account the full size of the
* page, not just the constituent pages of a huge page.
*/
static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
int nr_pages, struct page *hpage)
{
int i, j;
/* check current page array */
for (i = 0; i < nr_pages; i++) {
if (!PageCompound(pages[i]))
continue;
if (compound_head(pages[i]) == hpage)
return true;
}
/* check previously registered pages */
for (i = 0; i < ctx->nr_user_bufs; i++) {
struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
for (j = 0; j < imu->nr_bvecs; j++) {
if (!PageCompound(imu->bvec[j].bv_page))
continue;
if (compound_head(imu->bvec[j].bv_page) == hpage)
return true;
}
}
return false;
}
static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
int nr_pages, struct io_mapped_ubuf *imu,
struct page **last_hpage)
{
int i, ret;
for (i = 0; i < nr_pages; i++) {
if (!PageCompound(pages[i])) {
imu->acct_pages++;
} else {
struct page *hpage;
hpage = compound_head(pages[i]);
if (hpage == *last_hpage)
continue;
*last_hpage = hpage;
if (headpage_already_acct(ctx, pages, i, hpage))
continue;
imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
}
}
if (!imu->acct_pages)
return 0;
ret = io_account_mem(ctx, imu->acct_pages);
if (ret)
imu->acct_pages = 0;
return ret;
}
static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
struct io_mapped_ubuf *imu,
struct page **last_hpage)
{
struct vm_area_struct **vmas = NULL;
struct page **pages = NULL;
unsigned long off, start, end, ubuf;
size_t size;
int ret, pret, nr_pages, i;
ubuf = (unsigned long) iov->iov_base;
end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
start = ubuf >> PAGE_SHIFT;
nr_pages = end - start;
ret = -ENOMEM;
pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
goto done;
vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
GFP_KERNEL);
if (!vmas)
goto done;
imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
GFP_KERNEL);
if (!imu->bvec)
goto done;
ret = 0;
mmap_read_lock(current->mm);
pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
pages, vmas);
if (pret == nr_pages) {
/* don't support file backed memory */
for (i = 0; i < nr_pages; i++) {
struct vm_area_struct *vma = vmas[i];
if (vma->vm_file &&
!is_file_hugepages(vma->vm_file)) {
ret = -EOPNOTSUPP;
break;
}
}
} else {
ret = pret < 0 ? pret : -EFAULT;
}
mmap_read_unlock(current->mm);
if (ret) {
/*
* if we did partial map, or found file backed vmas,
* release any pages we did get
*/
if (pret > 0)
unpin_user_pages(pages, pret);
kvfree(imu->bvec);
goto done;
}
ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
if (ret) {
unpin_user_pages(pages, pret);
kvfree(imu->bvec);
goto done;
}
off = ubuf & ~PAGE_MASK;
size = iov->iov_len;
for (i = 0; i < nr_pages; i++) {
size_t vec_len;
vec_len = min_t(size_t, size, PAGE_SIZE - off);
imu->bvec[i].bv_page = pages[i];
imu->bvec[i].bv_len = vec_len;
imu->bvec[i].bv_offset = off;
off = 0;
size -= vec_len;
}
/* store original address for later verification */
imu->ubuf = ubuf;
imu->len = iov->iov_len;
imu->nr_bvecs = nr_pages;
ret = 0;
done:
kvfree(pages);
kvfree(vmas);
return ret;
}
static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
{
if (ctx->user_bufs)
return -EBUSY;
if (!nr_args || nr_args > UIO_MAXIOV)
return -EINVAL;
ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
GFP_KERNEL);
if (!ctx->user_bufs)
return -ENOMEM;
return 0;
}
static int io_buffer_validate(struct iovec *iov)
{
/*
* Don't impose further limits on the size and buffer
* constraints here, we'll -EINVAL later when IO is
* submitted if they are wrong.
*/
if (!iov->iov_base || !iov->iov_len)
return -EFAULT;
/* arbitrary limit, but we need something */
if (iov->iov_len > SZ_1G)
return -EFAULT;
return 0;
}
static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
unsigned int nr_args)
{
int i, ret;
struct iovec iov;
struct page *last_hpage = NULL;
ret = io_buffers_map_alloc(ctx, nr_args);
if (ret)
return ret;
for (i = 0; i < nr_args; i++) {
struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
ret = io_copy_iov(ctx, &iov, arg, i);
if (ret)
break;
ret = io_buffer_validate(&iov);
if (ret)
break;
ret = io_sqe_buffer_register(ctx, &iov, imu, &last_hpage);
if (ret)
break;
ctx->nr_user_bufs++;
}
if (ret)
io_sqe_buffers_unregister(ctx);
return ret;
}
static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
{
__s32 __user *fds = arg;
int fd;
if (ctx->cq_ev_fd)
return -EBUSY;
if (copy_from_user(&fd, fds, sizeof(*fds)))
return -EFAULT;
ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
if (IS_ERR(ctx->cq_ev_fd)) {
int ret = PTR_ERR(ctx->cq_ev_fd);
ctx->cq_ev_fd = NULL;
return ret;
}
return 0;
}
static int io_eventfd_unregister(struct io_ring_ctx *ctx)
{
if (ctx->cq_ev_fd) {
eventfd_ctx_put(ctx->cq_ev_fd);
ctx->cq_ev_fd = NULL;
return 0;
}
return -ENXIO;
}
static int __io_destroy_buffers(int id, void *p, void *data)
{
struct io_ring_ctx *ctx = data;
struct io_buffer *buf = p;
__io_remove_buffers(ctx, buf, id, -1U);
return 0;
}
static void io_destroy_buffers(struct io_ring_ctx *ctx)
{
idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
idr_destroy(&ctx->io_buffer_idr);
}
static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
{
struct io_kiocb *req, *nxt;
list_for_each_entry_safe(req, nxt, list, compl.list) {
if (tsk && req->task != tsk)
continue;
list_del(&req->compl.list);
kmem_cache_free(req_cachep, req);
}
}
static void io_req_caches_free(struct io_ring_ctx *ctx, struct task_struct *tsk)
{
struct io_submit_state *submit_state = &ctx->submit_state;
struct io_comp_state *cs = &ctx->submit_state.comp;
mutex_lock(&ctx->uring_lock);
if (submit_state->free_reqs) {
kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
submit_state->reqs);
submit_state->free_reqs = 0;
}
spin_lock_irq(&ctx->completion_lock);
list_splice_init(&cs->locked_free_list, &cs->free_list);
cs->locked_free_nr = 0;
spin_unlock_irq(&ctx->completion_lock);
io_req_cache_free(&cs->free_list, NULL);
mutex_unlock(&ctx->uring_lock);
}
static void io_ring_ctx_free(struct io_ring_ctx *ctx)
{
/*
* Some may use context even when all refs and requests have been put,
* and they are free to do so while still holding uring_lock, see
* __io_req_task_submit(). Wait for them to finish.
*/
mutex_lock(&ctx->uring_lock);
mutex_unlock(&ctx->uring_lock);
io_sq_thread_finish(ctx);
io_sqe_buffers_unregister(ctx);
if (ctx->mm_account) {
mmdrop(ctx->mm_account);
ctx->mm_account = NULL;
}
mutex_lock(&ctx->uring_lock);
io_sqe_files_unregister(ctx);
mutex_unlock(&ctx->uring_lock);
io_eventfd_unregister(ctx);
io_destroy_buffers(ctx);
idr_destroy(&ctx->personality_idr);
#if defined(CONFIG_UNIX)
if (ctx->ring_sock) {
ctx->ring_sock->file = NULL; /* so that iput() is called */
sock_release(ctx->ring_sock);
}
#endif
io_mem_free(ctx->rings);
io_mem_free(ctx->sq_sqes);
percpu_ref_exit(&ctx->refs);
free_uid(ctx->user);
io_req_caches_free(ctx, NULL);
if (ctx->hash_map)
io_wq_put_hash(ctx->hash_map);
kfree(ctx->cancel_hash);
kfree(ctx);
}
static __poll_t io_uring_poll(struct file *file, poll_table *wait)
{
struct io_ring_ctx *ctx = file->private_data;
__poll_t mask = 0;
poll_wait(file, &ctx->cq_wait, wait);
/*
* synchronizes with barrier from wq_has_sleeper call in
* io_commit_cqring
*/
smp_rmb();
if (!io_sqring_full(ctx))
mask |= EPOLLOUT | EPOLLWRNORM;
/*
* Don't flush cqring overflow list here, just do a simple check.
* Otherwise there could possible be ABBA deadlock:
* CPU0 CPU1
* ---- ----
* lock(&ctx->uring_lock);
* lock(&ep->mtx);
* lock(&ctx->uring_lock);
* lock(&ep->mtx);
*
* Users may get EPOLLIN meanwhile seeing nothing in cqring, this
* pushs them to do the flush.
*/
if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
mask |= EPOLLIN | EPOLLRDNORM;
return mask;
}
static int io_uring_fasync(int fd, struct file *file, int on)
{
struct io_ring_ctx *ctx = file->private_data;
return fasync_helper(fd, file, on, &ctx->cq_fasync);
}
static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
{
const struct cred *creds;
creds = idr_remove(&ctx->personality_idr, id);
if (creds) {
put_cred(creds);
return 0;
}
return -EINVAL;
}
static int io_remove_personalities(int id, void *p, void *data)
{
struct io_ring_ctx *ctx = data;
io_unregister_personality(ctx, id);
return 0;
}
static void io_run_ctx_fallback(struct io_ring_ctx *ctx)
{
struct callback_head *work, *head, *next;
do {
do {
head = NULL;
work = READ_ONCE(ctx->exit_task_work);
} while (cmpxchg(&ctx->exit_task_work, work, head) != work);
if (!work)
break;
do {
next = work->next;
work->func(work);
work = next;
cond_resched();
} while (work);
} while (1);
}
static void io_ring_exit_work(struct work_struct *work)
{
struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
exit_work);
/*
* If we're doing polled IO and end up having requests being
* submitted async (out-of-line), then completions can come in while
* we're waiting for refs to drop. We need to reap these manually,
* as nobody else will be looking for them.
*/
do {
io_uring_try_cancel_requests(ctx, NULL, NULL);
io_run_ctx_fallback(ctx);
} while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
io_ring_ctx_free(ctx);
}
static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
{
mutex_lock(&ctx->uring_lock);
percpu_ref_kill(&ctx->refs);
if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
ctx->sqo_dead = 1;
/* if force is set, the ring is going away. always drop after that */
ctx->cq_overflow_flushed = 1;
if (ctx->rings)
__io_cqring_overflow_flush(ctx, true, NULL, NULL);
idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
mutex_unlock(&ctx->uring_lock);
io_kill_timeouts(ctx, NULL, NULL);
io_poll_remove_all(ctx, NULL, NULL);
/* if we failed setting up the ctx, we might not have any rings */
io_iopoll_try_reap_events(ctx);
INIT_WORK(&ctx->exit_work, io_ring_exit_work);
/*
* Use system_unbound_wq to avoid spawning tons of event kworkers
* if we're exiting a ton of rings at the same time. It just adds
* noise and overhead, there's no discernable change in runtime
* over using system_wq.
*/
queue_work(system_unbound_wq, &ctx->exit_work);
}
static int io_uring_release(struct inode *inode, struct file *file)
{
struct io_ring_ctx *ctx = file->private_data;
file->private_data = NULL;
io_ring_ctx_wait_and_kill(ctx);
return 0;
}
struct io_task_cancel {
struct task_struct *task;
struct files_struct *files;
};
static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
struct io_task_cancel *cancel = data;
bool ret;
if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
unsigned long flags;
struct io_ring_ctx *ctx = req->ctx;
/* protect against races with linked timeouts */
spin_lock_irqsave(&ctx->completion_lock, flags);
ret = io_match_task(req, cancel->task, cancel->files);
spin_unlock_irqrestore(&ctx->completion_lock, flags);
} else {
ret = io_match_task(req, cancel->task, cancel->files);
}
return ret;
}
static void io_cancel_defer_files(struct io_ring_ctx *ctx,
struct task_struct *task,
struct files_struct *files)
{
struct io_defer_entry *de = NULL;
LIST_HEAD(list);
spin_lock_irq(&ctx->completion_lock);
list_for_each_entry_reverse(de, &ctx->defer_list, list) {
if (io_match_task(de->req, task, files)) {
list_cut_position(&list, &ctx->defer_list, &de->list);
break;
}
}
spin_unlock_irq(&ctx->completion_lock);
while (!list_empty(&list)) {
de = list_first_entry(&list, struct io_defer_entry, list);
list_del_init(&de->list);
req_set_fail_links(de->req);
io_put_req(de->req);
io_req_complete(de->req, -ECANCELED);
kfree(de);
}
}
static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
struct task_struct *task,
struct files_struct *files)
{
struct io_task_cancel cancel = { .task = task, .files = files, };
struct io_uring_task *tctx = current->io_uring;
while (1) {
enum io_wq_cancel cret;
bool ret = false;
if (tctx && tctx->io_wq) {
cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
&cancel, true);
ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
}
/* SQPOLL thread does its own polling */
if (!(ctx->flags & IORING_SETUP_SQPOLL) && !files) {
while (!list_empty_careful(&ctx->iopoll_list)) {
io_iopoll_try_reap_events(ctx);
ret = true;
}
}
ret |= io_poll_remove_all(ctx, task, files);
ret |= io_kill_timeouts(ctx, task, files);
ret |= io_run_task_work();
io_cqring_overflow_flush(ctx, true, task, files);
if (!ret)
break;
cond_resched();
}
}
static int io_uring_count_inflight(struct io_ring_ctx *ctx,
struct task_struct *task,
struct files_struct *files)
{
struct io_kiocb *req;
int cnt = 0;
spin_lock_irq(&ctx->inflight_lock);
list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
cnt += io_match_task(req, task, files);
spin_unlock_irq(&ctx->inflight_lock);
return cnt;
}
static void io_uring_cancel_files(struct io_ring_ctx *ctx,
struct task_struct *task,
struct files_struct *files)
{
while (!list_empty_careful(&ctx->inflight_list)) {
DEFINE_WAIT(wait);
int inflight;
inflight = io_uring_count_inflight(ctx, task, files);
if (!inflight)
break;
io_uring_try_cancel_requests(ctx, task, files);
if (ctx->sq_data)
io_sq_thread_unpark(ctx->sq_data);
prepare_to_wait(&task->io_uring->wait, &wait,
TASK_UNINTERRUPTIBLE);
if (inflight == io_uring_count_inflight(ctx, task, files))
schedule();
finish_wait(&task->io_uring->wait, &wait);
if (ctx->sq_data)
io_sq_thread_park(ctx->sq_data);
}
}
static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
{
mutex_lock(&ctx->uring_lock);
ctx->sqo_dead = 1;
mutex_unlock(&ctx->uring_lock);
/* make sure callers enter the ring to get error */
if (ctx->rings)
io_ring_set_wakeup_flag(ctx);
}
/*
* We need to iteratively cancel requests, in case a request has dependent
* hard links. These persist even for failure of cancelations, hence keep
* looping until none are found.
*/
static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
struct files_struct *files)
{
struct task_struct *task = current;
bool did_park = false;
if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
io_disable_sqo_submit(ctx);
did_park = io_sq_thread_park(ctx->sq_data);
if (did_park) {
task = ctx->sq_data->thread;
atomic_inc(&task->io_uring->in_idle);
}
}
io_cancel_defer_files(ctx, task, files);
io_uring_cancel_files(ctx, task, files);
if (!files)
io_uring_try_cancel_requests(ctx, task, NULL);
if (did_park) {
atomic_dec(&task->io_uring->in_idle);
io_sq_thread_unpark(ctx->sq_data);
}
}
/*
* Note that this task has used io_uring. We use it for cancelation purposes.
*/
static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
{
struct io_uring_task *tctx = current->io_uring;
int ret;
if (unlikely(!tctx)) {
ret = io_uring_alloc_task_context(current, ctx);
if (unlikely(ret))
return ret;
tctx = current->io_uring;
}
if (tctx->last != file) {
void *old = xa_load(&tctx->xa, (unsigned long)file);
if (!old) {
get_file(file);
ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
file, GFP_KERNEL));
if (ret) {
fput(file);
return ret;
}
/* one and only SQPOLL file note, held by sqo_task */
WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) &&
current != ctx->sqo_task);
}
tctx->last = file;
}
/*
* This is race safe in that the task itself is doing this, hence it
* cannot be going through the exit/cancel paths at the same time.
* This cannot be modified while exit/cancel is running.
*/
if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
tctx->sqpoll = true;
return 0;
}
/*
* Remove this io_uring_file -> task mapping.
*/
static void io_uring_del_task_file(struct file *file)
{
struct io_uring_task *tctx = current->io_uring;
if (tctx->last == file)
tctx->last = NULL;
file = xa_erase(&tctx->xa, (unsigned long)file);
if (file)
fput(file);
}
static void io_uring_remove_task_files(struct io_uring_task *tctx)
{
struct file *file;
unsigned long index;
xa_for_each(&tctx->xa, index, file)
io_uring_del_task_file(file);
}
void __io_uring_files_cancel(struct files_struct *files)
{
struct io_uring_task *tctx = current->io_uring;
struct file *file;
unsigned long index;
/* make sure overflow events are dropped */
atomic_inc(&tctx->in_idle);
xa_for_each(&tctx->xa, index, file)
io_uring_cancel_task_requests(file->private_data, files);
atomic_dec(&tctx->in_idle);
if (files) {
io_uring_remove_task_files(tctx);
if (tctx->io_wq) {
io_wq_put(tctx->io_wq);
tctx->io_wq = NULL;
}
}
}
static s64 tctx_inflight(struct io_uring_task *tctx)
{
return percpu_counter_sum(&tctx->inflight);
}
static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx)
{
struct io_sq_data *sqd = ctx->sq_data;
struct io_uring_task *tctx;
s64 inflight;
DEFINE_WAIT(wait);
if (!sqd)
return;
io_disable_sqo_submit(ctx);
if (!io_sq_thread_park(sqd))
return;
tctx = ctx->sq_data->thread->io_uring;
atomic_inc(&tctx->in_idle);
do {
/* read completions before cancelations */
inflight = tctx_inflight(tctx);
if (!inflight)
break;
io_uring_cancel_task_requests(ctx, NULL);
prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
/*
* If we've seen completions, retry without waiting. This
* avoids a race where a completion comes in before we did
* prepare_to_wait().
*/
if (inflight == tctx_inflight(tctx))
schedule();
finish_wait(&tctx->wait, &wait);
} while (1);
atomic_dec(&tctx->in_idle);
io_sq_thread_unpark(sqd);
}
/*
* Find any io_uring fd that this task has registered or done IO on, and cancel
* requests.
*/
void __io_uring_task_cancel(void)
{
struct io_uring_task *tctx = current->io_uring;
DEFINE_WAIT(wait);
s64 inflight;
/* make sure overflow events are dropped */
atomic_inc(&tctx->in_idle);
/* trigger io_disable_sqo_submit() */
if (tctx->sqpoll) {
struct file *file;
unsigned long index;
xa_for_each(&tctx->xa, index, file)
io_uring_cancel_sqpoll(file->private_data);
}
do {
/* read completions before cancelations */
inflight = tctx_inflight(tctx);
if (!inflight)
break;
__io_uring_files_cancel(NULL);
prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
/*
* If we've seen completions, retry without waiting. This
* avoids a race where a completion comes in before we did
* prepare_to_wait().
*/
if (inflight == tctx_inflight(tctx))
schedule();
finish_wait(&tctx->wait, &wait);
} while (1);
atomic_dec(&tctx->in_idle);
io_uring_remove_task_files(tctx);
}
static int io_uring_flush(struct file *file, void *data)
{
struct io_uring_task *tctx = current->io_uring;
struct io_ring_ctx *ctx = file->private_data;
/* Ignore helper thread files exit */
if (current->flags & PF_IO_WORKER)
return 0;
if (fatal_signal_pending(current) || (current->flags & PF_EXITING)) {
io_uring_cancel_task_requests(ctx, NULL);
io_req_caches_free(ctx, current);
}
io_run_ctx_fallback(ctx);
if (!tctx)
return 0;
/* we should have cancelled and erased it before PF_EXITING */
WARN_ON_ONCE((current->flags & PF_EXITING) &&
xa_load(&tctx->xa, (unsigned long)file));
/*
* fput() is pending, will be 2 if the only other ref is our potential
* task file note. If the task is exiting, drop regardless of count.
*/
if (atomic_long_read(&file->f_count) != 2)
return 0;
if (ctx->flags & IORING_SETUP_SQPOLL) {
/* there is only one file note, which is owned by sqo_task */
WARN_ON_ONCE(ctx->sqo_task != current &&
xa_load(&tctx->xa, (unsigned long)file));
/* sqo_dead check is for when this happens after cancellation */
WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
!xa_load(&tctx->xa, (unsigned long)file));
io_disable_sqo_submit(ctx);
}
if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
io_uring_del_task_file(file);
return 0;
}
static void *io_uring_validate_mmap_request(struct file *file,
loff_t pgoff, size_t sz)
{
struct io_ring_ctx *ctx = file->private_data;
loff_t offset = pgoff << PAGE_SHIFT;
struct page *page;
void *ptr;
switch (offset) {
case IORING_OFF_SQ_RING:
case IORING_OFF_CQ_RING:
ptr = ctx->rings;
break;
case IORING_OFF_SQES:
ptr = ctx->sq_sqes;
break;
default:
return ERR_PTR(-EINVAL);
}
page = virt_to_head_page(ptr);
if (sz > page_size(page))
return ERR_PTR(-EINVAL);
return ptr;
}
#ifdef CONFIG_MMU
static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
size_t sz = vma->vm_end - vma->vm_start;
unsigned long pfn;
void *ptr;
ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
}
#else /* !CONFIG_MMU */
static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
}
static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
{
return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
}
static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
void *ptr;
ptr = io_uring_validate_mmap_request(file, pgoff, len);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
return (unsigned long) ptr;
}
#endif /* !CONFIG_MMU */
static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
{
int ret = 0;
DEFINE_WAIT(wait);
do {
if (!io_sqring_full(ctx))
break;
prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
if (unlikely(ctx->sqo_dead)) {
ret = -EOWNERDEAD;
goto out;
}
if (!io_sqring_full(ctx))
break;
schedule();
} while (!signal_pending(current));
finish_wait(&ctx->sqo_sq_wait, &wait);
out:
return ret;
}
static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
struct __kernel_timespec __user **ts,
const sigset_t __user **sig)
{
struct io_uring_getevents_arg arg;
/*
* If EXT_ARG isn't set, then we have no timespec and the argp pointer
* is just a pointer to the sigset_t.
*/
if (!(flags & IORING_ENTER_EXT_ARG)) {
*sig = (const sigset_t __user *) argp;
*ts = NULL;
return 0;
}
/*
* EXT_ARG is set - ensure we agree on the size of it and copy in our
* timespec and sigset_t pointers if good.
*/
if (*argsz != sizeof(arg))
return -EINVAL;
if (copy_from_user(&arg, argp, sizeof(arg)))
return -EFAULT;
*sig = u64_to_user_ptr(arg.sigmask);
*argsz = arg.sigmask_sz;
*ts = u64_to_user_ptr(arg.ts);
return 0;
}
SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
u32, min_complete, u32, flags, const void __user *, argp,
size_t, argsz)
{
struct io_ring_ctx *ctx;
long ret = -EBADF;
int submitted = 0;
struct fd f;
io_run_task_work();
if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
return -EINVAL;
f = fdget(fd);
if (!f.file)
return -EBADF;
ret = -EOPNOTSUPP;
if (f.file->f_op != &io_uring_fops)
goto out_fput;
ret = -ENXIO;
ctx = f.file->private_data;
if (!percpu_ref_tryget(&ctx->refs))
goto out_fput;
ret = -EBADFD;
if (ctx->flags & IORING_SETUP_R_DISABLED)
goto out;
/*
* For SQ polling, the thread will do all submissions and completions.
* Just return the requested submit count, and wake the thread if
* we were asked to.
*/
ret = 0;
if (ctx->flags & IORING_SETUP_SQPOLL) {
io_cqring_overflow_flush(ctx, false, NULL, NULL);
if (unlikely(ctx->sqo_exec)) {
ret = io_sq_thread_fork(ctx->sq_data, ctx);
if (ret)
goto out;
ctx->sqo_exec = 0;
}
ret = -EOWNERDEAD;
if (unlikely(ctx->sqo_dead))
goto out;
if (flags & IORING_ENTER_SQ_WAKEUP)
wake_up(&ctx->sq_data->wait);
if (flags & IORING_ENTER_SQ_WAIT) {
ret = io_sqpoll_wait_sq(ctx);
if (ret)
goto out;
}
submitted = to_submit;
} else if (to_submit) {
ret = io_uring_add_task_file(ctx, f.file);
if (unlikely(ret))
goto out;
mutex_lock(&ctx->uring_lock);
submitted = io_submit_sqes(ctx, to_submit);
mutex_unlock(&ctx->uring_lock);
if (submitted != to_submit)
goto out;
}
if (flags & IORING_ENTER_GETEVENTS) {
const sigset_t __user *sig;
struct __kernel_timespec __user *ts;
ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
if (unlikely(ret))
goto out;
min_complete = min(min_complete, ctx->cq_entries);
/*
* When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
* space applications don't need to do io completion events
* polling again, they can rely on io_sq_thread to do polling
* work, which can reduce cpu usage and uring_lock contention.
*/
if (ctx->flags & IORING_SETUP_IOPOLL &&
!(ctx->flags & IORING_SETUP_SQPOLL)) {
ret = io_iopoll_check(ctx, min_complete);
} else {
ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
}
}
out:
percpu_ref_put(&ctx->refs);
out_fput:
fdput(f);
return submitted ? submitted : ret;
}
#ifdef CONFIG_PROC_FS
static int io_uring_show_cred(int id, void *p, void *data)
{
const struct cred *cred = p;
struct seq_file *m = data;
struct user_namespace *uns = seq_user_ns(m);
struct group_info *gi;
kernel_cap_t cap;
unsigned __capi;
int g;
seq_printf(m, "%5d\n", id);
seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
seq_puts(m, "\n\tGroups:\t");
gi = cred->group_info;
for (g = 0; g < gi->ngroups; g++) {
seq_put_decimal_ull(m, g ? " " : "",
from_kgid_munged(uns, gi->gid[g]));
}
seq_puts(m, "\n\tCapEff:\t");
cap = cred->cap_effective;
CAP_FOR_EACH_U32(__capi)
seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
seq_putc(m, '\n');
return 0;
}
static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
{
struct io_sq_data *sq = NULL;
bool has_lock;
int i;
/*
* Avoid ABBA deadlock between the seq lock and the io_uring mutex,
* since fdinfo case grabs it in the opposite direction of normal use
* cases. If we fail to get the lock, we just don't iterate any
* structures that could be going away outside the io_uring mutex.
*/
has_lock = mutex_trylock(&ctx->uring_lock);
if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
sq = ctx->sq_data;
if (!sq->thread)
sq = NULL;
}
seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
struct file *f = *io_fixed_file_slot(ctx->file_data, i);
if (f)
seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
else
seq_printf(m, "%5u: <none>\n", i);
}
seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
(unsigned int) buf->len);
}
if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
seq_printf(m, "Personalities:\n");
idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
}
seq_printf(m, "PollList:\n");
spin_lock_irq(&ctx->completion_lock);
for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
struct hlist_head *list = &ctx->cancel_hash[i];
struct io_kiocb *req;
hlist_for_each_entry(req, list, hash_node)
seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
req->task->task_works != NULL);
}
spin_unlock_irq(&ctx->completion_lock);
if (has_lock)
mutex_unlock(&ctx->uring_lock);
}
static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
{
struct io_ring_ctx *ctx = f->private_data;
if (percpu_ref_tryget(&ctx->refs)) {
__io_uring_show_fdinfo(ctx, m);
percpu_ref_put(&ctx->refs);
}
}
#endif
static const struct file_operations io_uring_fops = {
.release = io_uring_release,
.flush = io_uring_flush,
.mmap = io_uring_mmap,
#ifndef CONFIG_MMU
.get_unmapped_area = io_uring_nommu_get_unmapped_area,
.mmap_capabilities = io_uring_nommu_mmap_capabilities,
#endif
.poll = io_uring_poll,
.fasync = io_uring_fasync,
#ifdef CONFIG_PROC_FS
.show_fdinfo = io_uring_show_fdinfo,
#endif
};
static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
struct io_uring_params *p)
{
struct io_rings *rings;
size_t size, sq_array_offset;
/* make sure these are sane, as we already accounted them */
ctx->sq_entries = p->sq_entries;
ctx->cq_entries = p->cq_entries;
size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
if (size == SIZE_MAX)
return -EOVERFLOW;
rings = io_mem_alloc(size);
if (!rings)
return -ENOMEM;
ctx->rings = rings;
ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
rings->sq_ring_mask = p->sq_entries - 1;
rings->cq_ring_mask = p->cq_entries - 1;
rings->sq_ring_entries = p->sq_entries;
rings->cq_ring_entries = p->cq_entries;
ctx->sq_mask = rings->sq_ring_mask;
ctx->cq_mask = rings->cq_ring_mask;
size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
if (size == SIZE_MAX) {
io_mem_free(ctx->rings);
ctx->rings = NULL;
return -EOVERFLOW;
}
ctx->sq_sqes = io_mem_alloc(size);
if (!ctx->sq_sqes) {
io_mem_free(ctx->rings);
ctx->rings = NULL;
return -ENOMEM;
}
return 0;
}
static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
{
int ret, fd;
fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
if (fd < 0)
return fd;
ret = io_uring_add_task_file(ctx, file);
if (ret) {
put_unused_fd(fd);
return ret;
}
fd_install(fd, file);
return fd;
}
/*
* Allocate an anonymous fd, this is what constitutes the application
* visible backing of an io_uring instance. The application mmaps this
* fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
* we have to tie this fd to a socket for file garbage collection purposes.
*/
static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
{
struct file *file;
#if defined(CONFIG_UNIX)
int ret;
ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
&ctx->ring_sock);
if (ret)
return ERR_PTR(ret);
#endif
file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
O_RDWR | O_CLOEXEC);
#if defined(CONFIG_UNIX)
if (IS_ERR(file)) {
sock_release(ctx->ring_sock);
ctx->ring_sock = NULL;
} else {
ctx->ring_sock->file = file;
}
#endif
return file;
}
static int io_uring_create(unsigned entries, struct io_uring_params *p,
struct io_uring_params __user *params)
{
struct io_ring_ctx *ctx;
struct file *file;
int ret;
if (!entries)
return -EINVAL;
if (entries > IORING_MAX_ENTRIES) {
if (!(p->flags & IORING_SETUP_CLAMP))
return -EINVAL;
entries = IORING_MAX_ENTRIES;
}
/*
* Use twice as many entries for the CQ ring. It's possible for the
* application to drive a higher depth than the size of the SQ ring,
* since the sqes are only used at submission time. This allows for
* some flexibility in overcommitting a bit. If the application has
* set IORING_SETUP_CQSIZE, it will have passed in the desired number
* of CQ ring entries manually.
*/
p->sq_entries = roundup_pow_of_two(entries);
if (p->flags & IORING_SETUP_CQSIZE) {
/*
* If IORING_SETUP_CQSIZE is set, we do the same roundup
* to a power-of-two, if it isn't already. We do NOT impose
* any cq vs sq ring sizing.
*/
if (!p->cq_entries)
return -EINVAL;
if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
if (!(p->flags & IORING_SETUP_CLAMP))
return -EINVAL;
p->cq_entries = IORING_MAX_CQ_ENTRIES;
}
p->cq_entries = roundup_pow_of_two(p->cq_entries);
if (p->cq_entries < p->sq_entries)
return -EINVAL;
} else {
p->cq_entries = 2 * p->sq_entries;
}
ctx = io_ring_ctx_alloc(p);
if (!ctx)
return -ENOMEM;
ctx->compat = in_compat_syscall();
if (!capable(CAP_IPC_LOCK))
ctx->user = get_uid(current_user());
ctx->sqo_task = current;
/*
* This is just grabbed for accounting purposes. When a process exits,
* the mm is exited and dropped before the files, hence we need to hang
* on to this mm purely for the purposes of being able to unaccount
* memory (locked/pinned vm). It's not used for anything else.
*/
mmgrab(current->mm);
ctx->mm_account = current->mm;
ret = io_allocate_scq_urings(ctx, p);
if (ret)
goto err;
ret = io_sq_offload_create(ctx, p);
if (ret)
goto err;
if (!(p->flags & IORING_SETUP_R_DISABLED))
io_sq_offload_start(ctx);
memset(&p->sq_off, 0, sizeof(p->sq_off));
p->sq_off.head = offsetof(struct io_rings, sq.head);
p->sq_off.tail = offsetof(struct io_rings, sq.tail);
p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
p->sq_off.flags = offsetof(struct io_rings, sq_flags);
p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
memset(&p->cq_off, 0, sizeof(p->cq_off));
p->cq_off.head = offsetof(struct io_rings, cq.head);
p->cq_off.tail = offsetof(struct io_rings, cq.tail);
p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
p->cq_off.cqes = offsetof(struct io_rings, cqes);
p->cq_off.flags = offsetof(struct io_rings, cq_flags);
p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS;
if (copy_to_user(params, p, sizeof(*p))) {
ret = -EFAULT;
goto err;
}
file = io_uring_get_file(ctx);
if (IS_ERR(file)) {
ret = PTR_ERR(file);
goto err;
}
/*
* Install ring fd as the very last thing, so we don't risk someone
* having closed it before we finish setup
*/
ret = io_uring_install_fd(ctx, file);
if (ret < 0) {
io_disable_sqo_submit(ctx);
/* fput will clean it up */
fput(file);
return ret;
}
trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
return ret;
err:
io_disable_sqo_submit(ctx);
io_ring_ctx_wait_and_kill(ctx);
return ret;
}
/*
* Sets up an aio uring context, and returns the fd. Applications asks for a
* ring size, we return the actual sq/cq ring sizes (among other things) in the
* params structure passed in.
*/
static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
{
struct io_uring_params p;
int i;
if (copy_from_user(&p, params, sizeof(p)))
return -EFAULT;
for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
if (p.resv[i])
return -EINVAL;
}
if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
IORING_SETUP_R_DISABLED))
return -EINVAL;
return io_uring_create(entries, &p, params);
}
SYSCALL_DEFINE2(io_uring_setup, u32, entries,
struct io_uring_params __user *, params)
{
return io_uring_setup(entries, params);
}
static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
{
struct io_uring_probe *p;
size_t size;
int i, ret;
size = struct_size(p, ops, nr_args);
if (size == SIZE_MAX)
return -EOVERFLOW;
p = kzalloc(size, GFP_KERNEL);
if (!p)
return -ENOMEM;
ret = -EFAULT;
if (copy_from_user(p, arg, size))
goto out;
ret = -EINVAL;
if (memchr_inv(p, 0, size))
goto out;
p->last_op = IORING_OP_LAST - 1;
if (nr_args > IORING_OP_LAST)
nr_args = IORING_OP_LAST;
for (i = 0; i < nr_args; i++) {
p->ops[i].op = i;
if (!io_op_defs[i].not_supported)
p->ops[i].flags = IO_URING_OP_SUPPORTED;
}
p->ops_len = i;
ret = 0;
if (copy_to_user(arg, p, size))
ret = -EFAULT;
out:
kfree(p);
return ret;
}
static int io_register_personality(struct io_ring_ctx *ctx)
{
const struct cred *creds;
int ret;
creds = get_current_cred();
ret = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
USHRT_MAX, GFP_KERNEL);
if (ret < 0)
put_cred(creds);
return ret;
}
static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
unsigned int nr_args)
{
struct io_uring_restriction *res;
size_t size;
int i, ret;
/* Restrictions allowed only if rings started disabled */
if (!(ctx->flags & IORING_SETUP_R_DISABLED))
return -EBADFD;
/* We allow only a single restrictions registration */
if (ctx->restrictions.registered)
return -EBUSY;
if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
return -EINVAL;
size = array_size(nr_args, sizeof(*res));
if (size == SIZE_MAX)
return -EOVERFLOW;
res = memdup_user(arg, size);
if (IS_ERR(res))
return PTR_ERR(res);
ret = 0;
for (i = 0; i < nr_args; i++) {
switch (res[i].opcode) {
case IORING_RESTRICTION_REGISTER_OP:
if (res[i].register_op >= IORING_REGISTER_LAST) {
ret = -EINVAL;
goto out;
}
__set_bit(res[i].register_op,
ctx->restrictions.register_op);
break;
case IORING_RESTRICTION_SQE_OP:
if (res[i].sqe_op >= IORING_OP_LAST) {
ret = -EINVAL;
goto out;
}
__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
break;
case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
break;
case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
break;
default:
ret = -EINVAL;
goto out;
}
}
out:
/* Reset all restrictions if an error happened */
if (ret != 0)
memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
else
ctx->restrictions.registered = true;
kfree(res);
return ret;
}
static int io_register_enable_rings(struct io_ring_ctx *ctx)
{
if (!(ctx->flags & IORING_SETUP_R_DISABLED))
return -EBADFD;
if (ctx->restrictions.registered)
ctx->restricted = 1;
ctx->flags &= ~IORING_SETUP_R_DISABLED;
io_sq_offload_start(ctx);
return 0;
}
static bool io_register_op_must_quiesce(int op)
{
switch (op) {
case IORING_UNREGISTER_FILES:
case IORING_REGISTER_FILES_UPDATE:
case IORING_REGISTER_PROBE:
case IORING_REGISTER_PERSONALITY:
case IORING_UNREGISTER_PERSONALITY:
return false;
default:
return true;
}
}
static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
void __user *arg, unsigned nr_args)
__releases(ctx->uring_lock)
__acquires(ctx->uring_lock)
{
int ret;
/*
* We're inside the ring mutex, if the ref is already dying, then
* someone else killed the ctx or is already going through
* io_uring_register().
*/
if (percpu_ref_is_dying(&ctx->refs))
return -ENXIO;
if (io_register_op_must_quiesce(opcode)) {
percpu_ref_kill(&ctx->refs);
/*
* Drop uring mutex before waiting for references to exit. If
* another thread is currently inside io_uring_enter() it might
* need to grab the uring_lock to make progress. If we hold it
* here across the drain wait, then we can deadlock. It's safe
* to drop the mutex here, since no new references will come in
* after we've killed the percpu ref.
*/
mutex_unlock(&ctx->uring_lock);
do {
ret = wait_for_completion_interruptible(&ctx->ref_comp);
if (!ret)
break;
ret = io_run_task_work_sig();
if (ret < 0)
break;
} while (1);
mutex_lock(&ctx->uring_lock);
if (ret) {
percpu_ref_resurrect(&ctx->refs);
goto out_quiesce;
}
}
if (ctx->restricted) {
if (opcode >= IORING_REGISTER_LAST) {
ret = -EINVAL;
goto out;
}
if (!test_bit(opcode, ctx->restrictions.register_op)) {
ret = -EACCES;
goto out;
}
}
switch (opcode) {
case IORING_REGISTER_BUFFERS:
ret = io_sqe_buffers_register(ctx, arg, nr_args);
break;
case IORING_UNREGISTER_BUFFERS:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_sqe_buffers_unregister(ctx);
break;
case IORING_REGISTER_FILES:
ret = io_sqe_files_register(ctx, arg, nr_args);
break;
case IORING_UNREGISTER_FILES:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_sqe_files_unregister(ctx);
break;
case IORING_REGISTER_FILES_UPDATE:
ret = io_sqe_files_update(ctx, arg, nr_args);
break;
case IORING_REGISTER_EVENTFD:
case IORING_REGISTER_EVENTFD_ASYNC:
ret = -EINVAL;
if (nr_args != 1)
break;
ret = io_eventfd_register(ctx, arg);
if (ret)
break;
if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
ctx->eventfd_async = 1;
else
ctx->eventfd_async = 0;
break;
case IORING_UNREGISTER_EVENTFD:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_eventfd_unregister(ctx);
break;
case IORING_REGISTER_PROBE:
ret = -EINVAL;
if (!arg || nr_args > 256)
break;
ret = io_probe(ctx, arg, nr_args);
break;
case IORING_REGISTER_PERSONALITY:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_register_personality(ctx);
break;
case IORING_UNREGISTER_PERSONALITY:
ret = -EINVAL;
if (arg)
break;
ret = io_unregister_personality(ctx, nr_args);
break;
case IORING_REGISTER_ENABLE_RINGS:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_register_enable_rings(ctx);
break;
case IORING_REGISTER_RESTRICTIONS:
ret = io_register_restrictions(ctx, arg, nr_args);
break;
default:
ret = -EINVAL;
break;
}
out:
if (io_register_op_must_quiesce(opcode)) {
/* bring the ctx back to life */
percpu_ref_reinit(&ctx->refs);
out_quiesce:
reinit_completion(&ctx->ref_comp);
}
return ret;
}
SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
void __user *, arg, unsigned int, nr_args)
{
struct io_ring_ctx *ctx;
long ret = -EBADF;
struct fd f;
f = fdget(fd);
if (!f.file)
return -EBADF;
ret = -EOPNOTSUPP;
if (f.file->f_op != &io_uring_fops)
goto out_fput;
ctx = f.file->private_data;
io_run_task_work();
mutex_lock(&ctx->uring_lock);
ret = __io_uring_register(ctx, opcode, arg, nr_args);
mutex_unlock(&ctx->uring_lock);
trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
ctx->cq_ev_fd != NULL, ret);
out_fput:
fdput(f);
return ret;
}
static int __init io_uring_init(void)
{
#define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
} while (0)
#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
__BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
BUILD_BUG_SQE_ELEM(0, __u8, opcode);
BUILD_BUG_SQE_ELEM(1, __u8, flags);
BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
BUILD_BUG_SQE_ELEM(4, __s32, fd);
BUILD_BUG_SQE_ELEM(8, __u64, off);
BUILD_BUG_SQE_ELEM(8, __u64, addr2);
BUILD_BUG_SQE_ELEM(16, __u64, addr);
BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
BUILD_BUG_SQE_ELEM(24, __u32, len);
BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
BUILD_BUG_SQE_ELEM(32, __u64, user_data);
BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
BUILD_BUG_SQE_ELEM(42, __u16, personality);
BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
SLAB_ACCOUNT);
return 0;
};
__initcall(io_uring_init);