Arianna Avanzini e1b2324dd0 block, bfq: handle bursts of queue activations
Many popular I/O-intensive services or applications spawn or
reactivate many parallel threads/processes during short time
intervals. Examples are systemd during boot or git grep.  These
services or applications benefit mostly from a high throughput: the
quicker the I/O generated by their processes is cumulatively served,
the sooner the target job of these services or applications gets
completed. As a consequence, it is almost always counterproductive to
weight-raise any of the queues associated to the processes of these
services or applications: in most cases it would just lower the
throughput, mainly because weight-raising also implies device idling.

To address this issue, an I/O scheduler needs, first, to detect which
queues are associated with these services or applications. In this
respect, we have that, from the I/O-scheduler standpoint, these
services or applications cause bursts of activations, i.e.,
activations of different queues occurring shortly after each
other. However, a shorter burst of activations may be caused also by
the start of an application that does not consist in a lot of parallel
I/O-bound threads (see the comments on the function bfq_handle_burst
for details).

In view of these facts, this commit introduces:
1) an heuristic to detect (only) bursts of queue activations caused by
   services or applications consisting in many parallel I/O-bound
   threads;
2) the prevention of device idling and weight-raising for the queues
   belonging to these bursts.

Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19 08:30:26 -06:00
2017-04-14 14:08:54 -06:00
2017-02-13 12:24:56 -05:00
2016-05-23 17:04:14 -07:00
2017-03-26 14:15:16 -07:00

Linux kernel
============

This file was moved to Documentation/admin-guide/README.rst

Please notice that there are several guides for kernel developers and users.
These guides can be rendered in a number of formats, like HTML and PDF.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.
See Documentation/00-INDEX for a list of what is contained in each file.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 5.7 GiB
Languages
C 97.6%
Assembly 1%
Shell 0.5%
Python 0.3%
Makefile 0.3%