linux/drivers/iommu/iommufd/io_pagetable.c
Jason Gunthorpe 8d40205f60 iommufd: Add kAPI toward external drivers for kernel access
Kernel access is the mode that VFIO "mdevs" use. In this case there is no
struct device and no IOMMU connection. iommufd acts as a record keeper for
accesses and returns the actual struct pages back to the caller to use
however they need. eg with kmap or the DMA API.

Each caller must create a struct iommufd_access with
iommufd_access_create(), similar to how iommufd_device_bind() works. Using
this struct the caller can access blocks of IOVA using
iommufd_access_pin_pages() or iommufd_access_rw().

Callers must provide a callback that immediately unpins any IOVA being
used within a range. This happens if userspace unmaps the IOVA under the
pin.

The implementation forwards the access requests directly to the iopt
infrastructure that manages the iopt_pages_access.

Link: https://lore.kernel.org/r/14-v6-a196d26f289e+11787-iommufd_jgg@nvidia.com
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Yi Liu <yi.l.liu@intel.com>
Tested-by: Lixiao Yang <lixiao.yang@intel.com>
Tested-by: Matthew Rosato <mjrosato@linux.ibm.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2022-11-30 20:16:49 -04:00

1191 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES.
*
* The io_pagetable is the top of datastructure that maps IOVA's to PFNs. The
* PFNs can be placed into an iommu_domain, or returned to the caller as a page
* list for access by an in-kernel user.
*
* The datastructure uses the iopt_pages to optimize the storage of the PFNs
* between the domains and xarray.
*/
#include <linux/iommufd.h>
#include <linux/lockdep.h>
#include <linux/iommu.h>
#include <linux/sched/mm.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include "io_pagetable.h"
#include "double_span.h"
struct iopt_pages_list {
struct iopt_pages *pages;
struct iopt_area *area;
struct list_head next;
unsigned long start_byte;
unsigned long length;
};
struct iopt_area *iopt_area_contig_init(struct iopt_area_contig_iter *iter,
struct io_pagetable *iopt,
unsigned long iova,
unsigned long last_iova)
{
lockdep_assert_held(&iopt->iova_rwsem);
iter->cur_iova = iova;
iter->last_iova = last_iova;
iter->area = iopt_area_iter_first(iopt, iova, iova);
if (!iter->area)
return NULL;
if (!iter->area->pages) {
iter->area = NULL;
return NULL;
}
return iter->area;
}
struct iopt_area *iopt_area_contig_next(struct iopt_area_contig_iter *iter)
{
unsigned long last_iova;
if (!iter->area)
return NULL;
last_iova = iopt_area_last_iova(iter->area);
if (iter->last_iova <= last_iova)
return NULL;
iter->cur_iova = last_iova + 1;
iter->area = iopt_area_iter_next(iter->area, iter->cur_iova,
iter->last_iova);
if (!iter->area)
return NULL;
if (iter->cur_iova != iopt_area_iova(iter->area) ||
!iter->area->pages) {
iter->area = NULL;
return NULL;
}
return iter->area;
}
static bool __alloc_iova_check_hole(struct interval_tree_double_span_iter *span,
unsigned long length,
unsigned long iova_alignment,
unsigned long page_offset)
{
if (span->is_used || span->last_hole - span->start_hole < length - 1)
return false;
span->start_hole = ALIGN(span->start_hole, iova_alignment) |
page_offset;
if (span->start_hole > span->last_hole ||
span->last_hole - span->start_hole < length - 1)
return false;
return true;
}
static bool __alloc_iova_check_used(struct interval_tree_span_iter *span,
unsigned long length,
unsigned long iova_alignment,
unsigned long page_offset)
{
if (span->is_hole || span->last_used - span->start_used < length - 1)
return false;
span->start_used = ALIGN(span->start_used, iova_alignment) |
page_offset;
if (span->start_used > span->last_used ||
span->last_used - span->start_used < length - 1)
return false;
return true;
}
/*
* Automatically find a block of IOVA that is not being used and not reserved.
* Does not return a 0 IOVA even if it is valid.
*/
static int iopt_alloc_iova(struct io_pagetable *iopt, unsigned long *iova,
unsigned long uptr, unsigned long length)
{
unsigned long page_offset = uptr % PAGE_SIZE;
struct interval_tree_double_span_iter used_span;
struct interval_tree_span_iter allowed_span;
unsigned long iova_alignment;
lockdep_assert_held(&iopt->iova_rwsem);
/* Protect roundup_pow-of_two() from overflow */
if (length == 0 || length >= ULONG_MAX / 2)
return -EOVERFLOW;
/*
* Keep alignment present in the uptr when building the IOVA, this
* increases the chance we can map a THP.
*/
if (!uptr)
iova_alignment = roundup_pow_of_two(length);
else
iova_alignment = min_t(unsigned long,
roundup_pow_of_two(length),
1UL << __ffs64(uptr));
if (iova_alignment < iopt->iova_alignment)
return -EINVAL;
interval_tree_for_each_span(&allowed_span, &iopt->allowed_itree,
PAGE_SIZE, ULONG_MAX - PAGE_SIZE) {
if (RB_EMPTY_ROOT(&iopt->allowed_itree.rb_root)) {
allowed_span.start_used = PAGE_SIZE;
allowed_span.last_used = ULONG_MAX - PAGE_SIZE;
allowed_span.is_hole = false;
}
if (!__alloc_iova_check_used(&allowed_span, length,
iova_alignment, page_offset))
continue;
interval_tree_for_each_double_span(
&used_span, &iopt->reserved_itree, &iopt->area_itree,
allowed_span.start_used, allowed_span.last_used) {
if (!__alloc_iova_check_hole(&used_span, length,
iova_alignment,
page_offset))
continue;
*iova = used_span.start_hole;
return 0;
}
}
return -ENOSPC;
}
static int iopt_check_iova(struct io_pagetable *iopt, unsigned long iova,
unsigned long length)
{
unsigned long last;
lockdep_assert_held(&iopt->iova_rwsem);
if ((iova & (iopt->iova_alignment - 1)))
return -EINVAL;
if (check_add_overflow(iova, length - 1, &last))
return -EOVERFLOW;
/* No reserved IOVA intersects the range */
if (iopt_reserved_iter_first(iopt, iova, last))
return -EINVAL;
/* Check that there is not already a mapping in the range */
if (iopt_area_iter_first(iopt, iova, last))
return -EEXIST;
return 0;
}
/*
* The area takes a slice of the pages from start_bytes to start_byte + length
*/
static int iopt_insert_area(struct io_pagetable *iopt, struct iopt_area *area,
struct iopt_pages *pages, unsigned long iova,
unsigned long start_byte, unsigned long length,
int iommu_prot)
{
lockdep_assert_held_write(&iopt->iova_rwsem);
if ((iommu_prot & IOMMU_WRITE) && !pages->writable)
return -EPERM;
area->iommu_prot = iommu_prot;
area->page_offset = start_byte % PAGE_SIZE;
if (area->page_offset & (iopt->iova_alignment - 1))
return -EINVAL;
area->node.start = iova;
if (check_add_overflow(iova, length - 1, &area->node.last))
return -EOVERFLOW;
area->pages_node.start = start_byte / PAGE_SIZE;
if (check_add_overflow(start_byte, length - 1, &area->pages_node.last))
return -EOVERFLOW;
area->pages_node.last = area->pages_node.last / PAGE_SIZE;
if (WARN_ON(area->pages_node.last >= pages->npages))
return -EOVERFLOW;
/*
* The area is inserted with a NULL pages indicating it is not fully
* initialized yet.
*/
area->iopt = iopt;
interval_tree_insert(&area->node, &iopt->area_itree);
return 0;
}
static int iopt_alloc_area_pages(struct io_pagetable *iopt,
struct list_head *pages_list,
unsigned long length, unsigned long *dst_iova,
int iommu_prot, unsigned int flags)
{
struct iopt_pages_list *elm;
unsigned long iova;
int rc = 0;
list_for_each_entry(elm, pages_list, next) {
elm->area = kzalloc(sizeof(*elm->area), GFP_KERNEL_ACCOUNT);
if (!elm->area)
return -ENOMEM;
}
down_write(&iopt->iova_rwsem);
if ((length & (iopt->iova_alignment - 1)) || !length) {
rc = -EINVAL;
goto out_unlock;
}
if (flags & IOPT_ALLOC_IOVA) {
/* Use the first entry to guess the ideal IOVA alignment */
elm = list_first_entry(pages_list, struct iopt_pages_list,
next);
rc = iopt_alloc_iova(
iopt, dst_iova,
(uintptr_t)elm->pages->uptr + elm->start_byte, length);
if (rc)
goto out_unlock;
} else {
rc = iopt_check_iova(iopt, *dst_iova, length);
if (rc)
goto out_unlock;
}
/*
* Areas are created with a NULL pages so that the IOVA space is
* reserved and we can unlock the iova_rwsem.
*/
iova = *dst_iova;
list_for_each_entry(elm, pages_list, next) {
rc = iopt_insert_area(iopt, elm->area, elm->pages, iova,
elm->start_byte, elm->length, iommu_prot);
if (rc)
goto out_unlock;
iova += elm->length;
}
out_unlock:
up_write(&iopt->iova_rwsem);
return rc;
}
static void iopt_abort_area(struct iopt_area *area)
{
if (area->iopt) {
down_write(&area->iopt->iova_rwsem);
interval_tree_remove(&area->node, &area->iopt->area_itree);
up_write(&area->iopt->iova_rwsem);
}
kfree(area);
}
void iopt_free_pages_list(struct list_head *pages_list)
{
struct iopt_pages_list *elm;
while ((elm = list_first_entry_or_null(pages_list,
struct iopt_pages_list, next))) {
if (elm->area)
iopt_abort_area(elm->area);
if (elm->pages)
iopt_put_pages(elm->pages);
list_del(&elm->next);
kfree(elm);
}
}
static int iopt_fill_domains_pages(struct list_head *pages_list)
{
struct iopt_pages_list *undo_elm;
struct iopt_pages_list *elm;
int rc;
list_for_each_entry(elm, pages_list, next) {
rc = iopt_area_fill_domains(elm->area, elm->pages);
if (rc)
goto err_undo;
}
return 0;
err_undo:
list_for_each_entry(undo_elm, pages_list, next) {
if (undo_elm == elm)
break;
iopt_area_unfill_domains(undo_elm->area, undo_elm->pages);
}
return rc;
}
int iopt_map_pages(struct io_pagetable *iopt, struct list_head *pages_list,
unsigned long length, unsigned long *dst_iova,
int iommu_prot, unsigned int flags)
{
struct iopt_pages_list *elm;
int rc;
rc = iopt_alloc_area_pages(iopt, pages_list, length, dst_iova,
iommu_prot, flags);
if (rc)
return rc;
down_read(&iopt->domains_rwsem);
rc = iopt_fill_domains_pages(pages_list);
if (rc)
goto out_unlock_domains;
down_write(&iopt->iova_rwsem);
list_for_each_entry(elm, pages_list, next) {
/*
* area->pages must be set inside the domains_rwsem to ensure
* any newly added domains will get filled. Moves the reference
* in from the list.
*/
elm->area->pages = elm->pages;
elm->pages = NULL;
elm->area = NULL;
}
up_write(&iopt->iova_rwsem);
out_unlock_domains:
up_read(&iopt->domains_rwsem);
return rc;
}
/**
* iopt_map_user_pages() - Map a user VA to an iova in the io page table
* @ictx: iommufd_ctx the iopt is part of
* @iopt: io_pagetable to act on
* @iova: If IOPT_ALLOC_IOVA is set this is unused on input and contains
* the chosen iova on output. Otherwise is the iova to map to on input
* @uptr: User VA to map
* @length: Number of bytes to map
* @iommu_prot: Combination of IOMMU_READ/WRITE/etc bits for the mapping
* @flags: IOPT_ALLOC_IOVA or zero
*
* iova, uptr, and length must be aligned to iova_alignment. For domain backed
* page tables this will pin the pages and load them into the domain at iova.
* For non-domain page tables this will only setup a lazy reference and the
* caller must use iopt_access_pages() to touch them.
*
* iopt_unmap_iova() must be called to undo this before the io_pagetable can be
* destroyed.
*/
int iopt_map_user_pages(struct iommufd_ctx *ictx, struct io_pagetable *iopt,
unsigned long *iova, void __user *uptr,
unsigned long length, int iommu_prot,
unsigned int flags)
{
struct iopt_pages_list elm = {};
LIST_HEAD(pages_list);
int rc;
elm.pages = iopt_alloc_pages(uptr, length, iommu_prot & IOMMU_WRITE);
if (IS_ERR(elm.pages))
return PTR_ERR(elm.pages);
if (ictx->account_mode == IOPT_PAGES_ACCOUNT_MM &&
elm.pages->account_mode == IOPT_PAGES_ACCOUNT_USER)
elm.pages->account_mode = IOPT_PAGES_ACCOUNT_MM;
elm.start_byte = uptr - elm.pages->uptr;
elm.length = length;
list_add(&elm.next, &pages_list);
rc = iopt_map_pages(iopt, &pages_list, length, iova, iommu_prot, flags);
if (rc) {
if (elm.area)
iopt_abort_area(elm.area);
if (elm.pages)
iopt_put_pages(elm.pages);
return rc;
}
return 0;
}
int iopt_get_pages(struct io_pagetable *iopt, unsigned long iova,
unsigned long length, struct list_head *pages_list)
{
struct iopt_area_contig_iter iter;
unsigned long last_iova;
struct iopt_area *area;
int rc;
if (!length)
return -EINVAL;
if (check_add_overflow(iova, length - 1, &last_iova))
return -EOVERFLOW;
down_read(&iopt->iova_rwsem);
iopt_for_each_contig_area(&iter, area, iopt, iova, last_iova) {
struct iopt_pages_list *elm;
unsigned long last = min(last_iova, iopt_area_last_iova(area));
elm = kzalloc(sizeof(*elm), GFP_KERNEL_ACCOUNT);
if (!elm) {
rc = -ENOMEM;
goto err_free;
}
elm->start_byte = iopt_area_start_byte(area, iter.cur_iova);
elm->pages = area->pages;
elm->length = (last - iter.cur_iova) + 1;
kref_get(&elm->pages->kref);
list_add_tail(&elm->next, pages_list);
}
if (!iopt_area_contig_done(&iter)) {
rc = -ENOENT;
goto err_free;
}
up_read(&iopt->iova_rwsem);
return 0;
err_free:
up_read(&iopt->iova_rwsem);
iopt_free_pages_list(pages_list);
return rc;
}
static int iopt_unmap_iova_range(struct io_pagetable *iopt, unsigned long start,
unsigned long last, unsigned long *unmapped)
{
struct iopt_area *area;
unsigned long unmapped_bytes = 0;
int rc = -ENOENT;
/*
* The domains_rwsem must be held in read mode any time any area->pages
* is NULL. This prevents domain attach/detatch from running
* concurrently with cleaning up the area.
*/
again:
down_read(&iopt->domains_rwsem);
down_write(&iopt->iova_rwsem);
while ((area = iopt_area_iter_first(iopt, start, last))) {
unsigned long area_last = iopt_area_last_iova(area);
unsigned long area_first = iopt_area_iova(area);
struct iopt_pages *pages;
/* Userspace should not race map/unmap's of the same area */
if (!area->pages) {
rc = -EBUSY;
goto out_unlock_iova;
}
if (area_first < start || area_last > last) {
rc = -ENOENT;
goto out_unlock_iova;
}
/*
* num_accesses writers must hold the iova_rwsem too, so we can
* safely read it under the write side of the iovam_rwsem
* without the pages->mutex.
*/
if (area->num_accesses) {
start = area_first;
area->prevent_access = true;
up_write(&iopt->iova_rwsem);
up_read(&iopt->domains_rwsem);
iommufd_access_notify_unmap(iopt, area_first,
iopt_area_length(area));
if (WARN_ON(READ_ONCE(area->num_accesses)))
return -EDEADLOCK;
goto again;
}
pages = area->pages;
area->pages = NULL;
up_write(&iopt->iova_rwsem);
iopt_area_unfill_domains(area, pages);
iopt_abort_area(area);
iopt_put_pages(pages);
unmapped_bytes += area_last - area_first + 1;
down_write(&iopt->iova_rwsem);
}
if (unmapped_bytes)
rc = 0;
out_unlock_iova:
up_write(&iopt->iova_rwsem);
up_read(&iopt->domains_rwsem);
if (unmapped)
*unmapped = unmapped_bytes;
return rc;
}
/**
* iopt_unmap_iova() - Remove a range of iova
* @iopt: io_pagetable to act on
* @iova: Starting iova to unmap
* @length: Number of bytes to unmap
* @unmapped: Return number of bytes unmapped
*
* The requested range must be a superset of existing ranges.
* Splitting/truncating IOVA mappings is not allowed.
*/
int iopt_unmap_iova(struct io_pagetable *iopt, unsigned long iova,
unsigned long length, unsigned long *unmapped)
{
unsigned long iova_last;
if (!length)
return -EINVAL;
if (check_add_overflow(iova, length - 1, &iova_last))
return -EOVERFLOW;
return iopt_unmap_iova_range(iopt, iova, iova_last, unmapped);
}
int iopt_unmap_all(struct io_pagetable *iopt, unsigned long *unmapped)
{
int rc;
rc = iopt_unmap_iova_range(iopt, 0, ULONG_MAX, unmapped);
/* If the IOVAs are empty then unmap all succeeds */
if (rc == -ENOENT)
return 0;
return rc;
}
/* The caller must always free all the nodes in the allowed_iova rb_root. */
int iopt_set_allow_iova(struct io_pagetable *iopt,
struct rb_root_cached *allowed_iova)
{
struct iopt_allowed *allowed;
down_write(&iopt->iova_rwsem);
swap(*allowed_iova, iopt->allowed_itree);
for (allowed = iopt_allowed_iter_first(iopt, 0, ULONG_MAX); allowed;
allowed = iopt_allowed_iter_next(allowed, 0, ULONG_MAX)) {
if (iopt_reserved_iter_first(iopt, allowed->node.start,
allowed->node.last)) {
swap(*allowed_iova, iopt->allowed_itree);
up_write(&iopt->iova_rwsem);
return -EADDRINUSE;
}
}
up_write(&iopt->iova_rwsem);
return 0;
}
int iopt_reserve_iova(struct io_pagetable *iopt, unsigned long start,
unsigned long last, void *owner)
{
struct iopt_reserved *reserved;
lockdep_assert_held_write(&iopt->iova_rwsem);
if (iopt_area_iter_first(iopt, start, last) ||
iopt_allowed_iter_first(iopt, start, last))
return -EADDRINUSE;
reserved = kzalloc(sizeof(*reserved), GFP_KERNEL_ACCOUNT);
if (!reserved)
return -ENOMEM;
reserved->node.start = start;
reserved->node.last = last;
reserved->owner = owner;
interval_tree_insert(&reserved->node, &iopt->reserved_itree);
return 0;
}
static void __iopt_remove_reserved_iova(struct io_pagetable *iopt, void *owner)
{
struct iopt_reserved *reserved, *next;
lockdep_assert_held_write(&iopt->iova_rwsem);
for (reserved = iopt_reserved_iter_first(iopt, 0, ULONG_MAX); reserved;
reserved = next) {
next = iopt_reserved_iter_next(reserved, 0, ULONG_MAX);
if (reserved->owner == owner) {
interval_tree_remove(&reserved->node,
&iopt->reserved_itree);
kfree(reserved);
}
}
}
void iopt_remove_reserved_iova(struct io_pagetable *iopt, void *owner)
{
down_write(&iopt->iova_rwsem);
__iopt_remove_reserved_iova(iopt, owner);
up_write(&iopt->iova_rwsem);
}
void iopt_init_table(struct io_pagetable *iopt)
{
init_rwsem(&iopt->iova_rwsem);
init_rwsem(&iopt->domains_rwsem);
iopt->area_itree = RB_ROOT_CACHED;
iopt->allowed_itree = RB_ROOT_CACHED;
iopt->reserved_itree = RB_ROOT_CACHED;
xa_init_flags(&iopt->domains, XA_FLAGS_ACCOUNT);
xa_init_flags(&iopt->access_list, XA_FLAGS_ALLOC);
/*
* iopt's start as SW tables that can use the entire size_t IOVA space
* due to the use of size_t in the APIs. They have no alignment
* restriction.
*/
iopt->iova_alignment = 1;
}
void iopt_destroy_table(struct io_pagetable *iopt)
{
struct interval_tree_node *node;
while ((node = interval_tree_iter_first(&iopt->allowed_itree, 0,
ULONG_MAX))) {
interval_tree_remove(node, &iopt->allowed_itree);
kfree(container_of(node, struct iopt_allowed, node));
}
WARN_ON(!RB_EMPTY_ROOT(&iopt->reserved_itree.rb_root));
WARN_ON(!xa_empty(&iopt->domains));
WARN_ON(!xa_empty(&iopt->access_list));
WARN_ON(!RB_EMPTY_ROOT(&iopt->area_itree.rb_root));
}
/**
* iopt_unfill_domain() - Unfill a domain with PFNs
* @iopt: io_pagetable to act on
* @domain: domain to unfill
*
* This is used when removing a domain from the iopt. Every area in the iopt
* will be unmapped from the domain. The domain must already be removed from the
* domains xarray.
*/
static void iopt_unfill_domain(struct io_pagetable *iopt,
struct iommu_domain *domain)
{
struct iopt_area *area;
lockdep_assert_held(&iopt->iova_rwsem);
lockdep_assert_held_write(&iopt->domains_rwsem);
/*
* Some other domain is holding all the pfns still, rapidly unmap this
* domain.
*/
if (iopt->next_domain_id != 0) {
/* Pick an arbitrary remaining domain to act as storage */
struct iommu_domain *storage_domain =
xa_load(&iopt->domains, 0);
for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area;
area = iopt_area_iter_next(area, 0, ULONG_MAX)) {
struct iopt_pages *pages = area->pages;
if (!pages)
continue;
mutex_lock(&pages->mutex);
if (area->storage_domain == domain)
area->storage_domain = storage_domain;
mutex_unlock(&pages->mutex);
iopt_area_unmap_domain(area, domain);
}
return;
}
for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area;
area = iopt_area_iter_next(area, 0, ULONG_MAX)) {
struct iopt_pages *pages = area->pages;
if (!pages)
continue;
mutex_lock(&pages->mutex);
interval_tree_remove(&area->pages_node, &pages->domains_itree);
WARN_ON(area->storage_domain != domain);
area->storage_domain = NULL;
iopt_area_unfill_domain(area, pages, domain);
mutex_unlock(&pages->mutex);
}
}
/**
* iopt_fill_domain() - Fill a domain with PFNs
* @iopt: io_pagetable to act on
* @domain: domain to fill
*
* Fill the domain with PFNs from every area in the iopt. On failure the domain
* is left unchanged.
*/
static int iopt_fill_domain(struct io_pagetable *iopt,
struct iommu_domain *domain)
{
struct iopt_area *end_area;
struct iopt_area *area;
int rc;
lockdep_assert_held(&iopt->iova_rwsem);
lockdep_assert_held_write(&iopt->domains_rwsem);
for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area;
area = iopt_area_iter_next(area, 0, ULONG_MAX)) {
struct iopt_pages *pages = area->pages;
if (!pages)
continue;
mutex_lock(&pages->mutex);
rc = iopt_area_fill_domain(area, domain);
if (rc) {
mutex_unlock(&pages->mutex);
goto out_unfill;
}
if (!area->storage_domain) {
WARN_ON(iopt->next_domain_id != 0);
area->storage_domain = domain;
interval_tree_insert(&area->pages_node,
&pages->domains_itree);
}
mutex_unlock(&pages->mutex);
}
return 0;
out_unfill:
end_area = area;
for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area;
area = iopt_area_iter_next(area, 0, ULONG_MAX)) {
struct iopt_pages *pages = area->pages;
if (area == end_area)
break;
if (!pages)
continue;
mutex_lock(&pages->mutex);
if (iopt->next_domain_id == 0) {
interval_tree_remove(&area->pages_node,
&pages->domains_itree);
area->storage_domain = NULL;
}
iopt_area_unfill_domain(area, pages, domain);
mutex_unlock(&pages->mutex);
}
return rc;
}
/* All existing area's conform to an increased page size */
static int iopt_check_iova_alignment(struct io_pagetable *iopt,
unsigned long new_iova_alignment)
{
unsigned long align_mask = new_iova_alignment - 1;
struct iopt_area *area;
lockdep_assert_held(&iopt->iova_rwsem);
lockdep_assert_held(&iopt->domains_rwsem);
for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area;
area = iopt_area_iter_next(area, 0, ULONG_MAX))
if ((iopt_area_iova(area) & align_mask) ||
(iopt_area_length(area) & align_mask) ||
(area->page_offset & align_mask))
return -EADDRINUSE;
return 0;
}
int iopt_table_add_domain(struct io_pagetable *iopt,
struct iommu_domain *domain)
{
const struct iommu_domain_geometry *geometry = &domain->geometry;
struct iommu_domain *iter_domain;
unsigned int new_iova_alignment;
unsigned long index;
int rc;
down_write(&iopt->domains_rwsem);
down_write(&iopt->iova_rwsem);
xa_for_each(&iopt->domains, index, iter_domain) {
if (WARN_ON(iter_domain == domain)) {
rc = -EEXIST;
goto out_unlock;
}
}
/*
* The io page size drives the iova_alignment. Internally the iopt_pages
* works in PAGE_SIZE units and we adjust when mapping sub-PAGE_SIZE
* objects into the iommu_domain.
*
* A iommu_domain must always be able to accept PAGE_SIZE to be
* compatible as we can't guarantee higher contiguity.
*/
new_iova_alignment = max_t(unsigned long,
1UL << __ffs(domain->pgsize_bitmap),
iopt->iova_alignment);
if (new_iova_alignment > PAGE_SIZE) {
rc = -EINVAL;
goto out_unlock;
}
if (new_iova_alignment != iopt->iova_alignment) {
rc = iopt_check_iova_alignment(iopt, new_iova_alignment);
if (rc)
goto out_unlock;
}
/* No area exists that is outside the allowed domain aperture */
if (geometry->aperture_start != 0) {
rc = iopt_reserve_iova(iopt, 0, geometry->aperture_start - 1,
domain);
if (rc)
goto out_reserved;
}
if (geometry->aperture_end != ULONG_MAX) {
rc = iopt_reserve_iova(iopt, geometry->aperture_end + 1,
ULONG_MAX, domain);
if (rc)
goto out_reserved;
}
rc = xa_reserve(&iopt->domains, iopt->next_domain_id, GFP_KERNEL);
if (rc)
goto out_reserved;
rc = iopt_fill_domain(iopt, domain);
if (rc)
goto out_release;
iopt->iova_alignment = new_iova_alignment;
xa_store(&iopt->domains, iopt->next_domain_id, domain, GFP_KERNEL);
iopt->next_domain_id++;
up_write(&iopt->iova_rwsem);
up_write(&iopt->domains_rwsem);
return 0;
out_release:
xa_release(&iopt->domains, iopt->next_domain_id);
out_reserved:
__iopt_remove_reserved_iova(iopt, domain);
out_unlock:
up_write(&iopt->iova_rwsem);
up_write(&iopt->domains_rwsem);
return rc;
}
static int iopt_calculate_iova_alignment(struct io_pagetable *iopt)
{
unsigned long new_iova_alignment;
struct iommufd_access *access;
struct iommu_domain *domain;
unsigned long index;
lockdep_assert_held_write(&iopt->iova_rwsem);
lockdep_assert_held(&iopt->domains_rwsem);
/* See batch_iommu_map_small() */
if (iopt->disable_large_pages)
new_iova_alignment = PAGE_SIZE;
else
new_iova_alignment = 1;
xa_for_each(&iopt->domains, index, domain)
new_iova_alignment = max_t(unsigned long,
1UL << __ffs(domain->pgsize_bitmap),
new_iova_alignment);
xa_for_each(&iopt->access_list, index, access)
new_iova_alignment = max_t(unsigned long,
access->iova_alignment,
new_iova_alignment);
if (new_iova_alignment > iopt->iova_alignment) {
int rc;
rc = iopt_check_iova_alignment(iopt, new_iova_alignment);
if (rc)
return rc;
}
iopt->iova_alignment = new_iova_alignment;
return 0;
}
void iopt_table_remove_domain(struct io_pagetable *iopt,
struct iommu_domain *domain)
{
struct iommu_domain *iter_domain = NULL;
unsigned long index;
down_write(&iopt->domains_rwsem);
down_write(&iopt->iova_rwsem);
xa_for_each(&iopt->domains, index, iter_domain)
if (iter_domain == domain)
break;
if (WARN_ON(iter_domain != domain) || index >= iopt->next_domain_id)
goto out_unlock;
/*
* Compress the xarray to keep it linear by swapping the entry to erase
* with the tail entry and shrinking the tail.
*/
iopt->next_domain_id--;
iter_domain = xa_erase(&iopt->domains, iopt->next_domain_id);
if (index != iopt->next_domain_id)
xa_store(&iopt->domains, index, iter_domain, GFP_KERNEL);
iopt_unfill_domain(iopt, domain);
__iopt_remove_reserved_iova(iopt, domain);
WARN_ON(iopt_calculate_iova_alignment(iopt));
out_unlock:
up_write(&iopt->iova_rwsem);
up_write(&iopt->domains_rwsem);
}
/**
* iopt_area_split - Split an area into two parts at iova
* @area: The area to split
* @iova: Becomes the last of a new area
*
* This splits an area into two. It is part of the VFIO compatibility to allow
* poking a hole in the mapping. The two areas continue to point at the same
* iopt_pages, just with different starting bytes.
*/
static int iopt_area_split(struct iopt_area *area, unsigned long iova)
{
unsigned long alignment = area->iopt->iova_alignment;
unsigned long last_iova = iopt_area_last_iova(area);
unsigned long start_iova = iopt_area_iova(area);
unsigned long new_start = iova + 1;
struct io_pagetable *iopt = area->iopt;
struct iopt_pages *pages = area->pages;
struct iopt_area *lhs;
struct iopt_area *rhs;
int rc;
lockdep_assert_held_write(&iopt->iova_rwsem);
if (iova == start_iova || iova == last_iova)
return 0;
if (!pages || area->prevent_access)
return -EBUSY;
if (new_start & (alignment - 1) ||
iopt_area_start_byte(area, new_start) & (alignment - 1))
return -EINVAL;
lhs = kzalloc(sizeof(*area), GFP_KERNEL_ACCOUNT);
if (!lhs)
return -ENOMEM;
rhs = kzalloc(sizeof(*area), GFP_KERNEL_ACCOUNT);
if (!rhs) {
rc = -ENOMEM;
goto err_free_lhs;
}
mutex_lock(&pages->mutex);
/*
* Splitting is not permitted if an access exists, we don't track enough
* information to split existing accesses.
*/
if (area->num_accesses) {
rc = -EINVAL;
goto err_unlock;
}
/*
* Splitting is not permitted if a domain could have been mapped with
* huge pages.
*/
if (area->storage_domain && !iopt->disable_large_pages) {
rc = -EINVAL;
goto err_unlock;
}
interval_tree_remove(&area->node, &iopt->area_itree);
rc = iopt_insert_area(iopt, lhs, area->pages, start_iova,
iopt_area_start_byte(area, start_iova),
(new_start - 1) - start_iova + 1,
area->iommu_prot);
if (WARN_ON(rc))
goto err_insert;
rc = iopt_insert_area(iopt, rhs, area->pages, new_start,
iopt_area_start_byte(area, new_start),
last_iova - new_start + 1, area->iommu_prot);
if (WARN_ON(rc))
goto err_remove_lhs;
lhs->storage_domain = area->storage_domain;
lhs->pages = area->pages;
rhs->storage_domain = area->storage_domain;
rhs->pages = area->pages;
kref_get(&rhs->pages->kref);
kfree(area);
mutex_unlock(&pages->mutex);
/*
* No change to domains or accesses because the pages hasn't been
* changed
*/
return 0;
err_remove_lhs:
interval_tree_remove(&lhs->node, &iopt->area_itree);
err_insert:
interval_tree_insert(&area->node, &iopt->area_itree);
err_unlock:
mutex_unlock(&pages->mutex);
kfree(rhs);
err_free_lhs:
kfree(lhs);
return rc;
}
int iopt_cut_iova(struct io_pagetable *iopt, unsigned long *iovas,
size_t num_iovas)
{
int rc = 0;
int i;
down_write(&iopt->iova_rwsem);
for (i = 0; i < num_iovas; i++) {
struct iopt_area *area;
area = iopt_area_iter_first(iopt, iovas[i], iovas[i]);
if (!area)
continue;
rc = iopt_area_split(area, iovas[i]);
if (rc)
break;
}
up_write(&iopt->iova_rwsem);
return rc;
}
void iopt_enable_large_pages(struct io_pagetable *iopt)
{
int rc;
down_write(&iopt->domains_rwsem);
down_write(&iopt->iova_rwsem);
WRITE_ONCE(iopt->disable_large_pages, false);
rc = iopt_calculate_iova_alignment(iopt);
WARN_ON(rc);
up_write(&iopt->iova_rwsem);
up_write(&iopt->domains_rwsem);
}
int iopt_disable_large_pages(struct io_pagetable *iopt)
{
int rc = 0;
down_write(&iopt->domains_rwsem);
down_write(&iopt->iova_rwsem);
if (iopt->disable_large_pages)
goto out_unlock;
/* Won't do it if domains already have pages mapped in them */
if (!xa_empty(&iopt->domains) &&
!RB_EMPTY_ROOT(&iopt->area_itree.rb_root)) {
rc = -EINVAL;
goto out_unlock;
}
WRITE_ONCE(iopt->disable_large_pages, true);
rc = iopt_calculate_iova_alignment(iopt);
if (rc)
WRITE_ONCE(iopt->disable_large_pages, false);
out_unlock:
up_write(&iopt->iova_rwsem);
up_write(&iopt->domains_rwsem);
return rc;
}
int iopt_add_access(struct io_pagetable *iopt, struct iommufd_access *access)
{
int rc;
down_write(&iopt->domains_rwsem);
down_write(&iopt->iova_rwsem);
rc = xa_alloc(&iopt->access_list, &access->iopt_access_list_id, access,
xa_limit_16b, GFP_KERNEL_ACCOUNT);
if (rc)
goto out_unlock;
rc = iopt_calculate_iova_alignment(iopt);
if (rc) {
xa_erase(&iopt->access_list, access->iopt_access_list_id);
goto out_unlock;
}
out_unlock:
up_write(&iopt->iova_rwsem);
up_write(&iopt->domains_rwsem);
return rc;
}
void iopt_remove_access(struct io_pagetable *iopt,
struct iommufd_access *access)
{
down_write(&iopt->domains_rwsem);
down_write(&iopt->iova_rwsem);
WARN_ON(xa_erase(&iopt->access_list, access->iopt_access_list_id) !=
access);
WARN_ON(iopt_calculate_iova_alignment(iopt));
up_write(&iopt->iova_rwsem);
up_write(&iopt->domains_rwsem);
}
/* Narrow the valid_iova_itree to include reserved ranges from a group. */
int iopt_table_enforce_group_resv_regions(struct io_pagetable *iopt,
struct device *device,
struct iommu_group *group,
phys_addr_t *sw_msi_start)
{
struct iommu_resv_region *resv;
struct iommu_resv_region *tmp;
LIST_HEAD(group_resv_regions);
int rc;
down_write(&iopt->iova_rwsem);
rc = iommu_get_group_resv_regions(group, &group_resv_regions);
if (rc)
goto out_unlock;
list_for_each_entry(resv, &group_resv_regions, list) {
if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
continue;
/*
* The presence of any 'real' MSI regions should take precedence
* over the software-managed one if the IOMMU driver happens to
* advertise both types.
*/
if (sw_msi_start && resv->type == IOMMU_RESV_MSI) {
*sw_msi_start = 0;
sw_msi_start = NULL;
}
if (sw_msi_start && resv->type == IOMMU_RESV_SW_MSI)
*sw_msi_start = resv->start;
rc = iopt_reserve_iova(iopt, resv->start,
resv->length - 1 + resv->start, device);
if (rc)
goto out_reserved;
}
rc = 0;
goto out_free_resv;
out_reserved:
__iopt_remove_reserved_iova(iopt, device);
out_free_resv:
list_for_each_entry_safe(resv, tmp, &group_resv_regions, list)
kfree(resv);
out_unlock:
up_write(&iopt->iova_rwsem);
return rc;
}