e2d98504c6
On idle session, because we do not do signal for heartbeat, it will overflow the send queue after sometime. To avoid that, we need to enable the signal for heartbeat. To do that, add a new member signal_interval in rtrs_path, which will set min of queue_depth and SERVICE_CON_QUEUE_DEPTH, and track it for both heartbeat and IO, so the sq queue full accounting is correct. Fixes: b38041d50add ("RDMA/rtrs: Do not signal for heatbeat") Link: https://lore.kernel.org/r/20210712060750.16494-4-jinpu.wang@ionos.com Signed-off-by: Jack Wang <jinpu.wang@ionos.com> Reviewed-by: Aleksei Marov <aleksei.marov@ionos.com> Reviewed-by: Gioh Kim <gi-oh.kim@ionos.com> Reviewed-by: Md Haris Iqbal <haris.iqbal@ionos.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
638 lines
15 KiB
C
638 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* RDMA Transport Layer
|
|
*
|
|
* Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
|
|
* Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
|
|
* Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
|
|
*/
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/inet.h>
|
|
|
|
#include "rtrs-pri.h"
|
|
#include "rtrs-log.h"
|
|
|
|
MODULE_DESCRIPTION("RDMA Transport Core");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
struct rtrs_iu *rtrs_iu_alloc(u32 iu_num, size_t size, gfp_t gfp_mask,
|
|
struct ib_device *dma_dev,
|
|
enum dma_data_direction dir,
|
|
void (*done)(struct ib_cq *cq, struct ib_wc *wc))
|
|
{
|
|
struct rtrs_iu *ius, *iu;
|
|
int i;
|
|
|
|
ius = kcalloc(iu_num, sizeof(*ius), gfp_mask);
|
|
if (!ius)
|
|
return NULL;
|
|
for (i = 0; i < iu_num; i++) {
|
|
iu = &ius[i];
|
|
iu->direction = dir;
|
|
iu->buf = kzalloc(size, gfp_mask);
|
|
if (!iu->buf)
|
|
goto err;
|
|
|
|
iu->dma_addr = ib_dma_map_single(dma_dev, iu->buf, size, dir);
|
|
if (ib_dma_mapping_error(dma_dev, iu->dma_addr))
|
|
goto err;
|
|
|
|
iu->cqe.done = done;
|
|
iu->size = size;
|
|
}
|
|
return ius;
|
|
err:
|
|
rtrs_iu_free(ius, dma_dev, i);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_iu_alloc);
|
|
|
|
void rtrs_iu_free(struct rtrs_iu *ius, struct ib_device *ibdev, u32 queue_num)
|
|
{
|
|
struct rtrs_iu *iu;
|
|
int i;
|
|
|
|
if (!ius)
|
|
return;
|
|
|
|
for (i = 0; i < queue_num; i++) {
|
|
iu = &ius[i];
|
|
ib_dma_unmap_single(ibdev, iu->dma_addr, iu->size, iu->direction);
|
|
kfree(iu->buf);
|
|
}
|
|
kfree(ius);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_iu_free);
|
|
|
|
int rtrs_iu_post_recv(struct rtrs_con *con, struct rtrs_iu *iu)
|
|
{
|
|
struct rtrs_sess *sess = con->sess;
|
|
struct ib_recv_wr wr;
|
|
struct ib_sge list;
|
|
|
|
list.addr = iu->dma_addr;
|
|
list.length = iu->size;
|
|
list.lkey = sess->dev->ib_pd->local_dma_lkey;
|
|
|
|
if (list.length == 0) {
|
|
rtrs_wrn(con->sess,
|
|
"Posting receive work request failed, sg list is empty\n");
|
|
return -EINVAL;
|
|
}
|
|
wr = (struct ib_recv_wr) {
|
|
.wr_cqe = &iu->cqe,
|
|
.sg_list = &list,
|
|
.num_sge = 1,
|
|
};
|
|
|
|
return ib_post_recv(con->qp, &wr, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_iu_post_recv);
|
|
|
|
int rtrs_post_recv_empty(struct rtrs_con *con, struct ib_cqe *cqe)
|
|
{
|
|
struct ib_recv_wr wr;
|
|
|
|
wr = (struct ib_recv_wr) {
|
|
.wr_cqe = cqe,
|
|
};
|
|
|
|
return ib_post_recv(con->qp, &wr, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_post_recv_empty);
|
|
|
|
static int rtrs_post_send(struct ib_qp *qp, struct ib_send_wr *head,
|
|
struct ib_send_wr *wr, struct ib_send_wr *tail)
|
|
{
|
|
if (head) {
|
|
struct ib_send_wr *next = head;
|
|
|
|
while (next->next)
|
|
next = next->next;
|
|
next->next = wr;
|
|
} else {
|
|
head = wr;
|
|
}
|
|
|
|
if (tail)
|
|
wr->next = tail;
|
|
|
|
return ib_post_send(qp, head, NULL);
|
|
}
|
|
|
|
int rtrs_iu_post_send(struct rtrs_con *con, struct rtrs_iu *iu, size_t size,
|
|
struct ib_send_wr *head)
|
|
{
|
|
struct rtrs_sess *sess = con->sess;
|
|
struct ib_send_wr wr;
|
|
struct ib_sge list;
|
|
|
|
if (WARN_ON(size == 0))
|
|
return -EINVAL;
|
|
|
|
list.addr = iu->dma_addr;
|
|
list.length = size;
|
|
list.lkey = sess->dev->ib_pd->local_dma_lkey;
|
|
|
|
wr = (struct ib_send_wr) {
|
|
.wr_cqe = &iu->cqe,
|
|
.sg_list = &list,
|
|
.num_sge = 1,
|
|
.opcode = IB_WR_SEND,
|
|
.send_flags = IB_SEND_SIGNALED,
|
|
};
|
|
|
|
return rtrs_post_send(con->qp, head, &wr, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_iu_post_send);
|
|
|
|
int rtrs_iu_post_rdma_write_imm(struct rtrs_con *con, struct rtrs_iu *iu,
|
|
struct ib_sge *sge, unsigned int num_sge,
|
|
u32 rkey, u64 rdma_addr, u32 imm_data,
|
|
enum ib_send_flags flags,
|
|
struct ib_send_wr *head,
|
|
struct ib_send_wr *tail)
|
|
{
|
|
struct ib_rdma_wr wr;
|
|
int i;
|
|
|
|
wr = (struct ib_rdma_wr) {
|
|
.wr.wr_cqe = &iu->cqe,
|
|
.wr.sg_list = sge,
|
|
.wr.num_sge = num_sge,
|
|
.rkey = rkey,
|
|
.remote_addr = rdma_addr,
|
|
.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM,
|
|
.wr.ex.imm_data = cpu_to_be32(imm_data),
|
|
.wr.send_flags = flags,
|
|
};
|
|
|
|
/*
|
|
* If one of the sges has 0 size, the operation will fail with a
|
|
* length error
|
|
*/
|
|
for (i = 0; i < num_sge; i++)
|
|
if (WARN_ON(sge[i].length == 0))
|
|
return -EINVAL;
|
|
|
|
return rtrs_post_send(con->qp, head, &wr.wr, tail);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_iu_post_rdma_write_imm);
|
|
|
|
int rtrs_post_rdma_write_imm_empty(struct rtrs_con *con, struct ib_cqe *cqe,
|
|
u32 imm_data, enum ib_send_flags flags,
|
|
struct ib_send_wr *head)
|
|
{
|
|
struct ib_rdma_wr wr;
|
|
struct rtrs_sess *sess = con->sess;
|
|
enum ib_send_flags sflags;
|
|
|
|
sflags = (atomic_inc_return(&con->wr_cnt) % sess->signal_interval) ?
|
|
0 : IB_SEND_SIGNALED;
|
|
|
|
wr = (struct ib_rdma_wr) {
|
|
.wr.wr_cqe = cqe,
|
|
.wr.send_flags = sflags,
|
|
.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM,
|
|
.wr.ex.imm_data = cpu_to_be32(imm_data),
|
|
};
|
|
|
|
return rtrs_post_send(con->qp, head, &wr.wr, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_post_rdma_write_imm_empty);
|
|
|
|
static void qp_event_handler(struct ib_event *ev, void *ctx)
|
|
{
|
|
struct rtrs_con *con = ctx;
|
|
|
|
switch (ev->event) {
|
|
case IB_EVENT_COMM_EST:
|
|
rtrs_info(con->sess, "QP event %s (%d) received\n",
|
|
ib_event_msg(ev->event), ev->event);
|
|
rdma_notify(con->cm_id, IB_EVENT_COMM_EST);
|
|
break;
|
|
default:
|
|
rtrs_info(con->sess, "Unhandled QP event %s (%d) received\n",
|
|
ib_event_msg(ev->event), ev->event);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int create_cq(struct rtrs_con *con, int cq_vector, int nr_cqe,
|
|
enum ib_poll_context poll_ctx)
|
|
{
|
|
struct rdma_cm_id *cm_id = con->cm_id;
|
|
struct ib_cq *cq;
|
|
|
|
cq = ib_cq_pool_get(cm_id->device, nr_cqe, cq_vector, poll_ctx);
|
|
if (IS_ERR(cq)) {
|
|
rtrs_err(con->sess, "Creating completion queue failed, errno: %ld\n",
|
|
PTR_ERR(cq));
|
|
return PTR_ERR(cq);
|
|
}
|
|
con->cq = cq;
|
|
con->nr_cqe = nr_cqe;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int create_qp(struct rtrs_con *con, struct ib_pd *pd,
|
|
u32 max_send_wr, u32 max_recv_wr, u32 max_sge)
|
|
{
|
|
struct ib_qp_init_attr init_attr = {NULL};
|
|
struct rdma_cm_id *cm_id = con->cm_id;
|
|
int ret;
|
|
|
|
init_attr.cap.max_send_wr = max_send_wr;
|
|
init_attr.cap.max_recv_wr = max_recv_wr;
|
|
init_attr.cap.max_recv_sge = 1;
|
|
init_attr.event_handler = qp_event_handler;
|
|
init_attr.qp_context = con;
|
|
init_attr.cap.max_send_sge = max_sge;
|
|
|
|
init_attr.qp_type = IB_QPT_RC;
|
|
init_attr.send_cq = con->cq;
|
|
init_attr.recv_cq = con->cq;
|
|
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
|
|
|
|
ret = rdma_create_qp(cm_id, pd, &init_attr);
|
|
if (ret) {
|
|
rtrs_err(con->sess, "Creating QP failed, err: %d\n", ret);
|
|
return ret;
|
|
}
|
|
con->qp = cm_id->qp;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int rtrs_cq_qp_create(struct rtrs_sess *sess, struct rtrs_con *con,
|
|
u32 max_send_sge, int cq_vector, int nr_cqe,
|
|
u32 max_send_wr, u32 max_recv_wr,
|
|
enum ib_poll_context poll_ctx)
|
|
{
|
|
int err;
|
|
|
|
err = create_cq(con, cq_vector, nr_cqe, poll_ctx);
|
|
if (err)
|
|
return err;
|
|
|
|
err = create_qp(con, sess->dev->ib_pd, max_send_wr, max_recv_wr,
|
|
max_send_sge);
|
|
if (err) {
|
|
ib_cq_pool_put(con->cq, con->nr_cqe);
|
|
con->cq = NULL;
|
|
return err;
|
|
}
|
|
con->sess = sess;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_cq_qp_create);
|
|
|
|
void rtrs_cq_qp_destroy(struct rtrs_con *con)
|
|
{
|
|
if (con->qp) {
|
|
rdma_destroy_qp(con->cm_id);
|
|
con->qp = NULL;
|
|
}
|
|
if (con->cq) {
|
|
ib_cq_pool_put(con->cq, con->nr_cqe);
|
|
con->cq = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_cq_qp_destroy);
|
|
|
|
static void schedule_hb(struct rtrs_sess *sess)
|
|
{
|
|
queue_delayed_work(sess->hb_wq, &sess->hb_dwork,
|
|
msecs_to_jiffies(sess->hb_interval_ms));
|
|
}
|
|
|
|
void rtrs_send_hb_ack(struct rtrs_sess *sess)
|
|
{
|
|
struct rtrs_con *usr_con = sess->con[0];
|
|
u32 imm;
|
|
int err;
|
|
|
|
imm = rtrs_to_imm(RTRS_HB_ACK_IMM, 0);
|
|
err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm,
|
|
0, NULL);
|
|
if (err) {
|
|
rtrs_err(sess, "send HB ACK failed, errno: %d\n", err);
|
|
sess->hb_err_handler(usr_con);
|
|
return;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_send_hb_ack);
|
|
|
|
static void hb_work(struct work_struct *work)
|
|
{
|
|
struct rtrs_con *usr_con;
|
|
struct rtrs_sess *sess;
|
|
u32 imm;
|
|
int err;
|
|
|
|
sess = container_of(to_delayed_work(work), typeof(*sess), hb_dwork);
|
|
usr_con = sess->con[0];
|
|
|
|
if (sess->hb_missed_cnt > sess->hb_missed_max) {
|
|
rtrs_err(sess, "HB missed max reached.\n");
|
|
sess->hb_err_handler(usr_con);
|
|
return;
|
|
}
|
|
if (sess->hb_missed_cnt++) {
|
|
/* Reschedule work without sending hb */
|
|
schedule_hb(sess);
|
|
return;
|
|
}
|
|
|
|
sess->hb_last_sent = ktime_get();
|
|
|
|
imm = rtrs_to_imm(RTRS_HB_MSG_IMM, 0);
|
|
err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm,
|
|
0, NULL);
|
|
if (err) {
|
|
rtrs_err(sess, "HB send failed, errno: %d\n", err);
|
|
sess->hb_err_handler(usr_con);
|
|
return;
|
|
}
|
|
|
|
schedule_hb(sess);
|
|
}
|
|
|
|
void rtrs_init_hb(struct rtrs_sess *sess, struct ib_cqe *cqe,
|
|
unsigned int interval_ms, unsigned int missed_max,
|
|
void (*err_handler)(struct rtrs_con *con),
|
|
struct workqueue_struct *wq)
|
|
{
|
|
sess->hb_cqe = cqe;
|
|
sess->hb_interval_ms = interval_ms;
|
|
sess->hb_err_handler = err_handler;
|
|
sess->hb_wq = wq;
|
|
sess->hb_missed_max = missed_max;
|
|
sess->hb_missed_cnt = 0;
|
|
INIT_DELAYED_WORK(&sess->hb_dwork, hb_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_init_hb);
|
|
|
|
void rtrs_start_hb(struct rtrs_sess *sess)
|
|
{
|
|
schedule_hb(sess);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_start_hb);
|
|
|
|
void rtrs_stop_hb(struct rtrs_sess *sess)
|
|
{
|
|
cancel_delayed_work_sync(&sess->hb_dwork);
|
|
sess->hb_missed_cnt = 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtrs_stop_hb);
|
|
|
|
static int rtrs_str_gid_to_sockaddr(const char *addr, size_t len,
|
|
short port, struct sockaddr_storage *dst)
|
|
{
|
|
struct sockaddr_ib *dst_ib = (struct sockaddr_ib *)dst;
|
|
int ret;
|
|
|
|
/*
|
|
* We can use some of the IPv6 functions since GID is a valid
|
|
* IPv6 address format
|
|
*/
|
|
ret = in6_pton(addr, len, dst_ib->sib_addr.sib_raw, '\0', NULL);
|
|
if (ret == 0)
|
|
return -EINVAL;
|
|
|
|
dst_ib->sib_family = AF_IB;
|
|
/*
|
|
* Use the same TCP server port number as the IB service ID
|
|
* on the IB port space range
|
|
*/
|
|
dst_ib->sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port);
|
|
dst_ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
|
|
dst_ib->sib_pkey = cpu_to_be16(0xffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rtrs_str_to_sockaddr() - Convert rtrs address string to sockaddr
|
|
* @addr: String representation of an addr (IPv4, IPv6 or IB GID):
|
|
* - "ip:192.168.1.1"
|
|
* - "ip:fe80::200:5aee:feaa:20a2"
|
|
* - "gid:fe80::200:5aee:feaa:20a2"
|
|
* @len: String address length
|
|
* @port: Destination port
|
|
* @dst: Destination sockaddr structure
|
|
*
|
|
* Returns 0 if conversion successful. Non-zero on error.
|
|
*/
|
|
static int rtrs_str_to_sockaddr(const char *addr, size_t len,
|
|
u16 port, struct sockaddr_storage *dst)
|
|
{
|
|
if (strncmp(addr, "gid:", 4) == 0) {
|
|
return rtrs_str_gid_to_sockaddr(addr + 4, len - 4, port, dst);
|
|
} else if (strncmp(addr, "ip:", 3) == 0) {
|
|
char port_str[8];
|
|
char *cpy;
|
|
int err;
|
|
|
|
snprintf(port_str, sizeof(port_str), "%u", port);
|
|
cpy = kstrndup(addr + 3, len - 3, GFP_KERNEL);
|
|
err = cpy ? inet_pton_with_scope(&init_net, AF_UNSPEC,
|
|
cpy, port_str, dst) : -ENOMEM;
|
|
kfree(cpy);
|
|
|
|
return err;
|
|
}
|
|
return -EPROTONOSUPPORT;
|
|
}
|
|
|
|
/**
|
|
* sockaddr_to_str() - convert sockaddr to a string.
|
|
* @addr: the sockadddr structure to be converted.
|
|
* @buf: string containing socket addr.
|
|
* @len: string length.
|
|
*
|
|
* The return value is the number of characters written into buf not
|
|
* including the trailing '\0'. If len is == 0 the function returns 0..
|
|
*/
|
|
int sockaddr_to_str(const struct sockaddr *addr, char *buf, size_t len)
|
|
{
|
|
|
|
switch (addr->sa_family) {
|
|
case AF_IB:
|
|
return scnprintf(buf, len, "gid:%pI6",
|
|
&((struct sockaddr_ib *)addr)->sib_addr.sib_raw);
|
|
case AF_INET:
|
|
return scnprintf(buf, len, "ip:%pI4",
|
|
&((struct sockaddr_in *)addr)->sin_addr);
|
|
case AF_INET6:
|
|
return scnprintf(buf, len, "ip:%pI6c",
|
|
&((struct sockaddr_in6 *)addr)->sin6_addr);
|
|
}
|
|
return scnprintf(buf, len, "<invalid address family>");
|
|
}
|
|
EXPORT_SYMBOL(sockaddr_to_str);
|
|
|
|
/**
|
|
* rtrs_addr_to_str() - convert rtrs_addr to a string "src@dst"
|
|
* @addr: the rtrs_addr structure to be converted
|
|
* @buf: string containing source and destination addr of a path
|
|
* separated by '@' I.e. "ip:1.1.1.1@ip:1.1.1.2"
|
|
* "ip:1.1.1.1@ip:1.1.1.2".
|
|
* @len: string length
|
|
*
|
|
* The return value is the number of characters written into buf not
|
|
* including the trailing '\0'.
|
|
*/
|
|
int rtrs_addr_to_str(const struct rtrs_addr *addr, char *buf, size_t len)
|
|
{
|
|
int cnt;
|
|
|
|
cnt = sockaddr_to_str((struct sockaddr *)addr->src,
|
|
buf, len);
|
|
cnt += scnprintf(buf + cnt, len - cnt, "@");
|
|
sockaddr_to_str((struct sockaddr *)addr->dst,
|
|
buf + cnt, len - cnt);
|
|
return cnt;
|
|
}
|
|
EXPORT_SYMBOL(rtrs_addr_to_str);
|
|
|
|
/**
|
|
* rtrs_addr_to_sockaddr() - convert path string "src,dst" or "src@dst"
|
|
* to sockaddreses
|
|
* @str: string containing source and destination addr of a path
|
|
* separated by ',' or '@' I.e. "ip:1.1.1.1,ip:1.1.1.2" or
|
|
* "ip:1.1.1.1@ip:1.1.1.2". If str contains only one address it's
|
|
* considered to be destination.
|
|
* @len: string length
|
|
* @port: Destination port number.
|
|
* @addr: will be set to the source/destination address or to NULL
|
|
* if str doesn't contain any source address.
|
|
*
|
|
* Returns zero if conversion successful. Non-zero otherwise.
|
|
*/
|
|
int rtrs_addr_to_sockaddr(const char *str, size_t len, u16 port,
|
|
struct rtrs_addr *addr)
|
|
{
|
|
const char *d;
|
|
|
|
d = strchr(str, ',');
|
|
if (!d)
|
|
d = strchr(str, '@');
|
|
if (d) {
|
|
if (rtrs_str_to_sockaddr(str, d - str, 0, addr->src))
|
|
return -EINVAL;
|
|
d += 1;
|
|
len -= d - str;
|
|
str = d;
|
|
|
|
} else {
|
|
addr->src = NULL;
|
|
}
|
|
return rtrs_str_to_sockaddr(str, len, port, addr->dst);
|
|
}
|
|
EXPORT_SYMBOL(rtrs_addr_to_sockaddr);
|
|
|
|
void rtrs_rdma_dev_pd_init(enum ib_pd_flags pd_flags,
|
|
struct rtrs_rdma_dev_pd *pool)
|
|
{
|
|
WARN_ON(pool->ops && (!pool->ops->alloc ^ !pool->ops->free));
|
|
INIT_LIST_HEAD(&pool->list);
|
|
mutex_init(&pool->mutex);
|
|
pool->pd_flags = pd_flags;
|
|
}
|
|
EXPORT_SYMBOL(rtrs_rdma_dev_pd_init);
|
|
|
|
void rtrs_rdma_dev_pd_deinit(struct rtrs_rdma_dev_pd *pool)
|
|
{
|
|
mutex_destroy(&pool->mutex);
|
|
WARN_ON(!list_empty(&pool->list));
|
|
}
|
|
EXPORT_SYMBOL(rtrs_rdma_dev_pd_deinit);
|
|
|
|
static void dev_free(struct kref *ref)
|
|
{
|
|
struct rtrs_rdma_dev_pd *pool;
|
|
struct rtrs_ib_dev *dev;
|
|
|
|
dev = container_of(ref, typeof(*dev), ref);
|
|
pool = dev->pool;
|
|
|
|
mutex_lock(&pool->mutex);
|
|
list_del(&dev->entry);
|
|
mutex_unlock(&pool->mutex);
|
|
|
|
if (pool->ops && pool->ops->deinit)
|
|
pool->ops->deinit(dev);
|
|
|
|
ib_dealloc_pd(dev->ib_pd);
|
|
|
|
if (pool->ops && pool->ops->free)
|
|
pool->ops->free(dev);
|
|
else
|
|
kfree(dev);
|
|
}
|
|
|
|
int rtrs_ib_dev_put(struct rtrs_ib_dev *dev)
|
|
{
|
|
return kref_put(&dev->ref, dev_free);
|
|
}
|
|
EXPORT_SYMBOL(rtrs_ib_dev_put);
|
|
|
|
static int rtrs_ib_dev_get(struct rtrs_ib_dev *dev)
|
|
{
|
|
return kref_get_unless_zero(&dev->ref);
|
|
}
|
|
|
|
struct rtrs_ib_dev *
|
|
rtrs_ib_dev_find_or_add(struct ib_device *ib_dev,
|
|
struct rtrs_rdma_dev_pd *pool)
|
|
{
|
|
struct rtrs_ib_dev *dev;
|
|
|
|
mutex_lock(&pool->mutex);
|
|
list_for_each_entry(dev, &pool->list, entry) {
|
|
if (dev->ib_dev->node_guid == ib_dev->node_guid &&
|
|
rtrs_ib_dev_get(dev))
|
|
goto out_unlock;
|
|
}
|
|
mutex_unlock(&pool->mutex);
|
|
if (pool->ops && pool->ops->alloc)
|
|
dev = pool->ops->alloc();
|
|
else
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
|
if (IS_ERR_OR_NULL(dev))
|
|
goto out_err;
|
|
|
|
kref_init(&dev->ref);
|
|
dev->pool = pool;
|
|
dev->ib_dev = ib_dev;
|
|
dev->ib_pd = ib_alloc_pd(ib_dev, pool->pd_flags);
|
|
if (IS_ERR(dev->ib_pd))
|
|
goto out_free_dev;
|
|
|
|
if (pool->ops && pool->ops->init && pool->ops->init(dev))
|
|
goto out_free_pd;
|
|
|
|
mutex_lock(&pool->mutex);
|
|
list_add(&dev->entry, &pool->list);
|
|
out_unlock:
|
|
mutex_unlock(&pool->mutex);
|
|
return dev;
|
|
|
|
out_free_pd:
|
|
ib_dealloc_pd(dev->ib_pd);
|
|
out_free_dev:
|
|
if (pool->ops && pool->ops->free)
|
|
pool->ops->free(dev);
|
|
else
|
|
kfree(dev);
|
|
out_err:
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(rtrs_ib_dev_find_or_add);
|